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A Convex Optimization Approach to
Distributionally Robust Markov Decision
Processes With Wasserstein Distance

Insoon Yang, Member, IEEE

Abstract—We consider the problem of constructing con-
trol policies that are robust against distribution errors
in the model parameters of Markov decision processes.
The Wasserstein metric is used to model the ambiguity
set of admissible distributions. We prove the existence
and optimality of Markov policies and develop convex
optimization-based tools to compute and analyze the poli-
cies. Our methods, which are based on the Kantorovich
convex relaxation and duality principle, have the follow-
ing advantages. First, the proposed dual formulation of an
associated Bellman equation resolves the infinite dimen-
sionality issue that is inherent in its original formula-
tion when the nominal distribution has a finite support.
Second, our duality analysis identifies the structure of
a worst-case distribution and provides a simple decen-
tralized method for its construction. Third, a sensitivity
analysis tool is developed to quantify the effect of ambi-
guity set parameters on the performance of distributionally
robust policies. The effectiveness of our proposed tools is
demonstrated through a human-centered air conditioning
problem.

Index Terms—Optimal control, stochastic systems,
Markov processes, probability distribution, optimization,
robustness.

I. INTRODUCTION

THE STOCHASTIC and dynamic environments of many
practical sequential decision-making problems cannot be

perfectly modeled, which is partially due to inaccurate distri-
butional information regarding uncertainties (e.g., [1] and [2]).
To obtain a control strategy that is robust against uncer-
tainties in model parameters such as transition probabilities
and rewards in Markov decision processes (MDP), robust
MDP formulations have been proposed [3]–[6]. However,
these methods do not incorporate a priori distributional
information about uncertainties because model parameters
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must be contained in a known set of possible parameter real-
izations. Therefore, robust MDP approaches often produce
conservative control policies [7]. To overcome this limitation,
a distributionally robust MDP formulation has recently been
proposed to maximize the worst-case expected reward, assum-
ing that the distribution of uncertain parameters is not fully
known but lies in a so-called ambiguity set of probability
distributions [7], [8]. For continuous state space models, [9]
proposes a semidefinite programming approach to computing
optimal linear feedback strategies in a linear-quadratic setting.
A distributionally robust safety specification tool is developed
in [10] to handle a probabilistic safety constraint that allows
for distributional errors of uncertain variables. All these meth-
ods adopt ambiguity sets of distributions with moment and/or
confidence interval constraints.

We consider a distributionally robust MDP problem by
employing a different ambiguity set modeling approach using
the Wasserstein metric [11]. In single-stage distributionally
robust optimization problems, this statistical distance approach
has been shown to be particularly useful when the volume
of data is too small to reliably estimate the moments of an
underlying distribution [12]–[14]. The main contributions of
this letter are as follows. First, we prove the optimality of
Markov policies and their existence in distributionally robust
MDP problems with Wasserstein distance. Second, we pro-
pose a convex formulation of an associated Bellman equation
using the Kantorovich duality principle [15] and the strong
duality result of Gao and Kleywegt [14]. In particular, we
completely resolve the infinite dimensionality issue in the orig-
inal Bellman equation without sacrificing optimality when the
nominal distribution of the ambiguity set has a finite sup-
port. Our two different formulations of the Bellman equation
can be efficiently solved by distributed and centralized con-
vex optimization methods, respectively. Third, we identify the
structure of a worst-case distribution. This structure allows us
to design a simple decentralized method for constructing the
worst-case distribution. Fourth, we develop a sensitivity anal-
ysis tool by combining the envelope theorem and Kantorovich
duality. This tool is useful in quantifying the effect of the
parameters in the Wasserstein ball-based ambiguity set on the
maximal expected reward. The effectiveness of the proposed
convex optimization-based tools is demonstrated through an
example of controlling air conditioners under ambiguous user
preferences and behaviors.
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The rest of this letter is organized as follows. In Section II,
we introduce a dynamic game formulation of distributionally
robust MDP problems with Wasserstein distance. Section III
contains all the main results of this letter. In Section IV,
we apply the proposed convex optimization-based tools to a
human-centered air conditioning problem.

A. Preliminaries and Notation
A finite-horizon Markov decision process (MDP) is defined

as a 5-tuple ⟨T, S, A, p, r⟩, where T is the time horizon, S
is the set of states, and As is the set of actions given the
state s ∈ S. These two sets are assumed to be finite. The
matrices p ∈ R|S||As|×|S| and r ∈ R|As|×|S| contain information
about the transition probability and the reward, respectively.
We let P(s′|s, a) be the transition probability that the next state
is s′ given the current state-action pair (s, a) ∈ S × As, and
r(s, a) be the reward for the state-action pair (s, a) ∈ S × As.
The reward values are assumed to be bounded. The vector rs
denotes the column of r associated with the state s, where rs :=
{r(s, a)}a∈As ∈ R|As|. The vector ps denotes the columns of p
associated with the state s, where ps := {{P(s′|s, a)}s′∈S}a∈As ∈
R|S||As|.1 The state at stage t is denoted as st ∈ S. Given a Borel
space X, P(X) denotes the set of Borel probability measures
on X. Finally, we let T := {1, . . . , T − 1} to denote the set of
stages up to T − 1.

II. THE SETUP

A. Dynamic Game Formulation
We consider a special class of MDPs in which the transition

probability ps and the reward rs are not completely known;
however, their joint distribution is assumed to be contained
in a so-called ambiguity set, Ds ⊆ P(R|S||As|+|As|), which is
given. Our goal is to construct a control policy that maximizes
the worst-case expected total reward under distributional con-
straints characterized by the ambiguity set Ds. We consider a
dynamic game formulation in which Player I determines a con-
trol policy to maximize the reward while Player II selects the
joint distribution µt of (pst , rst ) to minimize the total expected
reward.

Let ht := (s1, a1, µ1, . . . , st−1, at−1, µt−1, st) be the history
at stage t and Ht denote the set of all histories at stage t. The
set of all history-dependent randomized control policies for
Player I is denoted by !. In other words, for a strategy π :=
(π1, . . . ,πT−1) ∈ !, we have that πt : Ht → #(Ast), where
#(X) denotes the probability simplex on a set X. Now, let
he

t := (s1, a1, µ1, . . . , st−1, at−1, µt−1, st, at) be the extended
history at stage t and He

t denote the set of all extended histories
at stage t. The set of Player II’s admissible policies is defined
as $ := {γ := (γ1, . . . , γT−1) | γt : He

t → Dst ∀t ∈ T }, which
encodes the ambiguity set Dst .

1Similarly to [3], [8], and [7], the MDP is assumed to be non-stationary in
the sense that each time a state is visited, it can have a different realization
of (ps, rs). The proposed methods are also valid with time-varying rewards
and transition probabilities. However, for notational simplicity, we suppress
the time-dependency of (ps,t, rs,t).

Given a parameter pair (p, r) and a strategy pair (π, γ ) ∈
!× $, we set the expected total reward as

Rs[π, γ ] := Eπ,γ

[ T−1∑

t=1

r(st, at) + q(sT)

∣∣∣∣s1 = s
]
,

where Eπ,γ denotes the expectation taken with respect to the
probability measure induced by the strategy pair (π, γ ), and s
is the initial state, which is deterministic. Here, q is a terminal
reward function, which is assumed to be bounded. Our desired
control policy can be obtained by solving the following zero-
sum two-player dynamic game problem2:

sup
π∈!

inf
γ∈$

Rs[π, γ ]. (1)

If it exists, an optimal solution to this problem maximizes the
total expected reward under the worst-possible strategy for
the joint distribution µt of (pst , rst) for all t. This minimax
formulation provides a control strategy such that the closed-
loop system is robust against distributional errors within the
feasibility set characterized by the constraints in Ds.

B. Ambiguity Sets With the Wasserstein Metric
The distributionally robust MDP problem does not rely

on the notion of a known true underlying distribution but
instead requires an ambiguity set, Ds, of admissible distri-
butions. To model ambiguity sets, several methods have been
proposed for single-stage stochastic programming problems,
along with useful duality results, such as moment-based meth-
ods [1], [17]–[20] and statistical distance-based approaches
(φ-divergence: [21]–[23], Prokhorov metric: [24], Wasserstein
metric: [12]–[14]). From these, we employ Wasserstein
distance-based ambiguity sets in the distributionally robust
MDP setting (1).

We fix s ∈ S and use the notation x := (ps, rs) ∈ Xs ⊂
R|S||As|+|As|. We assume that its probability measure µ with
non-empty support Xs belongs to the following Wasserstein
ball with radius θ > 0 centered at a nominal probability
measure νs ∈ P(Xs):

Ds := {µ ∈ P(Xs) | Wp(µ, νs) ≤ θ}, (2)

where Wp(µ, νs) := minκ∈P(Xs×Xs){[
∫
Xs×Xs

d(x, y)p

dκ(x, y)]
1
p |!1κ = µ,!2κ = νs} is the Wasserstein dis-

tance of order p between µ and νs with a metric d and p ≥ 1.
Here, !iκ denotes the ith marginal of κ for i = 1, 2. We
can interpret the Wasserstein distance between two measures
as the minimum cost of redistributing mass from one to
another using non-uniform perturbations [11]. Recently, dis-
tributionally robust stochastic optimization with Wasserstein
distance has been empirically shown to resolve issues with
φ-divergence, which does not address how close two points
in the support are to each other [14].

III. KANTOROVICH DUALITY-BASED CONVEX
FORMULATION OF DYNAMIC PROGRAMMING SOLUTIONS

To solve the distributionally robust MDP problem (1), we
first introduce the value function vt(s) := supπ∈! infγ∈$

2In this letter, we focus on a finite-horizon problem. However, our results
can be extended to discounted infinite-horizon cases by showing that an
associated dynamic programming operator is a contraction mapping [16].
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Eπ,γ [
∑T
τ=t r(sτ , aτ ) + q(sT) | st = s], which represents

the expected reward-to-go. Applying the dynamic program-
ming principle, we can derive the following Bellman equa-
tion [16], [25], [26]: for stages t ∈ T ,

vt(s) = sup
π∈#(As)

inf
µ∈Ds

∫

Xs

∑

a∈As

π[a]
(

r(s, a)

+
∑

s′∈S
P(s′|s, a)vt+1(s′)

)
dµ(ps, rs), (3)

and for stage T , vT(s) = q(s). Note that the inner problem
is infinite-dimensional due to the Wasserstein metric-based
ambiguity set Ds.

A. Optimality of Markov Policies
We now show that the distributionally robust MDP problem

admits a Markov control policy, which is optimal.
Theorem 1: For each (t, s) ∈ T × S, there exists a function

π
opt
t : S → #(As) such that

vt(s) = inf
µ∈Ds

∫

Xs

∑

a∈As

π
opt
t (s)[a]

(
r(s, a)

+
∑

s′∈S
P(s′|s, a)vt+1(s′)

)
dµ(ps, rs).

Proof: Fix s ∈ S. Let L(π) := infµ∈Ds

∫
Xs

∑
a∈As

π [a]
(r(s, a) + ∑

s′∈S P(s′|s, a)vt+1(s′))dµ(ps, rs), which is con-
cave because it is the pointwise infimum of linear functions.
Note that L is proper because r and q are bounded. In addi-
tion, L is an upper semi-continuous function and thus it
is closed. The Bellman equation can then be rewritten as
vt(s) = supπ∈#(As)

L(π). The optimization problem admits an
optimal solution because it maximizes a closed proper concave
function, L, over the probability simplex #(As), which is a
closed convex set. Setting πopt

t (s) as such an optimal solution,
we can construct the desired function.

Theorem 1 allows us to obtain Player I’s optimal con-
trol policy as πopt := (π

opt
1 , . . . ,π

opt
T−1), which is Markov.

However, the construction of this policy is computation-
ally challenging because the Bellman equation involves an
infinite-dimensional minimax problem for each (t, s) ∈ T ×S.

B. Convex Formulation Using Kantorovich Duality
To develop tractable convex optimization-based methods for

solving the Bellman equation, we consider a dual formula-
tion of the inner problem. Let vt+1 := {vt+1(s)}s∈S ∈ R|S|
and Vt+1,s := [e1v⊤

t+1 · · · e|As|v
⊤
t+1] ∈ R|As|×|S||As|, where

ei denotes the |As|-dimensional unit vector of which the ith
entry is equal to 1. Based on Kantorovich duality [15], we can
reformulate the Bellman equation as follows.

Theorem 2: The Bellman equation (3) associated with the
distributionally robust MDP problem (1) is equivalent to

vt(s) = max
π∈#(As),λ≥0

fs(π, λ; vt+1), (4)

for (t, s) ∈ T × S with the terminal condition vT(s) = q(s),
where fs( · , · ; vt+1) : #(As) × R+ → R is defined as

fs(π, λ; vt+1) := −λθp

+
∫

Xs

inf
x=(ps,rs)

∈Xs

[λd(x, y)p + (rs + Vt+1,sps)
⊤π ]dνs(y).

In addition, fs is jointly concave with respect to (π, λ).
Proof: The Kantorovich duality principle suggests that

Wp(µ, νs)
p = sup

ϕ,ψ∈.d

{ ∫

Xs

ϕ(x)dµ(x) +
∫

Xs

ψ(y)dνs(y)
}
,

where

.d := {(ϕ,ψ) ∈ L1(dµ) × L1(dνs) |
ϕ(x) + ψ(y) ≤ d(x, y)p ∀x, y ∈ Xs}. (5)

Thus, for any (ϕ,ψ) ∈ .d, we have that ψ(y) ≤
infx∈Xs d(x, y)p − ϕ(x) for each y ∈ Xs. The Wasserstein
ball (2) can then be expressed as

Ds =
{
µ ∈ P(Xs)

∣∣∣
∫

Xs

ϕ(x)dµ(x)

+
∫

Xs

inf
x∈Xs

[d(x, y)p − ϕ(x)]dνs(y) ≤ θp ∀ϕ ∈ L1(dµ)
}
.

Fix (t, s) ∈ T × S and recall that x := (ps, rs). The following
inequality holds for all ϕ ∈ L1(dµ):

inf
µ∈Ds

∫

Xs

[(rs + Vt+1,sps)
⊤π]dµ(ps, rs)

≥ sup
λ≥0

inf
µ∈P(Xs)

{ ∫

Xs

[(rs + Vt+1,sps)
⊤π + λϕ(x)]dµ(x)

+
∫

Xs

inf
x∈Xs

[λd(x, y)p − λϕ(x)]dνs(y) − λθp
}
,

where the left hand-side is a compact representation of the
inner problem in the Bellman equation (3). Select ϕ ∈
L1(dµ) such that λϕ = −(rs + Vt+1,sps)

⊤π . Then, we
have the following weak duality for the inner problem:
infµ∈Ds

∫
Xs

[(rs + Vt+1,sps)
⊤π ]dµ(ps, rs) ≥ supλ≥0 fs(π , λ),

where we suppress the dependence of fs on vt+1. Using
Theorem 1 of Gao and Kleywegt [14], we can further show
that this inner problem is equivalent to supλ≥0 fs(π, λ) and
that there exists a maximizer λopt that achieves the supre-
mum. Therefore, the Bellman equation (3) can be rewritten
as vt(s) = maxπ∈#(As),λ≥0 fs(π , λ) since the outer maximiza-
tion problem of the Bellman equation also admits an optimal
solution by Theorem 1.

To show that fs is concave, fix π1,π2 ∈ #(As), λ1, λ2 ≥ 0,
and ρ ∈ (0, 1). Let πρ := ρπ1 + (1 − ρ)π2, and λρ :=
ρλ1 + (1 − ρ)λ2. We then have πρ ∈ #(As) and λρ ≥ 0. For
any ϵ > 0, there exists xρ ∈ Xs such that fs(πρ, λρ) + ϵ >
−λρθp +

∫
Xs

[λρd(xρ, y)p + (rs + Vt+1,sps)
⊤πρ]dνs(y). On

the other hand, for i = 1, 2, we have fs(π i, λi) ≤ −λiθ
p +∫

Xs
[λid(xρ, y)p + (rs + Vt+1,sps)

⊤π i]dνs(y) since xρ ∈ Xs.
Combining these inequalities, we obtain fs(πρ, λρ) + ϵ >
ρfs(π1, λ1) + (1 − ρ)fs(π2, λ2). Letting ϵ tend to zero, we
conclude that fs is concave.

Using the dual formulation of the Bellman equation in
Theorem 2, we can solve the distributionally robust MDP
problem via finite-dimensional convex programming. Note that
the original infinite dimensionality issue is transferred to the



YANG: CONVEX OPTIMIZATION APPROACH TO DISTRIBUTIONALLY ROBUST MARKOV DECISION PROCESSES 167

evaluation of fs, which requires us to solve a minimization
problem for each y ∈ Xs. However, in many practical cases,
particularly where there is a data-driven construction of the
nominal distribution νs, it has a finite support. In such cases,
we can completely remove the infinite dimensionality issue,
as proposed in the following subsection.

C. Nominal Distribution With a Finite Support
Suppose that the nominal distribution νs has a finite support,

{x̂s,1, . . . , x̂s,N}, x̂s,i := (p̂s,i, r̂s,i) ∈ R|S||As|+|As|, i.e.,

νs = 1
N

N∑

i=1

δx̂s,i , (6)

where the indicator δx̂s,i(x) is equal to 1 if x = x̂s,i and zero
otherwise. Such a choice is useful in practice: for example,
when choosing the nominal distribution νs as an empirical
distribution that is constructed from a finite number of data
points or samples, the support of νs is finite. In this case,
x̂s,i’s can be selected as (a subset of) the data points.

If the nominal distribution is finitely supported, we can
resolve the infinite dimensionality issue inherent in the inner
minimization problem of the original Bellman equation (3).

Corollary 1 (Dual Bellman Equation I): Suppose that the
nominal distribution νs is given by (6) for each s ∈ S. Then,
the Bellman equation (3) associated with the distributionally
robust MDP problem (1) is equivalent to

vt(s) = max
π∈#(As),λ≥0

1
N

N∑

i=1

f̂s,i(π , λ; vt+1), (7)

for (t, s) ∈ T × S with vT(s) = q(s), where for i = 1, . . . , N,
f̂s,i( · , · ; vt+1) : #(As) × R+ → R is defined as

f̂s,i(π, λ; vt+1) := −λθp

+ inf
x=(ps,rs)∈Xs

[λd(x, x̂s,i)
p + (rs + Vt+1,sps)

⊤π]. (8)

In addition, f̂s,i is jointly concave with respect to (π, λ).
By substituting νs in Theorem 2 with (6), we can con-

firm that the statements in Corollary 1 are valid. Note that
evaluating the objective function of (7) requires us to solve
N finite-dimensional convex optimization problems, each of
which is given in (8). Accordingly, the infinite-dimensionality
issue in the original formulation is eliminated in this reformu-
lated Bellman equation. Due to the additive structure of the
objective function and the dependency of f̂s,i on locally avail-
able data x̂s,i, it is also suitable to use distributed optimization
methods to solve (7). However, for a centralized approach, the
following equivalent formulation is useful:

Corollary 2 (Dual Bellman Equation II): Suppose that the
nominal distribution νs is given by (6). Then, the Bellman
equation (3) associated with the distributionally robust MDP
problem (1) is equivalent to

vt(s) = max
π∈#(As)

inf
x∈Bs

1
N

N∑

i=1

π⊤Q(vt+1)xi (9)

for (t, s) ∈ T × S with vT(s) = q(s), where

Bs :=
{
(x1, . . . , xN) ∈ XN

s | 1
N

N∑

i=1

d(xi, x̂s,i)
p ≤ θp

}
,

Q(vt+1) :=
[
Vt+1 I

]
∈ R|As|×(|S||As|+|As|).

Proof: We first claim that the right-hand side of (9) is less
than or equal to vt(s). Due to the dual Bellman equation (7), for
any ϵ > 0, there exist xϵi := (pϵs,i, rϵs,i) ∈ Xs for i = 1, . . . , N
such that

vt(s) + ϵ > max
π∈#(As),λ≥0

{
1
N

N∑

i=1

π⊤Q(vt+1)xϵi

+ λ
(

− θp + 1
N

N∑

i=1

d(xϵi , x̂s,i)
p
)}

.

If 1
N

∑N
i=1 d(xϵi , x̂s,i)

p > θp, then λ will be chosen to be
+∞ and this choice will result that vt(s) = +∞. Thus,
1
N

∑N
i=1 d(xϵi , x̂s,i)

p ≤ θp. Using the inequality above with this
constraint, we have that

vt(s) + ϵ > max
π∈#(As),λ≥0

inf
x∈Bs

{ 1
N

N∑

i=1

π⊤Q(vt+1)xi

+ λ
(

− θp + 1
N

N∑

i=1

d(xi, x̂s,i)
p
)}

.

We now notice that λ ≥ 0 can be chosen to maximize
λ(−θp + 1

N

∑N
i=1 d(xi, x̂s,i)

p) and its maximum value is 0 for
any {x1, . . . , xN} such that 1

N

∑N
i=1 d(xi, x̂s,i)

p ≤ θp. Thus, the
right-hand side of the equality above is less than or equal to
the right-hand side of (9). Letting ϵ tend to zero, we obtain
have that the right-hand side of (9) is less than equal to vt(s).

It now suffices to show that the right-hand side of (9)
is bounded below by vt(s). We use weak duality to
have that infx∈Bs

1
N

∑N
i=1 π⊤Q(vt+1)xi ≥ supλ≥0 infx∈XN

s

{ 1
N

∑N
i=1 π⊤Q(vt+1)xi + λ( 1

N

∑N
i=1 d(xi, x̂s,i)

p − θp)}. Note
that the right-hand side of this inequality is equal to
supλ≥0

1
N

∑N
i=1 f̂s,i(π , λ; vt+1). Using the dual Bellman equa-

tion (7), we conclude that the right-hand side of (9) is greater
than equal to vt(s).

D. Decentralized Construction of a Worst-Case
Distribution

We now consider the problem of constructing a worst-case
probability distribution of (ps, rs), assuming that the nomi-
nal distribution has a finite support. The following proposition
provides a simple structural characterization of the worst-case
distribution.

Proposition 1: Suppose that the nominal distribution νs is
given by (6). If the inner minimization problem of (9) admits
an optimal solution (xopt

1 , . . . , xopt
N ), then

µopt = 1
N

N∑

i=1

δxopt
i

(10)

is a worst-case distribution, where πopt is an optimal solution
to the outer maximization problem of (9).

Proof: The original Bellman equation implies that

vt(s) ≤
∫

Xs

[(πopt)⊤Q(vt+1)x]dµ(x) (11)
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for any µ ∈ Ds, where Q is given in Corollary 2. Using the
Kantorovich duality principle, we have

Wp(µ
opt, νs)

p = sup
ϕ,ψ∈.d

1
N

N∑

i=1

[ϕ(xopt
i ) + ψ(x̂s,i)],

where the feasibility set .d is given as (5). Since ϕ(x) +
ψ(y) ≤ d(x, y)p for all x, y ∈ Xs,

Wp(µ
opt, νs)

p ≤ 1
N

N∑

i=1

d(xopt
i , x̂s,i)

p ≤ θp,

where the second inequality holds because of the constraint in
the dual Bellman equation (9). This implies that µopt ∈ Ds.
Thus, the inequality (11) suggests that

vt(s) ≤
∫

Xs

[(πopt)⊤Q(vt+1)x]dµopt(x)

= 1
N

N∑

i=1

(πopt)⊤Q(vt+1)x
opt
i .

Due to Corollary 2, the right-hand side is equal to vt(s).
Therefore, µopt is a worst-case distribution.

This proposition is consistent with the fact that any worst-
case distribution can have at most 2N support elements [14].
By combining Proposition 1, Corollary 1, and Corollary 2,
we design an efficient method to construct the worst-case
joint distribution of (ps, rs). Given (πopt, λopt), the support
element xopt

i can be computed by solving the convex optimiza-
tion problem (8) only with locally available data x̂s,i due to
Corollary 2. Note that this procedure is completely decentral-
ized and parallelizable. Finally, µopt can be constructed using
Proposition 1.

E. Sensitivity Analysis via the Envelope Theorem
The radius θ of the Wasserstein ball (2) critically affects

the effectiveness of the proposed distributionally robust MDP:
when θ is too small, it would provide a control policy that is
not sufficiently robust, while too large a θ would render an
optimal strategy overly conservative. When selecting θ , there
is a need for a sensitivity tool to display local behaviors of
the value function with respect to θ without computing the
value function for too many θ ’s. The precise effect of the
order p (of Wasserstein distance) on the value function is also
obscure. Using the envelope theorem [27], we show that both
sensitivity values can be obtained from the solution result of
the dual Bellman equation (4).

Proposition 2: For each (t, s) ∈ T ×S, the sensitivity of the
value function with respect to the radius θ of the Wasserstein
ball (2) can be obtained as

∂vt(s)
∂θ

= −(pθp−1)λ
opt
t,s ≤ 0,

where λ
opt
t,s := arg maxλ≥0 [ maxπ∈#(As) fs(π, λ; vt+1)]. In

addition, the sensitivity of the value function with respect to
the order p of Wasserstein distance can be computed as

∂vt(s)
∂p

= −(θp log p)λ
opt
t,s ≤ 0.

Proof: Let (π
opt
t,s , λ

opt
t,s ) be an optimal solution of (4). Using

the envelope theorem [27], we have that ∂vt(s)
∂θ = ∂fs(π

opt
t,s ,λ

opt
t,s )

∂θ =
−(pθp−1)λ

opt
t,s because p ≥ 1. This partial derivative is non-

positive because λopt
t,s ≥ 0 and θ > 0. Similarly, we can show

that ∂vt(s)
∂p = ∂fs(π

opt
t,s ,λ

opt
t,s )

∂p = −(θp log p)λ
opt
t,s ≤ 0, where the

inequality holds since p ≥ 1, λopt
t,s ≥ 0 and θ > 0.

As the volume of the Wasserstein ball (2) increases with
the radius θ and the order p, the value function decreases
with respect to these two parameters. This sensitivity analysis
is useful for examining local behaviors of the value func-
tion with respect to the radius and the order of Wasserstein
distance, which are two important parameters in modeling
the ambiguity set. Note that the proposed sensitivity tool is
another useful byproduct of the Kantorovich duality-based
convex formulation (4).

IV. AIR CONDITIONING UNDER AMBIGUOUS USER
PREFERENCES AND BEHAVIORAL EFFECTS

Indoor temperatures of homes and buildings depend on sev-
eral uncertainties including occupant behaviors, solar forcing,
and outdoor temperatures. Furthermore, occupants often have
uncertain preferences for comfortable indoor temperatures. A
successful control method for air conditioning must effectively
consider these uncertainties. However, it is difficult to obtain
an accurate distribution of such uncertainties in practice. Thus,
we use the proposed method to design a data-driven controller
that is robust against errors in the joint distribution of (i) the
reward vector rs that models uncertainties in user preferences
and (ii) the transition probability vector ps in which users’
behavioral uncertainties are considered.

We construct an MDP by simulating the following model
of thermostatically controlled loads:

xt+1 = κxt + (1 − κ)(3− ηRPut) + wt,

where xt, ut and wt represent the indoor temperature, control
input and disturbance value at stage t.3 We generate the sam-
ples of the reward vector by setting rt(s, a) := 0.95t ×(r1(s)+
ζ r2(a)), where r1(s) = w − e(s−s∗)1{s≥s∗} − e(s∗−s)1{s≤s∗}
represents the user satisfaction score regarding the indoor
temperature s given the most preferred temperature s∗ =
20.5 (◦C). The random variable w is normally distributed with
a mean of 2 and a standard deviation of 0.2. On the other
hand, −r2(a) = ca models the energy cost of air condition-
ing, where c = $0.01 is the electricity price of unit kWh.
The weight ζ is normally distributed with a mean of 2000
and a standard deviation of 200. The samples of the transition
probability vectors are constructed by adding a normally dis-
tributed random variable with a mean of 0.05 and a standard
deviation of 0.01 to the largest element of each column of the
original transition probability matrix. The rest of the elements
are scaled proportionally so that the sum of elements in each
column remains 1. We choose these samples as the support
elements (p̂s,i, r̂s,i) of the nominal distribution νs. We also let
d((ps, rs), (p′

s, r′
s))

p := ∥ps − p′
s∥2 + 10−3∥rs − r′

s∥2.

3A detailed explanation of the model and the choice of parameters in our
simulations can be found in our previous work [10]. We choose the set of
states as S := {18 + 0.25 × (i − 1) | i = 1, . . . , 21} (unit: ◦C), the set of
actions as As := {1(ON), 0(OFF)} for all s ∈ S, and T := {1, . . . , 12} with a
5-minute interval between two consecutive stages.
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Fig. 1. (a) The worst-case expected rewards, and (b) the sensitivity of
the worst-case reward with respect to θ when a distributionally robust
strategy is employed.

Fig. 2. The indoor temperature distribution controlled by (a) the
proposed method and (b) non-robust method (e.g., [26]).

We illustrate our numerical experiment results by setting
the initial condition at s1 = 21 (◦C). As shown in Fig. 1 (a),
the worst-case reward of a standard non-robust optimal pol-
icy is 21% lower than the worst-case reward of the proposed
policy. This result shows the robustness of our control pol-
icy with respect to distributional errors within Wasserstein
distance-based ambiguity sets. Fig. 1 (b) illustrates the sen-
sitivity of the worst-case reward with respect to the radius
θ . These local behaviors of the value function are consistent
with the global behaviors. Therefore, the proposed sensitiv-
ity is useful to select θ without solving the distributionally
robust MDP problems for too many θ ’s. Fig. 2 shows the cor-
responding indoor temperature distributions controlled by the
proposed and standard methods, respectively, when θ = 0.1.
Even with a worst-case probability distribution of (ps, rs), the
proposed method can drive the indoor temperature to the most
desirable value, s∗ = 20.5 (◦C), while the standard approach
cannot.

V. CONCLUSION

For MDPs, we have proposed several convex optimization-
based tools to construct and analyze optimal control policies
that are robust against errors in the joint distribution of reward
and transition probability vectors; the Wasserstein metric has
been employed to measure the error from a nominal dis-
tribution. It is to be emphasized that Kantorovich’s convex
relaxation method and duality principle greatly benefit the
proposed tools. This letter could be extended in several ways,
such as (i) adding a risk constraint to systematically penalize
undesirable system behaviors, (ii) employing both moment-
and Wasserstein distance-based constraints to characterize

ambiguity sets in a detailed manner, and (iii) developing a
scalable numerical method, for example by using approximate
dynamic programming.
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