
Secure Integration of Web Content and Applications on
Commodity Mobile Operating Systems

Drew Davidson
University of Wisconsin

Yaohui Chen
Stony Brook University

Franklin George
Stony Brook University

Long Lu
Stony Brook University

Somesh Jha
University of Wisconsin

ABSTRACT
A majority of today’s mobile apps integrate web content
of various kinds. Unfortunately, the interactions between
app code and web content expose new attack vectors: a
malicious app can subvert its embedded web content to steal
user secrets; on the other hand, malicious web content can
use the privileges of its embedding app to exfiltrate sensitive
information such as the user’s location and contacts.

In this paper, we discuss security weaknesses of the in-
terface between app code and web content through attacks,
then introduce defenses that can be deployed without mod-
ifying the OS. Our defenses feature WIREframe, a service
that securely embeds and renders external web content in
Android apps, and in turn, prevents attacks between em-
bedded web and host apps. WIREframe fully mediates the
interface between app code and embedded web content. Un-
like the existing web-embedding mechanisms, WIREframe
allows both apps and embedded web content to define sim-
ple access policies to protect their own resources. These
policies recognize fine-grained security principals, such as
origins, and control all interactions between apps and the
web. We also introduce WIRE (Web Isolation Rewriting
Engine), an offline app rewriting tool that allows app users
to inject WIREframe protections into existing apps. Our
evaluation, based on 7166 popular apps and 20 specially se-
lected apps, shows these techniques work on complex apps
and incur acceptable end-to-end performance overhead.

1. INTRODUCTION
A common app design paradigm is to embed web content

directly in an app’s UI. Apps that follow this paradigm,
which we call web-embedding apps, combine the advantages
of both the mobile web and native apps: web content is
highly portable across platforms, and native app code can
leverage the full power of the device. Unfortunately, these
apps also introduce unique attack vectors in the interactions
between web content and app code.

All major mobile platforms offer web-embedding support.
The WebView class in Android and UIWebView/WKWebView

class in iOS are UI widgets that display remote web ele-
ments or entire web pages natively within an app.1 Web
content and the embedding app can programmatically ma-
nipulate each other’s data and behavior via the so-called
app-web bridge APIs. For instance, an app can program-
matically configure embedded WebViews and inject scripts.
Conversely, JavaScript loaded in an WebView may call ex-
ported app code to access local resources, such as the file
system, the camera, or GPS.

The popularity of web-embedding apps makes the app-
web bridge an attractive target for attacks from both sides: a
malicious app may seek to subvert or leak sensitive web con-
tent (i.e., app-to-web attacks); malicious web content may
attempt to misuse the app’s permissions and local resources
(i.e., web-to-app attacks). Both types of attacks are increas-
ingly observed in reality [27, 21].

Malicious apps can embed and manipulate web content
from sensitive domains. Well-established web security poli-
cies, such as the same-origin policy (SOP), are not enforced
upon app-web interactions, largely due to the simplistic se-
curity design of WebView, which presumes apps always own
embedded web content. As a result, web-embedding apps
can easily disturb or spy on third-party web services, such
as single sign-on (SSO) and in-app payment. Furthermore,
apps can undermine inter-frame sandboxing by retrieving
scripts from one page and injecting them into another. This
means that a malicious app is not restricted by the SOP and
can introspect on sensitive, third-party web content.

Conversely, malicious web content embedded in benign
apps can abuse the app’s resources. The permissions granted
to an app are implicitly inherited by its embedded web con-
tent: the privileges meant for a trusted domain are univer-
sally available to sub-frames or elements loaded from un-
trusted domains in the WebView, allowing malicious web
content from one domain to leverage permissions intended
for a different domain. Moreover, the app-web bridge allows
app developers to make portions of their app code invoca-
ble by JavaScript loaded in WebViews. This feature greatly
facilitates web content’s access to local data and resources
such as the GPS location of the device. Unfortunately, this
access is not restricted to a given origin. Therefore, develop-
ers are often forced to ignore attacks, such as those reported
in [16, 27], in favor of adding app functionalities.

1
Though we focus on the security of Android WebViews, we believe

that our observations and techniques are applicable to iOS.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Requestpermissions from
Permissions@acm.org.
ASIA CCS '17, April 02 - 06, 2017, Abu Dhabi, United Arab Emirates
Copyright is held by the owner/author(s). Publication rights licensed toACM.
ACM 978-1-4503-4944-4/17/04…$15.00
DOI: http://dx.doi.org/10.1145/3052973.3052998

652

http://dx.doi.org/10.1145/3052973.3052998

Despite their variety, the above attacks in both directions
share a common root cause: Web content providers and app
developers have distinct security requirements that current
web-embedding mechanisms are incapable of distinguishing
or enforcing. For instance, app developers have no means
of controlling which web origins can use what app data and
code via the app-web bridge—they can only choose to fully
expose app interfaces to WebView or not at all (and thereby
give up app features). Similarly, web service providers can-
not express their needs for isolating their sensitive web con-
tent from apps or allow only limited access, and often have
to sacrifice security and privacy for mobile integration.

In this paper, we introduce a novel approach to enabling
fine-grained, policy-driven security for the app-web bridge.
Our approach is trustworthy to both apps and web content
providers. It protects both sides from attacks launched by
the other side. It is applicable, without OS changes or device
rooting, to both current and previous generations app-web
bridges. The contributions of our work are as follow:

• We formulate a system of dynamic access policies that
allows both apps and web content to protect them-
selves from each other while maintaining the benefits
of integrating apps and the web. We provide complete
mediation between apps and their embedded web con-
tent. We create a technique called origin tagging to
establish articulated security principals for app-web in-
teractions.
• We implement a static/dynamic hybrid system to de-

ploy our protection mechanisms without modifying the
operating system or requiring the cooperation of devel-
opers. Our evaluation using 7166 popular apps shows
that this system is compatible with existing apps and
effective in enhancing the security of web-embedding
apps while incurring minimal overhead.

The two components of our hybrid system are (1) a run-
time component built as a regular stand-alone app, called
WIREframe, serving as a trustworthy provider of secure,
isolated WebViews, and (2) a static, offline app rewriting
component called WIRE (Web Isolation Rewriting Engine).
Web-embedding apps use WIREframe to render their em-
bedded web content in decoupled, mediated WebView in-
stances. WIREframe allows app developers, app users, and
web content providers to define their own dynamic access
policies, which protect their respective resources. WIRE-
frame’s policy enforcement recognizes fine-grained security
principals (e.g., web origins and app identities) and controls
all app-web interactions. WIRE automates the adoption of
WIREframe in existing apps by statically rewriting an app
before installation. Each WebView in the app is replaced by
a mediated WebView instance in WIREframe. In addition
to separating the app from its WebView, this also separates
the individual WebViews in the same app.

Previous works have proposed mitigations to several re-
lated attacks. They isolate malicious ads in apps [10, 20,
26, 33] or protect embedded web logins [5, 15, 25]. Although
effective against their focused attacks, these solutions can-
not be generalized to defeat other types of attacks between
embedded web and apps. A recent work [29] retrofits origin-
based security to WebViews. Although a significant step
towards securing the app-web bridge, it concerns only web-
to-app attacks and requires deployment support from OS
or device vendors. Compared with these works, our solution

generally prevents attacks on both directions of the app-web
bridge, requires no OS modification or replacement of We-
bView, and enables fine-grained and policy-driven security
trusted by both web providers and app developers.

The rest of our paper is organized as follows: In § 2, we in-
troduce our threat model, discuss the security limitations of
current WebView, and present example attacks. In § 3, we
outline the designs of WIREframe and WIRE, followed by
their technical details in § 4. We provide a security analysis
of our system in § 6 and evaluate our prototype implemen-
tation of WIREframe and WIRE in § 7. We compare our
system with related work in § 8, and conclude in § 10. The
interested reader may find algorithmic details and future
work in Appendix A and B, respectively.

2. EXAMPLE ATTACKS AND ANALYSIS

2.1 Threat Model
Our system adopts a threat model that considers two sep-

arate classes of attacks exploiting the current WebView de-
sign:
App-to-Web Attacks: an app may spy on or manipulate
embedded web content sourced from a third-party provider.
In this case, the app, which controls the WebView, is the
attacker; the embedded web content (and its provider) is
the victim. To perform the attack, the malicious app may
use the WebView inspection APIs or directly manipulate
the WebView’s data in memory. Moreover, the malicious
app may employ obfuscation techniques, including reflection
and native code, to obscure its (ab)use of the WebView.
Web-to-App Attacks: an embedded web page from a
third-party may attack its host app. In contrast to the
previous class of attacks, the content embedded in a We-
bView (and its provider) is the attacker; the app that hosts
the WebView is the victim. In such attacks, the malicious
web content may exploit any web-facing interfaces exposed
by the WebView and the host app, including the exported
Java methods. However, the malicious web content is not
expected to exploit arbitrary code execution vulnerabilities
in the WebView. These vulnerabilities are rare and out of
the scope of this work, which addresses the insecure design
of WebView rather than implementation bugs.

We note that attacks in which an adversary controls both
web content and app code simultaneously are out of the
scope of this work.

2.2 Attack Scenarios
To illustrate the types of attacks that fall under our threat

model, we introduce three representative examples. We use
these examples to discuss the security limitations of Web-
View and the app-web bridge that enable the exploits.

2.2.1 SSO Credential Stealing
As one instance of an app-to-web attack, we implemented

a malicious web-embedding RSS reader app, WebRSS. RSS
readers are widely used on Android, with popular apps such
as Feedly and Flipboard boasting hundreds of thousands
of installs. WebRSS requires no permissions besides the
INTERNET permission, which allows the app to access the
network and is necessary for a legitimate RSS reader.

Like many account-based apps, WebRSS allows users to
authenticate themselves using a third-party SSO service.
SSO allows users to forgo the creation of a separate user-

653

App
Code

User

Display
WebView

Login

SSO
Provider

OAuth
handshake

Android App

WebView

Build WebView1

Inject JavaScript2

Trigger Exfiltration7

3

4

6

connect5

Figure 1: Workflow of an attack on an SSO client, as represented by the example app WebRSS. The app waits for the SSO dialog
to appear in the WebView, then scrapes the username and password from the WebView via introspection, either through reflection or
injected JavaScript.

name and password combination for each account that they
maintain. SSO services are popular precisely because they
identify users without directly exposing secret credentials.
Instead, users authenticate (by entering a username and
password) to a dialog (inside a WebView) controlled by the
SSO provider. Upon a successful login, the service passes an
opaque authentication token back to the app, which attests
to the user’s identity without revealing credentials.

However, a malicious app like WebRSS can indirectly
obtain user credentials by injecting JavaScript into the au-
thentication WebView to scrape the username and password
from the text fields, even when the password field is blinded.
Figure 1 illustrates the workflow of this attack at a high level.
WebRSS goes through three steps in the attack (relevant
snippets of code from WebRSS are shown in Figure 2):
Construct WebView: The first step, shown in Figure 2(a),
builds a WebView to load the authentication dialog. Note
that the app code enables JavaScript on the WebView and
interacts with a real SSO library, in this case LinkedIn. From
the perspective of the library, no malicious behavior occurs
as the app code is allowed to call getRequestToken() to get
the opaque SSO token.
Attach JavaScript Bridge: Figure 2(b) shows the app
code that will exfiltrate the user credentials. For the pur-
pose of demonstration, this code outputs the username and
password to a log file, but could send the values to an adver-
sary over the internet using the permissions already granted
to the app for legitimate RSS functionality.
Inject JavaScript Code: To complete the attack, the ma-
licious app registers for a callback when the authentication
dialog is loaded, as shown in Figure 2(c). When the call-
back is fired, the app injects the JavaScript code on Lines
9-15, which is stored as a string as part of the app. The
script scrapes the credentials from the dialog and passes it
to the code of Figure 2(b) through the app-web bridge. The
JavaScript can extract the contents of the password field
(Line 12) even though it is blinded (i.e. it displays a series
of dots on-screen rather than the literal characters of user
input). The characters of the username and password are
exfiltrated when the user clicks the “Allow Access” button.

The use of a WebView in WebRSS also enables a web-
to-app attack. Consider an iframe containing third-party
content (e.g., an ad banner outside of the SSO provider’s
domain) on the user login page or the redirection page fol-
lowing a successful login. Although the same-origin policy
prevents the third-party website from viewing web data from
the SSO provider’s domain, the third-party iframe can in-
voke, without restrictions, the Java interfaces exported by
the local app and the SSO library. This includes sensitive

interfaces solely intended for the web login (e.g., for retriev-
ing user location or login history data). Without breaking
any web or app security policy, the malicious iframe can
read sensitive data intended for the first-party site using the
app-web bridge.

2.2.2 Local Storage Inference
A powerful web-to-app attack involves web content loaded

in WebView stealing content from the host app. Most re-
cently, Son et al observed several such attacks, including in-
stances where web content infers the existence of local files
and may read the contents of such files [27]. Such attacks
have a severe privacy impact. Son et al found cases in which
the host app contained information on the user’s medica-
tions, dating gender preference, social circle, and identity.
The host app may contain credentials used to authenticate
the user, allowing malicious web content to breach the user’s
security. The attack relies on specific configuration of the
WebView. However, Son et al found that such configuration
is required and used in legitimate circumstances. Unfor-
tunately, the current design of WebView and the app-web
bridge cannot allow apps to selectively expose local resources
to web content based its origins or trust levels. When an app
needs to permit any trusted web content to access local files
or other resources, the same level of access is given to all
web content despite their origins.

2.2.3 User Impersonation
Another abuse of the app-web bridge is for a malicious

app to trick an embedded WebView and impersonate a user
through JavaScript actions. Websites are largely defenseless
against such actions: even if they require users to manually
input credentials and prevent malicious credential stealing
(e.g., through a use of a properly salted and encrypted pass-
word with every login), a malicious app can simply wait
for the credentials to be input and then send surreptitious
requests to the authenticated page in the guise of the user.

Such attacks are not just realistic but likely. For in-
stance, attackers often repackage popular websites’ official
companion apps, which are usually thin wrappers around
WebViews. The rogue companion apps can stealthily im-
personate users, which is difficult for web servers or average
users to detect. Furthermore, apps that allow for general-
purpose browsing can include specific triggers on particular
websites to launch user impersonation attacks.

2.3 Exploit Analysis
The common cause of the above attacks lies in two as-

sumptions implicit to the design of WebViews: (1) apps own

654

1 public void setWebView(){
2 WebView v = (WebView)findViewById(R.id.w);
3 v.getSettings().setJavaScriptEnabled(true);
4 v.setWebViewClient(new WebClient());
5 v.addJavascriptInterface(new JS(), "js");
6 LinkedInRequestToken t = getRequestToken();
7 v.loadUrl(t.getAuthorizationUrl()); }

(a) WebView Configuration Code

1 public class JS{
2 void harvest(String name, String pass){
3 Log.e("NAME", name);
4 Log.e("PASS", pass);
5 }}

(b) Exfiltration Callback Code

1 public class WebClient extends WebViewClient{
2
3 public void onLoadResource(WebView v, String url){
4 super.onLoadResource(v, url);
5
6 String tgtURL = "linkedin.com/uas/oauth/";
7 if (url.contains(tgtURL)){
8 v.loadUrl("javascript:function hack(){"
9 + "var f = document.getElementById("

10 + "’session_key-oauthAuthorizeForm’);"
11 + "var g = document.getElementById("
12 + "’session_password-oauthAuthorizeForm’);"
13 + "js.harvest(f.value, g.value);};"
14 + "document.getElementById("
15 + "’Allow Access’).onclick=hack()");
16 }}}

(c) JavaScript Interface

Figure 2: Code snippets from WebRSS to steal user credentials from an SSO dialog. (a) shows the configuration of the WebView from
malicious app code, enabling the JavaScript code to be injected and run. (b) shows the app code which is called to exfiltrate user data
scraped from the authentication dialog. (c) shows how JavaScript is constructed from within the app and injected into the authentication
site.

web content embedded in them; (2) WebView content comes
from a single origin. Android provides only a weak form of
isolation between the app and web content: the app loads
the web content, and can cede coarse-grained control. Since
both run in the same process, the app is expected to protect
the user from malicious web content. Unfortunately, the
weak isolation between apps and web content is insufficient
to prevent attacks between apps and embedded web. In the
next section, we show how our system improves upon this
isolation while still allowing sharing when appropriate.

3. SYSTEM OVERVIEW
In this section, we describe our system and show how it

addresses the threats of §2. The key capability of the system
is that it provides a secure service that runs web content in
a decoupled app. The most obvious benefit of this approach
is that it places app and process boundaries between the
web content and embedding app, leveraging existing isola-
tion mechanisms without modifying the underlying OS or
framework. However, the true power of our approach is
that it provides an opportunity for both the app and web
content to express dynamic access policies over their interac-
tions. The secure service mediates all interactions between
app code and web content over an inter-process communi-
cation (IPC) interface subject to these policies.

3.1 System Design
As described in §1, our system consists of two components:

(1) a standalone Android app, WIREframe, that runs the
secure WebView service. (2) a static, offline rewriting tool,
WIRE, that retargets apps to use the WIREframe ser-
vice. WIRE injects the protection mechanisms of WIRE-
frame without requiring apps to be redesigned. Thus, it
ensures that the policies of each security principal are en-
forced. Next, we describe the operation of our system by
walking through its workflow (Figure 3).
WIREframe App: At runtime, WIREframe registers a
background service that waits for connections from client
apps (i.e., third-party apps using WIREframe). When a
connection is created, the service binds a new IPC Agent to
the client app and establishes a stateful connection via An-
droid’s Binder mechanism. If the client app is allowed to dis-
play WebViews, the IPC Agent constructs a floating window

that contains an actual WebView instance, called the Con-
crete WebView. The IPC Agent maintains an internal map-
ping between each WebView instance rendered by WIRE-
frame and its counterpart in the client app. Through-
out the lifecycle of the WebView, the IPC Agent handles
the client app’s requests for WebView functionalities. For
a given request, it first queries the Policy Checker, which
serves as a security oracle. The Checker has a default con-
figuration, but can also load policies from the client app side
(i.e. defined by developers or app users) as well as policies
from the web side (i.e. defined by the web content provider).
If allow by the policies, the IPC Agent, invokes the corre-
sponding WebView API. The IPC Agent also forwards in-
vocation results or callbacks back to the client app.

WIREframe places mediated WebViews in individual
Service components running in isolated processes [2], and
therefore, strictly separates them from each other and the
embedding app. Process separation prevents reflection, mem-
ory mapping and other means of stealthy cross-origin mem-
ory introspection. This separation applies to not only We-
bViews’ executions, but also their access to local storage,
including the cookie database and the accessible paths in
the file system, which prevents WebViews housed in WIRE-
frame, often from different apps, from influencing each other.
In-app WebView Proxy: The WebView Proxy, loaded in-
side the client app, initiates and maintains the connection to
the IPC Agent. It also handles client-side data marshalling
and unmarshalling. In order to maintain a correspondence
to the look and feel of an embedded WebView, the Proxy
builds an empty view component (called the proxy view) in
the client app and registers callbacks to visual changes to the
proxy view. Whenever these callbacks fire, the Proxy for-
wards them to the WIREframe app to propagate the corre-
sponding view change in the concrete WebView. The proxy
maintains the same syntactic interface as an Android Web-
View. For example, the typical way that a page is loaded
in a WebView is by invoking the loadUrl method. Thus,
the WebView proxy exposes a loadUrl method, which it
translates into IPC, ultimately resulting in a concrete call
to the Concrete WebView within the WIREframe service.
We discuss technical details of how this interaction works in
§4.
WIRE Tool: Although app developers can interface with
the WebView Proxy manually, our threat model assumes

655

Android OS

 WIREframeWIRE

Offline
Rewriting

Runtime

Unpackaging

WebView
Identification &

Retargeting

IPC Synthesis

Repackaging

ReWritten
APK

Original.
APK

IPC
Agent

Policy
Checker

Client App

WebView
Proxy

Policy
Checker

Concrete
WebView

App
Code

Figure 3: System diagram of WIRE and WIREframe. WIRE is
applied to a third-party app before install time, ensuring that it
uses the protection mechanisms of WIREframe at runtime.

that developers can be malicious. As such, WIRE is needed
to help app users and IT administrators automatically re-
target WebViews in (untrusted) apps into proxy connections
to WIREframe. WIRE unpackages a given Android APK,
and identifies all uses of WebViews. If any such WebViews
exist, WIRE injects the WebView Proxy library and re-
places all instances of WebViews with instances of the Web-
View Proxy. This process is aided by the fact that the Proxy
has the same interface as the generic WebView. Finally, the
app is repackaged, and can be installed on a device, where
it will use WIREframe. We discuss the implementation of
WIRE in §A.

3.2 Dynamic Access Policies
As mentioned above, WIREframe enforces access poli-

cies to protect web content and app code from one another.
By virtue of running each WebView in an isolated process,
a web-embedding app can defeat many of the attacks listed
in §2: web content can no longer read files from the host
app, thereby mitigating local storage inference. The app
is disallowed from injecting JavaScript into the WebView,
preventing SSO credential stealing and user impersonation.

In the remainder of this section, we discuss additional de-
tails on the policy mechanisms and introduce how these poli-
cies can be refined dynamically for fine-grained control by
each side within a web-embedding app.

3.2.1 Web Protections
The effect of WIREframe is to extend the SOP to treat

the app code as a distinct origin. A web-embedding app
can launch a WebView, but cannot inspect its content. Fur-
thermore, the app is completely disallowed from injecting
JavaScript in the WebView. This policy is safe, but it can
limit the capabilities of web-embedding apps. For instance,
a common behavior of web-embedding apps is to source web
content from a remote origin belonging to the app developer,
which should be considered as a single origin.

To support this use case, WIREframe allows web content
owners to declare exceptions via a dynamic policy update
mechanism. When the WIREframe connects to a remote
website, it makes a request for a special set of WIREframe
specific headers. If the headers are absent, the default pol-
icy is employed. If the headers exist, they contain a list
of policy objects 〈A1, A2, . . . , An〉. Each policy object Ai

specifies a pair (Si, Pi) where Si is a security principal and
Pi is a policy to enforce over Si. In our implementation of

WIREframe, the security principal Si is an app, identi-
fied by its unique app signature and developer’s certificate.
WIREframe verifies the principal identity using the exist-
ing signature checking mechanism provided by the OS. A
website can also use the ANY principal as Si, which will ap-
ply Pi to all embedding apps. The policy Pi is a set of
WebView APIs that Si is allowed to access. For example,
if Pi = { setJavascriptEnabled }, then Si is allowed to
inject JavaScript. There is also a special LOCKDOWN policy
object which puts the WebView into a high-security mode:
JavaScript injection is disabled for the remainder of the ses-
sion.

WIREframe and its dynamic policy update mechanism
allows web providers to protect their sensitive content or ser-
vices that are embedded in untrusted apps. For instance, by
defining a simple policy that restricts embedding apps’ con-
trol over the WebViews, web content providers can easily
prevent the currently unstoppable app-to-web attacks dis-
cussed in §2.2. Note that more complicated policies or more
granular principals could be enforced by WIREframe (e.g.
a policy automaton to prohibit certain sequences of API
calls), but our current implementation is sufficient for com-
mon use cases. Note that policies are reloaded per-page.
Thus, if the user navigates to a new page, policies for previ-
ous pages are no longer regarded.

3.2.2 App Protections
A key enhancement that WIREframe uses to protect

apps from malicious web content (e.g., remote JavaScript
calling an exported local Java method) is to regulate re-
quests to the client app on a per web-origin basis. Note
that identifying the web origin of a remote request for lo-
cal resources is not trivial because current WebView design
does not provide such information explicitly via its APIs.
We obtain the origin information without modifying Web-
View using a technique called origin tagging. By using ex-
isting WebView callback interfaces, WIREframe rewrites
JavaScript invocations of WebView interfaces in the web
page being rendered. It extends the parameter list of such a
invocation to include a string that indicates the origin of the
JavaScript (more details in § 4). The integrity and confiden-
tiality is guaranteed by the enforcement of the same-origin
policy inside WebView. Besides enabling origin-based policy
enforcement, origin tagging also ensures that distinct Web-
Views within WIREframe cannot introspect on each other.
For example, WIREframe intercepts WebViews’ access to
the local file system (via URI loading override) and trans-
parently redirects such access to per-origin private paths,
unless a client app defines a less restrictive policy.

Developers can take advantage of origin tagging to de-
fine custom policies, placed in the app’s manifest. An app-
defined policy object follows the same format as that of a
web-defined policy object: (Si, Pi). But in this case, the se-
curity principal Si is a web origin and the policy Pi is a list
of local interfaces that the app exposes to Si. For example, a
legitimate location service app can define a policy whose Si

is the app’s own domain and Pi contains a local Java inter-
face getGpsLocation, which returns the GPS location. This
policy informs WIREframe that only web elements from
origin Si are allowed to invoke getGpsLocation via the app-
web bridge whereas web elements from other origins, even if
loaded inside the same WebView, are disallowed.

656

Such policies enable app developers to expose sensitive
interfaces solely to intended web origins, which is a missing
capability in today’s WebView that causes the web-to-app
attacks discussed in §2.2. With this capability, app devel-
opers no longer have to bear the high security risks while
adding local support to their own or trusted web services.

3.2.3 Policy Sources
Policies can come from several different entities: a site

can provide a policy when it is visited from an app, a devel-
oper can embed a policy into the app, and an expert user
can even inject a policy into the app at rewriting time. For
most apps and sites, the policy writer will have a notion of
the type of behavior that they would like to enable or disal-
low. However, a potential exception arises when a developer
uses a 3rd party SDK with web-embedding app functional-
ity. In principle, the 3rd party should supply its own policy.
Otherwise, developers can deploy a permissive policy that
will still preserve SDK functionality.

4. WIREframe TECHNICAL DETAILS
In the previous section, we described the high-level pro-

tection mechanisms of our system. We now discuss the im-
plementation of the runtime component, WIREframe, and
show how it achieves the security goals introduced above.
WIREframe is implemented as standalone third-party app
that acts as a secure and trusted provider of WebView for
regular apps. WIREframe completely mediates all interac-
tions between an app and its embedded web content while
enforcing fine-grained security policies.

Internally, WIREframe wraps one or more default We-
bView instances and use them to service an app’s requests
for WebView features. Apps make such requests and receive
results via well-defined IPC interfaces exposed by WIRE-
frame. Each IPC interface corresponds to a public Web-
View API and provides the equivalent functionality, except
that it performs comprehensive security checks and enables
policy enforcement. When in operation, WIREframe over-
lays its WebView UI on top of the invoking app’s UI in the
exact area where the original WebView is expected, provid-
ing a consistent and seamless user experience (i.e., the user
is not aware of a web-embedded UI is in fact composed and
supported by two separate apps). To keep the UIs of both
apps synchronized, WIREframe and the client app collab-
orate to captures user interaction events (i.e., touches) and
ensure that the proper UI receives the event based on its
position.

We developed WIRE to automatically patch the proxy
library into legacy apps and refactor the usage of WebView
into IPC invocations to WIREframe without any devel-
oper assistance (WIRE is discussed in §A). Therefore, our
system can be easily and quickly adopted in practice. An
advantage of this deployment is that a developer or an end
user can transition an app from using WebViews to using
WIREframe mediation easily. It also allows for deploying
regular WebViews and WIREframe side-by-side. We dis-
cuss the security implications of this deployment further in
§6.

In the remainder of this section, we discuss the implemen-
tation of WIREframe by discussing how it handles the key
challenges in its design.
Serialization: Android requires that objects passed via
IPC have methods to handle their internal data marshalling

and unmarshalling by implementing the Parcelable or Se-

rializable interface. A few complex class types referenced
in the WebView APIs do not implement these interfaces, and
therefore, cannot be passed via IPC. Although data marshal-
ing for IPC is a well studied problem, the unique constrains
that we faced in designing WIREframe make the existing
solutions non-applicable. For instance, adding serialization
support to complex class types is not feasible without chang-
ing WebView or Android middleware. Furthermore, even if
serialization methods can be added, a type may have volatile
state that prevents if from being fully serialized or passed
across app boundaries. In other words, such objects are in-
herently bound to their app contexts.

We handle unserializable types using a technique we call
object shadowing. The intuition behind object shadowing is
that, if an object cannot be moved to, or duplicated in, the
remote process, we keep it in the original program context
while creating a shadow copy of the object in the remote
process. The shadow object acts as a transparent proxy to
the original object: it only contains the public interfaces
of the original object. The shadow copy’s implementation
of these interfaces simply invokes the corresponding inter-
face exposed by the original object via IPC. As a result, the
shadow object allows code in the remote process to invoke
public methods or access public fields as if the original ob-
ject were passed to the remote process. At the same time,
when its methods are invoked the original object functions
properly without suffering from broken dependencies that
would otherwise occur if the object had been copied or du-
plicated in the remote process. Figure 4 shows an example
of applying object shadowing to the second parameter of
WebView.evaluateJavascript, a ValueCallback object. In
the example, the original object, callback is kept at the
client app side while a shadow object, shadowCallback, is
automatically created in the WebView instance in WIRE-
frame. The shadow object forwards calls to the public in-
terface, onReceiveValue, back to the original object via the
IPC channel provided by WIREframe.

Object shadowing can be recursive when a shadow in-
terface takes or returns complex objects. The recursion is
bounded due to the fact that object interfaces always con-
verge to primitive types that can be directly transferred over
IPC. The generation of these objects and classes is straight-
forward and automated. Thanks to object shadowing, non-
serializable objects involved in WIREframe IPC interfaces
are invoked in their original app context, rather than copied
across app boundaries, which allows IPC-unfriendly objects
to be used in a cross-app fashion.
Visual Fidelity: WebViews running in WIREframe need
to appear and function as native UIs of their embedding
apps. This includes not only displaying at the same scales
and locations as native WebViews but also responding to
events, for instance, indicating device rotation from land-
scape mode to portrait mode, in which case the content
rendered in the WebView should automatically rotate and
resize. Simply using the floating UI feature of Android does
not enable synchronization among the UIs belonging to two
apps. For instance, when the device is rotated, a series of
events is sent down the view hierarchy of the embedding
app, updating the layout of each element. This context is
not available to the WIREframe and is necessary to cal-
culate the final position and size that the WebView would
have occupied.

657

/* An example of a WebView API involving
complex parameter */
void evaluateJavascript(
 String script,
 ValueCallback<String> resultCallback)

/* Pseudo-def of a ValueCallback object in the
original app context */
ValueCallback<String> callback =
new ValueCallback<String>(){

@Override
public void onReceiveValue(String value) {

... // Original callback handler
 }};

/* Pseudo-def of a shadow ValueCallback object
in the WIREframe app */
ValueCallback<String> shadowCallback =
new ValueCallback<String>(){

@Override
public void onReceiveValue(String value) {

// Auto-generated IPC stub
WIREframeIPCAgent.remoteInvoke(

OrigValueCallBackObjID,
value);

}};

Figure 4: An illustration of object shadowing

To achieve visual fidelity, the Proxy WebView maintains
an invisible view (i.e., a transparent placeholder) that takes
the size and shape of the original WebView and forwards all
view events to the WIREframe via IPC. Android supports
several types of floating UI, by which an app in the back-
ground can draw UI elements on top of the currently fore-
grounded app. We leverage the floating UI feature to place
the trusted WebView managed by WIREframe over the
rewritten app while the latter is running in the foreground.
The WIREframe WebView occupies the exact screen area
where the original WebView would have been rendered had
the app not been rewritten or WIREframe not deployed.
Origin-based Policy Enforcement: To achieve fine gran-
ularity, our policy enforcement needs to track the origins of
web content and the origins of web-initiated calls to the app-
web bridge. Without this capability, WIREframe cannot
enforce useful policies such as allowing only a particular ori-
gin to invoke the GPS-reading method exposed by a client
app. However, realizing this capability in WIREframe is
challenging because none of the WebView APIs are aware of
the notion of web origins (i.e., their parameters and return
values do not carry information about origins).

In order to retain the origin information for each web-to-
app data access or code invocation, WIREframe employs
a dynamic HTML rewriting technique, which we call origin
tagging. This technique is built on the standard WebView
callbacks that the embedding app (WIREframe in this
case) can register to handle web navigation events. Upon
each page (re)load or DOM element refresh event, WIRE-
frame receives a callback from WebView’s rendering event
inspector. During this callback, WIREframe rewrites every
Javascript-to-WebView invocation in the to-be-loaded page
by appending an origin label to the parameter list. WIRE-
frame then resumes the page process. Using the origin
tagging technique, WIREframe attaches the genuine origin
labels to the invocations of the app-web bridge in a webpage
before the page is loaded. Any obscured invocation that is
not labeled will be rejected by the Policy Checking during
invocation. Note that an origin label is an encoded string
that can only be decoded into a plain origin string with the
secret key randomly generated key for the current webpage.
The encrypted labels prevent malicious web content from

faking or tampering with their origin labels. Later on when
a rewritten invocation is triggered, the Policy Checker re-
trieves the origin label by inspecting the last parameter of
the call. It decodes the label, verifies its integrity, and then
checks the invocation against the origin-based policy.
Complete Mediation: An important guarantee that our
system provides is that all app-web interactions are sub-
ject to policy enforcement. However, there is an inherent
difficulty in maintaining this guarantee without modifying
the Android framework: An adaptive adversary may at-
tempt to hide the use of a default WebView from rewrit-
ing by WIRE, or may re-implement web-embedding fea-
tures in third-party code. To address these potential eva-
sions, WIREframe allows sensitive websites to require that
they must be accessed from WIREframe. A website ex-
presses this requirement when WIREframe requests a spe-
cific path of a website (e.g., example.com/wireframe.txt).
WIREframe makes such a request and checks a website’s
requirement when the website is to be contacted directly by
a client app. The result is cached to save repetitive checks.
We imbue WIREframe with the ability to intercept all net-
work traffic from and to client apps. When WIREframe
observes a client app directly requesting HTTP or HTTPS
content from a website that requires WIREframe, it blocks
the request and alerts.

We realize this feature using the VpnService class, which
allows an app to act as a VPN client without requiring root
privilege. While the intended usage of the class is for build-
ing a tunnel interface, we repurpose it for traffic interception
on client apps of WIREframe. By implementing a per-app
VPN, WIREframe can force the client apps to send all traf-
fic through it while not affecting other app’s network con-
nections. The per-app VPN can co-exist with other VPN
client apps.

Note that using a mediated tunnel in this way leverages a
key advantage of our approach: WIREframe and its client-
side library set up the secure service at the entry points
and torn down at the exits of a client app. The complete
mediation enforced by the secure service ensures that any
WebViews missed by WIRE are detected at runtime.

5. APP REWRITING
A key goal of our work is that it is backwards-compatible

with existing apps without modifying the OS. In this section,
we discuss the details of how we accomplish this goal through
app rewriting.

The security policies discussed in Section 4 only take effect
if WIREframe is used by a web-embedding app in place
of its regular WebViews. While benign developers might
choose to deploy our mechanisms, malicious developers have
no incentive to do so. Our offline rewriting tool, WIRE,
addresses this concern by replacing all uses of WebView with
uses of the secure WIREframe proxy. This section provides
details on the design and implementation of WIRE. As space
constraints prevent us from providing a full discussion of
the implementation of WIRE, we highlight the novel and
challenging aspects of the tool.
Packaged App Analysis: One of the key advantages of
our approach is that it does not require assistance from de-
velopers. This means that the tool can rely only on the
packaged app (.apk file) and compiled bytecode. To handle
this challenge, WIRE leverages previous work on reverse-
engineering and re-compiling Dalvik bytecode. In particular,

658

we use the open source Apktool to unpackage and repack-
age code and resources from an apk [1]. We use the Soot
Java Optimization Framework [30] and Dexpler [4] to extract
Dalvik to an intermediate representation and recompile the
rewritten code.

WIRE is designed as a modular pipeline, with the rewrit-
ing phase decoupled from unpackaging and repackaging the
app. Thus, improvements to the underlying tools can be
easily integrated into our workflow.
Identifying WebView Usage: Because WIREframe pre-
vents the use of the default WebView, it is crucial for the
proper operation of the client app that all legitimate We-
bView uses of are identified and replaced. Unfortunately,
this identification can be challenging. In addition to We-
bViews that are programmatically constructed and config-
ured at runtime, an app can define the WebView UI and its
layout using an XML manifest which the system loads at
runtime. Thus, WIRE introspects and modifies not just the
app code, but also the applications resource XML files and
support code. We provide additional details of our rewriting
algorithm, including pseudocode, in Appendix A.
Satisfying Lifecycle Constraints: Android apps execute
in an event-driven lifecycle managed by the system. Events
are fired by the Operating System in response to events or
system notifications. An implicit ordering exists between the
lifecycle events: one event cannot happen until the compo-
nent’s lifecycle has gone through preceding events. Without
considering component lifecycle and the implicit constraints,
app rewriting can cause erroneous or interrupted app execu-
tion. Thus, WIRE includes a model of the Android lifecycle,
which is referenced during the calls to inject and marshall so
that the WIREframe is properly running and bound before
each invocation.

6. SECURITY ANALYSIS
We now discuss the security and robustness of our system

against evasion. Our discussion concerns attacks launched
by either a malicious client app or a malicious webpage—
two types of adversaries allowed in our threat model. We
explain how our design addresses each adversary, and discuss
limitations of our approach.
Malicious client apps: Adversarial apps may attempt to
evade our bytecode rewriting process to maintain the usage
of an unprotected WebView, and in turn preserve an attack
on the WebView’s content. A sufficiently advanced adver-
sary may be able to evade WIRE through obfuscation (e.g.,
using Java reflections), native code, or dynamically loaded
code. However, the per-app VPNService implemented in
WIREframe blocks any traffic, including HTTPS, from a
client app (i.e., using obfuscated WebView) to a server that
requires the use of WIREframe (this requirement is de-
clared in the server’s response headers and can be indepen-
dently tested by WIREframe). This behavior highlights
the fail-safe nature of our system: if a hidden web connec-
tion avoids WIRE, it will cause the app to break rather than
obtaining unmediated web access.

Malicious apps may hijack the IPC channel through which
the client-side proxy and WIREframe communicate, lead-
ing to unchecked or forged WebView API calls. The ad-
versary may employ IPC spoofing (i.e., communicating to
WIREframe directly without going through the local proxy)
or compromise the local proxy. The client app is considered
as a single, untrusted entity from the perspective of the web

App Name Category Functional Visual
Dictionary.com Reference 3 7
Flappy Bird Entertainment 3 3
Facebook Social 3 3
LinkedIn Social 3 3
The Hindu News 3 3
NY Times News 3 3
The Economic Times News 3 3
Groupon Social 3 3
IMDB Reference 3 3
Amazon Shopping Shopping 3 3
Ebay Shopping 3 3
Textgram Social 3 3
Jewels Saga Entertanment 3 3
Ask.fm Social 3 7
Photodirector Media 3 3
Angry Birds Entertainment 3 3
Instant Inventory Shopping 3 3
Fun Run Entertainment 3 3
LivingSocial Social 3 3
QuickPic Media 3 3

Figure 5: Table of selected benign apps rewritten using WIRE. A
3 indicates that the given app uses an overlay over a WebView,
while a 7 indicates that the given app does not.

content, and all calls to the IPC interface are mediated on
the WIREframe side. In other words, the WIREframe
treats all apps as if they were under the control of an adver-
sary spoofing the local proxy.
Malicious web content: When rendered inside WIRE-
frame, a malicious web page may attempt to break the
isolation and security checks enforced by the trusted Web-
View. Since the web origin plays a central role in regulat-
ing untrusted web content, the origin tagging mechanism of
WIREframe can be an obvious target for attackers. For
example, malicious JavaScript can either obfuscate its in-
vocation of Java interfaces to avoid tagging, or spoof its
origin by stealing a tag assigned to scripts from other do-
mains. Although it is possible to hide Java invocations, such
invocations are rejected by WIREframe as they are not
tagged. Stealing tags is impossible because reading tags of
scripts from other domains is prevented by the SOP. More-
over, origin tags cannot be forged or reused because they
are randomly generated on a per session basis. In very rare
cases, attackers may successfully exploit vulnerabilities in
the web rendering engine, and possibly compromise the TCB
of WIREframe. While not designed to mitigate such low-
level attacks, our system does significantly reduce the poten-
tial damage that such attacks can cause to either client apps
or WIREframe thanks to the process-based separation of
each WebView instance.

7. EVALUATION
Our evaluation seeks to answer the following questions:

1. Correctness : Do apps have the same appearances and
functionalities after adopting WIREframe?

2. Effectiveness: Does WIREframe enforcement effec-
tively prevent attacks on the app-web bridge?

3. Efficiency : What is the performance impact of replac-
ing in-app WebViews with WIREframe?

Experimental Highlights: Our experiments validate our
approach and show encouraging results. All apps, of differ-
ent categories, continued to run correctly after being rewrit-
ten using WIRE to use WIREframe, with 90% showing

659

no visual differences at all. We found that WIREframe ef-
fectively prevents both web-to-app and app-to-web attacks:
WIREframe successfully stopped the attacks against four
popular third-party WebView libraries that were otherwise
vulnerable, and prevented real web exploits targeting apps
found in the wild.

In the remainder of this section, we describe our method-
ology for arriving at these conclusions, and provide a more
in-depth analysis of our results.

7.1 Methodology
To answer the evaluation questions posed above, we use

both apps found in the wild and synthetic examples specifi-
cally crafted to highlight particular aspects of our approach.
As has been stated in previous work, scaling an evaluation
to a large number of apps found in the wild is difficult be-
cause apps are highly interactive [8]. Thus, we take a similar
approach to contemporary work: we statically assess a large
corpus of 7166 apps, then select a subsample of 20 relevant,
representative apps for deeper manual inspection. We refer
to the statically tested set as the correctness apps, since the
static analysis focuses on the validity and correctness of the
rewriting. We refer to the 20-app subsample as the benign
apps since we exercise the benign behavior of the apps with
the goal of ensuring that the app still functions correctly.
We note that the size of these samples are similar, for exam-
ple, to [32], which used a static sample of 1612 apps and a
targeted subsample of 20. We note several special-purpose
analyses test against even smaller sets, such as [22], which
manually analyzes 7 apps.

In addition to our samples of apps found in the wild, we
also create two sample sets designed to test the security and
performance of our approach: a set of attack apps that we
designed to mount attacks against 4 popular third-party We-
bView libraries, and a set of benchmark apps for precisely
measuring the performance of our approach. Designing syn-
thetic tests allows for repeatability, since the apps can be
built to run with minimal interaction with the user and in
a deterministic way.

We now describe each of our sample sets in greater detail:
Correctness Apps: To ensure the external validity of WIRE,
we applied it to a collection of 7166 app downloaded from
Google Play and 3rd party markets. Given the size of this
sample, running each app manually is infeasible. Our goal
with this sample is to ensure that the transformations ap-
plied by WIRE are correct and produce valid bytecode even
on apps found in the wild.
Benign Apps: Our suite of benign apps is composed of 20
popular apps specially selected from the Google Play store,
sub-sampled from the correctness apps. The apps come from
a variety of categories including reference (for reference ma-
terial, such as a dictionary), entertainment (for games), So-
cial (for social content such as Facebook), and Media (for
traditional media apps such as image viewers). Figure 5
shows the selected benign apps, along with their categories.
Attack Apps: Our set of attack apps exploits WebViews
used in four popular third-party libraries: LinkedIn, Face-
book, Twitter, and Foursquare. The basic flow of the attack
is very similar to that of our example attack, WebRSS, dis-
cussed in Section 3. Each attack app creates a WebView
and uses the API of the third-party library to get a sign-
on URL from the associated provider. The attack app then

injects JavaScript into the login page to read the username
and password fields on that page.

To apply the extra security protection of a login page,
WIREframe needs to know when it is on a secure login
site. In a production system, the secure web page would
provide a dynamic policy to indicate to WIREframe that
the page should selectively allow JavaScript to be injected
or any web content to be introspected upon. However, in
our experiment, instead of altering the HTML headers of
the login page and install dynamic policy on behalf of the
SSO providers, we simply rely on the default and the most
restrictive policy of WIREframe: by default, without co-
operation from the site, WIREframe does not allow apps
to inject scripts to or inspect on embedding WebView.
Benchmark Apps: To characterize per-operation over-
heads associated with WIREframe, we manually insert tim-
ing checks into a set of synthetic apps. We are broadly inter-
ested in three measures of overhead: the space cost of having
an additional app on the device, the per-launch overhead of
establishing the communication channel between client apps
and the WIREframe services, and the per-use overhead of
the IPC-based interaction between a client app and its em-
bedded WebView.

7.2 Analysis

7.2.1 Correctness
We performed two experiments to ensure the correctness

of our approach. In the first, we ensured that the app rewrit-
ing performed by WIRE produced valid bytecode. In total,
we found that 46 of our 7166 apps (approximately 0.6% of
apps) failed to complete the rewriting successfully. We note
that all of these apps also fail to complete a null transfor-
mation in Soot (our underlying analysis engine). Thus, we
believe these limitations are not intrinsic to our technique.

In our second correctness experiment, we tested that the
apps in our benign sample of apps continued to perform
correctly when run manually. Figure 5 shows the results of
this experiment on our 20 web-embedding apps.
Functional Correctness: The Functional column indi-
cates that the functionality of the app was preserved: no
crashes were detected in a manual session of operating the
app, and all web and app tasks completed using the WIRE-
frame just as using a plain WebView.
Visual Fidelity: The Visual column of Figure 5 indicates
if the app using WIREframe versus the in-app WebView
appeared to be identical. We discovered none but two apps
that did not meet this criteria, which were expected corner
cases. As a security feature, WIREframe does not allow
client apps to overlay UI over any part of WebView, and
therefore, prevents clickjacking and other UI confusion at-
tacks. The 2 apps failed the visual fidelity test because of
this deliberate security restriction of WIREframe. In the
Ask.fm app, a loading widget from the app is placed over
the WebView while it loads, and is thus not visible in the
rewritten app. In the Dictionary.com app, a widget from
the app displays an advertising message for a premium ver-
sion of the app over web content. In both cases, the workflow
of the apps remain undistorted. Furthermore, these offend-
ing overlays could have been embedded directly into the web
content or displayed elsewhere in the apps.

660

!
!
!
!
!
!
!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

!
!
!
!

Tested API
API Invocation Time (in milliseconds) API Invocation

Overhead (relative) w/ WIREframe w/o WIREframe

Name Type Nexus 5 Samsung
S5 Nexus 5 Samsung

S5 Nexus 5 Samsung
S5

clearCache basic 2.38 2.23 1.22 0.82 0.95 1.72
getTitle basic 0.58 0.183 0.30 0.11 0.93 0.72
capturePicture complex 6.08 6.97 1.16 1.64 4.25 3.24

!

Time
Relative Overhead

w/ WebHarbor w/o WebHarbor

Nexus 5 Samsung
S5 Nexus 5 Samsung

S5 Nexus 5 Samsung
S5

Load URL w/ origin
tagging (ms) 13.24 15.16 12.63 14.30 0.05 0.06

Load URL w/o origin
tagging (ms) 12.38 14.43 12.63 14.30 -0.02 0.01

Average app boot
and load (s) 5.37! 6.12! 5.09! 4.68! 0.05 0.08

w/ WebHarbor w/o WebHarbor
N5 S5 N5 S5

Client – Kernel time (s) 0.6 0.3 0.8 7.6
Client – User time (s) 1.8 1.1 8.7 3.7
WHbr – Kernel time (s) 0.7 2.4 - -
WHbr – User time (s) 3.7 9.6 - -

Client – VSS (KB) 945 965 1021 1061
Client – RSS (KB) 66.6 37.4 72.7 100
WHbr – VSS (KB) 947 952 - -
WHbr – RSS (KB) 46.7 47.1 - -
WHbr = WebHarbor App!

Figure 6: Runtime Overhead of WIREframe protection mechanisms. Overhead includes the IPC invocation and policy checks. Note
that the complex object shadowing of capturePicture includes the time needed to copy an entire screenshot of a WebView between
apps.

!
!
!
!
!
!
!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

!
!
!
!

Tested API
API Invocation Time (in milliseconds) API Invocation

Overhead (relative) w/ WebHarbor w/o WebHarbor

Name Type Nexus 5 Samsung
S5 Nexus 5 Samsung

S5 Nexus 5 Samsung
S5

clearCache basic 2.38 2.23 1.22 0.82 0.95 1.72
getTitle basic 0.58 0.183 0.30 0.11 0.93 0.72
capturePicture complex 6.08 6.97 1.16 1.64 4.25 3.24

!

Time
Relative Overhead

w/ WIREframe w/o WIREframe

Nexus 5 Samsung
S5 Nexus 5 Samsung

S5 Nexus 5 Samsung
S5

Load URL w/ origin
tagging (ms) 13.24 15.16 12.63 14.30 0.05 0.06

Load URL w/o origin
tagging (ms) 12.38 14.43 12.63 14.30 -0.02 0.01

Average app boot
and load (s) 5.37! 6.12! 5.09! 4.68! 0.05 0.08

w/ WebHarbor w/o WebHarbor
N5 S5 N5 S5

Client – Kernel time (s) 0.6 0.3 0.8 7.6
Client – User time (s) 1.8 1.1 8.7 3.7
WHbr – Kernel time (s) 0.7 2.4 - -
WHbr – User time (s) 3.7 9.6 - -

Client – VSS (KB) 945 965 1021 1061
Client – RSS (KB) 66.6 37.4 72.7 100
WHbr – VSS (KB) 947 952 - -
WHbr – RSS (KB) 46.7 47.1 - -
WHbr = WebHarbor App!

Figure 7: Runtime Overhead of the Load URL API. Note that loading URLs without origin tagging has a low enough overhead that it
is within the margin or error.

w/ W w/o W

N5 S5 N5 S5

Client – Kernel time (s) 0.6 0.3 0.8 7.6
Client – User time (s) 1.8 1.1 8.7 3.7
Wf – Kernel time (s) 0.7 2.4 - -
Wf – User time (s) 3.7 9.6 - -

Client – VSS (KB) 945 965 1021 1061
Client – RSS (KB) 66.6 37.4 72.7 100
Wf – VSS (KB) 947 952 - -
Wf – RSS (KB) 46.7 47.1 - -
W = W App�

Figure 8: Resource Utilization of CPU and Memory. WIRE-
frame incurs modest overhead, mostly composed of time and
memory in user space.

7.2.2 Effectiveness
For each of the four attack apps that we tested, we found

that WIREframe was effective in preventing the malicious
behavior that we inserted.
Effective Enforcement: The attack apps import and ex-
ploit the authentication libraries from Facebook, Foursquare,
LinkedIn, and Twitter, all of which use WebViews. To ex-
ploit the library, the attack apps inject JavaScript into the
login window for each service according to the techniques
described in Section 3. For all four libraries, we successfully
extracted the username and password when the app used a
default in-app WebView. We then rewrote each app using
WIRE, and replayed the attacks. In each case, WIRE-
frame successfully prevented exfiltration of credentials.

In addition, we simulated the web-to-app attacks and ex-
amined WIREframe’s origin-based policy enforcement. We
created a test app which, employing dynamic policies, ex-
ports a range of sensitive Java interfaces exclusively to web
content from a trusted origin. We also composed a mash-up
page with multiple iframes and scripts from different origins
that all try to access the exported app-web interfaces. Dur-
ing the test, the app first loads the mash-up page using a

regular in-app WebView and then do the same using WIRE-
frame. Our results show that, the sensitive interfaces were
universally accessible to all web content loaded in the regu-
lar WebView but were only accessible to the trusted domain
from within WIREframe.

Those tests show that WIREframe’s enforcement is ef-
fective at isolating the threats that apps and embedded web
content may impose to each other.

7.2.3 Efficiency
The extra security protections afforded by our approach

have overheads in terms of resource utilization (CPU and
memory) and runtime overhead. While correctness and ef-
fectiveness are the primary concerns of our system, we also
evaluate if the mechanism is efficient enough to use.
Resource Utilization: Figure 8 lists the resources used by
an app with and without WIREframe. VSS lists the virtual
set size (VSS), which is a measure of the maximum utiliza-
tion of virtual memory. RSS lists the resident set size, which
measures the maximum footprint in resident memory. App
using WIREframe has a smaller memory footprint across
both metrics, since web content is now being loaded in the
WIREframe process. There is also a constant overhead of
less than 1 MB for running the additional process, but given
that modern Android devices such as the S5 are equipped
with 2GB of RAM, we consider this overhead to be negligi-
ble.
Runtime Overhead: Rewritten apps incur overhead from
the extra bookkeeping performed for WIREframe protec-
tion mechanisms. We measured the runtime increase across
representative web APIs of both types.

Figure 6 shows the runtime of invocations of two basic
APIs, in which the arguments to the call do not require ob-
ject shadowing and complex APIs which do. These functions
measure the additional overhead of app to-web protections,
which is accounted for by the actual IPC invocation and
related marshaling. For basic APIs, we experience an ap-
proximately 1x increase in overhead. For complex APIs, we
experience a 3-4x increase.

661

Figure 7 shows the overhead of loads with and without
origin tagging. This overhead is accounted for by building
and inspecting the web origin. As expected, we experience
negligible overhead without origin tagging (within the mar-
gin of error of our timing tool, DDMS).

Although these overheads are high in relative terms, they
are mitigated by the fact that the absolute overheads are
small. Given that these WebView APIs are called infre-
quently in an app, the runtime overhead accounts for a neg-
ligible factor of the total runtime of the app. We have found
these latencies to be acceptable in use, but we note that
there is room to optimize our techniques, especially with re-
gards to object shadowing. Furthermore, interacting with
web content is especially amenable to absorbing the over-
heads introduced by IPC, since runtime of such operations
will often by dominated by network latency.

8. RELATED WORK
Studying WebView-related Attacks: Previous studies
have reported several types of WebView attacks that exploit
the app-web bridge. Luo et al [16] demonstrated that, us-
ing WebView APIs, apps may inject malicious scripts into
embedded web content, and at the same time, unauthorized
web code may invoke app-exported Java methods. Roes-
ner et al have noted that apps can read passwords from the
embedded WebViews [24]. Many works have noted the scope
and severity of malicious web content on benign apps (web-
to-app attacks, in our terminology: Chin et al [6] studied
two types of WebView attacks whereby malicious JavaScript
scripts perform unauthorized Java invocations and file sys-
tem access in vulnerable apps. Neugschwandtner et al [19]
showed that WebViews can serve as a powerful attack vector
when the server is compromised. Thomas et al [28] formu-
lated a model for determining the lifetime of a vulnerabilities
in Android using Javascript attacks on WebView as a case
study. This model notes the slow deployment of patches in
Android, a point that supports our technique of app rewrit-
ing rather than system WebView patching. Wang et al [31]
demonstrated the origin-confusion attacks and provided a
mitigation that requires OS modifications. More recently,
Son et al [27] found that untrusted advertisements rendered
in WebViews may infer user profiles by testing the mere exis-
tence of certain files, an operation that the current WebView
design cannot forbid. Motivated by those previous studies,
our work solves an open and pressing issue—generalizing
and preventing WebView-related attacks.
Isolating External Web in Apps: There is a rich body of
work [10, 20, 26, 33] on mobile ads isolation. The proposed
solutions isolate ads from hosting app by placing ads in a
separate process or app. NativeWrap [18] expands the sim-
ilar isolation to cover web applications in WebViews. Our
work also uses process boundaries to separate apps and web
content, but is compatible with all kinds of WebView usages
and considers both web-to-app and app-to-web attacks. Un-
like previous work, our system allows for policy-driven and
origin-based security, and includes a static rewriting tool,
WIRE, to help app users conveniently apply WIREframe
to existing apps that use WebView. Draco [29] is the lat-
est work that mitigates untrusted web content rendered in
WebView by extending the WebView system app on recent
versions of Android. In comparison, our work does not re-
quire rooted devices or deployment assistance from OS or

device vendors. Our work applies to both web-to-app at-
tacks and app-to-web attacks, which previous work cannot.
Securing Sensitive Web Content in Untrusted Apps:
Web-based logins are a common embedded web element
that previous research set to secure [5, 15, 25] by means of
trusted devices, verified UI, and scrutinized implementation
of authentication protocols. In contrast, WIREframe pre-
vents the web content manipulations unique to WebView.
Such manipulations are caused by the faulty security as-
sumptions of WebView and the coarse security control over
the app-web bridge. LayerCake [24] is a modified version
of Android that prevents UI confusion and clickjacking at-
tacks. It supplies secure user interfaces elements, including
SecureWebView that can be embedded in an app but run
in a separate process. SecureWebView statically disallows
the use of JavaScript and the app-web bridge. Therefore,
it can prevent the SSO attacks that partly motivated our
work. However, SecureWebView only aims to protect sensi-
tive web content whereas WIREframe protects both apps
and web content as per the policies from both sides. In ad-
dition, WIREframe is backward compatible with the ex-
isting Android architecture While the goals of our systems
are different, it would be interesting to combine the systems:
LayerCake could enable the app-web bridge but enforce the
policies that we describe in this paper, and WIRE could re-
target legacy apps to use the OS-provided SecureWebView.
An alternative approach used by Mutchler et al [17] and Has-
sanshahi et al [11] is to scan web-embedding applications of-
fline for possible web-app bridge vulnerabilities. While these
papers do not specifically mention SSO credential stealing,
they share a similar threat model to our own in that they
consider malicious apps as well as malicious web traffic. Un-
like our work, these techniques do not propose defenses other
than reporting the possible vulnerabilities.
Hybrid Frameworks: Frameworks such as PhoneGap /
Cordova [3] allow developers to write apps in web languages,
including HTML and JavaScript. The abstractions pro-
vided by such frameworks could implement some of the pro-
tections against malicious web content that we describe.
For example, Cordova can hook URL loading and inject fil-
tering. However, it is the responsibility of the developer
to use the framework correctly, and thus enforcement is
not mandatory. Some recent works [13, 9] attacked hy-
brid apps via local code injection or remote resource abuse.
They proposed mitigations that are specific to hybrid apps
and require changes to the frameworks. In comparison,
WIREframe focuses on native apps that embed web con-
tent. Since the hybrid frameworks all use WebView as their
building blocks, they may in principle adopt WIREframe’s
policy-driven, origin-based security model to govern web el-
ements in hybrid apps.

9. ACKNOWLEDGMENT
We thank the anonymous reviewers for their insightful

comments. This project was supported by the Army Re-
search Office (Grant#: W911NF-17-1-0039), the National
Science Foundation (Grant#: CNS-1421824, CNS-1228782,
and CNS-1228620), and a joint United States Air Force/-
DARPA Contract (# FA-8650-15-C-7562). Any opinions,
findings, and conclusions or recommendations expressed in
this paper are those of the authors and do not necessarily
reflect the views of the funding agencies.

662

10. CONCLUSION
As discussed in this work and others, Web-embedding

apps increasingly attract attacks from different angles. Sev-
eral current threat vectors remain unprotected, due to the
lack of practical security mechanisms that can meet security
requirements of all parties, including app developers, app
users and web content providers.

We propose the use of a secure, third-party app called
WIREframe to provide trustworthy web-embedding while
enforcing configurable and origin-based security policies on
the interactions between Android apps and embedded web
content. WIREframe allows both apps and web content
to secure their own resources at fine-granularities. We have
shown that our solution is effective in preventing abuses of
the app-web bridge by either malicious web content or ma-
licious apps. At the same time, our system maintains the
appearance and functionality of client apps.

Our solution is easy to deploy. It requires no modification
to the Android operating system or framework. Through
the use of our offline app-rewriting tool, WIRE, we can re-
target legacy apps to benefit from the enhanced security of
WIREframe without developer intervention.

11. REFERENCES
[1] Android-Apktool. https://ibotpeaches.github.io/Apktool/.

[2] Android Isolated Service. http://developer.android.com/
guide/topics/manifest/service-element.html#isolated.

[3] Apache Cordova. https://cordova.apache.org.

[4] A. Bartel, J. Klein, et al. Dexpler: Converting Android
Dalvik Bytecode to Jimple for Static Analysis with Soot.
Proceedings of the 1st International Workshop on the State
Of the Art in Program Analysis, SOAP ’12. ACM, 2012.

[5] E. Bursztein, C. Soman, et al. Sessionjuggler: Secure Web
Login from an Untrusted Terminal Using Session
Hijacking. In Proceedings of the 21st International
Conference on World Wide Web, WWW ’15, 321–330.
ACM, 2012.

[6] E. Chin & D. Wagner. Bifocals: Analyzing WebView
Vulnerabilities in Android Applications. In Information
Security Applications, LNCS, 138–159. Springer
International, 2014.

[7] J. Dean, D. Grove, et al. Optimization of Object-Oriented
Programs Using Static Class Hierarchy Analysis. ECOOP
’95, Berlin, Heidelberg.

[8] M. Egele, C. Kruegel, et al. PiOS: Detecting Privacy Leaks
in iOS Applications. In Proceedings of the 2011 Network
and Distributed System Security Symposium, NDSS ’11,
177–183. 2011.

[9] M. Georgiev, S. Jana, et al. Breaking and Fixing
Origin-Based Access Control in Hybrid Web/Mobile
Application Frameworks. 2014.

[10] M. C. Grace, W. Zhou, et al. Unsafe Exposure Analysis of
Mobile In-app Advertisements. In Proceedings of the 5th
ACM Conference on Security and Privacy in Wireless and
Mobile Networks, WISEC 12, 101–112. ACM, 2012.

[11] B. Hassanshahi, Y. Jia, et al. Web-to-Application Injection
Attacks on Android: Characterization and Detection. In
Proceedings of the 2015 European Symposium on Research
in Computer Security, ESORICS ’15, 577–598. Springer,
2015.

[12] J. Jeon, K. K. Micinski, et al. Dr. Android and Mr. Hide:
Fine-grained Permissions in Android Applications. In
ACM CCS Workshop on Security and Privacy in
Smartphones and Mobile Devices (SPSM), 3–14. 2012.

[13] X. Jin, X. Hu, et al. Code Injection Attacks on
HTML5-based Mobile Apps: Characterization, Detection
and Mitigation. In Proceedings of the 2014 ACM

Conference on Computer and Communications Security,
CCS ’14, 66–77. ACM.

[14] G. A. Kildall. A Unified Approach to Global Program
Optimization. In Proceedings of the 1st Annual ACM
SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, POPL ’73, 194–206. ACM, 1973.

[15] D. Liu & L. P. Cox. VeriUI: Attested Login for Mobile
Devices. In Proceedings of the 15th Workshop on Mobile
Computing Systems and Applications, 7. ACM, 2014.

[16] T. Luo, H. Hao, et al. Attacks on WebView in the Android
system. In Proceedings of the 2011 Annual Computer
Security Applications Conference, 343–352. ACM, 2011.

[17] P. Mutchler, A. Doupé, et al. A Large-Scale Study of
Mobile Web App Security. In Proceedings of the Mobile
Security Technologies Workshop (MoST). 2015.

[18] A. Nadkarni, V. Tendulkar, et al. NativeWrap: Ad Hoc
Smartphone Application Creation for End Users. In
SPWM 2014, WiSec ’14, 13–24. ACM, 2014.

[19] M. Neugschwandtner, M. Lindorfer, et al. A View to a Kill:
WebView Exploitation. In LEET 2013. USENIX, 2013.

[20] P. Pearce, A. P. Felt, et al. Addroid: Privilege Separation
for Applications and Advertisers in Android. In SICCS
2012.

[21] V. Rastogi, R. Shao, et al. Are these Ads Safe: Detecting
Hidden Attacks through the Mobile App-Web Interfaces. In
Proceedings of the 2016 Network and Distributed System
Security Symposium, NDSS ’16. 2016.

[22] B. Reaves, N. Scaife, et al. Mo(bile) Money, Mo(bile)
Problems: Analysis of Branchless Banking Applications in
the Developing World. In Proceedings of the 24th USENIX
Security Symposium (2015), 17–32. 2015.

[23] T. Reps, S. Horwitz, et al. Precise Interprocedural Dataflow
Analysis via Graph Reachability. In Proceedings of the
22Nd ACM SIGPLAN-SIGACT POPL Symposium, POPL
’95, 49–61. ACM, 1995.

[24] F. Roesner & T. Kohno. Securing Embedded User
Interfaces: Android and Beyond. In Proceedings of the
22nd USENIX Security Symposium, Security ’13, 97–112.
USENIX, 2013.

[25] M. Shehab & F. Mohsen. Towards enhancing the security
of oauth implementations in smart phones. In ICMS 2014,
39–46. IEEE, 2014.

[26] S. Shekhar, M. Dietz, et al. AdSplit: Separating
Smartphone Advertising from Applications. In USENIX
Security Symposium, 553–567. 2012.

[27] S. Son, D. Kim, et al. What Mobile Ads Know About
Mobile Users. In NDSS. 2016.

[28] D. R. Thomas, A. R. Beresford, et al. Security Protocols
XXIII: 23rd International Workshop, Cambridge, 2015,
126–138. Springer International, 2015.

[29] G. S. Tuncay, S. Demetriou, et al. Draco: A System for
Uniform and Fine-grained Access Control for Web Code on
Android. In Proceedings of the 2016 Conference on
Computer and Communications Security, CCS ’16,
104–115. ACM, New York, NY, USA, 2016.

[30] R. Vallée-Rai, P. Co, et al. Soot - a Java Bytecode
Optimization Framework. In Proceedings of the 1999
Conference of the Centre for Advanced Studies on
Collaborative Research, CASCON ’99. IBM Press, 1999.

[31] R. Wang, L. Xing, et al. Unauthorized Origin Crossing on
Mobile Platforms: Threats and Mitigation. In Proceedings
of the 2013 ACM SIGSAC conference on Computer &
Communications Security, 635–646. ACM, 2013.

[32] L. Xing, X. Bai, et al. Cracking App Isolation on Apple:
Unauthorized Cross-App Resource Access on MAC OS. In
Proceedings of the 2016 Conference on Computer and
Communications Security, 31–43. ACM, 2015.

[33] X. Zhang, A. Ahlawat, et al. AFrame: Isolating
Advertisements from Mobile Applications in Android. In
Proceedings of the 2013 Annual Computer Security
Applications Conference, ACSAC ’13, 9–18. ACM, 2013.

663

https://ibotpeaches.github.io/Apktool/
http://developer.android.com/guide/topics/manifest/service-element.html#isolated
http://developer.android.com/guide/topics/manifest/service-element.html#isolated
https://cordova.apache.org

APPENDIX
A. APP REWRITING

A key goal of our work is that it is backwards-compatible
with existing apps without modifying the OS. In this section,
we discuss the details of how we accomplish this goal through
app rewriting.

The security policies discussed in Section 4 only take effect
if WIREframe is used by a web-embedding app in place
of its regular WebViews. While benign developers might
choose to deploy our mechanisms, malicious developers have
no incentive to do so. Our offline rewriting tool, WIRE,
addresses this concern by replacing all uses of WebView with
uses of the secure WIREframe proxy. This section provides
details on the design and implementation of WIRE. As space
constraints prevent us from providing a full discussion of
the implementation of WIRE, we highlight the novel and
challenging aspects of the tool.
Packaged App Analysis: One of the key advantages of
our approach is that it does not require assistance from de-
velopers. This means that the tool can rely only on the
packaged app (.apk file) and compiled bytecode. To handle
this challenge, WIRE leverages previous work on reverse-
engineering and re-compiling Dalvik bytecode. In particular,
we use the open source Apktool to unpackage and repack-
age code and resources from an apk [1]. We use the Soot
Java Optimization Framework [30] and Dexpler [4] to extract
Dalvik to an intermediate representation and recompile the
rewritten code.

WIRE is designed as a modular pipeline, with the rewrit-
ing phase decoupled from unpackaging and repackaging the
app. Thus, improvements to the underlying tools can be
easily integrated into our workflow.
Identifying WebView Usage: Because WIREframe pre-
vents the use of the default WebView, it is crucial for the
proper operation of the client app that all legitimate We-
bView uses of are identified and replaced. Unfortunately,
this identification can be challenging. In addition to We-
bViews that are programmatically constructed and config-
ured at runtime, an app can define the WebView UI and its
layout using an XML manifest which the system loads at
runtime. Thus, WIRE introspects and modifies not just the
app code, but also the applications resource XML files and
support code.

Figure 9 presents simplified pseudocode for the rewriting
algorithm. The goal the main loop is to transform a tar-
get web-embedding app A to use the secure webview proxy
instead of the default WebView class of Android. The first
step of our algorithm (Line 2) is to invoke a custom ex-
tension to the standard class hierarchy analysis (CHA [7]),
which we refer to as CHA’. This extension ensures that class
loading from the resources (i.e. the app manifest) is also
included. Once we have identified all instances and sub-
classes of WebView, denoted W , we create a proxy w′ for
each w ∈ W (Line 4). The main rewriting loop (Lines 3-
13) is concerned with substituting w with w′: we identify
the set the set Uw of all uses of w ∈ W (Line 5) using a
standard dataflow [14] over the supergraph of A [23]. Note
that we use the term use to refer to all operations that refer-
ence w, as opposed to the typical use/def relations in which
usually only refer to the right-hand side of an operation.
For notational convenience, we represent each such use in
the form c(w, v1, v2, . . . , vn) where v1, . . . , vn are additional

1: Let A be the target web-embedding app
2: W ← CHA’(WebView,A)
3: for all w ∈W do
4: Create proxy w′ of w
5: Let Uw be the set of uses of w in A
6: for all c(w, v1, . . . , vn) ∈ Uw do
7: replace(w,w′)
8: for all i ∈ {1, . . . , n} do
9: Let suw be the shadow object of vi

10: S ← S ∪ suw

11: for all suw ∈ S do
12: marshal(suw)

Figure 9: Rewriting loop simplified pseudocode

variables involved in the use, such as arguments to methods
of w. These additional variables are exactly the ones that
need to be shadowed or serialized (c.f. section 4). Thus, we
replace the reference to w itself with a reference to w′ using
the pseudofunction replace (Line 7) and keep an object suw

to shadow each vi (Lines 9-10). Finally, all the Webviews
have been replaced, we call the marshal pseudofunction with
each shadow object to inject the marshaling code necessary
to transfer the used value shadowed by suw into the proxy
(Lines 11-12).
Satisfying Lifecycle Constraints: Android apps execute
in an event-driven lifecycle managed by the system. Events
are fired by the Operating System in response to events or
system notifications. An implicit ordering exists between the
lifecycle events: one event cannot happen until the compo-
nent’s lifecycle has gone through preceding events. Without
considering component lifecycle and the implicit constraints,
app rewriting can cause erroneous or interrupted app execu-
tion. Thus, WIRE includes a model of the Android lifecycle,
which is referenced during the calls to inject and marshal so
that the WIREframe is properly running and bound before
each invocation.

B. FUTURE WORK
In this section, we discuss limitations of our current im-

plementation and consider future work to them.
App Updates: A consequence of using offline rewriting to
induce enforcement mechanisms on apps is that apps can no
longer be automatically updated on the device. This is an
inconvenience for users who enable automatic updates, since
they have to re-apply the WIRE rewriting. However, this
inconvenience can be justified by the much enhanced secu-
rity of web-embedding apps without requiring OS changes.
Furthermore, we expect that WIRE will mostly be applied
to legacy apps (which are updated less frequently) and un-
trusted apps that benefit from additional static checking
before install time in any case. Apps that do not include
WebViews or adopt WIREframe during development do
not need to be rewritten. In cases where app markets can
adopt WIRE and perform app rewriting before app release,
such as in an enterprise app store, app users can enjoy the
security benefits of WIREframe without facing app update
inconvenience.
WebView State Sharing: As shown by the attack in §2,
allowing multiple WebViews to run in the same process en-
ables implicit sharing of states, such as history and cookies.
WIREframe runs each mediated WebView in a separate
process to disable cross-WebView attacks. It also restricts

664

each WebView’s file system access to a per-origin private
path by default. However, sharing states among WebView
instances created by a same app may be required for legiti-
mate functionalities. While we did not encounter any such
cases in our experiments, WIREframe could be extended
to allow multiple WebViews to share a process. We leave
this implementation detail, and the design of when to allow
sharing, to future work.
OS-level Extension of WebView: While one of the key
contributions of our work is that it provides support for apps
without updating the OS, this approach comes with a num-
ber of tradeoffs: the WIREframe service is isolated, but
comes with the overhead of running a background service
fulltime, as well as incurring the cost of object shadowing to
communicate with the the client app. A natural alternative
to our approach is to modify the OS directly to implement
our proposed protections.

An obvious way to protect web-embedding app attacks is
to extend the WebView class in Android framework to sup-
port a “trusted mode”. Either an embedding app or embed-
ded web content may switch a WebView instance into the
trusted mode by calling newly introduced Java or JavaScript
APIs. When in this mode, the web-embedding app runs the
WebView, but the OS can suppress the app’s introspection
capabilities and dynamically regulating method invocations
from embedded web content. In the Android security model
processes are the atomic security principal [12]. Therefore,
this approach is likely to require major changes to the se-
curity model of the OS, or at least rendering the trusted
WebView in a separate process. Nevertheless, there are sev-
eral benefits to this approach:

• Performance improvements: By implementing We-
bView isolation within the app, fewer context switches
and less data marshalling is required.
• Mandatory enforcement: Our system is only effec-

tive if users apply the app rewriting tool WIRE or de-
velopers explicitly target WIREframe. By integrating
WIREframe-like protections into the OS itself, web
developers can be more confident that WebView poli-
cies are actually enforced on the client side.
• Enhanced functionality: As noted in Section 7, some

visual differences may occur if the app attempts to
“pop under” content on the WebView. While disallow-
ing this behavior can help defend against clickjacking,
it prevents a benign app overlay of app content over
web content. The OS might support an app-defined
Z-order of elements within an app, such as proposed
in [24]. Furthermore, the VPNService used by WIRE-
frame, which exists to prevent an app from spoof-
ing the WIREframe service, could use in-app anti-
spoofing methods.

We plan to explore this avenue in future work.

665

	Introduction
	Example Attacks and Analysis
	Threat Model
	Attack Scenarios
	SSO Credential Stealing
	Local Storage Inference
	User Impersonation

	Exploit Analysis

	System Overview
	System Design
	Dynamic Access Policies
	Web Protections
	App Protections
	Policy Sources

	WIREframe Technical Details
	App Rewriting
	Security Analysis
	Evaluation
	Methodology
	Analysis
	Correctness
	Effectiveness
	Efficiency

	Related Work
	Acknowledgment
	Conclusion
	References
	App Rewriting
	Future Work

