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Abstract— In this paper, we study the problem of privacy
preservation of the continuous-time Laplacian static average
consensus algorithm using additive perturbation signals. We
consider this problem over a strongly connected and weight-
balanced digraph. Starting from a local reference value, in
static average consensus algorithm each agent constantly com-
municates with its neighboring agents to update its local
state to compute the average of the reference values across
the network. Since every agent transmits its local reference
value to its in-neighbors, the reference value of the agents are
trivially disclosed. In this paper, we investigate the possibility of
preserving the privacy of the reference value of the agents by
adding admissible perturbation signals to the local dynamics
and the transmitted out signals of the agents. Admissible
additive perturbation signals are those signals that do not
perturb the final convergence point of the algorithm from the
average of the reference values of the agents. Our results show
that if an adversarial agent has access to the output of another
agent and all the input signals transmitted to that agent, the
adversary can discover the private reference value of that agent,
regardless of the perturbation signals. Otherwise, the privacy of
the agent can be preserved. We demonstrate our results through
a numerical example.

I. INTRODUCTION

In recent years, decentralized multi-agent cooperative oper-

ations have been proposed as effective solutions for some

of today’s important socio-economical challenges. However,

privacy preservation concerns sometimes play a discouraging

role in client participation in networked solutions in areas

such as smart grid, banking or healthcare applications, where

even though agents are willing to cooperate towards an

effective operating point for the whole group, they do not

want to release their local information. Motivated by the

demand for privacy preserving network solutions to promote

wider adoption of distributed operations in privacy sensitive

domains, in this paper, we consider the privacy preservation

problem in the distributed static average consensus problem.

In a network of agents each endowed with a local static

reference value, static average consensus problem consists

of designing a distributed algorithm that enables each agent

to asymptotically obtain the average of the static reference

values across the network. The solutions to this problem are

of interest in distributed computing, synchronization, esti-

mation problems and control of multi-agent cyber physical

systems. Static average consensus problem has been studied

extensively in the literature (see e.g., [1], [2], [3], [4]). The
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widely adopted distributed solution for the static average

consensus problem is the simple first order Laplacian al-

gorithm in which each agent initializes its local dynamics

with its local reference value and transmit this local value to

its neighboring agents. Therefore, the privacy of the agents

implementing this algorithm is trivially breached by sharing

their local reference value at the first step of the algorithm.

This paper studies the multi-agent static average consensus

problem under the requirement of the privacy preservation

of the agents’ local reference value against internal non-

cooperative and passive adversarial agents in the network.

Literature review: Privacy preservation solutions for the

average consensus problem have been investigated in the

literature mainly in the context of discrete-time consensus

algorithms over connected undirected graphs. The general

idea is to add perturbation signals to the transmitted out

signal of the agents. For example, in one of the early

privacy preserving schemes, Kefayati, Talebi and Khalaj [5]

proposed that each agent adds a random number generated

by zero-mean Gaussian processes to its initial condition.

This way the reference value of the agents is guaranteed to

stay private but the algorithm does not necessarily converge

to the anticipated value. Similarly, in recent years, Nozari,

Tallapragada and Cortes [6] also relied on adding zero mean

noises to protect the privacy of the agents. However, they

develop their noises according to a framework defined based

on the concept of differential privacy, which is initially

developed in the data science literature [7], [8], [9] and

[10]. In this framework, [6] characterizes the convergence

degradation and proposes an optimal noise in order to keep

a level of privacy to the agents while minimizing the rate

of convergence deterioration. To eliminate deviation from

desired convergence point, Manitara and Hadjicostis [11]

proposed to add a zero sum finite sequence of noises to

transmitted signal of each agent, and Mo and Murray [12]

proposed to add a zero sum infinite sequences. Because of the

zero sum condition on the perturbation signals, however [11]

and [12] show that the privacy of an agent can only be

preserved when the adversarial agent does not have access

to at least one of the signals transmitted to that agent.

Statement of contributions: In this paper we consider the

problem of privacy preservation of the continuous-time static

Laplacian average consensus algorithm over strongly con-

nected and weight-balanced digraphs. The previous work

reviewed above considers discrete-time algorithms over con-

nected undirected graphs. Instead of random noises, we use

continuous-time integrable additive perturbation signals to



disguise the local reference value of the agents. We carefully

examine the stability and convergence of the static average

consensus algorithm in the presence of the perturbation

signals to find necessary and also sufficient conditions on the

perturbation signals such that the integrity of the algorithm

is preserved, i.e., despite the perturbation signals the agents

still converge to the average of their reference values. In our

privacy preservation evaluation, we assume that adversarial

agents know the necessary conditions on the admissible per-

turbation signals. They can use this extra piece of information

to enhance their knowledge set to discover the private value

of the other agents. We show that if an adversarial agent has

access to all the signals transmitted into and out of an agent,

it can discover the local private value of that agent despite

the existence of the perturbation signals. We also construct

an observer that such an adversary can employ to obtain the

reference value. Our next contribution is to present a class

of admissible perturbation signals for which we can formally

guarantee that if the adversarial agent does not have access

to all the transmitted signals to an agent, it cannot obtain

uniquely the local value of that agent. Our final contribution

is identifying examples of graphs topologies in which the

privacy of all the agents are preserved when they implement

our proposed admissible additive perturbation signals. We

demonstrate our results through a numerical example. Due

to the space limitations, some of the proofs of our results

are omitted, and will appear elsewhere.

Notations and definitions: Let R, R≥0 and R>0, respectively,

be the set of real, nonnegative real and positive real numbers.

For a matrix A ∈ R
n×m, we denote its transpose matrix

by A>. We let 1n (resp. 0n) denote the vector of n ones

(resp. n zeros), and denote by In the n× n identity matrix.

When clear from the context, we do not specify the matrix

dimensions. We denote the standard Euclidean norm of

vector x ∈ R
n by ‖x‖ =

√
x>x. For sets A and B, the

relative complement of B in A is A\B = {x ∈ A |x 6∈ B}.

In a network of N agents, to distinguish and emphasis that a

variable is local to an agent i ∈ V , we use superscripts, e.g.,

f i(t) is the local function of agent i. Moreover, if pi ∈ R is

a variable of agent i ∈ V , the aggregated pi’s of the network

is the vector p = [{pi}Ni=1] = [p1, · · · , pN ]> ∈ R
N . A

measurable function h is called integrable if
∫

|h|dµ ≤ ∞.

II. PROBLEM DEFINITION

Consider a set of N agents each with a reference value r
i ∈

R, i ∈ V interacting over a strongly connected directed graph

(digraph) G(V, E ,A). Here, V = {1, · · · , N} is the node set,

E ⊆ V × V is the edge set and A = [aij ] is the weighted

adjacency matrix of the digraph which satisfies aij > 0
if (i, j) ∈ E and aij = 0 otherwise. For graph theoretic

definitions, terminologies and properties we follow [13].

Accordingly, in our developments below, an edge from i to

j, denoted by (i, j), means that agent j can send information

to agent i. For an edge (i, j) ∈ E , i is called an in-neighbor

of j and j is called an out-neighbor of i. A digraph is called

strongly connected if there is a directed path from every node

to every other node in the digraph.

The objective in the static average consensus problem is

for the agents i ∈ V to asymptotically compute 1
N

∑N

i=1 r
i

by only interacting with their out-neighbors. A well-known

algorithm to arrive at the average consensus is based on

driving a simple integrator dynamics using the weighted sum

of the feedback of the difference between the local state of

an agent and its out-neighbors (c.f. [1]) i.e.,

ẋi(t) = −
∑N

j=1
aij (x

i(t)− xj(t)), xi(0) = r
i, (1)

The asymptotic convergence is guaranteed when the weights

aij of the algorithm are chosen such that the strongly

connected digraph is also weight-balanced. Recall that a

digraph is weight-balanced iff at each node i ∈ V , the

weighted out-degree d
i
out =

∑N

j=1 aij and weighted in-

degree d
i
in =

∑N

j=1 aji coincide (although they might be

different across different nodes). We consider a setting in

which agents do not fully trust each other. In this setting,

some of the agents in the network act as a passive adversarial

eavesdropper (see Fig. 1), which without interrupting the

execution of the algorithm (1), aim at obtaining the local

reference value r
i of other agents i ∈ V by storing and

processing the time history of the communication messages

they receive. We assume that each adversary acts alone.

Because in (1) the private value r
i of agent i is transmitted to

its in-neighbors, this algorithm trivially reveals the reference

value r
i of each agent i ∈ V to all its in-neighbors. To

preserve privacy of the agents, one can propose to add

locally constructed perturbation signals f i(t) : R≥0 → R,

gi(t) : R≥0 → R to the local process and communication

message of an agent to disguise this private value, i. e.,

modify (1) as follows

ẋi(t) = −
∑N

j=1
aij (x

i(t)−yj(t))+f i(t), xi(0)= r
i, (2a)

yi(t) = xi(t) + gi(t). (2b)

where yi is the signal transmitted by agent i ∈ V . Here f i

and gi are assumed to be locally integrable, to guarantee ex-

istence and well-posedness of solutions of (2) (c.f. [14, page

30]). We refer to the set of perturbation signals {f i, gi}Ni=1

for which the integrity of the static average consensus algo-

rithm is preserved (i.e., xi(t)→ 1
N

∑N

j=1 x
j(0)= 1

N

∑N

j=1 r
j ,

i ∈ V , as t → ∞) as the admissible perturbation signals.

Our objective in this paper is (a) to identify such admissible

signals and (b) to analyze the privacy preservation properties

of the modified algorithm (2) employing such signals.

III. PRIVACY PRESERVATION THROUGH ADDITIVE

PERTURBATION SIGNALS

We start our study by obtaining a set of necessary and also

sufficient conditions on the class of admissible perturbation

signals f i and gi, i ∈ V . We write the modified static average

consensus algorithm in its compact form as

ẋ = −Lx− Lg + f +D
out g = −Lx+ f +Ag, (3)

where L is the graph (out-) Laplacian defined according to

L = D
out − A, in which D

out = Diag(d1out, · · · , dNout) ∈



R
N×N , and A = [aij ] is the adjacency matrix of the interac-

tion topology. Here, recall that for a strongly connected and

weight-balanced digraphs, L has a simple zero eigenvalue

and the rest of eigenvalues have positive real parts. Moreover,

L1N = 0, 1>
NL = 0 and rank(L) = N − 1. We denote

eigenvalues of L by {λi}Ni=1 and sort them such that λ1 = 0,

and Re(λi) ≤ Re(λj) for any i, j ∈ V and i < j.

Theorem 3.1 (integrity of (3) in the presence of pertur-

bation signals): Consider algorithm (2) over a strongly

connected and weight-balanced digraph. Let f i : R≥0 → R

and gi : R≥0 → R, i ∈ V , be locally integrable.

(a) Let f i and gi, i ∈ V , be such that xi(t) → 1
N

∑N

j=1 r
j

as t→ ∞. Then, we should have

lim
t→∞

∫ t

0

∑N

i=1
(f i(τ) + d

i
out g

i(τ)) dτ = 0. (4)

(b) Let f i and gi, i ∈ V be essentially bounded and van-

ishing signals that satisfy (4). Then, for any i ∈ V we

have xi(t) → 1
N

∑N

j=1 x
j(0) = 1

N

∑N

j=1 r
j as t→ ∞.

Since in our privacy preservation framework, each agent

chooses its perturbation signal locally decide locally then

to ensure that the necessary condition (4) holds, each agent

i ∈ V should choose its admissible signals such that

lim
t→∞

∫ t

0

(f i(τ) + d
i
out g

i(τ)) dτ = 0. (5)

Evidently, any adversarial agent is aware of the necessary

condition (5) and can use this knowledge to identify the

private reference value of the other agents. In our study, we

also assume that the adversary knows the network topology.

Assumption 1 (Knowledge set of the adversary): The

Knowledge set of the adversarial agent includes signals that

it receives from its out-neighbors, the adjacency matrix of the

network (network topology) and the necessary condition (5)

on the admissible perturbation signals f i and gi, i ∈ V .

From the perspective of an adversarial eavesdropper on an

agent i ∈ V the dynamical system to observe is (2), with

xi as the internal state of agent i, f i, gi, and {yj}j∈N i
out

,

as its inputs and yi as its output that can be measured

from tapping into the communication messages. Here, N i
out

is the set of out-neighbors of agent i ∈ V . Given a known

input and measured outputs over some finite time interval

(resp. infinite time), the traditional observability (resp. de-

tectability) tests (c.f. [15] and [16]). evaluate whether we

can uniquely identify the initial conditions of the system.

But here, the inputs f i and gi : R≥0 → R of agent i ∈ V
are not available to the adversary. However, it is reasonable to

presume that the adversary knows the necessary conditions

stated in Theorem 3.1 for admissible perturbation signals.

With regards to inputs {yj}j∈(N i
out∪{i}) an advertorial agent

has only access to these signals if it is an in-neighbor of

agent i and all the out-neighbors of agent i–see Fig. 1 for an

example. The following result shows that in such a scenario

the adversarial agent is able to identify the reference value
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Fig. 1: A strongly connected and weight-balanced digraph in

which agent 1 is the in-neighbor of all the out-neighbors of

its out-neighbors {3, 4, 5}. As a result, agent 1 has direct

access to the information transmitted to and from these

agents. However, agent 1 is not the in-neighbor of all the out-

neighbors of its out-neighbor 2, therefore it does not have

direct access to all the information transmitted to this agent,

specifically here the information from agent 6 to agent 2.

of the agent it is eavesdropping on despite the perturbation

signals. Hereafter, without loss of generality, we assume that

the adversarial agent is agent 1.

Theorem 3.2 (Observer design for an internal adversary):

Consider the modified static average consensus algorithm (2)

with a set of admissible signals {f i, gi}Ni=1 over a strongly

connected and weight-balanced digraph G. Let Assumption 1

hold and agent 1 be the internal adversary. Let agent 1 be

the in-neighbor of agent 2 and all the out-neighbors of agent

2. Then, agent 1 can employ the observer

˙̂x =
∑N

j=1
a2j(y

2 − yj), x̂(0) = 0, (6a)

ẑ(t) = x̂(t) + x1(t), (6b)

to asymptotically obtain r
2, i.e., ẑ → r

2 as t→ ∞. Moreover,

at any t ∈ R≥0, the tracking error of the observer satisfies

ẑ(t)− r
2 = x1(t)− x2(t) +

∫ t

0

(f2(τ) + d
2
out g

2(τ))dτ. �

In what follows, we investigate whether an adversarial agent

can recover the local reference value of an out-neighbor

of its when the adversary does not have access to all

the transmitted signals to that out-neighbor. In our study

hereafter, we assume that the admissible signals of every

agent i ∈ V are f i(t) = 0 for t ∈ R≥0 and gi as follows

q̇i(t) = hi(t), 0 6= qi(0)=−
∫ ∞

0

hi(t) dt=ci <∞, (7a)

ṗi(t) = −d
i
out (p

i(t) + qj(t)), pi(0) = 0, (7b)

gi(t) = pi(t) + qi(t), (7c)

lim
t→∞

hi(t) = 0. (7d)

where hi(t) : R≥0 → R is a bounded and continuous func-

tion chosen locally by agent i ∈ V . The next result shows that

{f i, gi}Ni=1 as described above are admissible perturbation

signals for modified static average consensus algorithm (2).



Lemma 3.1 (f i = 0 and gi given in (7) are admissible

signals for (2)): Consider the modified average consensus

algorithm (2) over a strongly connected and weight-balanced

digraph. For every i ∈ V , let f i = 0 for t ∈ R≥0 and gi

be given by (7), where hi is a bounded continuous function.

Then, we have xi(t) → 1
N

∑N

j=1 r
j , as t→ ∞.

Proof: Our proof is based on showing that f i and

gi, i ∈ V satisfy the set of sufficient conditions that is

given in statement (b) of Theorem (3.1). Note that qi(t) =
qi(0)+

∫ t

0
hi(t) dt, t ∈ R≥0, which under the given qi(0),

indicates limt→∞ qi(t) = 0. Then, (7b) is an internally ex-

ponentially stable LTI system with a bounded and vanishing

external input signal qi(t). Therefore, the ISS analysis results

(c.f. [17, page 175]) guarantees that the trajectories of pi are

bounded and also satisfy limt→∞ pi(t) = 0. Thereby, gi(t) is

an essentially bounded and vanishing signal (limt→∞ gi(t) =
limt→∞(qi(t) + pi(t) = 0). To complete the proof, we need

to show that
∫∞

0
(f i(τ) + d

i
outg

i(τ))dτ = 0, which given

f i(t) = 0, simplifies to
∫∞

0
gi(τ)dτ = 0. In this regard note

that the differential equation describing gi(t) = pi(t)+ qi(t)
is given by ṗi(t)+ q̇i(t) = −d

i
out (p

i(t)+qj(t))+hi(t). The

solution of this differential equation is given by

pi(t)+qi(t) = e−d
i
out

t(pi(0)+qi(0))+

∫ t

0

e−d
i
out

(t−τ)hi(τ)dτ.

Therefore, we can write (recall the initial conditions of (7))

∫ t

0

gi(τ)dτ=qi(0)

∫ t

0

e−d
i
out

νdν+

∫ t

0

∫ ν

0

e−d
i
out

(ν−τ)hi(τ)dτ dν

=
−1

diout

(

∫ ∞

0

hi(τ)dτ) (1− e−d
i
out

t)+

∫ t

0

e−d
i
out

ν

∫ ν

0

ed
i
out

τhi(τ)dτ dν. (8)

Using integration by parts, the second summand in the right

hand side of the equation above can be written as

∫ t

0

e−d
i
out

ν

∫ ν

0

ed
i
out

τhi(τ)dτ dν =

−1

diout

e−d
i
out

t

∫ t

0

ed
i
out

τhi(τ)dτ −
∫ t

0

−1

diout

e−d
i
out

νed
i
out

νhi(ν) dν

=
−1

diout

ψ(t) +
1

diout

∫ t

0

hi(ν) dν. (9)

where ψ(t) = e−d
i
out

t
∫ t

0
ed

i
out

τhi(τ)dτ. Next, we show

limt→∞ ψ(t) = 0, by showing that

for ∀ε > 0, ∃T > 0 s.t if t > T then |ψ(t)| < ε.

Recall that hi is a continuous and bounded signal that

satisfies limt→∞ hi(t) = 0. Therefore, for every given ε ∈
R>0, there exists a t1 ∈ R>0 such that |hi(t)| < d

i
out

ε

2 . For

t > t1, we write ψ(t) as below

ψ(t) = e−d
i
out

t

∫ t1

0

ed
i
out

τhi(τ) dτ+

∫ t

t1

e−d
i
out

(t−τ)hi(τ) dτ.

Because hi(t) is a bounded signal, we can write
∣

∣

∫ t1

0
ed

i
out

τhi(τ) dτ
∣

∣ = ci <∞. Thus, we can conclude that

|ψ(t)| ≤ e−d
i
out

tci +

∫ t

t1

e−d
i
out

(t−τ)|h(τ)| dτ

≤ e−d
i
out

tci +
d
i
outε

2

∫ t

t1

e−d
i
out

(t−τ) dτ,

= e−d
i
out

tci +
d
i
outε

2

1

diout

(1− e−d
i
out

(t−t1)),

< e−d
i
out

tci +
ε

2
, t > t1 > 0.

Because limt→∞ e−d
i
out

t = 0, there exists a t2 ∈
R>0 such that e−d

i
out

t < ε
2ci . Therefore, by taking

T > max{t1, t2} we conclude that |ψ(t)| < ε. Because

limt→∞ ψ(t) = 0, from (9) and (8) we can conclude

that limt→∞

∫ t

0
gi(τ) dτ = limt→∞(− 1

di
out

∫ t

0
h(τ) dτ +

1
di
out

∫ t

0
h(τ) dτ) = 0,, which concludes the proof.

Our next result considers an implementation of the modified

static average consensus algorithm (2) in which agents

choose their admissible perturbation signals according to

f i = 0 and gi in (7). We show that in this implementation

if an adversarial agent does not have direct access to all

the signals that are transmitted to any of its out-neighbors,

it cannot uniquely identify the initial condition of that out-

neighbor, i.e., the local reference value of that agent stays

private. In the developments below we denote the set of the

in-neighbors of an agent i ∈ V by N i
in.

Theorem 3.3 (Privacy preservation): Consider the modified

static average consensus algorithm (2) with a set of admissi-

ble signals {f i, gi}Ni=1 over a strongly connected and weight-

balanced digraph G. Let the admissible signals for i ∈ V be

f i = 0 and gi given in (7). Let Assumption 1 hold and agent

1 be the adversary. Let N 2,−1
out = (N 2

out\(N 1
out ∪ {1}) be the

set of the out-neighbors of agent 2 that are not out-neighbors

of agent 1. Let agent 2 be an out-neighbor of agent 1 for

which N 2,−1
out 6= {}. Then, agent 1 cannot uniquely identify

the reference value of agents 2 and N 2,−1
out , i.e., agent 1

cannot uniquely identify r
i of i ∈ (N 2,−1

out ∪ {2}).
Proof: Given a set of reference inputs {ri}Ni=1, consider

‘the actual scenario’ in which algorithm (2) is driven by

xi(0) = r
i, and admissible perturbation signals from the

set described in the statement. We represent the perturbation

signal gi by gi ∼ (qi(0), hi(t)), i ∈ V . To show that agent 1
cannot uniquely identify r

i of i ∈ (N 2,−1
out ∪ {2}), we show

that there exist other sets of admissible perturbation signals

and initial conditions for agents 2 and any agent in N 2,−1
out

for which every agent i ∈ V still converges to 1
N

∑N

j=1 r
j

and also the output signal of every out-neighbor of agent 1 is

exactly the same as the corresponding signals in the actual

scenario. In the following, we show one of these possible

cases. Without loss of generality, assume that 3 ∈ N 2,−1
out .

Let N̄ = N 3
in∪{3} (note that 2 ∈ N̄ ). Next, let t 7→ x̄(t) be

trajectories of the modified average consensus algorithm (2),

initialized according to x̄i(0) = r
i, i ∈ (V\N̄ ), and x̄j(0) ∈

R, j ∈ N̄ such that
∑

j∈N̄ x̄j(0) =
∑

j∈N̄ r
j , and admis-



sible perturbation signals {f̄ i ≡ 0, ḡi ∼ (q̄i(0), h̄i(t))}i∈V .

Since 1
N

∑N

j=1 x̄
j(0) = 1

N

∑N

j=1 r
j and we are using admis-

sible perturbations {f̄ i ≡ 0, ḡi∼(q̄i(0), h̄i(t))}i∈V , we have

x̄i(t) → 1
N

∑N

j=1 r
j , i ∈ V , as t → ∞. In this alternative

case we let every agent i ∈ (V\N̄ ) use the same admissible

perturbation signals f i ≡ 0 and gi ∼ (qi(0), hi(t)) as in

the actual scenario. Let eix(t) = xi(t) − x̄i(t), eiy(t) =
y(t)− ȳi(t), ēi

q(0) = qi(0)− q̄i(0), and ēih = hi − h̄i, i ∈ V .

Note that ēi
q(0) = 0 and ēih(t) ≡ 0 for i ∈ (V\N̄ ). Next,

we show that there exists admissible perturbation signals

{f̄ j ≡ 0, ḡj ∼ (q̄j(0), h̄j(t))}j∈N̄ for which the output

ȳk(t) = yk(t), k ∈ N 1
out, i.e., agent 1 cannot distinguish

between initial conditions xj(0) and x̄j(0), j ∈ N̄ . In

the proof below we use the fact that given a set of initial

conditions and integrable external signals, the solution of

any linear ordinary differential equation is unique.

Our choice of perturbation signals should also result in

eiy(t) = 0 for all t ∈ R≥0, for every i ∈ V\{3}. Let

q̄3(0) = q3(0) and h̄3(t) = h3(t), t ∈ R>0. Then, we have

ėix = −d
i
out e

i
x, i ∈ (V\N 3

in) ∪ {3}), (10a)

ėjx = −d
j
out e

j
x + aj3 e

3
x, j ∈ N 3

in. (10b)

For i ∈ V\N̄ , because eix(0) = 0, from (10a) we obtain

that eix(t) = 0, for all t ∈ R≥0. Then, because eig(t) = 0 for

t ∈ R≥0, our assumption of eiy(t) ≡ 0 for t ∈ R≥0 is correct

for i ∈ V\N̄ . Since N 1
out ⊂ ((V\N̄ ))∪{2}, what remains to

show is that e2y ≡ 0 for all t ∈ R≥0. In what follows recall

that 2 ∈ N 3
in.

Because e3x(0) 6= 0, from (10a) we obtain that

e3x(t) = e−d
3

out
t e3x(0), t ∈ R≥0.

Let the admissible perturbation signals for the in-neighbors

of agent 3 be such that

h̄j(t) = hj(t)− aj3 e−d
3

out
t e3x(0), j ∈ N 3

in,

which gives

e
j
h(t) = −aj3 e−d

3

out
t e3x(0), t ∈ R≥0, j ∈ N 3

in,

For this signal from (7a) we have

e
j

q(0) =

∫ ∞

0

e
j
h(t)dt =

aj3

d3out

e3x(0), j ∈ N 3
in.

Moreover, we can write ėjq = −e−d
3

out
t e3x(0), for j ∈ N 3

in.

Note here that h̄j(t), j ∈ N 3
in, as defined above is admissible

because it is bounded and continuous function which satisfies

also limt→∞ h̄j(t) = 0. Define ejp = pi− p̄i. Then for every

agent j ∈ N 3
in we can write

ėjx + ėjp + ėjq =− d
j
out (e

j
x + ejp + ejq)+

aj3 e
3
x − aj3 e−d

3

out
t e3x(0)

=− d
j
out (e

j
x + ejp + ejq). (11)

For j ∈ N 3
in, let ejx(0) = − aj3

d3
out

e3x(0) so that ejx(0)+e
j
p(0)+

ejq(0) = 0. As a result from (11) we obtain for any agent

j ∈ N 3
in that ejy(t) = ejx(t) + ejp(t) + ejq(t) ≡ 0 for t ∈ R≥0.
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(a) An example of a cyclic bipartite
undirected connected graph.
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(b) A 4-regular ring lattice undirected
connected graph on 12 vertices.

Fig. 2: Examples of graphs in which privacy of all agents

implementing the modified static average consensus algo-

rithm (2) with admissible perturbation signals {f i ≡ 0, gi∼
(qi(0), hi(t))}i∈V is preserved.

To complete the proof, we show that the initial conditions de-

scribed above for the alternative case satisfy
∑

j∈N̄ x̄j(0) =
∑

j∈N̄ r
j . For this note that

∑

j∈N̄

ejx(0) = e3x(0) +
∑

j∈N 3

in

ejx(0) = e3x(0)−
∑

j∈N 3

in

aj3

d3out

e3x(0)

= e3x(0)−
d
3
in

d3out

e3x(0) = e3x(0)− e3x(0) = 0.

Here, we used the fact that G is weight-balanced, therefore,

d
3
out = d

3
in =

∑

j∈N 3

in

aj3.

Undirected cyclic bipartite graphs and 4-regular ring lattice

undirected graphs with N > 5 are examples of network

topologies that satisfy the relation mentioned for the adver-

sarial node and its out-neighbors in Theorem 3.3 (see Fig. 2).

Therefore, the privacy of the agents in these graphs are

preserved when they implement the modified static average

consensus algorithm (2) with the admissible perturbation

signals {f i ≡ 0, gi∼(qi(0), hi(t))}i∈V .

IV. NUMERICAL EXAMPLE

We demonstrate our results using an execution of the modi-

fied static average consensus (2) over the strongly connected

and weight-balanced digraph in Fig. 3. Let the perturbation

signals be such that f i(t) ≡ 0 and gi(t) be defined according

to (7). The local reference value of the agents as well the hi

component of the the perturbation signal gi are specified in

Fig. 3. The adversarial agent here is agent 1, which wants

to obtain the reference values of its out-neighbors {2, 6, 5}.

In regards to agent 5, as guaranteed in Theorem 3.2, agent 1
can employ the observer (6) to obtain x5(0) = r

5 = −3 (see

Fig. 4). Agent 1 however, cannot uniquely identify r
2 and

agent r6, since each of these agents have out-neighbors that

are not out-neighbors of agent 1. To show this, consider an

alternative implementation of algorithm (2) with initial and

admissible perturbation signals

x̄1(0)=3, x̄2(0)=−2, x̄3(0)=9, x̄4(0)=−3, (12a)

x̄5(0)=−3, x̄6(0)=11, x̄7(0)=16, x̄8(0)=−3, (12b)
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r
1(0) = 3, r2(0) = −1,

r
3(0) = 7, r4(0) = −2,

r
5(0) = −3, r6(0) = 10,

r
7(0) = 15, r8(0) = −1,

hi(t) = 0.5i cos(0.5 i t) e−t,

i ∈ {1, . . . , 8}.

Fig. 3: A strongly connected and weight-balanced digraph G
in which node 1 is the adversarial agent.
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Fig. 4: Adversarial agent 1’s estimate of r5 using the observer

(6). As seen, the adversary recovers the reference value of

agent 5, i.e., x5(0) = r
5 = −3.

h̄i(t) = hi(t), i ∈ {1, 3, 4, 5, 7, 8}, (12c)

h̄2(t) = h2(t)− 2.5e−2.5t, (12d)

h̄6 = h6(t) + 2t e−t − e−t, (12e)

where 1
8

∑8
i=1 x̄

i(0) = 1
8

∑8
i=1 x

i(0) = 1
8

∑8
i=1 r

i = 3.5.

As Fig. 5(a) shows the execution of algorithm (2) using

the initial conditions and perturbation signal specified in

Fig. 3 (actual case) and those in (12) (alternative case)

converges to the same final value of 3.5. Let eiy = yi − ȳi,

i ∈ {1, . . . , 8} be the error between the output of agents in

the actual and alternative cases. As Fig. 5(b) eiy ≡ 0 for all

i ∈ N 1
out = {2, 5, 6}. Therefore, agent 1 cannot distinguish

between these two cases.

V. CONCLUSIONS

In this paper, we considered the problem of preserving the

privacy of the reference value of the agents in an average

consensus algorithm using additive perturbation signals. We

started our study by characterizing the set of necessary

and sufficient conditions on admissible perturbation signals,

which do not perturb the final convergence point of the

algorithm. Then, we showed that despite employing additive

perturbation signals, if an adversarial agent in the network

has access to all the input and out signals of an agent, it can

employ an asymptotic observer to obtain the initial value

of the state equation of that agent, which is the reference

value of the agent. Our next contribution was to identify the

conditions under which an agent’s privacy is preserved. In

this paper, we only studied the problem of privacy preserva-

tion with respect to internal adversarial agents. Future work

will focus on studying privacy preservation with respect to
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(a) State trajectories of the agents
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(b) Output difference eiy = yi−ȳi,

i ∈ {1, . . . , 8}

Fig. 5: Simulation results for the execution of algorithm (2)

using the initial conditions and perturbation signal specified

in Fig. 3 (actual case) and those in (12) (alternative case).

external adversaries. We will also extend our results to other

multi-agent distributed algorithms such as dynamic average

consensus and distributed optimization algorithms.
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