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Abstract: This paper proposes a new control method that can save the energy consumption
of multi-case supermarket refrigerators by explicitly taking into account their interconnected
and switched system dynamics. Its novelty is a bilevel combinatorial optimization formulation to
generate ON/OFF control actions for expansion valves and compressors. The inner optimization
module keeps display case temperatures in a desirable range and the outer optimization module
minimizes energy consumption. In addition to its energy-saving capability, the proposed con-
troller significantly reduces the frequency of compressor switchings by employing a conservative
compressor control strategy. However, solving this bilevel optimization problem associated with
interconnected and switched systems is a computationally challenging task. To solve the problem
in near real time, we propose two approximation algorithms that can solve both the inner and
outer optimization problems at once. The first algorithm uses a linear approximation, and the
second is based on the submodular structure of the optimization problem. Both are (polynomial-
time) scalable algorithms and generate near-optimal solutions with performance guarantees. Our
work complements existing optimization-based control methods (e.g., MPC) for commercial
refrigerators, as our algorithms can be adopted as a tool for solving combinatorial optimization
problems arising in these methods.
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total commercial energy consumption in the United States
(U.S. Department of Energy [2012]). Therefore, there is a
strong need for energy-efficient refrigeration systems, but
research and development have focused on improving hard-
ware rather than software, including control systems. Tra-
ditionally, hysteresis and set point-based controllers have
been used to maintain the display case temperature in a
desirable range without considering system dynamics and
energy consumption. Over the past decade, however, more
advanced control systems have been developed to save
energy consumption using real-time sensor measurements
and optimization algorithms (see Section 1.1). Advances
in new technologies, such as the Internet of Things and
cyber-physical systems, enhance the practicality of such
an advanced control system with their sensing, communi-
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Fig. 1. A supermarket refrigerator, which has 10 display
cases. Evaporator ¢ controls the temperature of dis-
play case i. Lines with arrows represent heat trans-
fers between neighboring display cases or between a
display case and ambient air.

by $1 is equivalent to increasing sales by $59 (ES2 [2008]).
However, improving the energy efficiency of supermarket
refrigerators is a challenging task because food products
must be stored at proper temperatures. Failure to do so
will increase food safety risks. The most popular refrig-
erators in supermarkets are multi-display case units. An

cation, and computing capabilities (Graziano and Pritoni
[2014]).

Supermarkets are one of the most important commercial
sectors in which energy-efficient refrigeration systems are
needed. The primary reasons are twofold. First, supermar-
ket refrigerators consume 56% of energy consumed by com-
mercial refrigeration systems (Navigant Consulting, Inc.
[2009]). Second, supermarkets operate with very thin profit
margins (on the order of 1%), and energy savings thus
significantly help their business: the U.S. Environmental
Protection Agency estimates that reducing energy costs

* This work was supported in part by the NSF under CRII:CPS
(CNS1657100).

example is illustrated in Fig. 1. Each display case has
an evaporator controlled by an expansion valve, and a
unit’s suction pressure is controlled by a compressor rack,
as shown in Fig. 2. In typical supermarket refrigerators,
controllers turn ON and OFF expansion valves and com-
pressors to keep display case temperatures in a specific
range. Importantly, there are heat transfers between dis-
play cases due to the interconnection among them. Note
that traditional hysteresis or set point-based controllers
do not take into account such heat transfers and therefore
perform in a suboptimal way.

This paper proposes a new control method that can
improve the energy efficiency of multi-case supermarket
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Fig. 2. Schematic diagram of a supermarket refrigerator.

refrigerators by explicitly taking into account the inter-
connected and switched dynamics of display case tem-
peratures. The proposed controller receives sensor mea-
surements and optimizes ON/OFF control actions for ex-
pansion valves and compressors in near real time. The
novelty of this work is a bilevel combinatorial optimization
formulation to generate such ON/OFF control signals in
which (¢) the inner combinatorial optimization module is
responsible for maintaining display case temperatures in a
desirable range, and (ii) the outer combinatorial optimiza-
tion module minimizes energy consumption. The primary
advantage of the proposed approach is its energy savings.
Because the controller explicitly takes into account the sys-
tem dynamics and heat transfers, it effectively uses state
measurements and optimizes control actions to save energy
while guaranteeing desired temperature profiles. In our
case studies, the proposed control method saves 7.5-8% of
energy compared to a traditional approach. The secondary
benefit of the proposed method is to reduce the frequency
of compressor switchings. It is known that frequent switch-
ings of compressors accelerate their mechanical wear. We
propose a conservative compressor control approach that
reduces fluctuations in suction pressure and thus decreases
the compressor switching frequency. In our case studies us-
ing a benchmark refrigeration system model, the proposed
method reduces the switching frequency by 54-71.6%.

The proposed control method, however, presents a theoret-
ical and algorithmic challenge because a bilevel combinato-
rial optimization associated with a dynamical system must
be solved in near real time. To overcome this challenge, we
suggest two approximation algorithms that can solve both
of the inner and outer optimization problems at once. The
first algorithm uses the linear approximation method de-
veloped in our previous work (Yang et al. [2016]). The ap-
proximate problem is a linear binary program, which can
be solved by an efficient and scalable single-pass algorithm.
In addition, it simulates the dynamical system model only
once to generate control actions at each time point. We
also show that the approximate solution obtained by this
method has a provable suboptimality bound. The second
algorithm is based on the submodular structure in the opti-
mization problem. The inner optimization’s objective func-
tion is submodular because opening an expansion valve
when a smaller set of valves are opened gives a greater
marginal benefit than opening it when a larger set of valves
are already opened. We prove this intuitive submodularity
property. Therefore, a greedy algorithm can be adopted to
obtain a (1—1)-optimal solution (Nemhauser et al. [1978]).
In our case studies, the actual performance of the proposed
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controller using these two algorithms is 98.9-99.5% of the
optimal controller.

1.1 Related Work

Several optimization-based control methods for commer-
cial refrigerators have been developed over the past decade.
One of the most popular methods is model predictive
control (MPC) although it is computationally challenging
to apply standard MPC due to the switched dynamics of
refrigeration systems. It is shown that the mixed logical
dynamical framework is useful to solve small-size prob-
lems with a piecewise affine approximation of a system
model (Bemporad and Morari [1999], Larsen et al. [2005]).
However, the practicality of this method is questionable
due to the high dimensionality of practical problems for
supermarket refrigerators, except for limited cases. To
overcome this limitation, Sarabia et al. [2009] carefully se-
lects and parametrizes optimization variables to formulate
the problem as nonlinear MPC instead of hybrid MPC.
Nonetheless this approach is computationally expensive
because a nonlinear program with many variables must
be solved in each MPC iteration. An alternative approach
using hierarchical MPC is proposed in Sonntag et al.
[2008]. This method separates time scales into two: in every
nonlinear MPC iteration, low-level temperature controllers
were employed, and the high-level optimization task is
to determine optimal parameters for these controllers.
However, this approach still presents the combinatorial
growth of the search space. More recently, a sequential
convex programming-based method is shown to be compu-
tationally efficient in several case studies (Hovgaard et al.
[2013]). It iteratively solves an optimization problem using
convex programming, replacing the nonconvex cost func-
tion with a convex approximation. In several numerical
experiments, this heuristic method generates high-quality
control signals although it gives no theoretical performance
guarantee. We believe that our work is complementary to
the aforementioned methods. One of our main contribu-
tions is to develop two efficient and scalable algorithms for
resolving the computational challenge in discrete optimiza-
tion problems associated with supermarket refrigeration
systems. These algorithms can be adopted as a tool for
solving combinatorial optimization problems in the afore-
mentioned methods. We propose one of the most efficient
control architectures that use the algorithms.

2. SWITCHED DYNAMICS OF SUPERMARKET
REFRIGERATION SYSTEMS

We consider a supermarket refrigerator in which multiple
display cases are interconnected with one another. For
example, Fig. 1 shows a refrigerator that has 10 display
cases. The temperature of each display case is controlled
by an evaporator unit, where the refrigerant evaporates
absorbing heat from the display case. Let evaporator i be
in charge of display case i for ¢ = 1,---,n, where n is
the number of display cases in all the refrigerators. Several
dynamic models of supermarket refrigeration systems have
been proposed (Rasmussen and Alleyne [2006], Larsen
et al. [2007], Li and Alleyne [2010], Rasmussen [2012],
Shafiei et al. [2013] (see also the references therein)).
Among those, we use the benchmark model of a typical
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supermarket refrigeration system proposed in Larsen et al.
[2007] and widely used in Sarabia et al. [2009], Sonntag
et al. [2008], Yang et al. [2011], Vinther et al. [2015]. This
model is useful for simulating display case temperatures
and evaluating the performances of several controllers.

2.1 Display Cases and FEvaporators

Display cases store food products and keep them refriger-
ated. This refrigeration is due to the heat transfer between
the food product and the cold air in the display cases.
Let Ttooa,i and Ty;, ; denote the temperatures of the food
product and the air in display case i. The heat transfer
Qtooa—air,; Petween the food product and the air in display
case ¢ can then be modeled as

mfood,icfood,inood,i = _Qfood—>air,i (1>

= _kfood—air(ﬂood,i - Tair,i)v
where Myg,0q,; is the mass of the food product, ceoq,; is the
heat capacity of the food product and k¢,oq_ai. is the heat
transfer coefficient between the food product and the air.

The display case air temperature is affected by the heat
transfers from the food product (Qtood—sairi), the ambient
alr (Qamb—air,i), the evaporator (—Quir—evapi) and the
neighboring display case air (Z?:l Qj—i). The refrigerant
flow into an evaporator is controlled by its expansion valve.
Let u; be the valve control variable for evaporator ¢ such
that
ws(t) = { 0 if expansion valve i is closed at t
LA 1 otherwise.

Expansion valve ¢ controls the refrigerant injection into
evaporator i and decreases the pressure of the refrigerant
if it is open, as shown in Fig. 2. Then, the dynamics of
the display case air temperature can be modeled as the
following switched interconnected system:

mair,icair,iTair,i

n
= Qfood—>air,i + Qamb—>air,i - Qair—)wall,i + E Q]—)Z

o~ (2)
- kfood—air (Tfood,i - Tair,i) + kamb—air (Tamb - Tair,i)

n
- kair—cvap (Tair,’i - chapui) + Z k’L,] (Tair,j - Tair,i)a
j=1

where T, is the ambient air temperature, T.,,, is the
refrigerant’s evaporation temperature, k,.,,_.i- is the heat
transfer coefficient between the ambient air and the display
case air and k;; is the heat transfer coefficient between
display case i’s air and display case j’s air. Note that
ki ; = 0 if display cases ¢ and j are not neighbors. For
a more detailed model, one can separately consider the
dynamics of the evaporator wall temperature Sarabia et al.
[2009].1 However, the proposed model is a good approx-
imation because the heat transfer coefficient between the
evaporator wall and the refrigerant is five to ten times
higher than other heat transfer coefficients Larsen et al.
[2007].

The mass flow out of the evaporator can be computed as
f 1
AL
1 Alternatively, one can introduce a delay parameter, 7, and replace
Tovapi(t) with Tevapu;(t — 7) to explicitly take into account the
effect of the evaporator wall temperature.

mrcf,i ’
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where the refrigerant mass in the evaporator is controlled
by the electronic expansion valve switching

max if gy =1

m
m J— ref .
ref,i { 0 if U; = 0.

Depending on the specification of refrigerators, it takes
a nontrivial amount of time to fill up the evaporator by
refrigerant. In this case, the dynamics of the refrigerant
mass in the evaporator can be explicitly taken into account
Sarabia et al. [2009]. Alternatively, one can introduce a
delay-time constant, 7, and let My ;(t) = maf*u;(t — 1)
to model the effect of the time to fill up the evaporator.

2.2 Suction Manifold and Compressor Rack

As shown in Fig. 2, the evaporated refrigerant with low
pressure from the outlet of the evaporator is compressed
by the electric motors in the compressor bank. Each
refrigerator could have multiple compressors and each
compressor is switched ON or OFF. For example, all the
compressors are turned ON when maximal compression is
needed. The compressor bank is conventionally controlled
by a PI controller to maintain the suction pressure within
a bandwidth.

The suction manifold pressure P, evolves with the fol-
lowing dynamics:

v 17“ <Z fi = Psuc ZCFC'L> , (3)
suc'’! suc 1:1 2:1

where V. is the volume of the suction manifold, pg,. is
the density of the refrigerant in the suction manifold, and
Tsue = APsuc/dPsyc. The variable Fi; denotes the volume
flow out of the suction manifold controlled by compressor
i. Let u.; be the control variable for compressor ¢, where
Uc,; = 0 represents that compressor ¢ is OFF and u.; =1
represents that compressor ¢ is ON. The volume flow F_ ;
is then given by

Psuc:

n‘/comp
Fc,i = kcuc,i = Uc,iy
n
where 7 is the volumetric efficiency of each compressor,
and Vomp denotes the compressor volume.

The total power consumption by the compressor rack is
given by

Ne
b= psuc(hoc - hzc) Z Fc,i7
i=1

where h;. and h,. are the enthalpies of the refrigerant
flowing into and out of the compressor, respectively. The
compressed refrigerant flows to the condenser and is lique-
fied by generating heat, as shown in Fig. 2. The liquefied
refrigerant flows to the expansion valve, and as a result,
the refrigeration circuit is closed.

2.8 Traditional Set-Point/PI-Based Control

A widely used control method consists of (i) a set-point
based control of expansion valves, and (ii) a PI control
of compressors Larsen et al. [2007], Sarabia et al. [2009].
The specific simulation setting used in this paper is con-
tained in the extended version of this paper (Yang [2016]).
We perturbed the mass of food products in each display
case by £20% from the nominal value Mgoaq,. Despite
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Fig. 3. (a) The food temperatures in display cases 1-
5, operated by the PI controller over 8 hours. The
temperatures in all display cases are almost identical.
(b) The number of ON compressors operated by the

PI controller.

this heterogeneity, the set point-based controller almost
identically turns ON and OFF all the expansion valves
and therefore all the display case temperatures have al-
most the same trajectory as shown in Fig. 3 (a). This
synchronization is due to the decentralized nature of the
set point-based controller: the control decision for expan-
sion valve ¢ depends only on its local temperature. Intu-
itively, this decentralized controller is suboptimal because
it does not actively take into account the heat transfer
between neighboring display cases. This inefficiency of
the traditional control approach motivates us to develop
a new optimization-based control method that explicitly
considers the interdependency of display case temperature
dynamics.

Another disadvantage resulting from the synchronization
of expansion valves is the significant fluctuation of suction
pressure. Since the PI controller integrates the deviation
of suction pressure from its reference, the output upy(¢)
presents large and frequent variations. As a result, the
number of ON compressors frequently varies as shown in
Fig. 3 (b). A frequent switching of compressors is a serious
problem because it accelerates the mechanical degradation
of the compressors. Our strategy to discourage frequent
compressor switchings is twofold: (¢) our conservative com-
pressor control method tries to maintain P, (t) = Piye,
not fully utilizing the pressure bandwidth £DB, and (i4)
our online optimization-based controller indirectly desyn-
chronizes the ON/OFF operation of expansion valves. The
details about the two control methods are presented in the
following sections.

3. ONLINE COMBINATORIAL OPTIMIZATION
3.1 Conservative Compressor Control

We control the compressor rack to (approximately) main-
tain the suction pressure as the reference P, i.e.,

P (t) =~ P, V.

In other words, to make P, = 0 in (3), we set u, :=
(Ue,1, -+, Ue,n, ) such that the refrigerant outflow from the
suction manifold is equal to the inflow:

Psuc ZC kcuc,i ~ Z fz (4)
i=1 i=1
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In practice, we may not be able to exactly satisfy this
equality because each wu.; is either 0 or 1. However, we
assume that the compressor control action u. can be cho-
sen to make the difference between the outflow and the
inflow negligible. This compressor control rule is subopti-
mal: it induces a conservative operation of the compressor
rack that does not fully utilize the pressure bandwidth.
However, this conservative control approach has a practi-
cal advantage: it does not create significant compressor
switchings. Therefore, it can potentially decelerate the
mechanical wear of compressors. Under this compressor
control rule, the total power consumption can be computed
as

- hoc - hic mi‘gax -
p= (oo — i) 3 i = eI §m
=1 =1

3.2 Bilevel Optimization Formulation

We consider a receding-horizon online optimization ap-
proach to generate control signals for expansion valves
and compressors. Let {tg,t1, - ,tg, tg+1,- - } be the time
steps at which the control action is optimized. For the
sake of simplicity, we describe a one-step look-ahead op-
timization method; however, this approach can be easily
extended to multiple-step look-ahead optimization (see
Remark 2).

Inner problem for temperature management At time ty,
we control the expansion valves to minimize the following
quadratic deviation from the upper-bound T;"**, i =
1, PR 5 n:

n tr41 )

sa) =3 [ s = T2,
i=1"tk

where (a)3 = a? - 1¢,>0}, assuming Tl;, is evolving with

(1) and (2). Specifically, the expansion valve action at tj

is generated as a solution to the following combinatorial

optimization problem:

i J 6
L (a) (6a)
st. 2=Azx+ Bu+C, z(tk) = Xmeas (6b)
ut) =a, te (tktpl (6¢)
laflo=> o < K. (6d)
i=1
Here,  := (Ttooa, Tnir) and (6b) gives a linear system

representation of the dynamics (1) and (2). Note that X,,eas
represents (Tiood, Toir) measured at t = tj.2 As specified
in (6¢), the control action over (t,tr4+1] is fixed as the
solution «. The last constraint (6d) essentially limits the
power consumed by the refrigeration system as K (hoe —
hic)m™e* /At due to (5). Therefore, the choice of K is

important to save energy: as K decreases, the power
consumption lessens.

Outer problem for energy efficiency To generate an
energy-saving control action, we minimize the number
K of open expansion valves while guaranteeing that the
quadratic deviation J(«) from the upper-bound 7;°**, i =

2 If Tgooq is not directly measured, an observer needs to be employed
to estimate the state. Then, the control system uses the estimate

Tfiif 4 instead of its actual measurement.
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1,---,n is bounded by the threshold A. More precisely,
we consider the following outer optimization problem:
min{K € {0, ,n} | J(@7(K)) <A}, (7)
where a°P'(K) is a solution to the expansion valve opti-
mization problem (6). Let K°P* be a solution to this prob-
lem. Then, a®P*(K°P') is the expansion valve control action
that saves energy the most while limiting the violation of
the food temperature upper-bound 7;"**, ¢ = 1,--- ,n.
This outer optimization problem can be easily solved by
searching K from 0 in an increasing order. Once we find
K such that J(a?*(K)) < A, we terminate the search

and obtain the solution as K°P' := K. In the following
section, we will show that this procedure can be integrated
into approximation algorithms for the inner optimization
problem.

Then, as specified in (6¢), the controller chooses u°P!(t) :=
a®Pt(K°Pt) for t € (tg,tx4+1]. Furthermore, it determines
the compressor control signal u¢* such that 37, ul! ~
M [ (psuckcAt) using (4). If Pue(t) < P, the con-
troller rounds m™2* /(p..ckc.At) to the next smaller inte-
ger and then determines the number of ON compressors
as the integer. If P...(t) > Piu., the controller rounds
m22* /(puckcAt) to the nearest integer greater than or
equal to it.

Remark 1. Our objective function J(«) only takes into
account the violation of temperature upper-bounds. This
choice is motivated by the fact that the food temperature
in each display case increases as we close more expansion
valves, which is summarized in Proposition 1. In other
words, as we reduce the number K of open valves in the
outer optimization problem, the possibility of violating
temperature upper-bounds increases, while it is less likely
to violate temperature lower-bounds. This monotonicity
property of food temperatures justifies our focus on tem-
perature upper-bounds.

Proposition 1. Let T and T, . denote the food and

. .. ~food,j air] X
air temperatures in display case j when the control action

« is applied. Then, for any «, 8 € R™ such that

aigﬁiv izla"'vna
we have
B B s
ngod,j 2 z}ood,j and Ta?r,j Z Tair,j’ J = 1’ L2

Its proof can be found in Appendix A.
4. APPROXIMATION ALGORITHMS

We present two approximation methods for the inner
optimization problem. One is based on linear approxi-
mation, and another utilizes submodularity. These will
give approximate solutions with guaranteed suboptimality
bounds. We further show that, by simply modifying these
approximation algorithms, we can obtain a near-optimal
solution to the outer optimization problem.

4.1 Linear Approzimation

We first consider a linear approximation-based approach
to the inner combinatorial optimization problem (6). It is
convenient to work with the following value function:

Vie) = J(0) = J(a). (®)

7393

Initialization:

a <+ 0;

Construction of d:

Compute DV (0);

Sort the entries of DV'(0) in descending order;
Construct d : {1,--- ,n} — {1,--- ,n} satisfying (10);
Solution of (9):

while [DV(0)]q;) > 0 and i < K

aq) < 1

141+ 1;

end

Algorithm 1. Algorithm for the approximate problem (9)

The value V(o) represents the reduction in the quadratic
deviation from from the upper-bound 7;"**, i =1,--- | n,
when expansion valve j is chosen to be open only for j such
that a; = 1. Note that this value function is normalized
such that V(0) = 0. The Taylor expansion of V at 0
gives V(a) = DV(0)Ta + O(a?) assuming the derivative
DV is well-defined. This motivates us to consider the
following first-order approximation of the expansion valve
optimization problem (6):
T .

anes {DV(0) o [lafo < K}. (9)
The ith entry [DV(0)]; of the derivative represents the
marginal benefit of opening expansion valve i. There-
fore, the approximate problem (9) can be interpreted as
maximizing the marginal benefit of valve operation while
guaranteeing that the number of open valves is less than or
equal to K. A detailed method to define and compute the
derivative can be found in Yang et al. [2016]. Computing
the derivative should also take into account the depen-
dency of the state x on the binary decision variable «. For
example, an adjoint-based approach can be used to handle
this dependency (Kokotovi¢ and Heller [1967]).

The first advantage of the proposed approximation ap-
proach is that it gives an approximate solution with a
provable suboptimality bound. The bound is a posteriort,
which does not require the globally optimal solution P!
but the solution a* of (9).

Theorem 1. (Yang et al. [2016]). Let o* be a solution to

the approximate problem (9). If DV (0)Ta* # 0, then the
following suboptimality bound holds:

pV () < V(a¥),
where
_ Vi)
P=DVo)Tar =
If DV(0)Ta* = 0, then V(a°?) = V(0) = 0, i.e., 0 is an
optimal solution.

Its proof is contained in Appendix B. This theorem
suggests that the approximate solution’s performance is
greater than (p x 100)% of the globally optimal solution’s
performance.

The second advantage of the proposed method is that it
yields an efficient algorithm to solve the approximate prob-
lem (9). Specifically, we design a very simple algorithm
based on the ordering of the entries of DV(0). Let d(-)
denote the map from {1,--- ,n} to {1,--- ,n} such that

[DV(0)]agy > [DV(0)]ag) (10)
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for any 4,j € {1,--+ ,n} such that ¢ < j. Such a map can
be constructed using a sorting algorithm with O(nlogn)
complexity. Such a map may not be unique. We let
agiy = 1 for: =1,--- K if [DV(O)]d(i) > 0. A more
detailed algorithm to solve this problem is presented in
Algorithm 1. Note that it is a single-pass algorithm, i.e.,
does not require multiple iterations. For large problems,
one may be able to use an O(n) algorithm without sorting
(Balas and Zemel [1980]).

Remark 2. The proposed linear approximation method
is applicable to multi-period optimization problems, in
which the objective is given by J(«) := Zgi"f“’d Ji (o)
and the control variable is time-varying, ie., a =
(al, -, aNperiod) ¢ R"*Nperiod In such a case, we com-
pute the derivative DVj, of Vi(a¥) := Ji(0) — Jx(a¥) for
each k. The objective function can be approximated as

Zivfl””d DV;,(0) "o, which is still linear in .
4.2 Submodularity

The second approach gives another approximate solution
of the expansion valve optimization problem (6) with a
suboptimality bound. This solution is generally different
from the solution obtained by the first approach. Let
Q = {1,---,n} be the set of expansion valves to be
controlled. We define a set function, V : 22 — R, as
V(X) = V(I(X)),

where the value function V' is defined as (11) and I(X) :=
(I (X),---,I,(X)) € {0,1}" is the indicator vector of the
set X such that I;(X) :=0ifi ¢ X and I;(X) :=1ifi € X.
In other words, V is a set function representation of V. The
expansion valve optimization problem (6) is equivalent to
selecting the set X C Q such that | X| < K to maximize
the value function V(X), i.e.,

max X)X < K} (11)

We observe that the value function V has a useful struc-
ture, which is called the submodularity. It represents a di-
minishing return property such that opening an expansion
valve when a smaller set of valves is opened gives a greater
marginal benefit than opening it when a larger set of valves
is already opened.
Theorem 2. The set function V : 2 — R is submodular,
ie,forany X CY CQand anyaec Q\Y,

V(X U{a}) - V(X) >V U{a}) - V().
Furthermore, it is monotone, i.e., for any X CY C Q

V(X) <V(Y).

See Appendix C for a proof.

Initialization:

X « 0

Greedy algorithm:

while i < K

a* € argmaxaco\x V(X U {a});
X+ X Uu{a*};

141+ 1;

end

Algorithm 2. Greedy algorithm for (11)

The submodularity of V guarantees that Algorithm 2,
which is a greedy algorithm, provides an (1 — é)—optimal
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solution. In other words, the approximate solution’s per-
formance is greater than (1 — 1) ~ 63% of the oracle’s
performance. In our case study, the actual submodularity
is 98.9%, which is significantly greater than this theoretical
bound.

Theorem 3. (Nemhauser et al. [1978]). Algorithm 2 is a
(1 — %)—approximation algorithm. In other words, if we
let X* be the solution obtained by this greedy algorithm,
then the following suboptimality bound holds:

1
(1 7) v < v,
e
where X°P! is an optimal solution to (11).

Algorithm 2 makes a locally optimal choice at each iter-
ation. Therefore, it significantly reduces the search space,
i.e., it does not search over all possible combinations of
open expansion valves.

while [DV(0)]q(;) > 0 and J(a) > A
g < L

141+ 1;

end

Algorithm 3. Modified version of Algorithm 1 for the outer opti-
mization problem (7)

4.8 Modified Algorithms for the Outer Problem

We now modify the two approximation algorithms for the
inner problem (6) to solve the full bilevel optimization
problem. In both Algorithms 1 and 2, the expansion
valve chosen to be open at iteration i is independent of
the selections at later iterations. This independency plays
an essential role in incorporating the outer optimization
problem into the algorithms. To be more precise, we
compare the cases of K =l and K = [+1. Let ! and o/ *!
be the solutions in the two cases obtained by Algorithm 1.
Since the expansion valve selected to be open at iteration
[+1 does not affect the choices at earlier iterations, we have

aii(i) = ozldtil) fori =1,--- 1. Therefore, we do not have to

re-solve the entire inner optimization problem for K = (41
if we already have the solution for K = [; it suffices to run
one more iteration for ¢ = [ 4+ 1 to obtain affgllﬂ). This
observation allows us to simply modify the last part of
Algorithm 1 as Algorithm 3. We select expansion valves
to be open until the temperature upper-bound violation
J(a) is less than or equal to the threshold A. Similarly,
we modify the last part of Algorithm 2 as Algorithm 4 to
solve the outer problem.

while J(I(X)) > A

a* € argmax,co\x V(X U {a});

X ¢ XU{a);

i+ 1+ 1; end

Algorithm 4. Modified version of Algorithm 2 for the outer opti-
mization problem (7)

5. CASE STUDIES

In this section, we examine the performance of the pro-
posed online optimization-based controllers. For fair com-
parisons with the traditional controller, we use the param-
eter data reported in the extended version (Yang [2016]).
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Fig. 4. The food temperatures (in 5 display cases out of
10) controlled by (a) the linear approximation-based
algorithm (Algorithm 3), and (b) the submodular

optimization algorithm (Algorithm 4).
5.1 Energy Efficiency

As opposed to the synchronized food temperature profiles
controlled by the traditional method (see Fig. 3 (a)), the
proposed controllers induce alternating patterns of the
temperatures as shown in Fig. 4. Such patterns result from
the explicit consideration of heat transfers between neigh-
boring display cases in the optimization module through
the constraint (6b), which represents the interconnected
temperature dynamics. Using the spatial heat transfers,
the proposed controllers do not turn ON or OFF all the
expansion valves at the same time. Instead, they predict
the temperature evolution for a short period and selects
the valves to turn ON that are effective to minimize the
deviation from the desirable temperature range during the
period. As a result, the ON/OFF operation of expansion
valves is desynchronized, unlike in the case of the tra-
ditional controller. This desynchronization maintains the
temperatures near the upper-bound 7™** reducing tem-
perature fluctuations. Therefore, it intuitively improves
energy efficiency. As summarized in Table 1, the proposed
controllers save 7.5-8% of energy. Note that the outer
optimization module minimizes the total energy consump-
tion while the inner optimization module is responsible for
maintaining the temperature profiles in a desirable range.
When the bilevel combinatorial problem is exactly solved
for all time, the average power consumption is 10.29kW.
Therefore, the two proposed controllers’ performances are
99.5% and 98.9% of the optimal controller although their
theoretical suboptimality bounds are 39% and 63%.

Table 1: Energy savings by the proposed controllers

| PI | linear | submodular
average kW 11.24 10.34 10.40
energy saving || — 8.0% 7.5%
suboptimality || 90.1% 99.5% 98.9%

5.2 Reduced Compressor Switching

Another advantage of the proposed controllers is the con-
siderable reduction on the number of compressor switching
instances. By desynchronizing the switching instances of
expansion valves in the inner optimization module, the
proposed controllers significantly reduce the variation of
suction pressure. Qur conservative compressor control ap-
proach presented in Section 4 also helps to minimize the
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Fig. 5. The number of ON compressors controlled by (a)
the linear approximation-based algorithm (Algorithm
3), and (b) the submodular optimization algorithm
(Algorithm 4).

deviation of the suction pressure from its reference. As a
result, the controllers significantly reduce the fluctuations
on the number of ON compressors as shown in Fig. 5. First,
the maximum number of ON compressors is decreased
from six to two. This reduction suggests that a mechan-
ically more compact compressor or a smaller number of
compressors in the rack may be enough if the proposed
controllers are adopted. Second, the proposed controllers
reduce the number of compressor switching instances by
54.0-71.6% as summarized in Table 2. These infrequent
compressor operation strategies are beneficial to decelerate
the mechanical degradation of compressors.

Table 2: Compressor switching reductions by the proposed
controllers

| PI | linear | submodular
# of switchings || 324 92 149
reduction - 71.6% 54.0%

6. CONCLUSIONS

The proposed controller explicitly takes into account the
switched and interconnected dynamics, and is therefore
is suitable for multi-case supermarket refrigeration sys-
tems. However, it has to solve a bilevel combinatorial
optimization problem in near real time, which is a chal-
lenging task. To overcome this difficulty, we proposed two
polynomial-time approximation algorithms that are based
on the structural properties of this optimization problem.
We demonstrated the performance of the proposed con-
trollers through case studies using a benchmark refrigera-
tion system model and found that (i) they improve energy
efficiency by 7.5-8% and (i) they reduce the number of
compressor switchings by 54-71.6%.

Appendix A. PROOF OF PROPOSITION 1

We use the linear system representation (6b) of the food
and air temperature dynamics (Equations (1) and (2)).
We first notice that A; ; > 0 Vi # j, where A;; rep-
resents the (¢,7)th entry of the matrix A. Furthermore,
Eair—evapLevap < 0 due to the non-positive evaporator tem-
perature. Hence, we have B; ; < 0 V%, j. Using Proposition
IT1.2 in Angeli and Sontag [2003], we conclude that the
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system (6b) is input-monotone such that for any a, 8 € R™
with (6] S 51,11 ]., ,n,

(E?Z.’tiﬁ, izlv"'v”?
where % denotes the solution of the system (6b) when its
input is chosen as a.

Appendix B. PROOF OF THEOREM 1

In (6b), we notice that

t
x(t) = eAlt—te)y —|—/ A% Bads,
tk
which implies that z(¢) is linear in a. Therefore, V is
concave with respect to « in a continuously relaxed space,
R™. Then, the result follows from Theorem 2 in Yang et al.
[2016].

Appendix C. PROOF OF THEOREM 2

Let Tfffod’i denote the temperature of the food product in
display case ¢ given that the expansion valves in X are
open. Due to the linearity of the system dynamics (1) and
(2), Tgyq; is modular, i.e.,

Tfi(od,z‘ =
acX
Therefore, for any X CY C Q and any a € Q\Y

Xu{a} X _ mYu{a} Y
j}ood,i - ﬂood,i - Tfood,i - Tfood,i‘

T{a}

food,z"

Furthermore, Proposition 1 yields the following mono-
tonicity result: for any X CY C

X Y
Tfood,i Z 71food,iﬂ
i.e., as we open more expansion valves, the food temper-

ature decreases. Lastly, the concavity of V(X) = V(0) —
S ST s — T2 dt in T, ; implies that X C

=1 Jty food,?

YCQandanyaeQ\Y

V(X U{a}) - V(X) >V U{a}) - V().
Therefore, V is submodular. Its monotonicity follows from
Proposition 1.
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