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OPTIMAL CONTROL OF CONDITIONAL VALUE-AT-RISK IN
CONTINUOUS TIME∗
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Abstract. We consider continuous-time stochastic optimal control problems featuring condi-
tional value-at-risk (CVaR) in the objective. The major difficulty in these problems arises from
time inconsistency, which prevents us from directly using dynamic programming. To resolve this
challenge, we convert to an equivalent bilevel optimization problem in which the inner optimiza-
tion problem is standard stochastic control. Furthermore, we provide conditions under which the
outer objective function is convex and differentiable. We compute the outer objective’s value via a
Hamilton–Jacobi–Bellman equation and its gradient via the viscosity solution of a linear parabolic
equation, which allows us to perform gradient descent. The significance of this result is that we
provide an efficient dynamic-programming-based algorithm for optimal control of CVaR without lift-
ing the state space. To broaden the applicability of the proposed algorithm, we propose convergent
approximation schemes in cases where our key assumptions do not hold and characterize relevant
suboptimality bounds. In addition, we extend our method to a more general class of risk metrics,
which includes mean variance and median deviation. We also demonstrate a concrete application
to portfolio optimization under CVaR constraints. Our results contribute an efficient framework for
solving time-inconsistent CVaR-based sequential optimization.
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1. Introduction. Conditional value-at-risk (CVaR) has received significant at-
tention over the past two decades as a tool for managing risk. CVaR measures the
expected value conditional upon being within some percentage of the worst-case loss
scenarios. More specifically, the CVaR of a random variable X, whose distribution
has no probability atoms, is defined as

CVaRα(X) := E [X |X ≥ VaRα(X)] , α ∈ (0, 1),

where the value-at-risk (VaR) of X (with the cumulative distribution function FX) is
given by

VaRα(X) := inf{x ∈ R | FX(x) ≥ α}.

In other words, VaR is equal to the (1− α) worst-case quantile of a loss distribution,
while CVaR equals the conditional expectation of the loss within that quantile. When
the distribution has a probability atom, the definition of CVaR should be further
refined (see [54]). Note that both functions penalize only when “bad events” occur.

While both VaR and CVaR are risk measures, only CVaR is coherent in the sense
of Artzner et al. [2]. In addition, CVaR takes into account the possibility of tail
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OPTIMAL CONTROL OF CONDITIONAL VALUE-AT-RISK 857

events where losses exceed VaR. In fact, one common criticism of VaR stems from
its incapability of distinguishing situations beyond VaR [54]. Due to the superior
mathematical properties and practical implications, CVaR has gained popularity in
risk management [59]. In particular, static or single-stage optimization with CVaR
functions can be efficiently performed via convex and linear programming methods
[53, 40]. With the advances in optimization algorithms for CVaR, this risk measure
has shown to be useful in various finance and engineering applications.

Dynamic or sequential optimization of CVaR is often of interest when decisions
can be made at multiple stages. In such an optimal control setting, we can optimize a
control action at a certain time based on the information from observations up to that
time. This dynamic control approach enjoys an effective usage of information gathered
in the process of making decisions under uncertainty. The need for efficient optimal
control tools with CVaR is also motivated by emerging dynamic risk management
problems in engineering and finance (e.g., [49, 63]).

The major challenge in optimal control involving CVaR arises from its time incon-
sistency [3]. For example, an optimal strategy for tomorrow constructed today is no
longer optimal when considered tomorrow because CVaR is not a time-consistent risk
measure. Mathematically, this time inconsistency prevents us from directly applying
dynamic programming, in contrast with problems involving Markov risk measures
[55, 14, 57] or risk-sensitive criteria [30, 23]. To overcome this difficulty, several meth-
ods have been proposed. A state-space lifting approach for dynamic programming
with a discrete-time and discrete-state Markov decision process (MDP) setting is first
proposed in [6].1 Another lifting method and relevant algorithms are developed in
[48, 16], relying on a so-called CVaR decomposition theorem [48]. This approach uses a
dual representation of CVaR and hence requires optimization over a space of probabil-
ity densities when solving an associated Bellman equation. This optimization problem
can be effectively solved in discrete-time and finite discrete-state MDPs. However, it
becomes computationally intractable in (uncountable) continuous-state optimal con-
trol problems as the space of densities is infinite dimensional. In [27], a different
approach is developed for risk-aware discrete-time finite-state MDPs, which is based
on occupation measures. Due to the nonconvexity of the resulting infinite-dimensional
optimization problem, this method uses a successive linear approximation procedure.

In this paper, we propose a new method to solve continuous-time and continuous-
space optimal control problems involving CVaR. By using a so-called extremal rep-
resentation of CVaR originally proposed in [53], we reformulate the optimal control
problem as a bilevel optimization problem in which the outer optimization problem
is convex and the inner optimization problem is standard stochastic optimal control.
To avoid lifting state space, we develop a gradient-descent-based method to solve the
outer optimization problem. Specifically, we prove the differentiability of the outer
objective function and provide a probabilistic interpretation of its gradient under a
certain semiconcave approximation.

To develop a computationally efficient and stable gradient-descent-based method,
it is essential to be able to compute the objective’s value and gradient. The outer
objective value can be computed by solving the inner problem: we demonstrate a
dynamic programming or, equivalently, a Hamilton–Jacobi–Bellman (HJB) method

1This lifting approach was recently generalized to semi-Markov decision processes in [29] and is
simplified in the application of manufacturing systems [1]. Note that our method is different in the
sense that we avoid extending the state space by solving an associated outer optimization problem
via gradient descent and therefore reduce computational complexity in general.
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858 CHRISTOPHER W. MILLER AND INSOON YANG

to solve the inner problem. More importantly, we show that the gradient of the outer
objective function can be obtained as the viscosity solution of an associated linear
parabolic equation, which we call the gradient partial differential equation (PDE),
under certain conditions. These two PDE characterizations complete the proposed
gradient-decent-based method to solve the bilevel optimization problem.

We use two important assumptions while proving the main results. One is the
semiconcavity of the outer objective function, while the other is the uniform parabol-
icity of the HJB equation. We construct convergent approximation schemes which
relax each of these assumptions when needed. For the theoretical (and also practical)
implication of the approximations, we provide bounds on the gap between the optimal
outer objective value and that of the perturbed problem.

In the final section of the paper, we demonstrate a practical implementation of
our methodology in an optimal investment problem subject to CVaR constraints. To
our knowledge, this is the first solution of a dynamic portfolio optimization prob-
lem subject to tail-risk constraints in continuous time. The closest comparisons to
our results are given by approximate equilibrium solutions [20], mean-field control
approaches [47], or in mean-variance frameworks [45].

The rest of this paper is organized as follows: In section 2, we introduce optimal
control problems involving a class of risk metrics including CVaR. We present the main
results of this paper in section 3, which are used to construct a gradient-descent-based
method to solve the reformulated bilevel optimization problem. Relevant assumptions
imposed in the main results are explicitly relaxed in section 4 using convergent ap-
proximation schemes. Last, we demonstrate the performance of the proposed method
through an example of mean-CVaR portfolio selection in section 5.

2. Problem setup.

2.1. Controlled process. Let (Ω,F ,P) be a probability space supporting a
standard d-dimensional Brownian motion W with an associated filtration {Ft}0≤t≤T
satisfying the usual conditions. Let A be a compact and finite-dimensional set of
controls. Define the set A of admissible control strategies as the collection of all
Ft-progressively measurable processes which are valued in A almost surely.

The control A ∈ A affects a system state of interest through the following SDE:

dXA
t = µ(XA

t , At) dt+ σ(XA
t , At) dWt,

XA
0 = x0 ∈ Rn.

(2.1)

We assume that µ : Rn × A → Rn and σ : Rn × A → Rn×d are continuous functions
such that, for some K > 0,

‖µ(x, a)− µ(x′, a)‖+ ‖σ(x, a)− σ(x′, a)‖ ≤ K‖x− x′‖,

‖µ(x, a)‖+ ‖σ(x, a)‖ ≤ K(1 + ‖x‖+ ‖a‖)

for all x, x′ ∈ Rn and for all a ∈ A. Under these conditions, for each control A ∈ A,
there exists a unique strong solution, XA, of the SDE (2.1).

2.2. Optimal control with a class of risk measures. The main goal of this
paper is to provide an efficient algorithm for solving the following stochastic optimal
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OPTIMAL CONTROL OF CONDITIONAL VALUE-AT-RISK 859

control problem with a nonstandard objective:2

(2.2) inf
A∈A

ρ
(
g(XA

T )
)
,

where g : Rn → R is a given convex cost function and ρ : L2(Ω) → R is of a class of
risk measures defined below.

Definition 2.1. A function ρ : L2(Ω)→ R is said to be an extremal risk measure
if there exists a convex function f : R× Rm → R such that

ρ(ξ) = inf
y∈Rm

E [f(ξ, y)] .

For simplicity, we assume that f is convex with at most quadratic growth and that
g is convex and Lipschitz continuous. However, we note that these growth conditions
can easily be relaxed on a case-by-case basis by noting that XA

T ∈ Lp(Ω) for all p <∞.
The primary motivation of this definition is the following extremal formula in-

volving CVaR of a random variable ξ, whose distribution has no probability atom3

[53]:

(2.3) CVaRα [ξ] = inf
y∈R

E
[
y +

1

1− α
(ξ − y)

+

]
, α ∈ (0, 1).

The intuition behind this equality is that the optimal y is equal to VaR at probability
α. Then, CVaR is equal to VaR plus the expected losses exceeding VaR divided by
the probability of these losses occurring, 1− α.

We show that several additional risk metrics of interest in application can be
written in this form. Some of these are not (coherent) risk measures in the sense of
Artzner et al. [2]. However, we justify our nomenclature of “extremal risk measure”
by providing simple conditions on f under which ρ is a coherent risk measure in
Appendix A. We emphasize that for ease of exposition, we will generally refer to ρ as
an extremal risk measure in this paper even when these conditions are not satisfied.

Example 1. The variance of ξ ∈ L2(Ω) can be expressed as

(2.4) Var [ξ] = inf
y∈R

E
[
(ξ − y)

2
]
.

Note that, with f(ξ, y) := (ξ − y)2, variance is of the form of Definition 2.1. Al-
though variance is not a risk measure, our method can handle control problems with
variance-related criteria including mean-variance optimal control: E [ξ] + λVar [ξ] =
infy∈R E

[
ξ + λ(ξ − y)2

]
.

Similarly, the median absolute deviation (MAD) of ξ ∈ L2(Ω) can be expressed
as

(2.5) MAD [ξ] = E [|ξ −Med [ξ] |] = inf
y∈R

E [|ξ − y|] .

Again, with f(ξ, y) := |ξ − y|, MAD is of the form of Definition 2.1. MAD is a
deviation risk measure (e.g., [44]).

2Note that this formulation includes the following problems with running and terminal

costs: infA∈A ρ(
∫ T
0 r(XA

1,t, At)dt + q(XA
1,T )). For such problems, we introduce a new state,

X2,t :=
∫ t
0 r(X

A
1,s, As)ds, and rewrite the optimization problem as infA∈A ρ(XA

2,T + q(XA
1,T )) =:

infA∈A ρ(g(XA
T )), where Xt := (X1,t, X2,t) and g(x) = x2 + q(x1).

3In our problem setting, if g(XA
T ) has an atom, (2.3) is interpreted as CVaR−, called the lower

CVaR [53].
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860 CHRISTOPHER W. MILLER AND INSOON YANG

Example 2. Our method can handle control problems with criteria including var-
ious combinations of (2.3), (2.4), and (2.5). For example,

• mean-CVaR:

E [ξ] + λCVaRα[ξ] = inf
y∈R

E
[
ξ + λ

(
y +

1

1− α
(ξ − y)

+

)]
;

• variance-CVaR tradeoff:

Var [ξ] + λCVaRα [ξ] = inf
y∈R2

E
[
(ξ − y1)

2
+ λ

(
y2 +

1

1− α
(ξ − y2)

+

)]
;

• CVaRα-CVaRβ tradeoff:

CVaRα [ξ] + λCVaRβ [ξ] = inf
y∈R2

E
[(

1
λ

)
·
(
y1 + (1− α)−1 (ξ − y1)

+

y2 + (1− β)−1 (ξ − y2)
+

)]
.

We will provide a more concrete example in section 5.

One important feature of the optimization problem (2.2) is that, in general, it
is a time-inconsistent problem. This makes it impossible to directly apply dynamic
programming because there is not an analogue of the law of iterated expectations for
non-Markov risk measures. To tackle this issue, one stream of research efforts focuses
on developing dynamic risk measures with which sequential optimization or optimal
control can be performed in a time-consistent manner (e.g., [51, 15, 25, 36, 3, 56, 55]).
Another class of research activities acknowledges time inconsistency as an inherent
property and proposes two different solution concepts. The first approach is to rein-
terpret the problem as a game against one’s future self. This approach is used, for
example, in [8] and leads to a PDE system. The second method is to rewrite the orig-
inal problem in a form where we can apply dynamic programming in an indirect way.
This approach has been used to reduce the problem to dynamic programming in a
higher-dimensional state space or to a sequence of iterated standard control problems
in [6, 41, 31, 7, 48, 63]. The rationale in this paper is similar in spirit to this so-called
indirect dynamic programming method. However, one key advantage of the proposed
approach is that the structure of the extremal risk measures allows us to perform
optimization over an extra variable where the objective function can be evaluated
by dynamic programming involving no additional state variables. We construct opti-
mal time-inconsistent controls by solving an equivalent bilevel optimization problem,
without lifting the state space.

2.3. Outline of main results. We summarize the main results of this paper
by the following:

1. We demonstrate an equivalence between the time-inconsistent stochastic con-
trol problem involving extremal risk measures and the bilevel optimization
problem in Proposition 3.1.

2. We provide conditions under which the outer optimization problem is con-
vex in Theorem 3.2. Furthermore, under additional conditions, we prove
differentiability and provide a probabilistic interpretation of the gradient in
Theorem 3.4.

3. We demonstrate a dynamic programming approach to solving the inner prob-
lem and provide conditions under which we have a PDE characterization of
the gradient of the outer problem in Theorem 3.6. This allows the use of
gradient descent in solving the bilevel optimization problem.
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4. Finally, we provide convergent approximations which relax two of the key
assumptions imposed on the problem. In Theorems 4.5 and 4.8, we provide
suboptimality bounds under each approximation scheme.

Using these results, we can solve time-inconsistent optimal control problems in-
volving extremal risk measures via a gradient descent solution of a bilevel optimization
problem. As an example of how the approximation schemes and gradient descent are
utilized, consider the explicit problem

inf
A∈A

CVaRα

[
XA
T

]
.

We can solve this problem via the following procedure:
• Step 1: Recall fCVaR(ξ, y) := y+ (1−α)−1(ξ − y)

+
. This does not satisfy our

uniform semiconcavity assumption and hence we first apply inf-convolution
to have

fε(ξ, y) := inf
z∈R

[
fCVaR(ξ, z) +

(y − z)2

2ε

]
,

which is uniformly semiconcave in y (ε-semiconcave approximation).
• Step 2: We note that we can reformulate the perturbed optimal control prob-

lem involving fε as the following bilevel optimization problem:

inf
A∈A

inf
y∈R

E
[
fε(X

A
T , y)

]
= inf
y∈R

[
Vε(y) := inf

A∈A
E
[
fε(X

A
T , y)

]]
,

where the inner problem is a standard stochastic control problem.
• Step 3: We solve the outer problem using a gradient descent algorithm in
y. At each iteration with y ∈ Rm, we solve the inner problem via dynamic
programming by solving an HJB equation to evaluate V (y). In addition,
we compute its gradient value DV (y) by solving a linear parabolic equation,
which we call the gradient PDE.
• Step 4: When the gradient descent algorithm converges, we obtain a mini-

mizer y?ε of the outer problem and its associated minimizer A?ε of the inner
problem. We quantify a suboptimality bound of this solution using Theo-
rem 4.5. The gap between this solution and an optimal solution tends to zero
as ε→ 0.

In this high-level description of the proposed method, we notice its several ad-
vantages. First of all, the proposed gradient descent approach does not require us
to lift the state-space in the case of terminal cost problems. This is a considerable
advantage over existing methods which regard y as another state variable because the
computational complexity of dynamic programming increases exponentially with the
dimension of the state space. Second, the gradient PDE provides a systematic numer-
ical approximation of DV (y) at any y ∈ Rm. Therefore, it avoids using derivative-free
optimization algorithms which are not convergent in general or automatic differen-
tiation tools such as finite differencing which can be inaccurate when the objective
function contains (numerical) noise [43]. Last, the analytical studies to relax the as-
sumptions used to prove the main results broaden the applicability of the proposed
method. In particular, we show that the approximate solution obtained from an
ε-semiconcave approximation converges to the true optimal solution as ε tends to 0.

We summarize the complete series of approximations by stating the following
general version of our results. We emphasize that significantly stronger results are
provided throughout the paper when allowing various additional assumptions. We
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862 CHRISTOPHER W. MILLER AND INSOON YANG

break the statement of the following theorem into three pieces. These correspond to
(1) rewriting the optimal control as a bilevel problem, (2) introducing an approxima-
tion scheme where proximal supergradients of the top-level problem can be computed
in terms of a system of PDEs, and (3) a convergence result for the approximation
scheme.

Theorem 2.2. The following statements hold:
(1) Let f : R×Rm → R and g : Rn → R both be convex and Lipschitz continuous.

Define an extremal risk measure ρ : L2(Ω)→ R as

ρ(ξ) := inf
y∈Rm

E [f(ξ, y)] .

Furthermore, define

V (y) := inf
A∈A

E
[
f
(
g
(
XA
T

)
, y
)]
.

Then
p? := inf

A∈A
ρ
(
g(XA

T )
)

= inf
y∈Rm

V (y).

(2) For any ε, η > 0, define

fε(x, y) := inf
z∈Rm

[
f(x, z) +

‖y − z‖2

2ε

]
.

Let Ŵ be an independent n-dimensional Brownian motion, and let F̂ be the
filtration generated by the joint process (W, Ŵ ). Let Â represent the collection
of all F̂-adapted processes valued in A. For each control A ∈ Â, define X̂A,η

as the unique strong solution of the perturbed SDE

dX̂A,η
t = µ

(
X̂A,η
t , At

)
dt+ σ

(
X̂A,η
t , At

)
dWt + η dŴt.

Define

Vε,η(y) := inf
A∈Â

E
[
fε

(
g(X̂A,η

T ), y
)]

and denote by ∂Vε,η(y) the collection of proximal supergradients of Vε,η at y.
Then we have the following results:
(a) For any y ∈ Rm, if we define

DVε,η(y) := E
[
Dyfε

(
g(X̂A,η

T ), y
)]
,

then DVε,η(y) ∈ ∂Vε,η(y).
(b) For any y ∈ Rm, Vε,η(y) and DVε,η(y) may be computed in terms of the

solutions of two PDEs. The value function is related to an HJB equation,
while the proximal supergradient is related to a formal linearization of
the HJB equation.

(3) Let y? be a minimizer of V and y?ε,η be a minimizer of Vε,η. Then

V (y?ε,η) ≤ V (y?) + C (ε+ η) ,

where C > 0 is a constant depending only on the Lipschitz constants of f , g,
µ, and σ. That is, V (y?ε,η)→ p? linearly as ε, η → 0.
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To summarize, this theorem provides a complete convergent algorithm for solving
the optimal control of a ρ(g(XA

T )). First, we show how to rewrite this as a bilevel
minimization problem, the lower-level of which is a standard optimal stochastic con-
trol problem. There is, in general, no special structure in the upper-level problem
(e.g., convexity), so we demonstrate a very general semiconcave approximation, the
objective function and proximal supergradient of which can be computed in terms of
solutions of a PDE system. Last, we demonstrate how a solution of the approximate
problem converges to an optimal solution of the original problem.

We will present a proof of Theorem 2.2 in section 4.4 after developing the relevant
machinery and approximations in section 3 and sections 4.1–4.3.

3. Main results: Gradient descent and viscosity solutions.

3.1. Equivalent bilevel optimization. Recall that our goal is to solve the
generalized stochastic control problem

(3.1) inf
A∈A

ρ
(
g(XA

T )
)
,

where ρ is a fixed extremal risk measure and g(XA
T ) is the state-dependent cost when

the control A is executed.
In general, (3.1) is a time-inconsistent nonlinear stochastic optimal control prob-

lem to which we cannot apply dynamic programming. However, we show how to use
the structure of ρ as an extremal risk measure to convert this into an equivalent bilevel
optimization problem.

Proposition 3.1 (bilevel optimization). We can write the problem of dynamic
optimization over an extremal risk measure as

(3.2) inf
A∈A

ρ
(
g(XA

T )
)

= inf
y∈Rm

V (y),

where V is defined via a standard stochastic optimal control problem of the form

(3.3) V (y) := inf
A∈A

E
[
f
(
g(XA

T ), y
)]
.

The proof is straightforward by the definition of extremal risk measures.

Remark 1. The value V (y) depends on the initial value x0 of XA. For simplicity,
however, we suppress the dependency and implicitly assume that we fix the initial
value as x0 for the rest of this paper.

At this point, we have converted the time-inconsistent stochastic control prob-
lem (3.1) to an equivalent bilevel optimization problem (3.2) involving a standard
stochastic control problem (3.3). For convenience, we call the right-hand sides of
(3.2) and (3.3) the outer optimization problem and the inner optimization problem,
respectively.

3.2. A note on assumptions. We record three main assumptions. These are
used to obtain various properties of the bilevel optimization problem along the way,
and we discuss, where applicable, how they may be relaxed in section 4.

Assumption 1 (uniform semiconcavity). The function y 7→ f(x, y) is uniformly
semiconcave for all x ∈ R. That is, there exists M > 0 such that

f(x, y + ξ) ≤ f(x, y) + ξ ·Dyf(x, y) +
1

2
M‖ξ‖2

for all (x, y) ∈ R× Rm and for all ξ ∈ Rm.
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864 CHRISTOPHER W. MILLER AND INSOON YANG

It is important to note that the convexity of f together with Assumption 1 guar-
antees that the map y 7→ f(x, y) is continuously differentiable for each x ∈ Rm. This
regularity will ultimately carry over to various smoothness results of the outer op-
timization problem in our bilevel optimization problem, i.e., the right-hand side of
(3.2).

Remark 2. Relaxing Assumption 1 is particularly important from the application
perspective. Note, for example, that CVaR and MAD do not satisfy this uniform
semiconcavity assumption. For the clarity of presentation, however, we begin with
this seemingly restrictive assumption but later relax it by using the inf-convolution
operator in section 4.1.

Assumption 2 (uniform parabolicity). There exists an ε > 0 such that

σ(x, a)σ(x, a)> − εIn is positive semidefinite

for all (x, a) ∈ Rn × A.

The main use of Assumption 2 is to construct optimal controls to the stochastic
control problem (3.3). In particular, this assumption guarantees that the viscosity
solution to the HJB equation is smooth, [24, 39]. In section 4.2, we relax this constraint
by adding additional independent Brownian motions to the dynamics of XA.

Assumption 3 (convexity). The control set A is convex and the map (A, y) 7→
f(g(XA

T ), y) is jointly convex, almost surely.

The primary use of Assumption 3 is to guarantee convexity of the outer optimiza-
tion problem in our bilevel optimization formulation. In particular, this allows us
to implement a gradient descent algorithm with guaranteed convergence to a global
minimum. When Assumption 3 does not hold, we can still compute so-called proximal
supergradients and run a descent algorithm which converges to a local minimizer.

Example 3. We emphasize the following three sufficient conditions, each of which
guarantees Assumption 3 holds (e.g., [11]):

• A 7→ g(XA
T ) is affine,

• A 7→ g(XA
T ) is convex4 and x 7→ f(x, y) is nondecreasing convex for each

y ∈ Rm, or
• A 7→ g(XA

T ) is concave and x 7→ f(x, y) is nonincreasing convex for each
y ∈ Rm.

Recall that fCVaR(ξ, y) := y + (1 − α)−1(ξ − y)
+

, x 7→ fCVaR(x, y) is nondecreasing
convex. Therefore, if A 7→ g(XA

T ) is convex, Assumption 3 holds.

We note that Assumption 3 is quite strong. However, it proves verifiable in some
practical applications in engineering and finance such as risk-aware demand response,
electric vehicle charging control, inventory control, and portfolio management (e.g.,
[50, 62]). As a concrete example, consider the mean-CVaR portfolio optimization
problem considered in section 5. For clarity of exposition, we retain this as a main as-
sumption but emphasize the analogous results which hold even when this assumption
is broken.

3.3. Analytical properties of the outer objective function V . In this
section we investigate some analytical properties of the outer objective function V .
We begin by showing the convexity of V . Then, we present a semiconcavity estimate of

4We acknowledge that checking the convexity of A 7→ XA
T beyond the criteria proposed in [4, 17]

is often a nontrivial task. It is a topic of future research.
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V at points where there exists an optimal control. Furthermore, we use this estimate
and convexity to show the differentiability of V at such points and to provide a
probabilistic representation of the gradient.

Theorem 3.2 (convexity). Suppose that Assumption 3 holds. Then, the outer
objective function V is convex.

The convexity of V motivates us to use a (sub)gradient-descent-type algorithm
for solving the outer optimization problem. Under the semiconcavity assumption
(Assumption 1), we justify gradient descent approaches by proving the differentiability
of V .

To that end, we first record a semiconcavity estimate. It is important to note that
this estimate does not depend on the convexity of V or Assumption 3. This result
connects the semiconcavity of f to that of V .

Proposition 3.3. Suppose that Assumption 1 holds. For any fixed y ∈ Rm, we
assume there exists A ∈ A such that5

V (y) = E
[
f
(
g(XA

T ), y
)]
.

Then, we have

V (y + ξ) ≤ V (y) + ξ · E
[
Dyf

(
g(XA

T ), y
)]

+
1

2
M‖ξ‖2

for all ξ ∈ Rm.

Proof. Fix y ∈ Rm. By Assumption 1, there exists M > 0 such that

(3.4) f(x, y + ξ) ≤ f(x, y) + ξ ·Dyf(x, y) +
1

2
M‖ξ‖2

for all x ∈ R and ξ ∈ Rm. Let A ∈ A be a control such that

V (y) = E
[
f
(
g(XA

T ), y
)]
.

Note that such a control depends on the choice of y. If we apply inequality (3.4)
pointwise and take expectations, we see

V (y+ξ) ≤ E
[
f
(
g(XA

T ), y + ξ
)]
≤ E

[
f
(
g(XA

T ), y
)]

+ξ ·E
[
Dyf

(
g(XA

T ), y
)]

+
1

2
M‖ξ‖2

for all ξ ∈ Rm. Then, the result holds.

In the following result, we combine the convexity and semiconcavity estimates of
V to show that V is in fact differentiable. In particular, we provide a probabilistic
representation of the gradient at each point.

Theorem 3.4 (differentiability). Suppose that Assumptions 1 and 3 hold. For
any fixed y ∈ Rm, we assume that there exists A ∈ A such that

V (y) = E
[
f
(
g(XA

T ), y
)]
.

Then, V is differentiable at y and its gradient can be computed as

(3.5) DV (y) = E
[
Dyf

(
g(XA

T ), y
)]
.

5We assume the existence of an optimal control in this proposition. However, we will show that
this assumption is valid in the next subsection by constructing an optimal control from an associated
HJB equation under Assumption 2.
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866 CHRISTOPHER W. MILLER AND INSOON YANG

We emphasize that, while the value of the gradient seems the natural consequence
of an envelope theorem, we do not know that V is differentiable a priori. This theorem
proves differentiability as a direct consequence of convexity and semiconcavity, while
identifying the gradient in the process.

Proof. The function V is convex by Theorem 3.2. Because of the quadratic growth
of f , the Lipschitz assumptions on g, µ, and σ, and the compactness of A, it is
a standard result that V (y) is finite for every y ∈ Rm (see [22]). Therefore, its
subdifferential is nonempty at each point [52]. Fix y ∈ Rm and suppose A ∈ A is a
control such that

V (y) = E
[
f
(
g(XA

T ), y
)]
.

Let z ∈ ∂V (y) be an arbitrary subgradient of V at y, i.e.,

V (y + ξ) ≥ V (y) + ξ · z ∀ξ ∈ Rm.

By Proposition 3.3, we also have the inequality

V (y + ξ) ≤ V (y) + ξ · E
[
Dyf

(
g(XA

T ), y
)]

+
1

2
M‖ξ‖2 ∀ξ ∈ Rm.

Putting these together, we obtain

ξ ·
(
z − E

[
Dyf

(
g(XA

T ), y
)])
≤ 1

2
M‖ξ‖2 ∀ξ ∈ Rm.

Choosing ξ := M−1(z − E
[
Dyf(g(XA

T ), y)
]
), we have

M‖ξ‖2 = ξ ·
(
z − E

[
Dyf

(
g(XA

T ), y
)])
≤ 1

2
M‖ξ‖2,

which is a contradiction unless z = E[Dyf(g(XA
T ), y)].

Because ∂V (y) is single valued, we conclude that V is differentiable at y and also
that

DV (y) = E
[
Dyf

(
g(XA

T ), y
)]

as desired.

Due to Theorem 3.4, we can solve the outer optimization problem using a gra-
dient descent algorithm given that the function value V (y) and its gradient DV (y)
are provided. We notice that V (y) can be computed by dynamic programming. It
is worth mentioning that the overall problem is still time inconsistent but our bilevel
decomposition allows us to solve the inner optimization problem using dynamic pro-
gramming. We investigate the inner optimization problem and provide a constructive
approach to solve the overall problem in the following subsection.

3.4. PDE characterization of V and DV . Recall that V (y) is the optimal
value of the inner optimization problem (3.3) given the initial value x0 of the state.
Note that this problem can be solved by dynamic programming; we first compute V (y)
in terms of the viscosity solution of an associated HJB equation. In the process we
construct an optimal control, which guarantees V is differentiable by Theorem 3.4.
Furthermore, we can compute DV (y) in terms of the viscosity solution of a linear
parabolic equation.
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Proposition 3.5. Given y ∈ Rm, let v : [0, T ]×Rn → R be the viscosity solution
of the HJB equation
(3.6)

vt + inf
a∈A

[
1

2
tr(σ(x, a)σ(x, a)>D2

xv) + µ(x, a) ·Dxv

]
= 0 in [0, T )× Rn,

v(T, x) = f(g(x), y) on {t = T} × Rn.

Then, we have
V (y) = v(0,x0),

where x0 is the initial value of the SDE (2.1).

This is a standard result. The important point is that, under Assumption 2,
(3.6) is uniformly parabolic and concave in D2

xv. Then we know from regularity
results for HJB equations that the value function v is twice differentiable in space
(see [21, 12, 26]). This allows us to compute DV (y) by solving a linear equation.

Theorem 3.6 (gradient PDE). Suppose that Assumptions 2–3 hold. Given y ∈
Rm, let v be the viscosity solution of (3.6).

(1) An optimal control, A?t := a?(t,XA?

t ), exists, where a? : [0, T ) × Rn → A
satisfies

a?(t, x) ∈ arg min
a∈A

[
1

2
tr
(
σ(x, a)σ(x, a)>D2

xv
)

+ µ(x, a) ·Dxv

]
∀(t, x) ∈ [0, T )× Rn.

(2) Let w : [0, T ]× Rn → Rm be defined as

(3.7) w(t, x) := Et
[
Dyf

(
g(XA?

T ), y
)∣∣∣XA?

t = x
]
.

Then, w := (w(1), . . . , w(m)) is a viscosity solution of the decoupled system of
linear equations

(3.8)

w
(k)
t +

1

2
tr
(
σ(x, a?(t, x))σ(x, a?(t, x))>D2

xw
(k)
)

+µ(x, a?(t, x)) ·Dxw
(k) = 0 in [0, T )× Rn,

w(k)(T, x) = [Dyf(g(x), y)]k on {t = T} × Rn

for k = 1, . . . ,m. Furthermore, we have

DV (y) = w(0,x0),

where x0 is the initial value of the SDE (2.1).

Before providing a rigorous proof, we note the intuition behind the result. It is
clear that w defined in (3.7) satisfies

(3.9) w(t, x) = Et
[
w
(
t+ h,XA∗

t+h

)∣∣∣XA∗

t = x
]

for all (t, x) ∈ [0, T ) × Rn and h ∈ (0, T − t). This follows from the law of iterated
expectations. If w were smooth, we could apply Ito’s lemma for small h > 0 and
conclude that w satisfies (3.8). However, the coefficients of (3.8) are not necessarily
continuous and hence the solution w is potentially discontinuous. That is, we must
consider this within the framework of discontinuous viscosity solutions. For more on
this topic, see [32, 61].
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868 CHRISTOPHER W. MILLER AND INSOON YANG

Proof.
(1) The existence of such an optimal control follows from a standard argument

due to the uniform parabolicity of the HJB (3.6) (e.g., [24]).
(2) Without loss of generality, we can assume m = 1 and suppress the superscript

of w because the PDE system (3.8) is decoupled. Our goal is then to show
that the function w defined in (3.7) is a discontinuous viscosity solution of
(3.8). The key property of w is listed in (3.9). For convenience, we introduce
the notation

(La
?

φ)(t, x) := φt(t, x) + tr
(
σ(x, a?(t, x))σ(x, a?(t, x))>D2

xφ(t, x)
)

+ µ(x, a?(t, x)) ·Dxφ(t, x),

where φ is an arbitrary smooth function.
As a reminder, we define the lower- and upper-semicontinuous envelopes of a
locally bounded function ψ as

ψ∗(x) := lim inf
y→x

ψ(y) and ψ∗(x) := lim sup
y→x

ψ(y),

respectively.
Fix (t̄, x̄) ∈ [0, T ) × R and let φ : [0, T ) × R → R be a smooth function
satisfying

0 = (w∗ − φ)(t̄, x̄) = min
[0,T )×Rn

(w∗ − φ).

That is, φ touches the lower-semicontinuous envelope of w from below at
(t̄, x̄). Our goal is to show that(

La
?

φ
)
∗

(t̄, x̄) ≤ 0.

Towards that end, let {(tk, xk)}∞k=0 be a sequence such that, as k →∞,

(tk, xk)→ (t̄, x̄) and w(tk, xk)→ w∗(t̄, x̄).

Since φ is smooth, δk := w(tk, xk)− φ(t̄, x̄)→ 0. We also define

hk :=
√
δk 1{δk 6=0} + k−1 1{δk=0}

and take k large enough that hk ∈ (0, T − tk). Then, we have

w(tk, xk) = Etk
[
w(tk + hk, X

A?

tk+hk
)
∣∣∣XA?

tk
= xk

]
≥ Etk

[
φ
(
tk + hk, X

A?

tk+hk

)∣∣∣XA?

tk
= xk

]
= φ(tk, xk) + Etk

[∫ tk+hk

tk

(
La

?

φ
)

(s,XA?

s ) ds

∣∣∣∣∣XA?

tk
= xk

]
.

Rearranging this, we conclude

δk
hk
≥ Etk

[
1

hk

∫ tk+hk

tk

(
La

?

φ
)

(s,XA?

s ) ds

∣∣∣∣∣XA?

tk
= xk

]
.
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Sending k →∞, the left-hand side converges to zero, while the right-hand side
dominates the lower-semicontinuous envelope of La?φ almost surely. There-
fore, we conclude by the dominated convergence theorem that(

La
?

φ
)
∗

(t̄, x̄) ≤ 0.

The opposite inequality proceeds exactly the same. We also notice that w
satisfies the boundary condition of (3.8) pointwise. Therefore, w is a viscosity
solution of the linear PDE (3.8).
Finally, we put this together with Theorem 3.4 to conclude

w(0,x0) = E
[
Dyf

(
g(XA?

T ), y
)]

= DV (y).

We note that some care must be taken when arguing that the viscosity solution to
the PDE in (3.8) is unique. It is well known that nondivergence from linear PDEs may
not have a unique viscosity solution in dimensions greater than two if the diffusion
coefficients are not continuous (see [58, 37, 42]). However, there has been subse-
quent work on finding structural conditions on the coefficients which guarantee weak
uniqueness in higher dimensions. For fully nonlinear elliptic equations, [33] provides
assumptions on the nonlinearity, not including continuous coefficients, which guar-
antee unique upper-semicontinuous viscosity solutions in the sense of Theorem 3.6.
Recent results focus on bounds on the mean-oscillation of the coefficients [38, 34, 19],
as well as on the set of discontinuities being small [60, 35].

We emphasize that in many practical problems the linear parabolic equation (3.8)
has a unique viscosity solution. In the next proposition, we provide two conditions
which can be easily checked.

Proposition 3.7. Define F : Rn × Rn × Sn → R as

F (x, p,R) := inf
a∈A

[
1

2
tr(σ(x, a)σ(x, a)>R) + µ(x, a) · p

]
.

If either (i) n ≤ 2 or (ii) both DpF and DRF exist and are continuous, then there is
a unique viscosity solution of (3.8).

Proof. If n ≤ 2, then this follows from Theorem 2.17 of [37]. If DpF and DRF
exist and are continuous, then we note that the gradient PDE (3.8) can be rewritten
in the form

w
(k)
t + tr

(
DRF (x,Dxu,D

2
xu)>D2

xw
(k)
)

+DpF (x,Dxu,D
2
xu) ·Dxw

(k) = 0.

Recall u has continuous second derivatives in space, so the coefficients are all contin-
uous functions. Then, the uniqueness of viscosity solutions follows as usual.

Using Proposition 3.5 and Theorem 3.6, we can calculate V (y) and DV (y) at each
y ∈ Rm by (numerically) solving the PDEs (3.6) and (3.8). Therefore, we can solve
the outer optimization problem using a gradient-descent-type algorithm and find a
globally optimal solution due to the convexity of V . We will not discuss numerical
optimization algorithms as they are not the focus of this paper (we refer to, for
example, [43] for detailed algorithms).

One natural question regarding the computation of the gradient is whether it is
possible to utilize other numerical methods, most obviously Monte Carlo methods.
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870 CHRISTOPHER W. MILLER AND INSOON YANG

Theorem 3.4 can of course be used directly for this. The practitioner would obtain
a numerical solution of (3.6), then generate random optimal trajectories via Monte
Carlo simulations, and estimate DV (y) via the sample expected value corresponding
to (3.5). This however, introduces extra numerical (sampling) error in the calculation
of the gradient, which is often a source of instability.

Furthermore, this gradient descent approach gains a dimensionality reduction by
m, which is the dimension of y, as opposed to a dynamic programming method over
the lifted state space of (x, y). Even when m = 1, this gain is considerable because
the computational complexity of dynamic programming increases exponentially with
the dimension of the state space.6

4. Relaxation of assumptions. The goal of this section is to explicitly relax
Assumptions 1 and 2, and to a lesser extent Assumption 3. In the case of Assump-
tions 1 and 2, we provide convergent approximation schemes including suboptimality
bounds.

4.1. Uniformly semiconcave approximation. In this section, we consider an
approximation scheme for the case that f does not satisfy the semiconcavity assump-
tion (Assumption 1). The idea is to modify f via inf-convolution to obtain a function
fε for some small ε > 0. We show that this new function fε satisfies Assumption 1. We
then prove that the resulting perturbed value function converges to the unperturbed
problem as ε→ 0. Relaxing this semiconcavity assumption is particularly important
for problems with CVaR objectives.

First, we recall the definition of inf-convolution and the key properties of the
resulting function.

Proposition 4.1 (semiconcave approximation). Recall that f : R× Rm → R is
convex. For ε > 0, define the inf-convolution fε as

(4.1) fε(x, y) := inf
z∈Rm

[
f(x, z) +

‖y − z‖2

2ε

]
.

Then, fε : R× Rm → R has the following properties:
(1) fε is convex,
(2) y 7→ fε(x, y) is ε-semiconcave for all x ∈ Rn, and
(3) fε → f uniformly as ε→ 0.

For a proof of Proposition 4.1, see [32, 52]. In particular, this implies that fε
satisfies Assumption 1. We also show that approximation by inf-convolution will not
break the convexity required by Assumption 3.

Proposition 4.2. If f satisfies Assumption 3, then so does fε for each ε > 0.

Proof. See Appendix C for the proof.

We now define the ε-perturbed outer objective function as

Vε(y) := inf
A∈A

E
[
fε(g(XA

T ), y)
]
.

6One can further alleviate the computational burden by employing advanced numerical methods
such as sparse grids and multigrid techniques (e.g., [28, 10]). It is difficult to make precise statements
about the complexity of the entire algorithm without discussing certain implementation choices.
However, it is essentially that of a gradient-based unconstrained concave minimization algorithm,
where each step requires the solution of an (n+1)-dimensional HJB and m linear PDEs of dimension
(n+ 1).
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For any ε > 0, the perturbed function fε satisfies Assumption 1. Then, we can
apply the results of section 3 to minimize Vε. The goal of this subsection is to show
convergence as ε→ 0.

First, we record an estimate involving inf-convolution.

Proposition 4.3. Suppose that y 7→ f(x, y) is uniformly Lipschitz continuous
for all x ∈ R. Fix ε > 0 and (x, y) ∈ R× Rm. Then, we have

fε(x, y) ≤ f(x, y) ≤ fε(x, y) + Cε

for a constant C depending only on f .

Proof. Taking z = y in the inf-convolution operator (4.1), we immediately have
that

fε(x, y) ≤ f(x, y).

Next, let z? ∈ Rm be a minimizer in fε. Using this and the uniform Lipschitz conti-
nuity of f , we have

fε(x, y) = f(x, z?) +
‖y − z?‖2

2ε
≥ f(x, y)− L‖y − z?‖+

‖y − z?‖2

2ε

for some L > 0. On the other hand, by the Cauchy–Schwarz inequality, we have

L‖y − z‖ ≤ 1

2
εL2 +

‖y − z‖2

2ε
.

Putting these inequalities together, we then obtain

fε(x, y) ≥ f(x, y)− 1

2
εL2.

Next, we prove a bound relating the perturbed and unperturbed outer objective
functions.

Proposition 4.4. Suppose that y 7→ f(x, y) is uniformly Lipschitz continuous
for all x ∈ R. Fix ε > 0 and y ∈ Rm. Then, we have

Vε(y) ≤ V (y) ≤ Vε(y) + Cε

for a constant C depending only on f .

Proof. By Proposition 4.3, there exists a constant C such that

fε
(
g(XA

T ), y
)
≤ f

(
g(XA

T ), y
)
≤ fε

(
g(XA

T ), y
)

+ Cε almost surely

for all A ∈ A. Taking expectation and using the fact that A ∈ A is arbitrary, we have

Vε(y) ≤ V0(y) ≤ Vε(y) + Cε.

Noting that V0(y) = V (y), the result follows.

Finally, we use this result to prove a suboptimality bound when using this ap-
proximation.

Theorem 4.5 (convergence and suboptimality bound I). Suppose that y 7→
f(x, y) is uniformly Lipschitz continuous for all x ∈ R. Fix ε > 0 and let y?ε ∈ Rm be
a minimizer of Vε. Let y? ∈ Rm be a minimizer of the unperturbed value function V .
Then, we have

|V (y?)− Vε(y?ε )| ≤ Cε
for a constant C depending only on f .
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Proof. Suppose that instead

V (y?)− Vε(y?ε ) > Cε.

Combining this with the minimality of y?, we have

Vε(y
?
ε ) + Cε < V (y?) ≤ V (y?ε ),

which contradicts Proposition 4.4. A similar argument using the minimality of y?ε is
contradictory to the possibility that

Vε(y
?
ε )− V (y?) > Cε.

Then, the result holds.

Note that the constant C is equal to 1
2L

2. Therefore, once we obtain an approx-
imation y?ε , we can explicitly compute a bound, Cε, of the gap between the approx-
imately optimal objective value Vε(y

?
ε ) and the optimal value V (y?). This bound is

useful to determine an appropriate resolution ε of the semiconcave approximation.
Furthermore, the bound is linear in ε and hence the suboptimality gap converges to
zero as ε→ 0 (see Figure 1 in section 5.3 for a numerical experiment result).

4.2. Uniformly parabolic approximation. Relaxing the uniform parabolicity
assumption (Assumption 2) is particularly important when 0 ∈ A. To relax Assump-
tion 2, we consider an approximation scheme for the case that the dynamics of X do
not satisfy the assumption. The key idea is to perturb the dynamics of X with extra
sources of risk (or uncertainty) so that uniform parabolicity holds. We then show the
resulting perturbed value function converges to that of the unperturbed problem as
η → 0.

Let Ŵ be an independent n-dimensional Brownian motion, and let F̂ be the
filtration generated by the joint process (W, Ŵ ). Let Â represent the collection of all
F̂-adapted processes valued in A. For each control A ∈ Â and η ∈ R, define X̂A,η as
the unique strong solution of the perturbed SDE

dX̂A,η
t = µ

(
X̂A,η
t , At

)
dt+ σ

(
X̂A,η
t , At

)
dWt + η dŴt.

We define the following η-perturbed value function:

Vη(y) := inf
A∈Â

E
[
f
(
g(X̂A,η

T ), y
)]
.

For any η > 0, the dynamics of the perturbed process X̂A,η satisfy Assumption 2.
Then, we can apply the results of section 3 to minimize Vη. The goal of this subsection
is to show convergence to the unperturbed case as η → 0.

First, we have the following estimate involving the value function under the per-
turbed dynamics.

Proposition 4.6. Suppose that f is Lipschitz continuous. Fix y ∈ Rm. Then,
for any η, η′ ≥ 0, we have the estimate

|Vη(y)− Vη′(y)| ≤ C|η − η′|

for some constant C which depends only on µ, σ, A, f , and g.
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Proof. Fix y ∈ Rm and η, η′ ≥ 0. For any δ > 0, let A ∈ Â be a δ-suboptimal
control such that

(4.2) Vη(y) + δ ≥ E
[
f
(
g(X̂A,η

T ), y
)]
.

By a standard argument using the Lipschitz constants of the perturbed dynamics, we
have

E
[∥∥∥X̂A,η

T − X̂A,η′

T

∥∥∥2] ≤ C(η − η′)2‘

for some constant C which depends only on the Lipschitz constants of µ and σ and
the set A (for example, see [61]). Because f and g are Lipschitz continuous, we have

E
[∣∣∣f (g(X̂A,η′

T ), y
)
− f

(
g(X̂A,η

T ), y
)∣∣∣] ≤ CE [∥∥∥X̂A,η′

T − X̂A,η
T

∥∥∥]
≤ C

(
E
[∥∥∥X̂A,η′

T − X̂A,η
T

∥∥∥2])1/2

≤ C|η − η′|(4.3)

for a new constant C. Combining (4.2) and (4.3), we conclude

Vη(y) + δ ≥ E
[
f
(
g(X̂A,η′

T ), y
)]
− C|η − η′| ≥ Vη′(y)− C|η − η′|.

Because δ was arbitrary and, by symmetry, between η and η′, the desired result
follows.

Remark 3. In this proof we crucially assume that f is Lipschitz continuous.
Therefore, if we are to apply this approximation scheme to mean-variance optimiza-
tion, we would need to attempt to modify the proof.

Next, we prove the intuitive statement that enlarging the filtration F to F̂ does
not affect the value function when η = 0.

Proposition 4.7. For any y ∈ Rm, we have V0(y) = V (y).

Proof. Fix y ∈ Rm and consider the following two functions:

u(t, x) := inf
A∈A

Et
[
f
(
g(XA

T ), y
)∣∣XA

t = x
]
,

û(t, x) := inf
A∈Â

Et
[
f
(
g(X̂A

T ), y
)∣∣∣X̂A

t = x
]
.

By Proposition 3.5, both u and û are the viscosity solutions of the same HJB equation.
Furthermore,

V (y) = u(0, x) and V0(y) = û(0, x).

Then, the result follows by the uniqueness of viscosity solutions of (3.6).

Finally, combining these two results, we show a suboptimality bound when using
this uniformly parabolic approximation.

Theorem 4.8 (convergence and suboptimality bound II). Suppose that f is Lip-
schitz continuous. Fix η > 0 and let y?η ∈ Rm be a minimizer of Vη. Let y? ∈ Rm be
a minimizer of the unperturbed value function V . Then, we have

|V (y?)− Vη(y?η)| ≤ Cη

for some constant C which depends only on µ, σ, A, f , and g.
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Proof. Suppose that
V (y?)− Vη(y?η) > Cε.

Note that y? is a minimizer; we have

Vη(y?η) + Cη < V (y?) = V0(y?) ≤ V0(y?η),

which is contradictory to Proposition 4.6. A similar argument using the minimality
of y?η contradicts the possibility that

Vη(y?η)− V (y?) > Cη.

Then, the result follows.

Note that we can obtain a solution to the original problem by choosing η > 0
sufficiently small, depending on the constant C, and applying the gradient descent
algorithm to minimize Vη. In practice, the constant C can be computed explicitly
in terms of the size of A and the Lipschitz constants on µ, σ, f , and g by following
the steps in the proofs above. Consequently, using Theorem 4.8, we can explicitly
compute a bound on the suboptimality gap between the obtained solution and the
global minimizer y?. As η → 0, the suboptimality gap tends to zero.

4.3. Nonconvex case. In the previous two subsections, we showed convergent
approximation schemes when either the uniform semiconcavity or the uniform parabol-
icity assumption did not hold. In the case of the convexity assumption (Assumption 3),
we do not provide a direct approximation scheme, but instead note analogies of the
results in section 3 which lead to a proximal supergradient descent algorithm.

In particular, we show that in the absence of Assumption 3, all results in section 3
hold with the caveat that V is semiconcave instead of convex.

Corollary 4.9. Suppose that, for any fixed y ∈ Rm, there exists A ∈ A such
that

V (y) = E
[
f
(
g(XA

T ), y
)]
.

If we denote by ∂V (y) the collection of proximal supergradients of V at y, we have

E
[
Dyf

(
g(XA

T ), y
)]
∈ ∂V (y).

This follows immediately from the inequality proved in Proposition 3.3. Further-
more, because of the PDE results of section 3.4, we know that there exists an optimal
control at each y ∈ Rm. We make the following conclusion.

Corollary 4.10. The function V is semiconcave. For each y ∈ Rm, we can
compute V (y) and a proximal supergradient at y by solving PDEs (3.6) and (3.8),
respectively.

Consequently, the globally convergent gradient descent algorithm may be replaced
with a proximal supergradient descent algorithm which converges to a local minimum.
For more on tools from nonsmooth analysis and semiconcavity, see [13, 32].

4.4. Proof of Theorem 2.2. At this point, the proof of Theorem 2.2 is just
a matter of piecing together the various results from the previous two sections. We
provide a brief outline of where each step is used in the following.

Proof. Recall the statement of the theorem is broken into three pieces. We follow
this separation in this proof.
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(1) The first section of the theorem is Proposition 3.1.
(2) Applying the results of sections 4.1–4.3, it follows that the approximate prob-

lem satisfies Assumptions 1 and 2. Assumption 1 follows from Proposition 4.1,
while Assumption 2 follows from directly from the dynamics of the approxi-
mate problem. Then the results of the second section of the theorem follow
from the discussion in section 4.3.

(3) Last, we consider the convergence result. By combining Theorems 4.5 and
4.8, we immediately conclude that

|V (y?)− Vε,η(y?ε,η)| ≤ C(ε+ η)

for some C > 0 which depends only on the Lipschitz constants of f , g, µ, and
σ. Similarly, applying Propositions 4.4–4.7, we conclude that

Vε,η(y?ε,η) ≤ Vε,η(y?) + C (ε+ η)

for some (possibly different) C > 0, which also depends only on the Lipschitz
constants above. Last, combining these two inequalities, we conclude the
stated convergence result.

5. Example: Mean-CVaR portfolio optimization. In this section, we illus-
trate a practical use of our main results and approximation methods in an application
to portfolio optimization under a mean-CVaR objective. Our goal is to ultimately use
this methodology to compute the efficient frontier representing the trade-off between
maximizing expected log-return and minimizing the CVaR of losses. We emphasize
that dynamic optimization can significantly reduce CVaR while maintaining the same
expected return as compared to optimal static investment strategies.

5.1. Problem formulation. Consider a market consisting of n risky assets
evolving via the SDE

dS
(i)
t

S
(i)
t

= µi dt+ Σ
1/2
i,j dW

(j)
t

for each i ∈ {1, . . . , n} and j ∈ {1, . . . , d}. Here µ ∈ Rn is a vector of drifts and Σ is
the covariance matrix of returns. We also assume that there exists a risk-free asset
with drift r.

We assume that we choose a control A, which is a progressively measurable process
lying in some compact set A, representing the percent of the portfolio exposed to each
of the n risky assets. For example, we might choose A := {a ∈ Rn | a>Σa ≤ l} for a
constant l corresponding to a hard portfolio risk cap.

With this setup, our portfolio value Z evolves via the SDE

dZAt
ZAt

=
[
r +A>t (µ− r 1)

]
dt+A>t Σ1/2 dWt.

For simplicity, we consider the log value of the portfolio, XA
t := logZAt , which can be

seen to solve

dXA
t =

[
r +A>t (µ− r 1)− 1

2
A>t ΣAt

]
dt+A>t Σ1/2 dWt.

Without loss of generality, we assume ZA0 = S0 = 1. Then, XA
0 = 0 and we can

interpret XA
t as the log-returns of the portfolio up to time t.
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In this section, we consider the problem of minimizing a mean-CVaR objective:

(5.1) inf
A∈A

[
E
[
−XA

T

]
+ λCVaRα

[
−XA

T

]]
for fixed λ > 0 and α ∈ (0, 1). By varying λ, we can compute a subset of the efficient
frontier between expected log-return and the CVaR of losses.

5.2. Solution via gradient descent. From the results of section 3, the problem
(5.1) is equivalent to the bilevel optimization

inf
y∈R

V (y),

where
V (y) := inf

A∈A
E
[
f
(
g(XA

T ), y
)]
.

Here, we take g(XA
T ) = −XA

T and

f(x, y) := x+ λ

(
y +

1

1− α
(x− y)

+

)
.

We can check that A 7→ g(XA
T ) is convex almost surely and f is convex and non-

decreasing in x. Therefore, Assumption 3 is satisfied, i.e., (A, y) 7→ f(g(XA
T ), y)

is jointly convex. However, both Assumption 1 and Assumption 2 are potentially
violated. Therefore, we need to apply the approximations of section 4 before we can
proceed with the proposed gradient descent method.

Theorem 5.1. For any ε > 0, we have the inf-convolution of f(g(x), y) is

fε(g(x), y) :=


−x+ λ

(
y − x+y

1−α

)
− 1

2

(
α

1−αλ
)2
ε for x+ y < − α

1−αλε,
1
2ε (y + x)

2 − (1 + λ)x for − α
1−αλε ≤ x+ y ≤ λε,

−x+ λy − 1
2λ

2ε for x+ y > λε.

If we also consider the perturbed dynamics

dX̂A,ε
t =

[
r +A>t (µ− r 1)− 1

2
A>t ΣAt

]
dt+A>t Σ1/2 dWt + ε dŴt

and the perturbed value function

Vε(y) := inf
A∈Â

E
[
fε

(
g(X̂A,ε

T ), y
)]
,

then Assumptions 1–3 all hold and we can apply the gradient descent method from
section 3 to minimize Vε. Furthermore, there exists a constant C which depends only
on µ, r, Σ, λ, α, and A such that

|V (y?)− Vε(y?ε )| ≤ Cε

for any y?ε ∈ Rm which minimizes Vε and y? ∈ Rm which minimizes V .

The proof is elementary but tedious. Verifying the proposed expression for fε is an
exercise in minimizing piecewise functions. We check that fε satisfies Assumption 1,
the new dynamics clearly satisfy Assumption 2, and together they satisfy Assump-
tion 3 by checking the sufficient conditions in Example 3. Finally, the error bounds
result from combining the error bounds from sections 4.1 and 4.2.
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Fig. 1. The relative error |V (y?) − Vε(y?ε )| in the objective. We compare a numerical error
(solid) and an explicit calculation of the theoretical error bounds (dashed) provided in section 4.

Remark 4. In this theorem we use a single parameter, ε, for both approximation
schemes. In practice, we can modify this result to use separate parameters for each
scheme. This could be useful for separating out the numerical error due to each
approximation.

5.3. Numerical results: Computation of an efficient frontier. In this
section we consider a concrete example involving selection between a single risky
asset, representing a US stock index, and a risk-free asset. We compute an efficient
frontier representing the trade-off between expected log-return and CVaR when using
optimal dynamic strategies. For comparison, we compare with an efficient frontier
when restricting to static strategies, i.e., strategies where A is constant over time,
representing a fixed leverage ratio.

For our example, we choose µ = 11%, σ = 20%,7 and r = 1% as market parame-
ters. We take our time horizon as T = 1 and constrain our leverage ratio to lie within
the range A := [−6,+6].8 Finally, we consider CVaR at the α = 95% threshold.

For each fixed λ > 0, we solve the corresponding dynamic mean-CVaR opti-
mization problem using the techniques outlined in section 5.2.9 An example of the
convergence of the approximation scheme described in Theorem 5.1, compared with
the corresponding theoretical error bounds, is shown in Figure 1. This illustrates the
linear decrease in relative error from approximation as a function of the approximation
parameter ε.

7This choice corresponds, roughly, to the historical arithmetic mean and standard deviation
of annual returns on the S&P 500, including dividend reinvestment, over the period 1928–2014.
However, we emphasize that the exact choice of parameters should not be taken too seriously in this
example.

8We choose this range to correspond, roughly, to the maximum leverage a qualifying US in-
vestor can achieve with a portfolio margin policy, as described at http://www.finra.org/industry/
portfolio-margin-faq. In practice, the exact constraints depend upon the type of investor and fi-
nancial instruments used for investment. We emphasize that this choice is meant for illustration
only.

9We use finite-difference solvers for PDEs (3.6) and (3.8). We apply upwinding methods to
obtain a monotone scheme when solving the gradient PDE [18, 5]. It is difficult to make any
quantitative statements regarding the choice of discretization parameters. However, we note that
the approximation parameter, ε, should not be too small compared to the mesh spacing used in the
finite-difference method or the difference between f and fε will become numerically irresolvable.
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Fig. 2. The efficient frontier of mean-CVaR portfolio optimization, representing the possible
trade-off between maximizing expected log-returns and minimizing CVaR, computed by varying λ ∈
(0, 1].

We compute points on the efficient frontier between expected log-return and CVaR
by varying λ over the interval (0, 1]. At each value of λ, we compute the expected log-
return under the optimal control by solving a linear parabolic equation analogous to
(3.8). We then compute the corresponding CVaR using our computation of expected
log-return and the mean-CVaR objective. The resulting frontier is shown in Figure 2
(solid).

For comparison, we consider the same optimization problem when restricted to a
subcollection of static controls, defined as

Astatic := {A ∈ A | ∃a ∈ A such that A(t) = a for all t ∈ [0, T ] a.s.} .

These strategies represent constant leverage portfolios. An important example of
these is the “buy-and-hold” strategy, e.g., A(t) ≡ 1. Under this class of controls, XA

T

is normally distributed. Therefore, we can directly compute optimal strategies and
construct the efficient frontier.

In Figure 2, we illustrate a comparison between the efficient frontier under our
dynamic strategies and under static strategies. We see that by employing strategies
with dynamic leverage, we can significantly reduce CVaR at the 95% quantile while
maintaining the same expected log-return, as compared to a static leverage strategy.
Similarly, we can increase expected log-return while maintaining the same CVaR
using a dynamic strategy. For example, the static buy-and-hold strategy, A(t) ≡ 1,
has an expected log-return of 9% and CVaR of approximately 32%. By employing
strategies with dynamic leverage, we can reduce CVaR by approximately 50% while
maintaining the same expected log-return or, alternatively, increase expected log-
return by approximately 30% while maintaining the same CVaR.

We next turn our attention to an examination of statistical and qualitative prop-
erties of the optimal dynamic control and resulting returns. In Figure 3, we illustrate
the cumulative distribution function (CDF) of XA

T under the optimal dynamic con-
trol corresponding an expected log-return of 9%. We compare this to the CDF of XA

T

under the buy-and-hold strategy, which follows a normal distribution. While both
of these distributions have the same expected value, the one corresponding to the
optimal dynamic strategy has significantly fatter (right) tails on the upside and an
effective (left) floor on losses on the downside. We attribute this to a (de)leveraging
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Fig. 3. The CDF of XA
T when following the static buy-and-hold strategy and the optimal

dynamic strategy which achieves the same expected log-return.
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Fig. 4. (a) A sample path of stock prices and the corresponding portfolio log-return process

(XA?
) and (b) the corresponding optimal leverage process (A?).

effect of the dynamic strategy whereby it increases leverage significantly once it has
“locked in” gains and will deleverage only as needed to discourage losses exceeding a
certain threshold.

This qualitative tendency of the optimal strategy to increase in leverage once it
has locked in gains is emphasized further by sample paths illustrated in Figure 4.
Here, we illustrate a particular sample path of stock prices (quoted as log-return),
as well as the corresponding optimal dynamic leverage process, A?, and the resulting
portfolio log-return process, XA?

. Note that the stock price corresponds to the log-
return under the static buy-and-hold strategy, A(t) ≡ 1. We observe that early on in
the period, the leverage process increases or decreases in sync with overall portfolio
returns. However, as it becomes later in the period and the portfolio return is positive,
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Fig. 5. (a) A sample path of stock prices and the corresponding portfolio log-return process

(XA?
) and (b) the corresponding optimal leverage process (A?).

the optimal leverage increases significantly before being capped at a fixed value. The
optimal strategy generally does not appear to decrease leverage late in the period,
even with stock price declines, unless it is risking falling below the loss threshold seen
in the jump in Figure 3.

In Figure 5, we illustrate an alternative sample path which emphasizes how the
increasing leverage can lead to large returns on the upside. In this path, the lever-
age process, A?, initially decreases to lower risk as the portfolio takes initial losses.
However, in the latter half of the period, as stock prices rise, the increasing leverage
leads to a return on the portfolio which significantly exceeds that of the buy-and-hold
strategy. It is this transition from low leverage when avoiding tail losses to high lever-
age when locking in gains which allows the strategy to maintain a low CVaR while
maximizing expected log-return.

The tendency of the optimal dynamic strategy to keep leverage higher than the
static strategy unless it is facing losses also helps explain the skew seen in Figure 3.
Because the dynamic strategy has the option to decrease its leverage to stop losses, it
can achieve a significantly lower CVaR while maintaining a preference for high lever-
age, which contributes to large returns in positive outcomes. However, there is no such
thing as a free lunch; in neutral outcomes, the positive correlation between log-returns
and leverage leads to decay in portfolio value from convexity [46]. In this sense, the
optimal dynamic strategy shares many qualitative features with constant proportion
portfolio insurance (CPPI) strategies [9]. This makes sense as CPPI strategies are
generally employed to limit downside losses, while maintaining upside gains, using
dynamic trading.

In this example, we chose to consider only a single risky asset for ease of inter-
pretation of the strategy. However, it is clear from the generality of section 5.2 that
we could perform the same computations with multiple assets without increasing the
size of the state space in the stochastic optimal control subproblem. In the multiple
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asset case, the extra complexity appears in the need to solve a quadratic program
with more decision variables at each step in the solution of the HJB in (3.6).

Appendix A. Coherent extremal risk measures.

Proposition A.1 (coherence). Suppose the following properties of f : R×Rm →
R hold:

• Positive-homogeneity and normalization: f(ax, ay) = af(x, y) for a > 0 and
infy∈Rm f(0, y) = 0.
• Monotonicity: x 7→ f(x, y) is nondecreasing for each y ∈ Rm.
• Subadditivity: f(x1 + x2, y1 + y2) ≤ f(x1, y1) + f(x2, y2) for x1, x2 ∈ R and
y1, y2 ∈ Rm.
• Translation: For every a ∈ R, there exists an invertible function φ : Rm →

Rm such that for every (x, y) ∈ R×Rm we have f(x+ a, y) = f(x, φ(y)) + a.
Then, the function ρ : L2(Ω)→ R defined as

(A.1) ρ(ξ) := inf
y∈Rm

E [f(ξ, y)]

is a coherent (extremal) risk measure.

Proof. Recall, the four properties of a coherent risk measure are positive homo-
geneity, monotonicity, subadditivity, and translational invariance [2]. We show below
how each of these comes from the assumptions on f .

1. Positive-homogeneity: We compute directly

ρ(aξ) = inf
y∈Rm

E [f(aξ, y)] = inf
ay∈Rm

E [f(aξ, ay)] = a inf
y∈Rm

E [f(ξ, y)] = aρ(ξ)

for a > 0. When a = 0,

ρ(0) = inf
y∈Rm

E [f(0, y)] = inf
y∈Rm

f(0, y) = 0.

2. Monotonicity: Let ξ, ξ′ ∈ L2(Ω) such that ξ ≤ ξ′ almost surely. Then,

ρ(ξ) = inf
y∈Rm

E [f(ξ, y)] ≤ inf
y∈Rm

E [f(ξ′, y)] = ρ(ξ′).

3. Subadditivity: Fix ξ1, ξ2 ∈ L2(Ω). We compute

ρ(ξ1 + ξ2) = inf
y∈Rm

E[f(ξ1 + ξ2, y)]

= inf
y1,y2∈Rm

E[f(ξ1 + ξ2, y1 + y2)]

≤ inf
y1,y2∈Rm

E[f(ξ1, y1) + f(ξ2, y2)] = ρ(ξ1) + ρ(ξ2).

4. Translational-invariance: Let ξ ∈ L2(Ω) and a ∈ R. Then

ρ(ξ + a) = inf
y∈Rm

E [f(ξ + a, y)] = inf
y∈Rm

E [f(ξ, φ(y)) + a] = ρ(ξ) + a.

Appendix B. Proof of Theorem 3.2.

Proof. Let y, y′ ∈ Rm and θ ∈ [0, 1]. For any ε > 0, let A,A′ ∈ A be ε-suboptimal
controls such that

V (y) + ε ≥ E
[
f
(
g(XA

T ), y
)]

and V (y′) + ε ≥ E
[
f
(
g(XA′

T ), y′
)]
.
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By Assumption 3, we obtain

V (θy + (1− θ)y′) ≤ E
[
f
(
g
(
X
θA+(1−θ)A′
T

)
, θy + (1− θ)y′

)]
≤ E

[
θf
(
g(XA

T ), y
)

+ (1− θ)f
(
g(XA′

T ), y′
)]

≤ θV (y) + (1− θ)V (y′) + ε.

Because ε was arbitrary, the convexity of V follows.

Appendix C. Proof of Proposition 4.2.

Proof. Recall that Assumption 3 states that the map

(A, y) 7→ f
(
g(XA

T ), y
)

is jointly convex almost surely. We observe that the map

(A, y, z) 7→ f
(
g(XA

T ), z
)

+
‖y − z‖2

2ε

is almost surely jointly convex as a sum of convex functions. Therefore,

(A, y) 7→ fε
(
g(XA

T ), y
)

= inf
z∈Rm

[
f
(
g(XA

T ), z
)

+
‖y − z‖2

2ε

]
is almost surely jointly convex by the same type of argument as in the proof of
Theorem 3.2.
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