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A B S T R A C T

Seismic tremor characterized by 0.5–7 Hz ground oscillations commonly occur before and during eruptions
at silicic volcanoes with widely ranging vent geometries and edifice structures. The ubiquitous character-
istics of this tremor imply that its causes are potentially common to silicic volcanoes. Here we revisit and
extend to three dimensions the magma-wagging model for tremor (Jellinek and Bercovici, 2011; Bercovici et
al., 2013), wherein a stiff magma column rising in a vertical conduit oscillates against a surrounding foamy
annulus of bubbly magma, giving rise to tremor. While prior studies were restricted to two-dimensional
lateral oscillations, here we explore three-dimensional motion and additional modes of oscillations. In the
absence of viscous damping, the magma column undergoes ‘whirling’ motion: the center of each horizontal
section of the column traces an elliptical trajectory. In the presence of viscous effect we identify new ‘coil-
ing’ and ‘uncoiling’ column bending shapes with relatively higher and comparable rates of dissipation to
the original two-dimensional magma wagging model. We also calculate the seismic P-wave response of the
crustal material around the volcanic conduit to the new whirling motions and propose seismic diagnostics
for different wagging patterns using the time-lag between seismic stations. We test our model by analyz-
ing pre-eruptive seismic data from the 2009 eruption of Redoubt Volcano. In addition to suggesting that the
occurrence of elliptical whirling motion more than 1 week before the eruption, our analysis of seismic time-
lags also implies that the 2009 eruption was accompanied by qualitative changes in the magma wagging
behavior including fluctuations in eccentricity and a reversal in the direction of elliptical whirling motion
when the eruption was immediately impending.

© 2017 Published by Elsevier B.V.

1. Introduction

Volcanic tremor is a common feature of explosive volcanism and
plays an important role in volcanic hazard monitoring and eruption
forecasting. Typically, a tremor emerges with frequencies of 0.5 to
2 Hz several hours to days before the eruption starts. As the vol-
cano’s activity intensifies, frequencies can glide up, increasing to 5
to 7 Hz (Thompson et al., 2002; Neuberg, 2000; Konstantinou and
Schlindwein, 2003; McNutt, 2005; McNutt and Nishimura, 2008;
Chouet and Matoza, 2013; Unglert and Jellinek, 2017). An under-
standing of the origin of volcanic tremor and an explanation for the
full range of behaviors of pre-eruptive tremor may consequently be
key for forecasting dangerous explosive volcanism.
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There are several important aspects of volcanic tremor, including
its frequency range, its emergence and temporal evolution in fre-
quency and amplitude, and the longevity of the tremor signal. Many
tremor models are developed to explain one or more of these aspects.
For example, the range of frequencies around 1 Hz can be explained
either by stirring of the gas-magma mixture and wave excitement
(Garcés et al., 1998), ‘wagging’ of the magma column (Jellinek and
Bercovici, 2011), or possibly fluids passing through elastic channels
or cracks (Rust et al., 2008). The emergence and longevity of tremor
can be explained by accounting for transport of magma through a
constricted crack in the conduit (Julian, 1994; Chouet, 1988), as well
as by gas flux forcing of magma column oscillations (Bercovici et
al., 2013). The gliding of tremor frequency when approaching erup-
tion can be explained by a stick-slip model (Hotovec et al., 2013;
Dmitrieva et al., 2013), by gas-magma stirring (Garcés et al., 1998),
and possibly by thinning and destruction of the vesicular annu-
lus surrounding the magma column (Jellinek and Bercovici, 2011).
Some of these models explain additional features associated with
tremor; for example, Garcés et al. (1998)account for the relation-
ship between seismicity and infrasound measurements. The recently
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observed correlation between tremor and degassing (Nadeau et al.,
2011) is possibly explained by the extended magma-wagging model
(Bercovici et al., 2013).

Apart from the frequency content, the spatial variation of the
tremor’s seismic signal is also a measurable quantity, given an array
of seismometers, and likely provides further characteristics of tremor
activity. For example, radiation patterns of the seismic signal ema-
nating from the source (e.g., whether circular, helical or dipolar)
indicate the polarity of the tremor source. The evolution of this spa-
tial structure en route to an eruption may provide another unique
feature of tremor activity. Bercovici et al. (2013) explored the seis-
mic spatial structure by studying cross-correlation of seismic signals
measured at two stations across a conduit, and could account for the
time-lag between the two signals with their magma wagging model.
However, this magma wagging model (Jellinek and Bercovici, 2011;
Bercovici et al., 2013) limits the motion of the magma column to a
two-dimensional (2-D) plane, which yields a seismic radiation pat-
tern that is dipolar, with the axis of symmetry along the wagging
direction. Here we propose an extended magma wagging model that
relaxes the 2-D constraint, and with which we can explore the spa-
tial and temporal features of the seismic radiation pattern associated
with tremor.

The 2-D magma wagging model (Jellinek and Bercovici, 2011)
is based on the assumption that, inside the volcanic conduit, the
magma column is enveloped by a gas-rich foamy annulus. When the
magma column is displaced to one side of the conduit, the bubbles
in the annulus become compressed, and their increased gas pres-
sure pushes the magma column back towards its resting position,
although it overshoots, thereby triggering oscillations from side to
side in the conduit. When the annulus contains isolated bubbles filled
with ideal gas, the system acts like a simple mass oscillator between
two springs. The fundamental angular frequency for free-oscillations
of the magma column is

yo =

√
2qoC2

g

Voqm(R2
c − R2

m)
(1)

where qo and Vo are the undisturbed gas density and gas volume
fraction in the annulus, Cg is the isothermal sound speed in the gas,
qm is the magma density and Rm and Rc are the radii of the magma
column and conduit, respectively (see Fig. 1).

The magma wagging model requires the knowledge of gas den-
sity, sound speed and conduit radius, which can be estimated from
laboratory measurements of gas properties and field observations
of volcanic structure. Moreover, the tremor frequency predicted by
Eq. (1) is weakly dependent on these quantities: for a reasonably
wide range of conduit properties, Eq. (1) predicts an ordinary wag-
ging frequency yo/(2p) between about 0.1 Hz and 5 Hz, similar to
the observed range of tremor frequencies (Jellinek and Bercovici,
2011). Bercovici et al. (2013) extends the original magma-wagging
model by adding permeability to the annulus and allowing gas
flow through the interconnected tube-like bubbles in the vertical
direction. The extended model shows that the gas flux leads to a
Bernoulli force driving mechanism that can excite wagging motion.
The magma-wagging models are successful in explaining the ubiq-
uity, persistence and temporal behavior of pre- and syn-eruptive
volcanic tremor observed at a number of volcanoes. However, in
these first applications of the 2-D magma wagging model, motion
and deformation of the magma column are confined to be in the same
direction. These applications therefore preclude any angular veloc-
ity or relative angular displacement of the magma column, which
could potentially cause additional tremor frequencies or indicate
rotational characteristics evolving on route to an eruption. The lat-
eral motion associated with the non-vanishing angular velocity of

Fig. 1. Sketch of the cylindrical annulus for the magma-wagging model proposed by
Bercovici et al. (2013). The displacement �u is always oriented in the same plane for
different time and vertical position.

the magma column could induce more features in the spatial varia-
tion of seismic radiation pattern as well. Here, we extend the original
magma-wagging model to three dimensions by introducing angu-
lar motion of the magma column. We present a model for the three
dimensional motion of the magma column in Section 2. Analytical
and numerical analysis of the nonlinear wagging motions will be pre-
sented in Sections 3 and 4. The seismic radiation pattern triggered by
the wagging motions will be presented in Section 5, and applications
to volcano seismology will be discussed in Section 6.

2. Evolution of magma motion in three dimensions

The motion of a magma column with an angular component can
be presented by a 2-D displacement vector �u = �u(z, t) at time t and
height z along the column (see Fig. 2a). In polar coordinates, �u is
expressed by its magnitude u(z, t) and its polar angle 0(z, t), mea-
sured relative to the direction x̂ (see Fig. 2b). Once x̂ is arbitrarily
selected, it remains the same for the whole magma column at all
times. (Equivalently, �u can be described in Cartesian coordinate with
the bases x̂ and ŷ in which x̂ is aligned with the direction of 0 = 0.)
We next define an arbitrary point Q on the surface of the magma
column with a polar angle h (see Fig. 2). Q’s position �rm satisfies

R2
m =

∣∣�rm − �u∣∣2

= (rm cos h − u cos0)
2 + (rm sin h − u sin0)

2

= r2
m − 2rmu cos(h − 0) + u2 (2)

The displacement of the magma column is very small compared to
the outer conduit radius, and thus u ≤ Rc − Rm << Rm. To first order
in u, Eq. (2) yields

rm = Rm + u cos(h − 0) (3)

For a simple foam model (where there is no gas flux through the
annulus), we want to infer how much the annulus is compressed or
dilated by the column displacement, and thus how the gas pressure
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Fig. 2. (a) Sketch of the magma column in the three-dimensional wagging model. 0 is the polar angle of the magma column’s displacement, u is the radius displacement, or
equivalently the displacement magnitude. Rc and Rm are the radii of the magma column and volcanic conduit, respectively. (b) Top view of an intersection of the magma column.
The dashed lines denote the unit vectors of either the Cartesian system x̂ and ŷ, or the cylindrical-polar system îu and î0 . Q is any arbitrary point on the surface of the magma
column.

responds. Measured from Q(rm, h), the volume of the annulus seg-
ment spanned by angular increment dh and vertical increment dz is

dV = dz
∫ Rc

rm

rdhdr = dVo

[
1 − u

U
cos (h − 0)

]
(4)

where U ≡ (
R2

c − R2
m

)
/2Rm, and the undisturbed volume of the annu-

lus section is dVo = 1
2

(
R2

c − R2
m

)
dhdz. We let Vo be the gas volume

fraction in the undisturbed annulus, and assume that the magma vol-
ume in the same section dVm = dVo(1 − Vo) is conserved; in this
case, the gas volume in the same section of the deformed annulus
becomes

dVg = dV − dVm = dVo

[
Vo − u

U
cos (h − 0)

]
(5)

Assuming that the annulus contains disconnected bubbles filled with
ideal gas, then the gas pressure obeys

P =
RT dMg

mg

dVg
= qoC2

g
1

1 − u cos(h−0)
UVo

(6)

where R is the gas constant, T is the temperature, mg is the molecular
mass of the gas, Cg is the isothermal gas sound speed at temperature
T, dMg = qoVodVo is the gas mass in the segment, and qo is the undis-
turbed gas density. For small displacement such that u � U, Eq. (6) is
to first order

P(h) = qoC2
g

(
1 +

u cos (h − 0)

UVo

)
(7)

Therefore, the traction (force per area) T due to the gas pressure act-
ing on the magma column at point Q and parallel to the displacement
is

T = − P
(�rm − �u) .�u∣∣�rm − �u∣∣ u

= −qoC2
g

(
1 +

u cos (h − 0)

UVo

)

×
[

cos (h − 0) − u
Rm

sin2
(h − 0)

]
(8)

The net pressure force �Fp acting on the whole magma column
section is

�Fp = dz
∫ 0+p

0−p
T rmdhû = −dzqoC2

g
pRm�u
UVo

= −y2
o �u dm (9)

where the mass of the magma column section is dm = dzqmp R2
m

for given magma density qm, û is the unit vector in the direction
of �u, and yo is given by Eq. (1). In addition to the pressure force, a
resistance force �Fs acts against the bending of the magma column
section. �Fs results from the difference in the shear traction on the
upper and lower surfaces of a horizontal segment of the magma col-
umn of thickness dz and mass dm. The magma is assumed to behave
like a viscous Newtonian fluid with uniform dynamic viscosity lm.
For any horizontal intersection of the magma column, the whole area
moves with uniform velocity ∂ �u/∂t (again assuming small displace-
ment). The traction vector due to shear stress tensor t acting at the
top or bottom of the segment

t.ẑ = lm
∂

∂z
∂ �u
∂t

(10)

has non-vanishing components tuz and thz. The total force �Fs is
from the difference in tractions across the section’s lower and upper
surfaces

�Fs = [t]|z+dz
z p R2

m = lmp R2
mdz

∂2

∂z2

∂ �u
∂t

(11)

where p R2
m is the cross-section area of the column section. Newton’s

second law for the magma column section with mass dm becomes

dm
∂2�u
∂t2

= �Fp + �Fs (12)

which leads to

∂2�u
∂t2

= −y2
o �u + mm

∂2

∂z2

∂ �u
∂t

(13)



60 Y. Liao et al. / Journal of Volcanology and Geothermal Research 351 (2018) 57–74

where mm = lm/qm is the kinematic viscosity. Note that yo is the
frequency of free-oscillation, and has the same value as the funda-
mental frequency in the 2-D wagging model with the same conduit
properties (Bercovici et al., 2013; Jellinek and Bercovici, 2011).

3. Free whirling motions

As shown by Jellinek and Bercovici (2011), the magma col-
umn viscosity controls the damping of the wagging motion (over
a damping time scale ts ∼ m−1

m k−2), but has a minor influence on
its oscillation frequency, which is associated with the gas spring
force. Therefore, to better understand the magma-annulus interac-
tion, we first consider a system with very long vertical wavelength,
i.e., k → 0, in which case viscous damping becomes negligible, and
the system approaches an inviscid limit. Under the long-wavelength
assumption, displacement is continuous with a small vertical gra-
dient along the z direction. At an arbitrary height, the horizontal
section of the magma column orbits around the center of the con-
duit, and the whirling motion can be represented as a trajectory by
u = u(t), 0 = 0(t). Without the viscous term, the equation of motion
Eq. (13) becomes

∂2�u
∂t2

= −y2
o �u (14)

In cylindrical-polar coordinate, Eq. (14) is expressed as two evolution
equations, in radial direction and tangential direction, respectively
(Batchelor, 1967):

d2u
dt2

− u
d0
dt

d0
dt

+ y2
ou = 0 (15)

u
d20

dt2
+ 2

du
dt

d0
dt

= 0 (16)

where u and 0 are the magnitude of displacement and the polar
angle of the displacement, respectively (see Fig. 2b). We define the
specific angular momentum (angular momentum per unit mass) L ≡
u2(d0/dt) and specific energy (energy per unit mass) E ≡ 1

2

(
du
dt

)2
+

1
2 u2

(
d0
dt

)2
+ 1

2y
2
ou2, respectively. Eq. (16) shows that dL/dt = 0, and

both Eqs. (15) and (16) together show that dE/dt = 0. The trajectory
therefore can be expressed as conservation of total energy (kinetic
and potential) and angular momentum

Eo =
1
2

(
du(t)

dt

)2

+
1
2

u(t)2
(

d0(t)
dt

)2

+
1
2
y2

ou(t)2 (17a)

Lo = u(t)2 d0(t)
dt

(17b)

Once the energy and angular momentum of the system are deter-
mined by the initial conditions, a steady state circular solution, or
‘whirling’ motion, can be found immediately by letting du/dt = 0.
This solution corresponds to a circular orbit with constant radius and
angular velocity

uo =

√
Lo

yo
, and

d0
dt

= yo, (18)

respectively, whose period is To = 2p/yo. Other solutions to Eq.
(15)–(17) correspond to different sets of closed elliptical trajectories
given by (see Appendix A)

± cos 20 =
E − Lo

you2√
E2 − 1

(19)

where the dimensionless number E ≡ Eo/Loyo ≥ 1. When E = 1, the
circular solution is recovered, and the system has the lowest energy
for a given angular momentum. Both Eqs. (19) and (17) yield

d0
dt

= yo

(
E −

√
E2 − 1 cos 20

)
(20)

The period of the trajectory, corresponding to an increment in 0 of
2p, can be found from Eq. (20) (see Appendix A), which yields To =
2p/yo, same as the period for the circular whirling solution. Note
that the trajectory described by Eq. (19) can also be expressed as the
classical equation for an ellipse (see Appendix A)

x2

a2
+

y2

b2
= 1 (21)

where x = ucos0, y = usin0, and a and b are the lengths of the major
and minor axis of the ellipse: the relation of Eqs. (21) to (19) yields

a2 =
Lo

yo

1

E −
√
E2 − 1

b2 =
Lo

yo

1

E +
√
E2 − 1

(22)

The eccentricity of the elliptical whirling orbit in Eq. (21) is e ≡√
1 − b2/a2, or

e =

√√√√1 − E −
√
E2 − 1

E +
√
E2 − 1

(23)

For a specific angular momentum, an increase in energy E (or equiva-
lently E) causes more elliptical orbits (see Fig. 3). At very high energy,
the whirling orbit has eccentricity close to 1, which corresponds to
the 2-D ‘side-to-side’ wagging in a single plane. The 2-D magma wag-
ging motion studied by Jellinek and Bercovici (2011) and Bercovici et
al. (2013) is therefore a subset of the whirling orbits.

4. Numerical analysis of damped oscillations

When the effect of viscous damping is included, the free oscil-
lations of the magma column are damped by viscous resistance in
the absence of a driving mechanism. The viscous force, according to
Eq. (11), is influenced by the non-uniform displacement of the
magma column in both radial, as well as angular directions. The
shapes of the displaced magma column can be categorized into two
classes: coiled shape and uncoiled shape. For the uncoiled magma
column (see Fig. 5a), the polar angle 0 is the same and changes at

Fig. 3. Colored solid lines are different elliptical whirling orbits corresponding to dif-
ferent E = Eo/Loyo ranging from 1 to 2. Colorbar indicates the values of E . The
trajectory is more elliptical when energy Eo (or equivalently E) increases.
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the same rate for all z; for the coiled magma column, 0 may have
different values, or change at different rates along the column (see
Fig. 5e). Under specific radial displacement, the coiled magma col-
umn bends more than the uncoiled column, and thus is subjected to
stronger viscous damping. In this scenario, the evolution of the coiled
magma column is poorly approximated by the inviscid solution, as
its strong bending violates the long vertical-wavelength assumption
for the inviscid approximation. The viscous governing Eq. (13) can be
written in Cartesian coordinates as

∂2x
∂t2

+ y2
ox = mm

∂3x
∂z2∂t

(24a)

∂2y
∂t2

+ y2
oy = mm

∂3y
∂z2∂t

(24b)

where x and y are the two components of the displacement vector
�u. The solution of both Eq. (24a) and (24b) can be expressed as a
superposition of Fourier modes with vertical wave-numbers kx and
ky, respectively (see Fig. 4).

At moderately long wavelengths (kj <
√

2yo/mm, j = x or y),
the modes obey the damping functions exp

(−mmk2
x t/2

)
for x and

exp
(
−mmk2

yt/2
)

for y, which are identical in form to that of the
2-D wagging model (Jellinek and Bercovici, 2011). In three dimen-
sions, the displacement magnitude u =

√
x2 + y2 is a nonlinear

combination of the two solutions. We solve Eq.(24) numerically with
finite difference and semi-implicit time-stepping using a tridiagonal
matrix algorithm, and explore the behavior of the magma column,
subjected to both pressure and viscous forces, for both classes of
shapes as initial conditions. We consider the base of the magma col-
umn z = 0 to be at the depth where gas exsolution is insufficient to
form an annulus enveloping the magma column. Below this depth,
the column is confined directly by the conduit with no displace-
ment, thus u|z=0 = 0. We also assume a free surface at the top of
the column z = H, where ∂u/∂z|z=H = 0. These boundary condi-
tions determine that the longest wave-length in the displacement

permitted for the magma column is 4H, where H is the height of
the magma column. Jellinek and Bercovici (2011) show that the per-
turbation with the longest possible wavelength damps more slowly
than other wavelengths and therefore lasts longer. To study the long-
term damping behavior, we let the initial displacement magnitude
u|t=0 ∼ sin(2pz/4H) for both coiled and uncoiled cases. For the
uncoiled case, the initial angular displacement 0|t=0 = 0 and angu-
lar velocity ∂0

∂t |t=0 = yo are both independent of z; for the coiled
case, the initial angular displacement varies along z according to
0|t=0 = 4pz/H, giving the column a coiled shape.

4.1. Damping of uncoiled magma column

When the magma column is uncoiled, the initial angular dis-
placement 0 and angular velocity ∂0/∂t are the same for all values
of z (see Fig. 5a). With uncoiled initial conditions, the magma col-
umn remains uncoiled at all times, and the radial displacement u
decreases according to the same decay function exp(−mmk2t/2) pre-
dicted in the 2-D model (Jellinek and Bercovici, 2011) (see Fig. 5b).
As discussed in § 3, the magma column whirls along closed ellipti-
cal orbit when the viscous effect is absent. When the viscous force
damps the motion of the uncoiled magma column, the elliptical
orbit shrinks and collapses but the shape (eccentricity) of the orbit
remains (Fig. 5d).

4.2. Coiled magma column

When the magma column is coiled, the polar angle 0 and the
angular velocity ∂0/∂t are non-uniform along z (Fig. 5e). The non-
vanishing contributions of ∂0/∂z and ∂(∂0/∂t)/∂z cause stronger
deformation and induce extra viscous resistance. Compared with the
uncoiled case discussed previously, wherein u decays identically as
for 2-D wagging (Fig. 5b), the coiled magma column has a higher
decay rate (see Fig. 5f). The coiling of the magma column introduces
smaller wavelengths in both x and y, which result in oscillations
with lower frequencies (Fig. 5g) and faster viscous damping (Fig. 5f)
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Fig. 4. 3D shape (black line) defined by vertical wave-numbers kx and ky . In panel (a) kx = ky = 11p/4; in panel (b), kx = 11p/4 and ky = 15p/4. Variation of x and y along z axis
are shown in blue and red, respectively.
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Fig. 5. Examples of uncoiled (top row) and coiled (bottom row) magma column whirling with viscous damping. The magnitudes of the initial displacement for both cases are
u(t = 0, z) ∼ sin(pz/2H), where H is the total height of the magma column, and the initial angular velocity d0/dt(t = 0, z) = yo . The initial angular displacement for the uncoiled
magma column is 0(t = 0, z) = 0, and for the coiled magma column 0(t = 0, z) = 4pz/H. Frames (a) and (e) show the initial displacement of the magma column (orange) in three
dimensions, with their 2-D projections on the horizontal plane (gray). Frames (b) and (f) show the change of radial displacement u at the top of the magma column; the black
dashed line indicates the decay function predicted for the 2-D model exp(−mm(p/2H)2t/2). Frames (c) and (g) show the evolution of u calculated from the curves in (b) and (f) but
subtracting the decay trend. Frames (d) and (h) show the instantaneous displacements of the magma columns during damping; trajectories of the top of the magma column are
shown in gray dots.

(Jellinek and Bercovici, 2011). As a result, the coiled magma col-
umn tends to be smoothed by the extra viscous dissipation rapidly
(Fig. 5h), and results in long-lasting uncoiled wagging.

5. Seismic signature of magma wagging

5.1. Propagation of seismic waves generated by whirling motions

The eccentricity of the elliptical whirling orbit is determined by
the magma column’s energy and angular momentum (see Eq. (23)),
which may undergo significant change before an eruption. Other
characteristics of the wagging motion, such as the direction of the
whirling and the orientation of the elliptical orbit could also change
when an eruption is approaching. These predictions can be tested if
the wagging motion is detectable using field measurements. Here,
we seek to understand how the wagging motion induces a seismic
signal in the crustal medium around the volcanic conduit, so that we
can detect the wagging characteristics with field data, and test our
model with seismic observations as well.

For simplicity, we assume the volcanic conduit is surrounded by
a homogenous, isotropic medium that responds elastically to the
change of pressure in the conduit due to the wagging magma col-
umn. Consequently, as the magma column wags inside the gas-rich
annulus, resulting pressure variations on the inner conduit wall are
transmitted to the medium outside the conduit as seismic com-
pressional or P-waves, which in principle can be detected by seis-
mometers placed around the volcano. Here, we analyze the P-waves
generated by inviscid free wagging (i.e., assuming there is a forc-
ing or excitation mechanism to offset viscous damping; see Bercovici
et al. (2013)). We assume that the displacement of the magma col-
umn involves the longest wavelength (e.g., kmax = 4H, where H is
the height of the magma column, and assuming a free-slip surface at
the vent; see (Jellinek and Bercovici, 2011)) and an ‘un-coiled’ shape,
which is the least damped oscillatory mode; this leads to negligible

vertical normal strain in the elastic media surrounding the conduit,
hence P-waves are predominantly two-dimensional. The medium
around the volcanic conduit has a displacement field �U(r, h, t) where
r and h are radial distance and polar angle measured from the cen-
ter of the conduit. The pressure P in the medium is defined by the
volumetric dilation P ≡ −j∇.�U, where j is the bulk modulus of the
medium. P satisfies the compressional wave equation

∂2P

∂t2
− c2∇2P = 0 (25)

where c is the P-wave velocity in the surrounding medium. The
mechanical pressure acting on the conduit wall by the annulus, given
by Eq. (7), has a static value Po = P(u = 0) = qoC2

g . During magma
wagging, the increment in pressure DP = P − Po = qoC2

g u cos(h −
0)/UVo is balanced by the deformation of the surrounding rock,
which leads to an inner boundary condition for Eq. (25) at r = Rc

P(Rc, h, t) = DP (26)

Pressure perturbations are then caused by free wagging motion
described by the elliptical orbit (21). With the initial condition x(t =
0) = a, dx/dt(t = 0) = 0 and counter-clockwise whirling motion,
the solution of the trajectory is x = ucos0 = acos(yot), y = usin0 =
bsin(yot), which yields another expression of the inner boundary
condition

P(Rc, h, t) =
aqoC2

g

UVo
cos(yot) cos h +

bqoC2
g

UVo
sin(yot) sin h (27)

Away from the conduit, we assume an infinite domain in the radial
direction. Except for the conduit wall, there is no other solid bound-
ary, so the P-waves only travel radially outward from the conduit
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without reflection. With these boundary conditions, P-waves obey
the solution (see Appendix B.1)
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where
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in which K = qoC2
g /UVo

(
J1(yoRc/c)2 + Y1(yoRc/c)2

)
, and a and b

are the lengths of the major and minor axis of the elliptical trajec-
tory, respectively. Solution (28) corresponds to a counter-clockwise
elliptical wagging orbit with the major axis along the x̂ direction.
When the major axis is tilted at an angle dh or the wagging direction
is clockwise, the P-wave solution can be obtained by performing the
transform h → h − dh and h → −h, respectively (see Appendix B.1).

The P-wave radiation patterns given by P are diagnostic of the
three different wagging orbits, calculated by Eqs. (28) and (29) (see
Fig. 6). Specifically, the 2-D wagging orbit (similar to that of Jellinek
and Bercovici (2011) and Bercovici et al. (2013)) generates dipolar
radiation pattern, with perfect mirror symmetry about the direc-
tion of wagging (see Fig. 6a). The elliptical wagging orbit generates
closed, disconnected patches of high-and-low pressure spiraling out-
ward (see Fig. 6c). At a position (r, h) outside the conduit (see Fig. 14
in Appendix B.1), the measured P-wave can be expressed as a time
series in P:

P(r, h, t) = Pmax cos (yot − xr − xh) (30)

where the maximum pressure Pmax, and the phase-shifts in radial
distance xr and in polar angle xh are defined as

Pmax(r, h) =
qoC2
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)
. (31)

Here, ± indicates counter-clockwise (+), and clockwise (−) whirling,
and dh is the angle between the direction of the major axis of
the elliptical trajectory and x̂ direction (see Fig. 14 in Appendix
B.1). As the magma column whirls, the induced P-waves consist
of monochromatic oscillations described by Eq. (30), and the com-
parisons between P-waves at different locations can be used to
deduce the characteristics of the wagging motion. If the P-waves are
recorded at the same radial distance from the conduit but at differ-
ent polar angles, and the signals are completely in-phase (when the
peaks arrive at the same time) or completely out-of-phase (when the
peaks are offset by half period in time), then 2-D side-to-side wag-
ging is indicated, since xh = 0 when b = 0. If the signals share the
same maximum amplitude but are offset by a measurable phase-lag,
then circular wagging is indicated as Pmax = Pmax(r) when b = a.
If the signals are different in both their amplitudes and phases, then
elliptical wagging orbit is indicated.

5.2. Wagging signal diagnostics

In this section, we outline a method to identify the wagging
signal in seismic data. The approach is based on calculating the rel-
ative time-lag between seismic station pairs, which is a quantity
obtained by calculating pairwise cross-correlation functions of the
seismic waveforms. Specifically, when a pair of seismic stations A
and B share the same radial distance r(A) = r(B) but have different
angles h(A) and h(B), the time-lag between their waveforms becomes
LagA−B =

(
x

(B)
h − x

(A)
h

)
/yo, in which x

(A)
h and x

(B)
h are values of xh

evaluated at station A and B according to Eq. (31). LagA-B has the unit
of time, and is further related to the spatial properties of the wag-
ging pattern. The time-lag also indicates how long it takes the magma
column to move from one maximally compressed part of the annu-
lus to another. For example, for two-dimensional wagging, half of
the annulus is compressed at the same time, leading to waveforms
on that side of the annulus (i.e., detected by seismometers on that
side) that are in-phase with each other, with zero time-lag. The other
half of the annulus is compressed after the magma column leans to
its side after half period; this leads to waveforms that have a half-
period time-lag relative to those on the opposite (now dilated) side.
For three-dimensional circular whirling, the lag between any two
stations would be the time interval between closest approach of the
whirling column as it swings from one station to the next. Below we
describe the basic features of P-wave cross-correlations predicted for
two-dimensional wagging and three-dimensional wagging, respec-
tively.

5.2.1. Side-to-side wagging
When the magma column undergoes 2-D wagging, the length of

the minor axis b = 0. The seismic radiation pattern (see Fig. 6a) is
symmetric with respect to the wagging direction. Using b = 0 in
Eqs. (30) and (31), the phase-shift xh(h) only has two possible val-
ues: xh(h) = 0 when |h − dh| < p/2, or xh(h) = p when |h − dh| >

Fig. 6. Examples of P-waves radiation patterns (instantaneous values of pressure) generated by magma wagging with displacement trajectories corresponding to (a) 2-D side-
to-side wagging with eccentricity e = 1; (b) counter-clockwise elliptical whirling motion with eccentricity e = 0.8; and (c) counter-clockwise circular whirling with e = 0. The
colormap shows the values of P calculated according to Eqs. (28) and (29).
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p/2. For locations with |h − dh| = p/2, the P-waves vanish. For
any given seismic stations A (located at (r(A), h(A))), and B (located
at (r(B), h(B))), a station pair A-B is formed with a time-lag between
the waveforms LagA-B (e.g. LagE-S of station pair E-S formed by east
station E and south station S in Fig. 7). When A and B share the
same radial distance r(A) = r(B) (see Fig. 7a), the time-lag between
the two stations becomes LagA−B =

(
x

(B)
h − x

(A)
h

)
/yo, and has two

possible values: LagA-B = 0 when A and B both occur in the half
plane divided by |h − dh| = p/2 (e.g. station pairs N-E, S-W, N-NE
in Fig. 7a), or LagA-B = To/2 when A and B are in different half
planes (e.g. station pairs N-S, N-W, NE-S in Fig. 7a). In the former
case, the waveforms recorded by the two stations are completely in-
phase; in the later case, the waveforms are completely out-of-phase
(see Fig. 7c). Note that for a pair of seismic stations that are located
with 180 ◦ apart with h(A) = p + h(B), the time-lags always sat-
isfy LagA-B = To/2 for both two-dimensional and three-dimensional
wagging, with the only exception of vanishing waveforms. Therefore,
the time-lag between stations with 180◦ separation is insensitive to
the wagging pattern, and we choose stations with 90◦ separation to
diagnose different wagging patterns here.

5.2.2. Three-dimensional wagging
When the magma column undergoes three-dimensional wag-

ging described by an elliptical whirling orbit with non-vanishing
minor axis b �= 0, the P-waves measured at different locations
can have different phase-shifts. The waveforms generated by three-
dimensional wagging (Fig. 8c), unlike those generated by the 2-D

wagging (Fig. 7c), can be neither completely in-phase nor out-of-
phase with each other. As a result, the time-lags between the seismic
station pairs (see Fig. 8b) can range from 0 to one wagging period To.

For any pair of seismic stations with 90◦ separation and the
same distance to the conduit, the time-lag between the stations is
a function of the wagging orientation (dh), direction (clockwise or
counter-clockwise) and eccentricity e (see Fig. 9). For two specific
stations (such as station E and station S shown in Fig. 8a), the pos-
sible value of the time-lag between them always falls within two
envelopes (see Fig. 9) defined by (see Appendix B.2)

LagE−S/To=

{
1
2 + 1

p tan−1((1 − e2)±1/2), for clockwise motion
1
2 − 1

p tan−1((1−e2)±1/2), for counter-clockwise motion

(32)

As the time-lag only exists within these two envelopes, the observed
time-lag provides constraints on the possible values of eccentric-
ity, as well as wagging orientation. For example, if LagE-S =
0.9To, the envelopes require clockwise wagging with northwest-
southeast orientation of the major elliptical axis (see Fig. 9 and
Appendix B.2 Table 1), and eccentricity confined between 0.9 and
1; if LagE-S = 0.4To, then the wagging is counter-clockwise with
northeast-southwest orientation, and eccentricity between 0.95 and
1. When LagE-S = To/4 or 3To/4, all values of eccentricity are possible
but only when the wagging orientation is either in the north-south
or east-west direction (i.e., dh = 0◦ or 90◦). However, if the time-lag

Fig. 7. (a) Contours of phase-shift of P-waves generated by 2-D wagging at frequency of 3.3 HZ. Black solid lines and dash lines are two groups of equal-phase contours which are
out-of-phase with each other (the maximum value of one group of contours corresponds to minimum value of the other in time). The gray triangle in the center of the contours
indicates the location of the conduit. Pentagons indicate the locations of five virtual seismic stations located at the north (station N), east (station E), south (station S), west (station
W) and northeast (station NE) of the conduit with equal distance of 2 km. The orange dash line with arrowhead indicates the direction of the wagging plane, which is northeast-
southwest direction with dh = 45◦ . The contours indicate that any two stations located at the same distance to the conduit are either in-phase (when located in the same side
of the red dash line), or out-of-phase with each other (when located in the opposite sides of the red dash line). (c) P-waves calculated at the five virtual stations shown in (a),
which are in-phase or out-of-phase with the others. (b) Cross-correlation functions of P-waves for different station pairs. The blue curve is the cross correlation between stations
that are out-of-phase with each other; the green curve is the cross correlation between stations that are in-phase with each other. Station pairs that are in-phase have maximum
cross-correlation at 0; stations which are out-of-phase have maximum cross-correlation at To/2 = 0.15 s.



Y. Liao et al. / Journal of Volcanology and Geothermal Research 351 (2018) 57–74 65

Fig. 8. (a) Contours of phase-shift of P-waves generated by a counter-clockwise wagging with circular whirling orbit at frequency of 3.3 HZ. Black solid lines and blue dash lines
are two groups of equal-phase contours that are out-of-phase with each other. Pentagons indicate the locations of five virtual seismic stations located at the north (station N), east
(station E), south (station S), west (station W) and northeast (station NE) of the conduit (gray triangle) with equal distance of 2 km. The orange dash line with arrowhead indicates
the counter-clockwise wagging direction. (c) P-waves calculated at the virtual stations in (a). (b) Cross-correlation functions of P-waves for different station pairs. Different colors
correspond to stations that are separated by different time lags. The cross-correlations indicate that there are time-lags other than 0 or To/2 between stations.

deviates away from these two specific values, the envelopes pro-
vide reasonably tight constraints on the wagging eccentricity and
direction. If the time-lag reaches value of 0 (equivalent to To due
to periodicity) or To/2, 2-D wagging with eccentricity e = 1 is
implied.

The behavior of the wagging motion can be deduced by com-
paring two pairs of seismic stations as well. Consider the example
of the station pairs E-S and N-E (see Fig. 8a). The sum of the time-
lag for the pair E-S and the pair N-E is LagE-S + LagN-E = To/2 in
counter-clockwise wagging, but is LagE-S + LagN-E = 3To/2 in clock-
wise wagging, regardless of the eccentricity. When the wagging is
circular (e = 0), the pairs E-S and N-E have the same time-lag, with
values of either To/4 or 3To/4. When the eccentricity increases, the
two time-lags separate, and the difference in their values increases.

5.3. Application to the Redoubt Volcano 2009 eruption

In this section, we show a sample application of our seismic wave
analysis to real seismic data, and also a demonstration of how the
seismic data are processed and interpreted within the framework
of the wagging model. We use the example of the 2009 eruption of
Mt Redoubt in Alaska. According to Alaska Volcano Observatory, the
first magmatic explosion occurred at 22:34 (local time) on March
22 in 2009, after precursory seismicity that lasted approximately 6
months1.

2 https://www.avo.alaska.edu/volcanoes/activity.php?volcname=Redoubt&
page=basic&eruptionid=610.

The two recent eruptions of Mount Redoubt were both pre-
ceded by seismic tremors (Power et al., 1994; Buurman et al., 2012;
Power et al., 2013), for which physical models were developed in

Fig. 9. Time-lag LagE-S between the stations E and S (location in Fig. 8a) as a function
of eccentricity of the wagging orbit. Each curve corresponds to a different combina-
tion of wagging direction (clockwise or counter-clockwise) and orientation of major
elliptical axis (indicated by dh). The upper group of curves (blue to cyan) corresponds
to clockwise wagging, and lower group of curves (red to magenta) corresponds to
counter-clockwise wagging. When the wagging is in the diagonal direction with tilted
major axis at angle dh = 45◦ or −45◦ , the time-lag between the stations reaches
its extremum under the same wagging eccentricity. The analytical expression of the
extremum values, according to Eq. (32), are shown in black dashed lines, setting the
outer boundaries of the time-lags (see Appendix B.2).

https://www.avo.alaska.edu/volcanoes/activity.php?volcname=Redoubt&page=basic&eruptionid=610
https://www.avo.alaska.edu/volcanoes/activity.php?volcname=Redoubt&page=basic&eruptionid=610
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previous studies (Chouet et al., 1994; Chouet, 1996; Hotovec et
al., 2013; Dmitrieva et al., 2013). Chouet et al. (1994) studied the
characteristics of the seismic swarms preceding the 1989–1990 erup-
tion, and proposed a mechanism wherein the resonant excitation of
a fluid-driven crack generates long-period seismicity (Chouet et al.,
1994; Chouet, 1996). The crack is considered to be a stationary point
source of seismicity, and its location and dimensions are determined
using seismic data. This model successfully explains some observed
seismic features, such as the change in the rate of seismic energy
release before the eruption. However, it implies a monopolar seismic
radiation, which precludes time-lags between different seismic sta-
tions. The 2009 eruption was also preceded by seismic tremor with
some unique features. Harmonic tremor with integer overtones was
observed, and the fundamental frequency could glide up to as high as
30 Hz in less than 10 min, followed by a seismic quiescence for about
30 s immediately before some explosions. These observations were
explained by models invoking the stick-slip mechanism (Hotovec et
al., 2013; Dmitrieva et al., 2013). In the model developed by Hotovec
et al. (2013), increasingly frequent stick-slip earthquakes give rise
to the observed gliding tremor frequency and overtones. Dmitrieva
et al. (2013) further developed a frictional faulting model, and pro-
posed that the transition between stick-slip events to aseismic sliding
events gives explanation for the observed seismic quiescence before
the explosions. Both stick-slip models successfully explained the
unique tremor features in the 2009 eruption of Redoubt Volcano,
though they may not be readily generalized to other volcanoes which
do not display similar seismic characteristics.

These previous studies successfully account for many aspects
of seismic observations including the emergence of seismicity, the
frequency overtones and the rapid frequency gliding. However, if
there are time-lags between the waveforms measured at different
stations, they may not be readily explained by either class of models,
especially if the time-lag is not static in time, which requires a later-
ally moving seismic source. Here, we attempt to explain this aspect of
seismic characteristics using the more general mechanism of magma
wagging, which employs only a few physical parameters, and to test
the magma wagging model with the field data as well.

The seismic data used in this study are time series of vertical
ground displacement recorded by seismic stations REF, RSO, RDN and
RED (Fig. 10). To analyze the time-lags, we select three days (March
10, March 16, and March 21), which are separated by similar inter-
vals (5 and 6 days) for the 2 weeks of the pre-eruptive sequence
(the syn-eruptive data on March 22 was avoided due to possible
additional complexities during eruptions).

Fig. 11. Evolution of time-lag between stations REF and RSO on March 10th, March
16th and March 21st. The average time-lag calculated in a 10-min window for every 30
min are shown (black circles) with standard deviations (error-bars). The time-lags are
normalized by the average oscillation period (obtained from the frequency spectrum).
Blue dash lines indicate the value of 1/2 the oscillation period. See Appendix C for
details of the data processing.

The waveforms are sampled at a frequency of 100 Hz, and
frequencies higher than 5 Hz are filtered out in the post-processing.
We choose the seismic station pair REF-RSO, and compute the
time-lag LagREF-RSO from the cross-correlation functions (see
Appendix C). To obtain meaningful time-lags, the seismic data mea-
sured by both stations should have similar waveforms. We impose
two selection criteria on the data windows based on frequency
spectra and cross-correlation values. First, the frequency spectra of
seismic stations REF and RSO must have shared peaks for the data
window, reflecting similarity in their frequency content. Second, the
peak cross-correlation value between REF and RSO must be suf-
ficiently large (i.e., passing a 95% confident threshold), reflecting
similarities in their waveforms. We only compute the time-lags for
data windows that pass both tests (see Appendix C).

The time-lags between station REF and RSO have finite values,
and show variations in time on certain periods of days (see Fig. 11).
Moreover, the time-lags vary smoothly with time for finite time
periods (00:00–06:00 on March 16, and 00:00–12:00 on March 21, for

Fig. 10. (a) Map of Redoubt Volcano and seismic stations RSO, REF, RDN and RED (highlighted). Radial distances to the volcanic vent and angles (measured in the east of north
direction) of the highlighted stations are shown in the inset table. Frame (b) shows waveforms recorded by RSO, REF and RDN on March 16th, 2009. Frame (c) shows a 5-s section
of the waveforms displayed in the blue rectangle in frame (b). The waveforms in (b) and (c) correspond to the vertical component of the seismograph, from which frequencies
higher than 5 Hz are filtered out. Source of data for (a): https://www.avo.alaska.edu/volcanoes/. Source of data for (b) and (c): IRIS.

https://www.avo.alaska.edu/volcanoes/
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Fig. 12. Evolution of time-lag for station pair REF-RSO and RDN-REF on March 10th, March 16th and March 21st. The time-lag for RDN-REF is corrected based on P-wave velocity
c = 3.5km/s for the larger radial distance of RDN (see Appendix D). The average and standard deviation of time-lags are calculated according to the scheme described in
Appendix C. The blue curves indicate time-lag for station pair REF-RSO; the red curves indicate time-lag for station pair RDN-REF. The absolute values of the time-lags (in seconds),
are shown on the left, and time-lags normalized by period To are shown on the right.

example). Although some factors such as the heterogeneity in seismic
velocity or specific locations of the seismic stations can contribute
to the time-lag, these static properties cannot explain the temporal
changes in the time-lag. The temporal dependency of the time-lag,
therefore, requires more dynamical explanations. The continuity of
time-lags over significant intervals of time indicates that there is
a continuously varying source, consistent with a whirling magma
column. (Although the data do not yet demand this interpretation.)

Within the magma wagging framework, the time-lags can be
interpreted using the diagnostics developed in Section 5.2: for the
March 21st record, the time-lag between the two stations fluctu-
ates but stays mostly below To/2, which indicates, according to Fig. 9
(see also Table 1, Appendix B.2), a highly elliptical counter-clockwise
motion with the wagging plane along northeast-southwest direction.
For March 16th, the time-lag remains around To/4 for the first half
day, indicating a counter-clockwise wagging with low eccentricity,
and a slight increase of eccentricity (or a rotation of the wagging
plane) towards the end of the day. For March 21st, the time-lag
oscillates between low values to To/2, indicating counter-clockwise
wagging with fluctuating eccentricity (or slow rotation of the wag-
ging plane). Near the end of March 21st, an increase in time-lag
suggests a reversal of the wagging direction from counter-clockwise
to clockwise (see Fig. 9), although there are significant uncertainties
in the time-lag measurements.

We compare the time-lag evolution for station pair REF-RSO to
that for RDN-REF, for both their absolute values (Fig. 12a) and nor-
malized values (Fig. 12b). Compared with the range of time-lags on
March 10, the ranges of time-lags on March 16 and March 21 have
smaller values, suggesting a higher wagging frequency as the volcano
approaches eruption. Moreover, the absolute time-lags for both pairs
are bounded between 0 and 1 s, indicating sinusoidal waveforms
with frequency higher than 1 Hz. Towards the end of March 21st,
we observe an increase in time-lags for both pairs from below To/2
to above To/2 (see Fig. 12b), indicating a reversal of the wagging
direction from counter-clockwise to clockwise.

The wagging model can also be used to interpret statistically
significant cross-correlations between multiple stations at different
locations, with both different radial distance and angular positions.
Fig. 13b shows three cross-correlation functions obtained from four

available seismic stations (marked in Fig. 13a), and the analytically
calculated cross-correlations of virtual stations located at the same
locations for circular wagging. The moderate resemblance between
the synthesized and measured cross-correlation functions suggests
that circular wagging motion could have occurred one day before the
eruption.

Although the Redoubt data suggests features of elliptical wag-
ging motion, there are some inconsistencies between the data and
the model’s predictions, which warrant more in-depth analysis. Note
that the wagging model predicts the sum of the two time-lags to
be LagE-S + LagN-E = To/2 or 3To/2, which is not matched by the
measurements (Fig. 12b). The possible explanation for such incon-
sistency could be that our model assumes a uniform array geometry
of seismic stations (equally spaced radially and azimuthally) and a
homogeneous seismic velocity field, neither of which is accurate in
reality, but can be accounted for to a certain degree (see Appendix D).
The difference in vertical elevation between the seismic stations, as
well as the mislocation of the magma column, can also introduce
errors in the measurements: For example, if the source is off by 500
m and the seismic wave speed is 3–4 km /s, the error introduced
by the source mislocation to the time-lag is around 0.15 s(Fig. 16b).
As the real seismic data contains irregular sinusoidal waveforms,
cycle skipping could introduce errors in the time-lags as well. The
simple wagging diagnostics we propose are based on P-wave mea-
surements, however, we utilize the vertical component of ground
displacement, which also contains S-waves and Rayleigh waves. It
is also worth noticing that eruption was preceded by 58-h seismic
swarms, which overlapped the tremor data on March 21, adding
some uncertainty to our interpretation (Power et al., 2013).

Despite these limitations, our data analysis suggests that there
may exist a moving tremor source in the volcano, which the magma
wagging model naturally provides. Over finite periods of time, the
time-lags between the station pairs show smooth variation, which
is consistent with the model’s prediction. The time-lags are fur-
ther interpreted in the framework of the wagging model, so as to
reveal the characteristics of the whirling motion. Although there
may be other mechanisms in the 2009 eruption of Mt. Redoubt, the
analysis presented above indicates that the motion of the magma
column can be detected using field data. At this stage, the model
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Fig. 13. Radiation pattern for circular wagging that explains the cross-correlations of seismic station pairs with different radial distances. (a) Contours of two phase-shifts
calculated by Eq. (30) for a clockwise circular wagging (e = 0) with wagging frequency f = 3Hz. The seismic velocity c = 3500m/s. The reference frame is rotated so that the
0 phase-shift contour (black) overlaps with station RDN. Purple diamonds mark the precise locations of the stations. (b) The cross-correlations calculated from seismic data on
March 21st (blue) and predicted by the circular wagging motion (red) described above. Black dashed lines are bounds of upper and lower values of the cross-correlation functions
with a > 95% confidence.

is probably too simple to be used for forecasting, or yield definite
interpretations of the seismic data. However, the wagging model
provides a new framework for analyzing seismic data, and may one
day provide better understanding and even forecasting, with further
development and testing. The algorithm we proposed in Section 5.2
suggests that a purpose-designed seismic array with specific array
geometry (i.e., an array consisting of equal-distance, perpendicularly
positioned seismometers) can most efficiently detect the wagging
and whirling signal. With future design and deployment of such
seismic arrays, the wagging model can be tested with more con-
clusive findings, and the link between wagging characteristics and
the evolution of eruption dynamics can be further interrogated
empirically.

6. Discussion

Volcanic tremor is an ubiquitous phenomena common to explo-
sive volcanism across the globe, and plays a critical role in vol-
canic hazard prediction. Here we extend the magma wagging model
(Jellinek and Bercovici, 2011; Bercovici et al., 2013) to higher dimen-
sions, as characterized by the magma column’s angular displace-
ment and velocity. The extended model demonstrates that the free-
oscillations of the magma column in three dimensions lead to the
same fundamental frequency yo as in the 2-D model, in the limit
of an inviscid magma column. The magma column whirls in the
volcano conduit while each of its horizontal section tracks an ellip-
tical orbit, whose eccentricity is determined by the relationship
between energy and angular momentum. When the eccentricity of
the whirling orbit reaches the maximum value of 1, the 2-D magma
wagging model (Jellinek and Bercovici, 2011) is recovered. When
viscous damping is present, the whirling motion of an un-coiled
magma column is damped at the same decay rate as in the 2-D
magma wagging model, while a coiled magma column is damped
more rapidly.

We further analyze and predict seismic P-waves generated by
magma wagging motion, and suggest a method for probing the
motion of the magma column in the conduit using cross-correlations
of seismic waveforms. According to our model, the synthesized seis-
mogram contains sinusoidal P-waves in time with frequency yo. We
propose a diagnostic procedure, by which we can infer the shape of

the whirling orbit of the magma column using time-lags of P-waves
measured at different locations. A seismic array can be optimally
designed to detect the whirling motion of the magma column, when
it is comprised of seismic stations separated by 90◦ and equidistant
to the volcanic conduit.

We test our model using data from seismic stations near Redoubt
Volcano prior to its eruption in March 2009, and demonstrate how
the seismic data are processed and interpreted to allow the detection
of a whirling magma column. Our data analysis shows consistency
with the wagging model over finite time periods, and suggests
that a circular or elliptical wagging motion could have existed for
some period of time. The time variation of the time-lags also hints
that the wagging direction could have reversed when the eruption
was impending; moreover, the wagging eccentricity possibly fluc-
tuates with time. Of course there are other possible mechanisms at
play in the 2009 eruption of Mt. Redoubt, and the ground motion
observations could be affected by additional complexities (such as
seismic swarms preceding the eruption) (Power et al., 2013). Cur-
rently, the wagging model is still too simple to be used for forecasting
eruptions. However, the preliminary application of the model sug-
gests that the wagging mechanism may one day provide better
understanding and even forecasting, with further development and
testing.

One important inference from our model is that the evolution
of the wagging motion suggested by the seismic data suggests a
change in energy and angular momentum of the magma column en
route to the eruption. In our model, the wagging eccentricity indi-
cates the ratio of energy to angular momentum. Before an eruption,
the increasing rate of gas exsolution and driving force from bub-
bles in the magma column could contribute to the accumulation of
total (kinetic and potential) energy, hence could lead to an increase
of eccentricity. Immediately before the eruption, fragmentation of
the magma matrix could lead to damage of the gas annulus, caus-
ing net torque on the magma column, and modifying the angular
momentum. If the net torque is in a direction opposite to the rota-
tion direction of the magma column, a stagnant motion followed by
reversal of rotation direction may ensue. These conjectures need to
be tested carefully using more seismic data and more in-depth anal-
ysis, and the method we propose here opens more possibilities to use
seismology to understand the dynamics of volcanic conduits prior to
eruptions.
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7. Successes, challenges and caveats

The generalized wagging model achieves several goals, includ-
ing (1) making the original two-dimensional wagging model more
robust, leading to prediction of new whirling motions (2) mak-
ing the wagging mechanism more field-testable by developing a
scheme for analyzing and interpreting seismic data and (3) demon-
strating how seismic data from the eruption of Mt. Redoubt in
2009 is analyzed and interpreted using the model. The field data
show consistency with some predictions of the model, but the
complexities of the data suggest that our model is too simple to
yield conclusive interpretations. The prediction of the seismic fea-
tures also suggests that purpose-built seismic array with specific
spatial geometry can be optimally designed to test the wagging
model.

The wagging mechanism and the seismic diagnostic scheme are
based on several assumptions, which warrant scrutiny when com-
plexities of a specific volcanic system is considered. First, the deriva-
tion of the whirling motions is based on a long-wave assumption.
If a magma column is at the beginning of its unrest, or if the con-
duit involves small-scale variances (for example, changes in the
conduit’s geometry and radius, or in the magma’s rheology due
to gas exsolution) along the vertical direction, then the long-wave
assumption will not apply. In this case, the whirling motions and the
seismic wavefield caused by the motions will also involve stronger
vertical variances, hence require the implementation of a more com-
prehensive model to incorporate small-scale variances along the z
direction. Second, the seismic predictions are based on simplifying
the crustal medium, which is assumed to be homogeneous, isotropic,
and boundary-free. In reality, the crustal rocks may involve many
complexities such as seismic anisotropy and fault boundaries. These
effects can render the time-lags sought in the seismic diagnostic
scheme unclear or inconsistent. In this case, the seismic diagnostic
scheme requires modifications, and more robust data analyzing tools
are needed for detecting and picking out the time-lag signals. Other
possible tremor mechanisms that can occur concurrently with the
whirling of the magma column, such as faulting and fluid migration,
can also alter the waveforms, leading to increased difficulty in dis-
cerning the effect of a rotational pressure source from other source
effects.

Due to the aforementioned complexities that the current model
does not yet address, the current model is probably not ready to
be directly applied for forecasting eruptions. However, the proof-
of-concept model can lead to future developments of more realistic
models, which may incorporate more complexities in the system,
such as variances in the conduit and magma properties, spacial and
temporal evolutions of the gas annulus, tilting and non-cylindrical
shape of the conduits, seismic anisotropies and other variances in
crustal rocks. Besides the simplifications, the current model also
assumes an impermeable gas annulus. Under this condition, the
whirling motions are unsustainable and will eventually be damped
out by viscous forces. As shown by Bercovici et al. (2013), the incor-
poration of gas flux through the annulus provides excitation for the
two-dimensional wagging motions, suggesting that the incorpora-
tion of gas flux in three dimensions may also provide excitations
for the whirling motions. This postulation can be further tested by
extending the current model that involves a permeable gas annulus,
which will be pursued in our future work.
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Appendix A. Derivation of elliptical trajectories and their periods

For inviscid trajectories governed by Eq. (17), we look for implicit
form of solution u = u(0). We define w ≡ 1/u, in which case the
time derivative of u can be written as

du
dt

=
du
d0

d0
dt

=
du
d0

Lo

u2
= −Lo

dw
d0

(33)

where Lo = u2d0/dt is the conserved angular momentum. Taking
Eq. (33) into the definition of energy,

Eo =
1
2

L2
o

(
dw
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)2

+
1
2

L2
ow2 +

1
2
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o

w2
(34)

leads to

dw
d0

= ±
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2Eo

L2
o

− y2
o

L2
o

1
w2

− w2 (35)

which is integrable and yields the solution

± cos 20 =
E − Lo

you2√
E2 − 1

(36)

where we assume 0 = 0 coincides with the semi-major axis, E ≡
Eo/Loyo. This solution is readily identified with the relation for an
ellipse by taking the transformation x = ucos0, y = usin0, in which
case Eq. (36) leads to

x2

a2
+

y2

b2
= 1 (37)

where a2 = Lo/yo

(
E −

√
E2 − 1

)
, b2 = Lo/yo

(
E +

√
E2 − 1

)
,

which is a closed ellipse centered on the centroid (origin), with major
and minor axes along the x̂ and ŷ directions, respectively, and an
eccentricity e =

√
1 − b2/a2.

To find the periods of the elliptical trajectories, we combine Eq.
(19) with d0/dt = Lo/u2 to obtain

d0
dt

= yo

(
E −

√
E2 − 1 cos 20

)
(38)

For the closed trajectory, the period To, or time needed to complete
one revolution, is given by

To =
1
yo

∫ 2p

0

d0

E −
√
E2 − 1 cos 20

=
4
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∫ ∞

0
dtan−1
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√√√√E +
√
E2 − 1

E −
√
E2 − 1

g

⎞
⎟⎠

=
2p
yo

(39)

Therefore, all elliptical trajectories have period of 2p/yo, which is
the same as the period of the steady circular trajectory.
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Appendix B. Seismic signatures of magma wagging

B.1. Seismic waves generated by magma wagging

The general solution of the wave Eq. (25) in cylindrical-polar coordinates is a superposition of cylindrical harmonics, usually represented
by the two kinds of Bessel functions. The full solution is determined by a full set of initial conditions and boundary conditions. Waves only
result from the pressure change on the conduit wall, thus we seek only wave forms propagating outward. The spatial-temporal variation of
such waves can be a combination of cosytJm(kr) + sinytYm(kr) and sinytJm(kr) − cosytYm(kr), where Jm and Ym are first and second type of
Bessel functions of order m, respectively. The waveforms can be verified to be propagating outward, using the asymptotic formulas for large
values of r

Jm(kr) ∼
√

2
pkr

cos
(

kr − p

4
− mp

2

)
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√

2
pkr

sin
(
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4
− mp

2

)
(40)

which lead to
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√

2
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4
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√

2
pkr

sin
(
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p

4
+

mp

2

)
= f2 (r − ct) (41)

which are both waves propagating outward with wave speed c = y/k. The propagating pressure wave therefore takes the form of

P(r, h) =Sm

∫
k

cos(mh) (am (cos(ykt)Jm(kr) + sinyktYm(kr))

+bm (sin(ykt)Jm(kr) − cosyktYm(kr)))

+ sin(mh) (cm (cos(ykt)Jm(kr) + sin(ykt)Ym(kr))

+dm (sin(ykt)Jm(kr) − cos(ykt)Ym(kr))) dk (42)

which ensures outward traveling waves. When the wagging is counter-clockwise, the inviscid wagging trajectory can be described by x =
acos(yot), y = bsin(yot), which leads to the boundary condition (27). Retaining modes with angular order m = 1, frequency yk = yo and
wave length k = yo/c, the solution becomes
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The coefficients satisfy the inner boundary condition (27), so that
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The solution of Eq. (5) is determined with
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Note that when the wagging is clockwise, P-waves still have the general form of Eq. (3), but the inviscid trajectory of magma column becomes
x = acos(yot), y = −bsin(yot). It is also straightforward to show that the P-waves generated by clockwise wagging is equivalent to the P-
waves described by Eq. (4) under transformation h → −h. When the orientation of the long axis of the elliptical wagging orbit is tilted by dh

from the x̂ axis in the counter-clockwise direction, the P-waves generated by the tilted counter-clockwise wagging are obtained by performing
the transformation h → h − dh to Eq. (4); the P-waves generated by the tilted clockwise wagging are obtained by a combination of two
transformations that lead to h → −(h − dh). Define
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in which the + and − stand for counter-clockwise and clockwise wagging, respectively, with tilting angle dh (see Fig. 14. The solution (4) at
specific point (r, h) can be expressed as

P(r, h, t) = Pmax cos (yot − xr − xh) (47)

Fig. 14. Sketch of an elliptical wagging orbit, wagging plane (orange dash line) with tilt angle dh from x̂ (the just east direction), and an arbitrary seismic station located at (r, h).
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B.2. Time-lag between a station pair

The seismic P-waves generated by magma wagging and recorded by seismic station A and B are P(A) = P
(A)
max cos

(
yot − x

(A)
r − x

(A)
h

)
and

P(B) = P
(B)
max cos

(
yot − x

(B)
r − x

(B)
h

)
according to Eq. (8). When A and B are located at the same radial distance r(A) = r(B), the time-lag LagB-A,

defined by the time it takes for the displacement peak to travel from A to B, is LagB−A = x
(B)
h /yo − x

(A)
h /yo. To quantify the relation between

the time-lag between a pair of stations to the wagging manner, we use an example of a station pair consisting of two virtual seismic stations,
station S and E. The two stations have the same radial distance r(S) = r(E), and are located to the south and to the east of the volcano with
h(S) = −p/2 and h(E) = 0. When the magma column undergoes a counter-clockwise wagging with a tilting angle dh = +45◦ from the east
direction (wagging oriented in the northeast-southwest direction), the phase-shift x(S) and x(E) are calculated by Eq. (7), and the difference
between the two angles can be expressed as x

(E)
h − x

(S)
h = p − 2tan−1 b

a = p − 2tan−1
√

1 − e2. The time-lag, normalized by the period To,
becomes LagE−S/To = 1

2 − 1
p tan−1

√
1 − e2. Eq. (7) can also be used to estimate the range of time-lags corresponding to different combina-

tions of wagging directions and orientations (Table 1). When the wagging trajectory’s major axis is tilted 45◦ from the just east or just north
direction (dh = ±45◦), the time-lags LagE−S = 1/2 − tan−1

√
1 − e2/p for counter-clockwise wagging with northeast-southwest orientation;

LagE−S = 1/2 − tan−1 1√
1−e2

/p for counter-clockwise wagging with northwest-southeast orientation; LagE−S = 1/2 + tan−1
√

1 − e2/p

for clockwise wagging with northeast-southwest orientation; and LagE−S = 1/2 + tan−1 1√
1−e2

/p for clockwise wagging with northwest-

southeast orientation. The four values form the maximum and minimum time-lags among all wagging motions with the specific eccentricity
e (see Fig. 9).

Table 1
Time-lags between pairs of virtual seismic stations that correspond to different combinations of wagging orientations and directions. The seismic stations (see Fig. 7a) are
located to the north (station N), east (station E), and south (station S) of the volcano at the same radial distance. The values of time-lags between perpendicular station pairs
(N-E and E-S) provide information about the wagging direction and orientation.

Rotation direction Orientation of long axis Time-lag between station E to S Time-lag between station N to E

Clockwise Northeast-Southwest 1
2 To ≤ LagE−S ≤ 3

4 To
3
4 To ≤ LagN−E ≤ To

Northwest-Southeast 3
4 To ≤ LagE−S ≤ To

1
2 To ≤ LagN−E ≤ 3

4 To

East-West 3
4 To

3
4 To

North-South 3
4 To

3
4 To

Counter-clockwise Northeast-Southwest 1
4 To ≤ LagE−S ≤ 1

2 To 0 ≤ LagN−E ≤ 1
4 To

Northwest-Southeast 0 ≤ LagE−S ≤ 1
4 To

1
4 To ≤ LagN−E ≤ 1

2 To

East-West 1
4 To

1
4 To

North-South 1
4 To

1
4 To

Appendix C. Procedure for calculating time-lags of waveforms

Here we provide a data processing scheme is applied for the calculation of the evolution of time-lags shown in Fig. 11. Seismic waveforms
recorded in March 10th, March 16th and March 21st in 2009 are collected from the IRIS open database, with 48 data sets collected for each
day. Each data set consists of vertical components of the seismic measurements in the first 10-min section of every 30-min window during
the day. For each 10-min section, a set of time-lags is obtained by sliding a 30-s time window (see Fig. 15a) with a 5 s step along the whole
10 min.

Fig. 15. (a) Waveforms recorded by REF and RSO in a 30 s window on March 16th, 2009. The waveforms have been band-pass filtered between 0.1 Hz and 5 Hz and normalized
by their maximum values. (b) Frequency spectra of normalized waveforms shown in (a). Five peaks in the spectra (circles) are selected and compared to identify the shared
frequency peak (red circle). When there exists shared frequency peak among for REF and RSO, the waveforms are further filtered to be between [minimum shared frequency
−0.5Hz, minimum shared frequency +0.5Hz ], and cross-correlation (c) is computed. The potential time-lag between the station pair is determined to be the positive lag time
corresponding to the first peak in the cross-correlation function (red dash line). The 95% confident thresholds (blue and green dash line), following Saar and Manga (2003),
Jellinek et al. (2004), are based on an ensemble of 1000 cross-correlation functions, in which each cross-correlation function is calculated with a random phase in each frequency
component of one time-series. If the potential time-lag corresponds to a cross-correlation peak above the 95% threshold, the time-lag is considered to be valid.
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In order to obtain meaningful time-lags, the seismic data measured by both stations should have similar waveforms. We impose two selec-
tion criteria on the data windows based on frequency spectra and cross-correlation values. First, the power spectra of seismic stations REF and
RSO must have shared peaks for the data window, reflecting similarity in their frequency content; Second, the peak cross-correlation value
between REF and RSO must be large enough (i.e., passing a 95% confident threshold (Saar and Manga, 2003; Jellinek et al., 2004), reflecting
similarities in their waveforms. We only compute the time-lags on data windows that pass both tests. For each 30-s window, the frequency
spectra of the waveforms recorded by both REF and RSO (Fig. 15b) are computed. Five frequency peaks are found for REF and RSO, respectively
(black circles in Fig. 15b). When there exists peak frequency shared by both REF and RSO (red circles in Fig. 15b), the waveforms are further
band-pass filtered between the minimum frequency peak and the maximum frequency peak with 0.5 Hz on each end (i.e., if the shared peak
frequencies are 1.5 Hz and 2 Hz, the waveforms are further filtered to be between 1–2.5 Hz). The cross-correlation function of the resulting
waveforms is computed (Fig. 15c). If the time-lag of these waveforms corresponds to a cross-correlation that exceeds a 95% confidence thresh-
old, the time-lag is adopted into the time-lag data-set. In every 10-min window, the time-lag is the average value of the time-lags measured
on all 30-s windows that passed the criteria mentioned above, and the averaged frequency is calculated from the shared frequency peaks in
the spectrum of REF and RSO. In the calculation of time-lags shown in Fig. 12, the schemes described above are used on data collected by REF
and RDN.

Appendix D. Correction for radial deviation of seismic stations

The diagnostics of wagging motion using cross-correlation of seismic stations discussed in Section 5.2 and Section B.2 apply when the vir-
tual seismic stations are located at the same distance to the imaginary volcano. For the seismic stations in Mount Redoubt, this is not the case.
For station pair RDN-REF and REF-RSO, only REF and RSO are similar in radial distance (2.72 km and 2.67 km), but RDN has a much larger radial
distance (4.02 km). Comparing with the radial distances, the angular positions of the stations are close to forming 90◦ pair-wise separations. To
use the existing data from RDN, here we correct for the error in cross-correlations between RDN-REF caused by RDN’s radial distance, which is
1.35 km larger than that of REF. The P-wave predicted at the desired location r is, according to Eq. (30), P(r, t)/Pmax(r) = cos(yot −xr(r) −xh),
while the P-wave recorded at the actual location r+dr is P(r+dr, t)/Pmax(r+dr) = cos(yot−xr(r+dr)−xh). At the specific moment t, the nor-
malized P-wave predicted at r can be obtained by shifting the waveform measured at r+dr in time, by the amount of dt = (xr(r+dr)−xr(r))/yo,
so as P(r, t)/Pmax(r) = P(r + dr, t + dt)/Pmax(r + dr). Therefore, when calculating the cross-correlation between station RDN and REF on
the time window [t1, t2], the waveform measured at RDN on the time window [t1 + dt, t2 + dt] should be used. Equivalently, the corrected
cross-correlation function can be obtained by shifting the existing cross-correlation function backward by dt. Due to the periodic nature of the
waveforms, the relation between dt and dr is also periodic. Within each period, dt is linear with dr (see Fig. 16a). Because the time-lag dt is
equivalent to dt + nTo, (n = 0, 1, 2, . . .), the dependence of dt on dr can be also expressed as dt/To = dr/k, where k is the wavelength, which
leads to dt = dr/c, where c = k/To is the seismic velocity, which is assumed to be a constant and uniform in our study. To obtain the value
of dt, only the seismic velocity is needed, which is a static and measurable value. When dr = 1.35km is corrected for the location of RDN,
the cross-correlation function between station RDN and REF is shifted, depending on the seismic velocity (see Fig. 16c). Note that when the
P-wave velocity is not precisely known, but is confined in a range of values (for example, from 3km/s to 4km/s (Benz et al., 1996)), the uncer-
tainty in time-lag correction dt increases as dr becomes bigger (see Fig. 16b). Moreover, when dr � k, the wave, while traveling across dr, is
less subjected to modifications such as attenuation, scattering, and crustal inhomogeneity. For the station pair RDN-REF, the radial deviation
dr is similar, or even larger than the seismic wave length (k is between 0.7–3.5 km for wagging frequency 1–5Hz). This large deviation could
account for the loss of correlation between the seismic stations and lead to sensitive dependence of the corrected cross-correlation function
on the seismic velocity (see Fig. 16c). Therefore, it is more difficult to interpret the cross-correlation between stations RDN and REF, when
the seismic velocity is subjected to uncertainty. It is worth noting that the mislocation of the magma column itself introduces error in the
time-lag measurements as well. The magma column should be reasonably confined to the observable dome structure, and thus if the column
mislocation is not excessive, the error caused by the mislocated source is comparable to that caused by a radial variation in the location of
any given seismic station. However, if the wagging column is mislocated at a fixed location, the induced error in time-lags would be con-
stant in time; thus the time-varying properties of the time-lags do not reflect source location and can still suggest the changes in wagging
motion.

Fig. 16. (a) Shift in time dt = (x(r)(r + dr) − x(r)(r))/yo as a function of the shift in radial distance dr (black solid lines) calculated from Eq. (31). dt and dr are normalized by the
period To and wavelength k of the seismic wave, respectively. Blue dashed line delineates the linear relationship between dt and dr, which is equivalent to the solid lines due to
periodicity in the time-shift. (b) variation of dt when seismic velocity has uncertainty c = 3.5km/s ± 0.5km/s. When dr increases, the uncertainly of time-lag correction increases
for the same uncertainty in P-wave velocity. (c) Corrected cross-correlation of station pair RDN-REF on a 30-s time window on March 10th, 2009. The corrected cross-correlations
(color lines) are calculated based on different P-wave velocities from 3 km/s to 4 km/m. Black dashed line is the uncorrected cross-correlation of P-waves measured by the two
stations.
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