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Data-Driven Distributionally Robust Control of Energy Storage
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Abstract— Energy storage is an important resource that can
balance fluctuations in energy generation from renewable en-
ergy sources, such as wind, to increase their penetration. Many
existing storage control methods require perfect information
about the probability distribution of uncertainties. In practice,
however, the distribution of renewable energy production is
difficult to reliably estimate. To resolve this challenge, we
develop a new storage operation method, based on the theory of
distributionally robust stochastic control, which has the follow-
ing advantages. First, our controller is robust against errors in
the distribution of uncertainties such as power generated from a
wind farm. Second, the proposed method is effective even with
a small number of data samples. Third, the construction of
our controller is computationally tractable due to the proposed
duality-based dynamic programming method that converts
infinite-dimensional minimax optimization problems into semi-
infinite programs. The performance of the proposed method is
demonstrated using data about energy production levels at wind
farms in the Pennsylvania-Jersey-Maryland interconnection
(PJM) area.

I. INTRODUCTION

To decarbonize the electric power grid, there have been
growing efforts to utilize clean renewable energy sources.
The utilization of wind and solar generation is challenging
because these energy sources are uncertain, intermittent and
non-dispatchable. One solution is energy storage, a method
of storing excess energy which can later be used to com-
pensate for unexpected supply shortages [1]. The rapidly
decreasing cost of large-scale energy storage devices also
makes them attractive resources that can provide flexibility
to the power grids [2]. California, for example, plans to
deploy 1325 MW of utility-scale energy storage by the year
2020 [3]. This accounts for 2% of the state’s peak demand. In
this paper, we consider the use of energy storage specifically
to balance the fluctuations in energy availability from wind
farms with limited information about the distribution of wind
generation outputs.

Previous work has focused on using stochastic optimal
control methods to optimally control energy storage devices
to account for the variability of wind and solar energy gen-
eration. For example, the dynamic-programming approaches
developed in [4], [5], [6], [7] assume that the true shape
of the distribution of wind energy availability is known
exactly. These assumptions are rarely met, and accurate
distribution models are difficult to obtain, for a variety of
reasons. Particularly when historical wind power data is
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Fig. 1: Distribution of wind generation at 3 PM (¢ = 15)
in January 2004-2006 with mean ;4 = 46.6 and standard
deviation ¢ = 34.56, generated from 48 observations. A
scaled Gaussian with the same mean and variance is shown
as well.

scarce, empirical estimations are likely to be highly inac-
curate. Furthermore, a variable such as wind or solar energy
is likely to vary over time, making even distribution estimates
based on real data unreliable. Even when distributional data
is available, attempting to infer the true distribution from
data can often be challenging, and yield misleading results.
For example, consider the data of wind energy shown in
Fig. 1 for a particular hour at wind farms in the PJM area:
the data distribution is clearly not Gaussian, and it would
be extremely difficult to define the continuous probability
density function which best describes this data. Nor are mean
and variance alone enough to describe this behavior. While
it is possible to define a discrete probability mass function
which perfectly fits this set of data, to do so would certainly
be overfitting and would contain inaccuracies.

To account for these difficulties, we propose a new
stochastic control technique that is robust to uncertainty with
regards to the true distribution of the random variable, in
this case power produced by wind generators. This method
is based on distributionally robust stochastic control, which
minimizes the expected value of a given cost function
without assuming the distribution takes a known shape,
but instead that it is drawn from a known set of distribu-
tions (e.g., [8], [9], [10], [11], [12]). In essence, this approach
formulates a control strategy which minimizes expected cost
in the face of the worst-case distribution possible, given the
information that is known about the distribution. It is worth
mentioning that there exist storage control techniques which
do not require the exact distribution of uncertainties [13],
[14]. However, these approaches do not aim to design a



controller that is robust against distributional errors in outputs
of wind generators, unlike our method.

The proposed storage control method has the following
advantages. First, the proposed controller is robust against
distribution errors in data of uncertainties such as power
produced by a wind farm. This is a direct consequence of
the proposed minimax formulation of designing stochastic
controllers. Second, our method can design an effective
controller with a small number of data samples. To define ad-
missible distributions, we employ a moment-based ambiguity
set, which can be constructed from a small data set. We use
historical wind data to compare the performance of the pro-
posed distributionally robust control method with standard
stochastic control methods using a limited number of wind
data samples, and demonstrate the advantages of distribu-
tional robustness. Third, our duality-based dynamic program-
ming method resolves computational challenges by reformu-
lating infinite-dimensional minimax optimization problems
as semi-infinite programs. This reformulation allows us to
avoid discretization of the noise distribution. We also address
the challenges of a non-convex cost function by optimizing
two separate convex components.

The remainder of this paper is organized as follows. In
Section II, we introduce the specifics of energy storage
systems, including the state-of-charge dynamics and cost
structure. A duality-based dynamic programming solution
method is proposed in Section III. Section IV details the
application of this control strategy to a real-world data set
of wind energy, and the comparison to a standard stochastic
controller.

II. PROBLEM SETUP
A. Energy Storage Model

Consider an energy storage system (ESS) such as a sodium
sulfur (NaS) battery, lithium-ion battery, or compressed air
energy storage. Let z; € X' := [z, T| be the state of charge
(SOC) in the ESS at stage ¢. The dynamics of the SOC can
be written as

{,Ct+1:7]($t+ut), tZO, ,T—l, (l)

where the control input w; € U := [u,u] represents the
amount of useful energy to store and the coefficient 7
accounts for the losses that occur between two consecutive
stages. We assume that u; > 0 and u; < 0 represent
charging and discharging, respectively. Since z < z;, < T
and u < u; < 7, the charging/discharging control input must
satisfy the constraint u; € U(x;), where

U(xy) := [max {u, L_ xt},min {u, T th . Q)
n n

The amount of energy drawn from a bus to charge the ESS
by u; > 0 is greater than u; because charging efficiency,
denoted by «, is less than 1. On the other hand, discharging
efficiency, denoted by «, is less than 1, and thus the amount
of energy injected to the bus by discharging —u; > 0 amount
of energy from the ESS is less than —u,. Specifically, the
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total amount of energy drawn from the bus by the ESS is
given by

h(ug) == ai max{u, 0} — ag max{—uy,0}. 3)

c
B. Ambiguity of Wind Power Distribution

Let {w;}1_, be a stochastic process that represents wind
power minus demand (in MW) at the bus connected with a
controllable energy storage device of interest. Its distribution
measure is denoted by ;. Unfortunately, in many cases of
wind energy sources, the probability distribution of w; cannot
be reliably estimated due to the variability of wind generation
outputs. In practice, for example, we may be able to estimate
only the mean and variance of w; with a good accuracy. To
compensate for the variability of wind power using energy
storage, we develop a new stochastic control method that is
robust against errors in the estimated distribution of wind
power. In this work, we use information about the mean and
variance of w,. This motivates us to introduce the following
ambiguity set of probability distributions:

Dy := {p € PR) | e (Wy) = 1, (4a)
B, [we] — mt| < by, (4b)
E,, [(w: — ] <cof},  (4o)

where P(X) denotes the set of Borel probability measures
on X. Constraint (4a) requires the distribution pu; to be
completely defined on support W,. Constraints (4b) and (4c)
constrain the mean and variance of the distribution y; to be
within some confidence parameters b; and c; of the nominal
mean and variance m; and o;.

C. Distributionally Robust Energy Balancing

The total net demand at the bus taking into account the
ESS is given by

5t(ut, wt) = h(ut)

— Wy — S¢,

where s; is the amount of power supplied by conventional
(coal) generators to the bus. Its value is deterministic and
often determined in a day-ahead electricity market. Consid-
ering an energy balancing problem, we set the cost function
as

¢ (ug, wy) := p; max{d(us, wy),0}
+ p; max{—d:(ug, wy), 0},

where p;” and p; are the penalties for each unit of positive
and negative energy imbalance at stage ¢, respectively, such
that p;” > p; . Note that this stage-wise cost function is
piecewise linear but non-convex, in general.

To minimize the worst-case penalties for energy imbal-
ances with limited information about the distribution of wind
generation output, we consider the following distributionally
robust storage control problem:

T—1
inf sup E™7 re(ug, we) +q(xr)|
TK'EH—YGI" ;



where ¢ : R — R is a terminal cost function of interest. We
assume that the control decision u; is made after observing
(z¢,w;). Thus, w; is considered as a second state variable
with stochastic evolution, where the future state w;y; is
drawn from some unknown distribution belonging to the
ambiguity set D;,. Here, the set IT of admissible control

policies is given by II := {7 = (mg, - ,7p—1) | ux =
mi(zy,wy) € U(zy)}. Similarly, the set I' of admissible
wind power distribution policies is given by T' := {y =

(Yo, s ¥r—1) | 41 = Ye(xt,wt) € Dyyq}. Note that the
set D; encodes the ambiguity of wind power distribution. We
also set q(zr) := Clxp — T4es|, where xges is the desired
final battery state, and C'is a fixed penalty term, to penalize
the deviation of the final SOC level from the desired range.
This terminal penalty term is important because, for example,
the storage device must continue to operate for the next day
when T' = 24 h. Note that the designed controller minimizes
the worst-case total penalty no matter how the wind power
distribution changes within the ambiguity set D;. Thus, the
proposed control tool improves the robustness of the closed-
loop system with respect to imperfect (empirical) distribution
information about wind generation output.

III. DUALITY-BASED DYNAMIC PROGRAMMING

In order to determine the globally optimal storage control
policy 7* € II, we use dynamic programming to solve this
distributionally robust stochastic control problem.

A. Bellman Equation

We first define the value function, v;(a, w) which simply
denotes the minimum total cost of the system’s continued
evolution from time ¢ to T — 1, starting at state (x4, w;) =
(z,w). The value function is defined as follows:

'Ut(aj7w) =

-1
] f Eﬂ.’y s sy Vs 5 = s .
#Qn?f;‘r’ ;r (us, ws) + q(@r)|(ze, we) = (@ w)}

Thus, the value function gives the optimal, that is minimum,
total cost in the face of the worst-case possible net demand
(or wind) distribution in the ambiguity set ;. The optimal
control strategy 7 is then the argmin of this term if it exists.!

The value function can also be defined recursively as
follows. For any given state («,w) and control input u at
stage t, vi41(n(x+u), ws41) gives the minimum worst-case
cost from stage ¢+ 1, using the storage dynamics given in (1).
Thus, the cost from stage ¢, for any given state (x,w) and
control input u, can be expressed as r¢(x, u) + ver1 (n(x +
u), wy41). Essentially, the value at stage ¢ is the sum of the
stage-wise or running cost 7; at stage ¢, and the expected
future optimal cost from stage ¢+ 1 that depends on the state
resulting from the control action at stage ¢. This is the key
idea of dynamic programming, expressed by the following

IThe conditions under which the distributionally robust control problem
admits an optimal solution can be found in our previous work [11].
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Bellman equation:
Ut (CC, w) =

inf  sup By, [re(w, w) + v (0(@ + u), wep)] . €
u€el(x) neb; 1

5)

This equation can be very difficult to solve numerically,
due both to the scalability issues inherent to dynamic pro-
gramming and to the fact that we are optimizing over the
infinite-dimensional set D;;; of possible distributions. To
solve this problem, we reformulate this problem as a single
minimization problem over several variables by taking the
dual of the inner maximization problem.

B. Dual Formulation

We can rewrite the inner maximization problem in the
Bellman equation (5) more clearly by making the implicit
constraints (4) of the optimization domain g € Dy ; explicit,
as follows:

sup / re(w, w) + vep1 (@ + w), wepr ) dp(wis)
HEM (R) J Wiy
st.myi; — by < / weprdp(wiyr)
Wit

/ weprdp(wesr) < mypq + by
Wit

/ (wepr — myp1)’dp(wigr) < crp107y
Wit

u(Wip1) =1,

To find the dual of this problem, we first define a few
constants and variables. Let b,,; := by;; — my;; and
b,y = by + myyq. Let A € R and X € R be
Lagrangian multipliers associated with the first two inequal-
ity constraints. Let A € R be the Lagrangian multiplier
associated with the second moment constraint. Finally, let
v € R be the Lagrangian multiplier associated with the final
support constraint. We can then obtain the following dual
optimization problem:

: =T <
inf r(u,w) + b A+b A+ coi Aty
ANA Y
S.t. (X — A)thrl + A(thrl — mt+1)2 +v

> vp1(n(x 4+ u), wip1) Ywi € Wi

AN A>0.
This problem satisfies the assumptions in [11] under which
there is no duality gap. Thus, we can substitute the dual
minimization problem over finite-dimensional Lagrange mul-

tipliers with the original inner maximization problem in (5),
to obtain the following dual Bellman equation:

v(x, w) =

inf o (u,w) + b A+ B:HX +cip107 Aty
wANA,Y
st (N = Nwiyr + A wipr —my 1) +v
> v (n(@ +u), wep1) Ywepr € Wi
MAA >0, ueUx)
(6)



with terminal condition vy (2, w) = g(x). Note that this is a
semi-infinite program, which can be solved by existing con-
vergent algorithms (see Section III-C). Due to the existence
result in [11], for any (¢, x,w) the optimal control action is
the minimizer 7} (2, w) and we obtain the optimal Markov

. * __ 1\ 1T—1
policy 7* = {m} }i .

C. Algorithm

We can numerically solve the dual Bellman equation by
discretizing the state space. Initializing the value function at
terminal stage T as ¢(x) for each w, we compute values
ve(x, w) recursively, by solving the optimization problem
stated in (6) for each possible (discretized) value of x and
w. Of course, while discretizing the state space allows us to
find discrete values of v;(x, w), we must obtain an expres-
sion for the function v¢(n(x + w), w41) in order to solve
for v;—1(x, w). We resolve this challenge by using linear
interpolation to create a set of 1-D continuous functions of

x passing through the values v, (z?,w)), i =1,--- /N,
for each w), j = 1,--- , N, where ) ... (V=) and
w® ... w®™w) are pre-defined grid points.

An additional obstacle is presented by the cost function,
which is not necessarily convex in u. However, we circum-
vent this technicality by noting that the concavity is caused
by a discontinuity in the first derivative at u© = 0.

Proposition 1. We define two functions v} : R, x R — R
and r; :R_ xR —= R as

rf(u, w) :=r¢(u, w) foru>0and weR

ry (u,w) :=riy(u,w) foru <0 and weR.

Then, ri(uw,w) = 7 (u,w) + r; (w,w) for all (u,w) €

R x R and the following convexity results hold:

o 7 (u,w) is convex in u > 0 for each w € R; and

o 7, (u,w) is convex in u < 0 for each w € R.

Proof. Recall that the total amount of energy drawn by
the ESS is given in (3). For uw > 0, h(u) = aiu We
then note that r; (u,w) = p* max{a%u —w — 5,0} +
p~ max{—-u + w + s;,0} since u > 0. Bach element of
the maximization is linear in w. The point-wise maximum
of convex functions is convex, and thus r* (u, w) is convex
in uw > 0.

We now turn our attention to w < 0, where we have
h(u) = aqu due to (3). Thus, for u < 0, we obtain that
ri (u,w) = pT max{agu —w — 84,0} +p~ max{—agu +
w + 54,0}, which has the same structure as ;. Therefore,
the previous argument holds for the convexity of r, (u,w)
in u <0. O]

An example of the cost function r, and its subfunctions
r; and 7, can be found in [15]. Inspired by the convexity
result in Proposition 1, we split the optimization problem
into two subproblems, assuming w is positive or negative,
and compare optimal cost to obtain the final solution. These
steps are collected in Algorithm 1.

Note that for each time step and discretized state point,
we have to solve the semi-infinite program (6). We use
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Algorithm 1: Distributionally robust controller design

Initialize vp(x,w) =q(x) Y(z,w);
discretize ¢ — ™, i=1,---,N,;
discretize w — w), j=1,---, Ny
fort=(T—1)to1do
create v,y (2, w)) using linear interpolation for
j = 17 ) Nw;
set time-dependent parameters by, c;, my, oy;
for () = () to (™) do
determine the constraint U(z(?)) of u using (2);
for w9 = w™ to w™) do
solve (6) for v?’ with argmin u* > 0;
solve (6) for v; with argmin u* < 0;
let vy (2, w)) = min[v;", v; ] and
let 7; (2, w9)) be the corresponding u*;
end for
end for
end for

the convergent discretization method developed in [16] to
solve the problem. However, one can employ other numer-
ical methods such as primal and dual methods, homotopy
methods, discretization methods, and exchange methods (see
[17], [18] and the references therein).

IV. BALANCING WIND ENERGY

A. The Setup

We apply the proposed method to the problem of balancing
wind energy by controlling a large-scale NaS battery. We
start with data containing hourly energy production levels
at 10 different wind farms in the PJM area over a period of
three years. We focus on data from one wind farm during the
months of January and March, each of which gives a set of 96
data points for each hour of the day. First we use equation (4)
to construct an ambiguity set based on our observations so far
of the random variable w1, in this case wind level. When
constructing a moment-based ambiguity set from historical
data, we use empirical mean and variance for nominal mean
and variance m; and o, as well as minimum and maximum
observed values of w; to define the support ;.2 We also set
b; = 0 and c; = 1. Once ambiguity sets are created, we use
Algorithm 1 to find the optimal control policy 7} (x¢, w;) at
each stage t.

We use the model described in Section II, with the
following parameter values: o, = ag = 0.85, p* = 100,
p~ = =200, n = 0.97, and C = 500. We also let
(z,T) = (5,50) MWh, and (u,w) = (—30,30) MW.

2We assume that a portion of demand is balanced by conventional (coal)
generators, and set unmet demand dy, to be the 25% quantile of the empirical
distribution with s; = 0. Therefore, we redefine the random variable wy
by shifting as follows: w¢ <— w¢ — d¢. Thus, at each time the unbalanced
wind power w; has some non-zero mean, standard deviation o¢, and support
Wy = [wmin(t)7 wrnax(tﬂ — d¢.
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B. Comparison to a Standard Stochastic Controller

To evaluate the performance of our distributionally ro-
bust controller, we compare against a standard dynamic
programming-based stochastic controller. We use empirical
data to find the expected value of the cost function by
formulating the observed data as a probability mass function,
where each observed value is equally likely. We divide the
available data at each time into two sets: a training set and a
test set. The training data set is used to construct ambiguity
sets and train the standard controller, while the test data set
is used for evaluation. For these results we consistently use
the last 48 data points as our test set, whose mean-variance
plots are shown in Fig. 2.

We evaluate the performance of different controllers by
simulating the evolution of the system based on the input
of either controller. We initialize g = Zges = %E At
each time ¢, the variable w;y; is drawn randomly from
the corresponding test data set, by selecting one of the 48
datapoints, each with equal probability. We compare the
average total cost incurred by each controller over 10,000
trials. We first examine the performance of the distribu-
tionally robust controller as compared to the size of the
training data set for each month. As shown in Fig. 3 (a), in
January for very small training data sets, the distributionally
robust controller performs slightly better than the standard
controller, earning a total average cost up to 3% smaller
than the standard stochastic controller. However, as the size
of the training data set grows, it provides a more accurate
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Fig. 4: (a) The state-of-charge trajectory under the distribu-
tionally robust controller (blue) and the standard stochastic
controller (red). (b) The two control trajectories. The wind
realization at each time is traced in black.

120 T T T
100
80
60
40
20

T[—training data
——realized wind

wind power (MW)

-20

-40

-60
0

1 1

15 20

25
time (h)

Fig. 5: The distribution of 8-sample training data set (blue)
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estimate of the true distribution of the test data set, and
the distributionally robust controller loses its advantage. We
observe a different behavior when evaluating the perfor-
mance of the distributionally robust controller on data from
March, as shown in Fig. 3 (b). This figure shows that the
distributionally robust controller performs close to 6% better
than the standard controller, and the relative performance
does not deteriorate with the size of the training data set.
To understand this difference, we examine the training and
test data sets for each month, as shown in Fig. 2. From these
mean-variance plots of the training and test data distributions,
we can see that both data sets are fairly similar for January,
as opposed to having remarkably different distributions for
March. The distributionally robust controller demonstrates a
superior performance in situations where the test data is not
represented by the training data. This is the case for March,
but not for January. It is important to note that while the
distributionally robust controller offers little advantage for
larger data sets in January, it does not exhibit a performance
significantly inferior to the stochastic controller either. Faced
with choosing a controller for a month with an unknown test
data distribution, it is still safest to use the distributionally
robust controller.

To understand why the distributionally robust controller
performs better than the standard controller in most cases,
we now focus on the case of a training data set consisting of
8 samples, from the month of March. The state and control
trajectories for a particular realization of wind energy ran-
domly sampled from the test data sets are shown in Fig. 4. On



this trial, the distributionally robust controller achieves a total
cost that is 67.8% of the total cost incurred by the standard
controller. Fig. 4 (b) shows the wind realization overlaid
in black. From this, we can see how both controllers are
primarily driven to match the realization of wind generation
output w; at each time step, while satisfying the terminal
conditions, with roughly similar state trajectories. However,
at times 2, 5, 16, and 18 h, we can see the distributionally
robust controller accurately meet the wind realization while
the the standard controller discharges the battery more than
necessary. In particular, at 18 h the battery SOC is close
to saturation as shown in Fig. 4 (a). The training data set
predicts the wind realization at the next time step will be
large, with a mean of approximately 40 MW as shown in
Fig. 5. The distributionally robust controller, which chooses
a control value to match the wind at 18 h, retains a high
SOC at 19 h, and thus the maximum allowed control value
is approximately 15 MW. The standard controller discharges
the battery by a greater amount at 18 h, resulting in a lower
SOC. Thus, the standard controller has a higher maximum
allowed control value at 19 h of 30 MW, allowing it to better
match a hypothetical large wind power realization. Note that
it is cheaper for the standard controller to overly discharge
the battery at 18 h than to be unable to absorb excess wind
at 19 h. Essentially, the standard controller is choosing to
incur a small cost in the present to prevent a larger cost
at the next time stage. However, this trade-off only makes
sense if the controller is sure of the future cost. Hence,
the distributionally robust controller simply matches wind
power realization at 18 h, as the ambiguity set expresses
less confidence in the prediction of high wind levels at 19 h.
As shown in Fig. 5, the prediction of the training data set
was incorrect, and wind energy at 19 h was low, resulting in
a lower cost for the distributionally robust controller. We can
observe from Fig. 2 that the training set consists of data with
a higher mean than the test data set, and most realizations
of wind energy will have a lower mean than the training
data set. The distributionally robust controller is less willing
to incur cost in the present to prevent possible future costs,
being less certainly of future wind estimates, as shown in
the example of times 18 and 19 h. Thus, it has an advantage
when the training data is sufficiently different than the test
data.

V. CONCLUSIONS AND FUTURE WORK

We investigated a distributionally robust stochastic control
method in the use of energy storage to balance fluctuations in
wind power. Using the same sample data to design ambiguity
sets and construct a standard stochastic controller, we find
that the distributionally robust controller has a superior
performance when training data is sparse (in the case of
January), or when there is a fundamental difference in the
distribution of training and test data sets (in the case of
March). The distributionally robust controller has a more
conservative response to predictions of extreme values of
future wind energy. This clearly demonstrates the advantages
of the distributionally robust controller for the application
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of energy balancing, where our estimate of wind power
distribution is likely to be inaccurate.

Future work involves expanding the distributionally robust
controller to take advantage of the potential correlation of
wind generation outputs across time. Possible future work
also includes coordinating energy storage systems across
the power grids, which results in an interesting network
control problem. Another possible direction is to refine the
construction of ambiguity sets. While it is intuitive to create
a family of distributions by constraining their mean and
variance to be within some bound, it may be useful to group
similar distributions using Wassertien distance or confidence
intervals.
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