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Abstract— The theory of (standard) stochastic optimal con-
trol is based on the assumption that the probability distribution
of uncertain variables is fully known. In practice, however,
obtaining an accurate distribution is often challenging. To
resolve this issue, we study a distributionally robust stochastic
control problem that minimizes a cost function of interest given
that the distribution of uncertain variables is not known but
lies in a so-called ambiguity set. We first investigate a dynamic
programming approach and identify conditions for the existence
and optimality of non-randomized Markov policies. We then
propose a duality-based reformulation method for an associated
Bellman equation in cases with conic confidence sets. This
reformulation alleviates the computational issues inherent in the
infinite-dimensional minimax optimization problem in the Bell-
man equation without sacrificing optimality. The effectiveness
of the proposed method is demonstrated through an application
to a stochastic inventory control problem.

I. INTRODUCTION

Standard stochastic control methods assume that the prob-
ability distribution of uncertain variables (e.g., disturbances)
is available. However, this assumption is often restrictive
in practice because obtaining an accurate distribution re-
quires large-scale, high-resolution sensor measurements over
a long training period or multiple periods. Situations in
which uncertain variables are not directly observed could
be much more challenging; computational methods, such as
filtering or statistical learning techniques, are often used to
obtain the (posterior) distribution of the uncertain variables
given limited observations. The accuracy of the obtained
distribution is often poor, as it is subject to the quality of the
observations, computational methods, and prior knowledge
about the variables. If poor distributional information is em-
ployed in constructing a stochastic optimal controller, it does
not guarantee optimality and can even cause catastrophic
system behaviors [1], [2].

To overcome this issue of limited distribution information
in stochastic control, we investigate a distributionally robust
control approach. This emerging stochastic control method
minimizes a cost function of interest, assuming that the
distribution of uncertain variables is not completely known
but contained in a pre-specified ambiguity set of probability
distributions. In finite-state Markov decision process settings,
several types of ambiguity sets have been considered: [3],
[4], [5] employ ambiguity sets with moment constraints,
confidence intervals and Wasserstein distance, respectively.
However, for continuous-state control problems, only a few
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cases with moment constraint-based and total variation dis-
tance ambiguity are well studied [6], [7], [8].

In this paper, we consider an important class of ambiguity
sets that are characterized with confidence sets and probabil-
ity intervals in a continuous-state stochastic control setting.
The contributions of this work are twofold. First, we investi-
gate a dynamic programming solution to discrete-time distri-
butionally robust control problems in general finite-horizon
cases and provide conditions for the existence and optimality
of non-randomized Markov policies. This existence result is
based on the lower semi-continuity of an associated dynamic
programming operator. Our dynamic programming approach
identifies an important structural property: the system state is
a sufficient statistic. Second, we propose a dual formulation
of the Bellman equation in cases with conic confidence
sets. This approach converts the computationally challenging
infinite-dimensional minimax problem into a semi-infinite
program, which can be solved by existing convergent al-
gorithms. We also show that the proposed reformulation
is exact using strong duality and the nesting condition for
confidence sets proposed by Wiesemann et al. [9]. The utility
of our approach is demonstrated through an application to a
stochastic inventory control problem.

The remainder of this paper is organized as follows. In
Section II, we introduce the problem setup, including a
dynamic game formulation of distributionally robust control
problems. In Section III, we provide conditions for the
existence and optimality of non-randomized Markov policies
and another set of conditions for the convexity of the value
function. Based on these analytical results, we develop a
duality-based reformulation method for the Bellman equation
in Section IV. A stochastic inventory control problem is
considered in Section V as an application of the proposed
method.

We use the following notation throughout the paper. Given
a Borel space X, P(X) denotes the set of Borel probability
measures on X . Given a cone K, K™ represents its dual cone.
We also let 7 := {0,1,--- ,T—1} and T := {0,1,--- ,T}.

II. PROBLEM SETUP

A. Ambiguity in the Distribution of Disturbances

Consider the following stochastic system subject to the
disturbance {wt}tT:_Ol, w; € R! defined on a standard
probability space (2, F,P):

T = f(@e, up, wy), (D

where z; € R™ is the state, u; € R™ is the control input at
stage t and f : R xR™ xR! — R™ is a measurable function.
We assume that ws and w, are independent for s # ¢. In



many practical situations, the full disturbance distribution
may not be available. To overcome this challenge, we will
investigate a distributionally robust control approach that
minimizes the worst-case cost associated with the system
evolution under information constraints characterized as a
set of probability distributions. We assume that the true
probability distribution p; of w; is not completely known
but contained in a so-called ambiguity set, D;.

Example 1 (Ambiguity with Confidence Sets). Consider the
following set of probability measures:

D, = {p e P(R) | pu(C}) € ). Bil, i € L}, (@)

where Ei,ﬁi € [0,1] are model parameters, C}’s are confi-
dence sets, and I, := {1,--- , N} is a given index set. With
any measure in this set, the probability that w; is contained
in the set C} is between B’i and p..

Note that the user can specify the distributional infor-
mation, such as C; and (p!,p;), that the controller trusts
given data and statistical information about the disturbance.
Another popular type of ambiguity sets in single-stage op-
timization problems is based on moment constraints and
confidence sets [10], [11], [12], [13], [14], [9]. Recently,
statistical distance-based ambiguity sets also received a great
deal of attention since they can be easily designed from an
empirical distribution without requiring a large enough data
samples to estimate moments [15], [16], [17], [18], [19],
[20]. In Section IV, we consider ambiguity sets of the form
(2) that are characterized with conic confidence sets. This
class of ambiguity sets can be intuitively constructed from
empirical distributions, as will be illustrated in Section V.

B. Distributionally Robust Control as a Dynamic Game

Let H; be the set of histories up to stage ¢, whose element
is of the form' hy = (zg,ug, wo,++ , T4—1, Up—1, Wi—1, Ty).
The set of admissible control strategies is chosen as

= {7 = (mo, - ,mr—1)|m(U(xe) | he) = 1 Vhy € Hy},

where U(x) is the set of admissible actions given state x,
and m; is a stochastic kernel from H; to R". Note that the
strategy space is broad enough to contain randomized non-
Markov policies.2 Similarly, we let H{ be the set of ex-
tended histories up to stage ¢, whose element takes the form
h§ = (T0,u0, W0, (s s Tt—1,Ut—1, Wi—1, fht—1, Tt, Ug)-
By viewing the disturbance as an adversarial player who
chooses the disturbance distribution given available informa-
tion h¢, we define the set of admissible distribution strategies
as

Ti={y= (0, ,yr-1) | %D | h§) = 1 Vhi € H;}.

_ TAll the results in this paper are valid with histories of the form
hi == (x0,u0,wo, Ho, " "+, Tt—1,Ut—1,Wt—1, Ht—1,T¢) that also con-
tains Player II's actions (uo,--- ,put—1). However, we use the reduced
version of histories because the realized distributions may not be observable
in practice.

2Suppose that for each ¢, m(- | ht) is concentrated at a measurable
function ¢¢ : R™ — R™ such that ¢¢(z) € U(z) for all z € R™ and
for all hy € H¢. Then, 7 is a (non-randomized) Markov policy and by a
slight abuse of notation 7r; is considered to be identical with ¢;.

Consider the following cost function associated with the
system evolution starting from zy = «:

T—1
Jz[m,y] = E™Y Z r(xe, ue) + qlar)| ,

t=0

where r : R” x R™ — R and ¢ : R® — R are stage-
wise and terminal cost functions of interest. Here, E™" is
the expectation taken with respect to the probability measure
P™7 induced by the strategy pair (7, 7).

Our goal is to choose a control policy that minimizes the
worst-case cost given ambiguous information about the prob-
ability distribution {u;};—," of the disturbance {w;}L '. To
be more precise, we define the optimal distributionally robust
control policies as follows:

Definition 1. A control strategy n* € 1l is said to be an
optimal distributionally robust policy if it satisfies

sup Jp[r*,7] < sup Jp[m, 4] Vrell

yel’ y'el

A desired control strategy can be obtained by solving the
following minimax control problem:

inf sup Jg[m,~]. 3)
WGH,YEIF) [ /ﬂ (

The most important part of this problem formulation is the
inner maximization of the cost function over all probability
distribution policies in the strategy space I', which encodes
distributional ambiguity through D);. One can view this
problem as a two-player zero-sum dynamic game, in which
Player I chooses a control policy to minimize the cost
and Player II selects the disturbance’s distribution strategy
that maximizes the cost. The proposed minimax formulation
implies the following property:

Proposition 1. Suppose that an optimal solution to the
distributionally robust control problem (3) exists and is
denoted by (7*,~*). Then, the following inequalities hold:

Je[7, 7] < Jo[n*,7*] < sup Jg|m,y] V(m,v) eI xT.

y'el
The first and second equalities hold with v = v* and m = 7%,

respectively. In addition, 7w is an optimal distributionally
robust policy.

The first inequality implies that when the optimal pol-
icy m* is employed, the worst-case cost value is equal to
Jz[m*,~7*] for any distributional error consistent with the
constraints in the ambiguity set D; for each t. Thus, this
approach provides a performance guarantee in the form of
an upper-bound, J, [7*, v*], of the cost value, which is tight.
Note that this performance guarantee may not be valid when
a different control policy is employed as shown in the sec-
ond inequality. Furthermore, the second inequality confirms
that an optimal solution to the dynamic game problem (3)
provides an optimal distributionally robust policy.



III. DYNAMIC PROGRAMMING SOLUTION
A. Existence of Optimal Distributionally Robust Policies

We begin by introducing the following dynamic program-
ming operator Ty, t € T
[r(w,u)—l—/ v(f(z,u,w))dp(w)|,
R

Tiv(x):= inf sup

uel(z) peb,
where v is a measurable function on R". We then define the
value function of the distributionally robust control problem
3) as

’Ut(.’B) = Tt o Tt+1 O---0 TT—lq(m)

for each t € T and vp(x) := g(x). By definition, v:(x)
represents the minimal worst-case expected cost value from
stage t to 1" given x; = «. Under the following assumption
for the measurable selection condition, the value function
is lower semi-continuous and thus the distributionally robust
control problem (3) admits a non-randomized Markov policy,
which is optimal.

Assumption 1. The following properties hold:

(1) r(x,u) and q(x) are lower semi-continuous and
bounded below for all (x,u) € R™ x R™ such that

u € U(x);
(i) For each bounded continuous function g : R™ — R,
the function
(e p) = [ ol ww)dpw

is continuous for all (x,u, ) € R™ x R™ x Dy such
that u € U(x);

The set U(x) is compact for each € R™. In addition,
the set-valued mapping x — U(x) is upper semi-
CONtinUoOUs.

(i)

Theorem 1. Suppose that Assumption 1 holds. Then, the
value function vy is lower semi-continuous for each t € T.
Furthermore, there exists a measurable function ¢; : R" —
R™ for each t € T such that ¢.(x) € U(x) and

ve(x) =

o)) + [ v (@ on(e) w)dnto)

sup

pneD:
for all x € R™. The non-randomized Markov policy n* =
(¢0,- -+ ,¢r—1) € Il is an optimal solution to the distribu-
tionally robust control problem (3), i.e.,

’U()(CL') = sup Jm[ﬂ*v/}/]'
el

This theorem can be shown by extending the proof of
Theorem 1 in [7] and Theorem 3.1 in [21]. The key idea
is to show that the lower semi-continuity of v; is preserved
through the dynamic programming operator. We can then
use mathematical induction to show that v; is lower semi-
continuous and thus, the outer minimization problem in the
definition of value functions admits an optimal solution. Note
that Theorem 1 allows us to identify an important structural
property of the distributionally robust control problem: the

system state is a sufficient statistic for Player I (controller)
under Assumption 1. Theorem 1 yields the practical advan-
tage that it suffices to focus on non-randomized Markov
polices when designing an optimal distributionally robust
controller.

B. Bellman Equation

Applying the dynamic programming principle [22], [23],
we can evaluate the value function backward in time as
follows:

Proposition 2. Suppose that Assumption 1 holds. Then, the
value function vy satisfies the following Bellman equation:

vi(T) =
4
min {r(m,u) + sup @
u€eU(x) neD,

/ Vi1 (f (2, w, w))dp(w)
R!

with vy (x) = q(x).

Note that due to Theorem 1 the outer minimization
problem in the Bellman equation admits an optimal so-
lution. From the numerical perspective, however, solving
the Bellman equation is challenging. In addition to the
scalability issue inherent in dynamic programming, this
Bellman equation involves an infinite-dimensional minimax
optimization problem because the disturbance may have a
continuous density. In the next section, we will resolve this
computational issue for an important class of distributionally
robust stochastic control problems in which confidence sets
are specified. With such an ambiguity set, we will show
that an optimal distributionally robust policy can be obtained
by solving computationally tractable semi-infinite programs
when the value function is convex.

C. Convexity of the Value Function

We now show that the value function is convex under the
following conditions:

Assumption 2. The distributionally robust control problem
(3) satisfies the followings:
(@) r: R" xR™ — R and q : R* — R are convex
functions;
(i) f:R™ x R™ x Rl — R™ is an affine function;
(i73) For all X € (0,1) and for all ', x* € R", if u’ €
U(z?), i = 1,2, then Mu! + (1 — N)u? € Uzt +
(1—N)z?).

Proposition 3. Suppose that Assumption 2 holds. Then, the
value function v, : R™ — R is convex for each t € T.

Proof. We use mathematical induction. For ¢t = T, vp :
R™ — R is convex since v = ¢q. Suppose that v, : R” — R
is convex for 7 =T —1,--- ,t+ 1. We now the consider the
value function at stage ¢. Fix A € (0,1) and z!,2? € R™.
For any € > 0, there exists an e-optimal solution u’ € U(x?)
to the outer minimization problem in the Bellman equation
(4) for (t,x?), ie.,

vi(x')+e > r(x', u')+ sup
pneED,

[ et w)ap)



Let z* := Az! + (1 — \)z? and w*
Due to Assumption 2 (i44), u* € U(x

UAwA)SvfwA7u*)+-supl/n1&+ﬂf(wkwu*ﬂvﬁdu6w)
neD; JR!

= Aul + (1 - M
>‘). Thus,

We now notice that f(z*, u,w) = A\f(z', u',w) + (1 —
A) f(2?,u?, w) due to Assumption 2 (44). Since vsyq and r
are convex, we obtain that

Ut(w)‘) < )\r(wl,ul) +(1- )\)r(wQ, u2)

+ Sup/ )\vt+1(f(:1:1,u17w))du(w)
peb; JR!

+ sup /Rl(l — M1 (f (22, 4%, w))dp(w)

pneD:
< Awvg(') + (1= Nvg(x?) + .
Letting ¢ — 0, we conclude that v; is convex. O

Note that this proposition does not require the existence
of optimal distributionally robust policies. Furthermore, we
do not impose any specific structure on the ambiguity set D
for the convexity of the value function.

IV. STRONG DUALITY-BASED REFORMULATION
A. Distributional Ambiguity with Conic Confidence Sets

We now focus on the distributionally robust control prob-
lem with a particular ambiguity set of the form (2) in
Example 1:

D, :={p € P(R') | u(C) € [p},P}], i € Tu},

where Z; := {1,--- , N;} and the confidence set C; has the
following conic representation:

¢ = {w € B | Cluw <y d},

where C! € REX and di € RE: are model parameters, and
K3 is a proper cone. We impose the following assumption:

Assumption 3. The ambiguity set satisfies the following

conditions:

(i) The confidence set C**
1.

(73) There exists a distribution measure p € D, such that
u(Ch) € (E;’ﬁt) whenever Ei <p,icT.

(#i7) (Nesting Condition) For each t € T and all i,i' € T,
such that i # i/, we have either Ci c* CI', CI' c* C!
or CiNC" =), where X C* Y represents that X is
a strict subset of Y.

is compact and pivt = ﬁivt =

The first condition represents that CtN * is the support of fi;.
The second condition ensures that there exists a probability
distribution that satisfies the probabilistic constraints in Dy
as strict inequalities whenever pi < p ;. These two regularity
conditions will guarantee that strong duallty holds based on
the generalized Slater-type results from Shapiro [24] when
the Bellman equation is reformulated in the next subsection.
The third condition is called the nesting condition [9],
which implies that there exists a strict partial order on the
confidence sets regarding the set inclusion and that any

incomparable sets are disjoint. This nesting condition, to-
gether with the two regularity conditions, provides a tractable
dual formulation of the Bellman equation without loss of
optimality.

B. Dual Bellman Equation

We now reformulate the infinite dimensional minimax
optimization problem in the Bellman equation (4) as a semi-
infinite program, which can be numerically solved by exist-
ing convergent algorithms. Furthermore, this reformulation
based on strong duality is exact as shown in the following
theorem.

Theorem 2. Suppose that Assumptions 1, 2 and 3 hold. Then,
the following equality holds for all (t,z) € T x R":3

r(ez,u +Z ik’ —pZ/\l
1€Ts

s.t. (Claw —di)" Z
i’ €A (1)
> v (f(x,u,w)) Yw e CNt VieT,
u € U(x), \,k € th, Ve K,
where Ay(i) := {iY U{i’ € T, |Ci c* CI'}, with the terminal
condition vr(x) = q(x).

Ut(x) - u if-in)\ v

_)\1

Proof. By introducing a slack variable z € R, we can rewrite
the Bellman equation (4) in the following equivalent form:

Ut(x) - uGUi(Imlf,ZE]R i

s.t. sup {r(az, u)

peD,
+ /Rl th(f(a:,u,w))du(w)} <z

for each (¢, x) € T xR™. We first focus on the maximization
problem in the inequality constraint. It can be rewritten as
the following infinite-dimensional linear program:

@ + [ vl w)dew

sup
HEP(RY)

c,'t

/CNt 1{wecg}du(w) < ﬁi Vi € Z;.

Under Assumption 3, the generalized Slater condition holds
[24]. Thus, there is no duality gap and we have the following
dual formulation of the problem above without loss of
optimality:

ian r(z,u) + E Pk’ —pl)\l
t
wAERY €Ty

st v (f(z, u,w)) + Z Liweeiy(A' —£') <0
i€Zy
Vw € CM.
3In the reformulated Bellman equation, min,, is merged with inf, x .

for a compact representation. The minimization problem admits an optimal
solution .



Let B; (i) be the index sets of all the strict subsets of C¢, i.e.,
B.(i) :={i' € Z, | C; C*C}}. We also let

=c\ | o
i €B (1)

Due to the nesting condition, {C},--- ,C}*} is a disjoint par-
tition of the support CtN *. Therefore, the inequality constraint
of the dual problem can be rewritten as

v (f(@uw,w)+ Y (A k') <0Vw el VieT,.

i'€A(7)

The inequality constraint associated with the index ¢ € Z; is
equivalent to

sup Ve (f (2, w, w)) + Z

wed] €A ()

-/

(A — k") <o.

Since w +— vey1(f(x, u, w)) is convex for each (x,u), the
objective function is convex with respect to w. Therefore,
the maximum is attained at the outer boundary of C;. We
now observe that the outer boundary of C} corresponds to
the outer boundary of C} due to the nesting condition [9].
Thus, we can rewrite the ¢th constraint as

Vi1 (f (2, u, w)) + Z

i’ €Ay (i)

v

sup (A — &)

wect
Its dual is given by the following semi-infinite program:

Cinf A e Y (W R
VieK*,0i€R oA
st sup v (f(x, u,w)) — (Clw) v <67
wect

Putting the reformulation results all together, we have that

v () =
inf 2z
s.tor(x,uw) + Z(ﬁini - Ei)\i) <z
€T,
&' o+ Y (W k) <ovier
i1 €A (i)

Vg1 (f(x, u, w)) — (Clw) T < 0V € CN* Vi € T,
wel(z), K, \€RY", v € K}*, z€ R, 6 ¢ RV,

Viewing z and 6 as slack variables, we conclude that the
statement in the theorem holds. O

Note that the convexity of w +— vip1(f(x, w, w)) and
the nesting condition play a critical role in preserving
optimality in the proposed reformulation as originally ob-
served by Wiesemann et al. in the context of single-stage
optimization [9]. When (u, w) — vsi1(f(x, u, w)) is also
piecewise affine, our result is consistent with Theorem 1 in
[9]. Theorem 2 allows us to avoid solving the computation-
ally challenging infinite-dimensional minimax optimization
problems in the original Bellman equation. Instead, we can
evaluate the value function backward in time by solving a

0.3
¢ =13.5,8.5] | il
0.2+~ — == Bl
5 g
[e N -
0.1+~ I L . 1
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ol S T |
0 2 4 6 8 10 12

W

Fig. 1: The empirical distribution fi; of w; and the confidence
sets Ci, i =1,2,3.

semi-infinite program at each (discretized) state. This semi-
infinite program can be solved by several convergent methods
such as primal-dual methods, discretization methods, homo-
topy methods, exchange methods, and constraint sampling
methods (see [25], [26], [27] and the references therein).
Among them, we used the convergent discretization method
developed by Reemtsen [28] in the next section.

V. APPLICATION TO INVENTORY CONTROL

We consider a stochastic inventory control problem to
demonstrate the performance of our distributionally robust
control method. We use the standard setting of stochastic
Newsvendor problems (e.g., [29]). Let x; € R be an
inventory level of interest at stage t. Given the quantity
us € U := [0,10] ordered and the stochastic demand wy
at stage ¢, the inventory level evolves as

Ti41 = Ty + Up — Wy,

fort € 7 :={0,1,---,6}. We assume that any unsatisfied
demand is backlogged for the next stage and thus allow
negative state values. The stage-wise cost function is given
by

r(Te, ur, W) = Comy + up — we) 4 + ey (W — T — ug) 4,

where ¢, = 1 is the overage (or storage) cost and ¢, = 1
is the underage cost (or the cost of lost sales). Fig. 1 shows
the empirical distribution fi; of w,; for all ¢ € T, and the
confidence sets used in our simulations. We choose Bi and
P. as 90% and 110% of [i;(C{). Thus, fi; is contained in the
constructed ambiguity set D).

We compare our distributionally robust controller designed
using D; and the standard stochastic optimal controller
constructed with the empirical distribution fi; when z¢ = 10.
Suppose that the actual distribution z£"“¢ of wy is uniform in
each confidence set and 11;"*(C;) = p!. Then, p;"™° € D,
but pi"¥¢ is different from the empirigal distribution fi;. In
our simulation with 10° trajectories of {w;} sampled from
{utrue}, the distributionally robust control method reduces
the total expected cost incurred by the standard controller
by 29.6%. This result confirms that our controller is robust
against errors in disturbance distributions while the standard
controller is not.

To investigate why the proposed controller performs better
than the standard controller under distributional ambiguity,
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Fig. 2: Tukey box plots of state trajectories controlled by
(a) the standard stochastic optimal controller and (b) the
distributionally robust controller.

we now compare their controlled state trajectories. As shown
in Fig. 2, the distributionally robust controller drives the
median (and the first and third quantiles) of state trajectories
closer to the origin than the standard controller. Since our
controller considers the worst-case distribution in the ambi-
guity set, it can control the system in a desirable manner
(maintaining the inventory level close to zero) even when
ptrue deviates from the empirical distribution fi;. On the
other hand, the standard controller optimizes the system
performance only when p!"“¢ = ji;; otherwise, there is no
performance guarantee. In particular, the standard controller
initially increases the inventory level by using approximately
97% of the maximum allowable control value. This aggres-
sive control action is intended to satisfy demand at later
stages with the limited control range U := [0, 10]. However,
as pul™¢ deviates from fi;, this standard control strategy
generates higher overage costs than expected. On the other
hand, the distributionally robust controller is designed to take
into account such possibilities and is capable of balancing the
overage and underage costs when pi™“¢ = fi;.

VI. CONCLUSION AND FUTURE WORK

We have proposed a duality-based dynamic programming
approach to distributionally robust control problems with
conic confidence sets. The structural property we identified
allows us to focus on non-randomized Markov policies
with state feedback. Our exact duality-based reformula-
tion method also alleviates the computational issues in the
original Bellman equation that involves infinite-dimensional
minimax optimization problems. As a future research, it is
of great interest to develop a scalable numerical method
for the reformulated Bellman equation. Furthermore, adding
risk constraints may help in systematically discouraging
undesirable system behaviors.
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