1	Two Decades of Pacific Anthropogenic Carbon Storage and Ocean Acidification Along GO-
2	SHIP Sections P16 and P02
3	
4	Carter, B.R. ^{1,2} , Feely, R.A. ² , Mecking, S. ³ , Cross, J. N. ² , Macdonald, A. M. ⁴ , Siedlecki, S. A. ¹ ,
5	Talley, L. D. ⁵ , Sabine, C. L. ² , Millero, F. J. ⁶ , Swift, J. H. ⁵ , Dickson, A. G. ⁵ , and Rodgers, K. B. ⁷
6	
7	¹ Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, 3737
8	Brooklyn Avenue NE, Seattle, WA, 98105, USA
9	² NOAA Pacific Marine Environmental Laboratory, 7600 Sand Point Way, Seattle, WA, USA
10	³ Applied Physics Laboratory, University of Washington, Seattle, WA, USA 98105;
11	⁴ Woods Hole Oceanographic Institution, Woods Hole, MA, USA 02543
12	⁵ Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
13	⁶ Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600
14	Rickenbacker Causeway, Miami, FL, USA, 33149
15	⁷ Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey,
16	USA
17	

	20	Abstract	Deleted: ¶
ļ	21	A modified version of the extended multiple linear regression (eMLR) method is used to	
	22	estimate anthropogenic carbon concentration (C_{anth}) changes along the Pacific P02 and P16	
	23	hydrographic sections over the past two decades. P02 is a zonal section crossing the North	
	24	Pacific at 30°N and P16 is a meridional section crossing the North and South Pacific at ~150°W.	
	25	The eMLR modifications allow the uncertainties associated with choices of regression	Deleted: Both sections have been measured at least three times since 1990.
	26	parameters to be both resolved and reduced. Canth is found to have increased throughout the	Deleted: substantial
	27	water column from the surface to ~ 1000 m depth along both lines in both decades. Mean column	
	28	C _{anth} inventory increased consistently during the earlier (1990s-2000s) and recent (2000s-2010s)	
	29	decades along P02, at rates of 0.53±0,11 and 0.46±0,11 mol C m ⁻² a ⁻¹ , respectively. By contrast,	Deleted: 12
l	30	C_{anth} storage accelerated from 0.29±0.10 to 0.45±0.11 mol C m ⁻² a ⁻¹ along P16. Shifts in water	Deleted: 12
	31	mass distributions are ruled out as a potential cause of this increase, which is instead attributed to	
	32	recent increases in the ventilation of the South Pacific Subtropical Cell. Decadal changes along	
	33	P16 are extrapolated across the gyre to estimate a Pacific Basin average storage between 60° S	
	34	and 60° N of 6.1 ± 1.5 PgC decade ⁻¹ in the earlier decade and 8.8 ± 2.2 PgC decade ⁻¹ in the recent	
	35	decade. This storage estimate is large despite the shallow Pacific C_{anth} penetration due to the	
	36	large volume of the Pacific Ocean. By 2014, Canth storage had changed Pacific surface seawater	
	37	pH by -0.08 to -0.14 and aragonite saturation state by -0.57 to -0.82.	
	38		
	39	1. Introduction	

- 40
- 41 Since the beginning of the Industrial Era, the global ocean has absorbed approximately 28% of
- 42 the anthropogenic carbon dioxide (C_{anth}) emissions released into the atmosphere from fossil fuel

49	burning, land use changes, and cement production [Canadell et al., 2007; Le Quéré et al., 2015].		
50	As of 1994, ~38% of this oceanic Canth resided in the Pacific [Sabine et al., 2002, 2004]. Ocean		Deleted:
51	CO ₂ uptake is significant for Earth's climate and ecosystems for several reasons, Atmospheric		Moved down [1]: Consequently, recording repeated observations of carbon concentrations in the major ocean
52	CO ₂ traps heat in the Earth system while marine CO ₂ does not, so ocean storage has slowed		basins is a critical task for Earth scientists. As of 1994, ~38% of oceanic C _{anth} resided in the Pacific [<i>Sabine et al.</i> , 2002, 2004].
53	anthropogenic global warming and warming-induced intensification of the hydrological cycle	\ 	Deleted: :
54	[Durack et al., 2012]. Ocean CO ₂ uptake also reduces seawater pH and carbonate ion		Deleted: the associated
55	concentrations $[CO_3^{2-}]$. This ocean acidification (OA) is thought likely to have far reaching		
56	impacts on ocean ecosystems, particularly on organisms that utilize CO_3^{2-} to form their shells and		
57	hard parts [Doney et al., 2009; Pfister et al., 2014; Gattuso et al., 2015; Gattuso and Feely,		
58	2016]. <u>Consequently, monitoring carbon and anthropogenic carbon concentrations in the Pacific</u>		Moved (insertion) [1]
59	and the other major ocean basins is a critical task for Earth scientists.		Deleted: recording repeated observations of Deleted: As of 1994, ~38% of oceanic C _{anth} resided in the
60			Pacific [Sabine et al., 2002, 2004].
61	Sabine et al. [2004] estimated global ocean Canth distributions from the 1990s World Ocean		
62	Circulation Experiment (WOCE) measurements. Their approach was to subtract estimates of		
63	natural carbon concentrations, meaning the carbon that would be expected in the absence of		
64	anthropogenic CO ₂ emissions, from total dissolved inorganic carbon concentrations (C_T).		
65	Scientists have more recently used time-histories of contact between seawater and the		
66	atmosphere inferred from other tracer measurements (e.g. through the transit time distribution		
67	and maximum entropy methods of Waugh et al. [2006] and Khatiwala et al. [2009]). These		
68	methods provide Canth estimates from individual synoptic surveys, but the methods rely on		
69	uncertain assumptions regarding the consistency of water mass ventilation pathways or the		
70	shapes of water mass age distributions. In recent decades, the Repeat Hydrography program, a		Deleted: subsequent years
71	contribution to the U.S. Climate Variability (CLIVAR) program, and the more recent		

- Moved (insertion) [1]
 - Deleted: recording repeated observations of **Deleted:** As of 1994, ~38% of oceanic C_{anth} resided in the Pacific [*Sabine et al.*, 2002, 2004].

84	international Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP),	
85	repeated a subset of the measurements made along the WOCE hydrographic lines on decadal	
86	intervals. These repeated hydrographic transects provide valuable independent information as	
87	they allow direct estimation of decadal changes in carbon inventories without relying on the	 Deleted: same
88	assumptions used by other methods	 Deleted: , providing valuable independent information
89		
90	Decadal changes in $C_{\rm T}$ cannot be solely attributed to anthropogenic carbon uptake due to large	
91	natural variability in ocean C_{T} . Wallace [1995] proposed a multiple linear regression (MLR)	
92	approach to address the part of these $C_{\rm T}$ fluctuations resulting from natural variability. This	
93	method and the more-commonly used extended MLR (eMLR) [Friis et al., 2005] variant, which	
94	is described in greater detail in the methods section, parameterize the influences of natural	
95	variability using regressions of $C_{\rm T}$ against other measured properties. The regressions from one	
96	occupation are combined with the measurements from another occupation to estimate the $C_{\rm T}$	
97	distribution expected if natural variability had been identical in both cases. Differences between	
98	measured and expected $C_{\rm T}$ distributions are then attributed to $C_{\rm anth}$ concentration changes. The	
99	eMLR method has been used extensively to quantify decadal ocean Canth changes [e.g. Sabine et	
100	al., 2008; Wanninkhof et al., 2010; Williams et al., 2015; Chu et al., 2016; Woosley et al., 2016].	
101	The method has been tested in biogeochemical ocean circulation models with known Canth	
102	distributions and shown to be capable of reproducing known modeled regionally averaged	
103	anthropogenic carbon inventory changes to within 20% when used judiciously [Levine et al.,	
104	2008; Goodkin et al., 2011; Plancherel et al., 2013]. However, eMLR estimate uncertainties are	
105	larger at specific locations due in large part to semi-arbitrary decisions concerning the particular	 Deleted: the
106	parameters to include in the regressions [Plancherel et al., 2013]. In this study, we use the	 Deleted: of which

- 112 between the early 1990s and 2000s (WOCE to CLIVAR) and between the 2000s and the modern
- 113 decade (CLIVAR to GOSHIP). We therefore repeat and extend some of the work of Sabine et
- 114 *al.* [2008], who <u>also</u> considered Pacific C_{anth} accumulation between the 1990s and 2000s along
- the P02 and P16 sections. Several novel modifications to the method are used (Section 2.2) to
- $\label{eq:constraint} \text{116} \quad \text{reduce the impact of decisions required for eMLR on the estimated C_{anth} values}.$
- 117

118 2. Methods

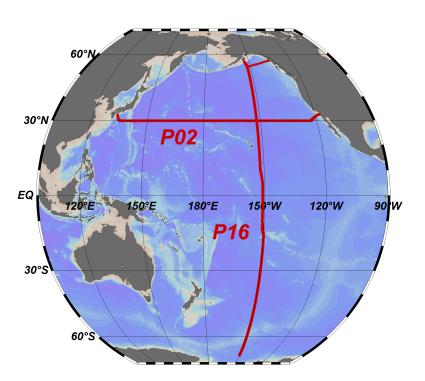


Figure 1. A map of the P02 and P16 sections in the Pacific.

Deleted: , also

122	2.1 Data used
123	Samples were collected along P02 (~30°N) and P16 (~150°W) (Fig. 1) on 16 cruise legs over
124	three decades. Cruise stations were typically separated by 30 nautical miles along the lines and
125	up to 24-36 samples were measured from the ocean surface to the ocean bottom per station. $C_{\rm T}$
126	was measured on these samples, allowing us to estimate C_{anth} storage for the ~20 years spanning
127	these sets of measurements. The P02 and P16 transects are chosen because they each have 3
128	completed occupations. We refer to the six 1990s WOCE era cruise legs as "early" cruises, the
129	five 2000s CLIVAR era cruise legs as "middle" cruises, the five GO-SHIP era 2010s cruise legs
130	as "recent" cruises (cruise Expocodes are provided in Table 1), and the decades spanning these
131	re-occupations as the "earlier" and "recent" decades.
132	
133	Measurements of temperature (T), salinity (S), oxygen concentration (O ₂), total nitrate and nitrite
124	
134	concentration (N), and total silicate concentration (Si) are used in this analysis in addition to $C_{\rm T}$.
134 135	Concentration (<i>N</i>), and total silicate concentration (<i>St</i>) are used in this analysis in addition to C_T . Total seawater titration alkalinity (<i>A</i> _T) is used as a second carbonate system constraint to
135	Total seawater titration alkalinity (A_T) is used as a second carbonate system constraint to
135 136	Total seawater titration alkalinity (A_T) is used as a second carbonate system constraint to calculate pCO_2 in the mixed layer. We do not include A_T as a regression parameter due to
135 136 137	Total seawater titration alkalinity (A_T) is used as a second carbonate system constraint to calculate pCO_2 in the mixed layer. We do not include A_T as a regression parameter due to relatively large adjustments required for deep data consistency. Initial experimentation that did
135 136 137 138	Total seawater titration alkalinity (A_T) is used as a second carbonate system constraint to calculate pCO_2 in the mixed layer. We do not include A_T as a regression parameter due to relatively large adjustments required for deep data consistency. Initial experimentation that did include A_T returned qualitatively similar results but with increased estimate noise. Phosphate
135 136 137 138 139	Total seawater titration alkalinity (A_T) is used as a second carbonate system constraint to calculate pCO_2 in the mixed layer. We do not include A_T as a regression parameter due to relatively large adjustments required for deep data consistency. Initial experimentation that did include A_T returned qualitatively similar results but with increased estimate noise. Phosphate concentrations are similarly not used in the regressions because there are large deep-water
135 136 137 138 139 140	Total seawater titration alkalinity (A_T) is used as a second carbonate system constraint to calculate pCO_2 in the mixed layer. We do not include A_T as a regression parameter due to relatively large adjustments required for deep data consistency. Initial experimentation that did include A_T returned qualitatively similar results but with increased estimate noise. Phosphate concentrations are similarly not used in the regressions because there are large deep-water phosphate changes along P02 between WOCE and CLIVAR, possibly indicating measurement

Deleted:

146	Several steps were taken to prepare the data sets for analysis. First, data flagged in the datasets	Field Code Changed
147	as questionable or bad are omitted, along with fewer than 10 (out of \sim 33,000 total property	
148	measurements) apparent C_T outlier measurements that appear as 'bulls-eyes' in contour plots.	
149	Second, as Pacific Ocean properties are not expected to experience strong changes between 3000	
150	and 4000 m depth (i.e. in Pacific Deep Water) on decadal timescales, adjustments (Table 1) are	
151	applied to the later dataset in each comparison to counter any differences observed at these	
152	depths. While we believe the adjustments applied are appropriate, we account for the possibility	
153	that the adjustments are countering real shifts in water mass properties in our error assessment	
154	(Appendix A). For T, S, and O ₂ , adjustments are applied by subtracting the mean property	
155	change over this depth range from all later occupation data. For N , Si , C_T , and A_T the later	
156	occupations are divided by the ratio of the mean deep values in the later occupations to the mean	
157	values in the earlier occupations. The choice between fixed offsets and multiplicative	
158	adjustments was made on a property-by-property basis in light of the kinds of errors that are	
159	likely to arise during the measurement analyses. A fixed offset was used when uncertain.	

Table 1. Cruise Expocodes, years, and adjustments applied to the later dataset in each comparison. All cruise data were acquired from the CLIVAR and Carbon Hydrographic Data Office (CCHDO) data portal.

Expocode	Section	Year	Т	S	O_2	Ν	Si	C_{T}	A_{T}
			Offset	adjustme	ents	Multiplier	• adjustm	ents	
			[°C]		[µmol				
					kg^{-1}]				
316N138 9*	P16S	1992	-	-	-	-	-	-	-
31WTTUNES 2	2* P16C	1991	-	-	-	-	-	-	-
31WTTUNES	3*								
31DSCGC91 1	* P16N	1992	-	-	-	-	-	-	-
49K6KY9401 1	P02E	1994	-	-	-	-	-	-	-
49K6KY9401 1	P02W	1994	-	-	-	-	-	-	-
33RR200501	P16S	2005	0.07	0.00	1 -0.8	0.9948	0.9921	1.0003	0.9985

Formatted Table

325020060213 325020060213	P16C P16N	2006 2006	-0.068 0.009	0.003 -1.6 0.006 -2.8	1.0086 0.9969	0.9869 0.9810	$1.0001 \\ 1.0001$	1.0003 1.0008
318M200406	P02E	2004	0.054	-0.013 -1.0	1.0089	0.9892	0.9993	1.0043
318M200406	P02W	2004	0.056	-0.024 -1.9	1.0220	0.9888	0.9988	1.0057
320620140320	P16S	2014	0.065	-0.003 -0.3	1.0008	0.9964	1.0000	1.0003
33RO20150410	P16C	2015	0.065	-0.003 -1.7	0.9888	0.9874	0.9996	0.9988
33RO20150525	P16N	2015	0.007	0.002 -1.1	1.0059	0.9890	1.0006	0.9988
318M20130321	P02E	2013	-0.083	-0.006 -0.7	0.9999	1.0064	1.0005	0.9994
318M20130321	P02W	2013	0.006	0.002 -0.3	0.9954	1.0020	1.0003	0.9982

^{*}denotes the cruises where data were extracted data from the GLODAPv1.1 data product of [*Key et al.*, 2004]. This data product calculated A_T from diverse carbonate system parameters when unmeasured.

- 163 equivalent to the oxygen deficit relative to atmospheric equilibrium) were calculated using the
- seawater routines for MATLAB [*Morgan and Pender*, 2006]. Neutral density (γ^{N}) was
- 165 calculated using the routines from *Jackett and McDougall* [1997].
- 166

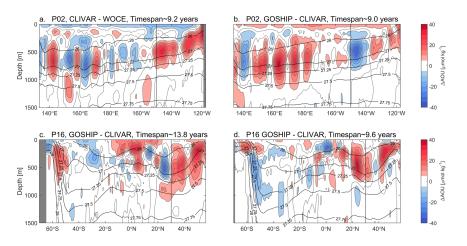
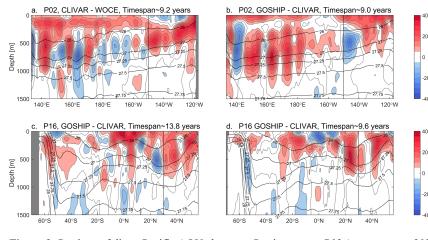



Figure 2. Sections of direct Pacific C_T changes. Sections are a. P02 (east-west at ~30°N) in

¹⁶¹

¹⁶² Potential temperature (θ), potential density (σ_{θ}), and apparent oxygen utilization (AOU,

the earlier decade, **b.** P02 in the recent decade, **c.** P16 (north-south at ~150°W) in the earlier decade, and **d.** P16 in the recent decade. Vertical black lines indicate crossovers between the two sections and curved black lines indicate surfaces of constant γ^{N}_{π}

Figure 3. Sections of direct Pacific AOU changes. Sections are **a.** P02 (east-west at ~30°N) in the earlier decade, **b.** P02 in the recent decade, **c.** P16 (north-south at ~150°W) in the earlier decade, and **d.** P16 in the recent decade. Vertical black lines indicate crossovers between the two sections and curved black lines indicate surfaces of constant γ^{N}_{*}

Deleted:

Deleted:

169

168

170 *2.2 Estimating decadal C_{anth} change*

- 171 Before C_{anth} can be estimated, the impacts of natural variability need to be removed from
- 172 changes in $C_{\rm T}$. These modes of variability include shifts in the locations of water masses on sub-
- 173 decadal timescales and variability in biogeochemical cycling patterns. The impacts of these
- 174 modes of variability and ongoing C_{anth} uptake can be seen in large and spatially-variable decadal

 $C_{\rm T}$ (Fig. 2) and AOU (Fig. 3) changes along P02 and P16. We use the eMLR approach to

remove the impacts of variability from these measurement change distributions.

179

180	The eMLR approach assumes that the natural processes changing $C_{\rm T}$ also change other	
181	measurable seawater properties that are unaffected by C_{anth} uptake. For instance, shifts in water	
182	mass locations affect most measured properties, and variability in biogeochemical cycling affects	
183	N, Si, and AOU distributions as well as C_{T} . The first step in the eMLR approach involves	
184	creating empirical linear functions "f" from the other measured (e.g. S, N, Si) and derived (e.g. θ ,	
185	AOU) properties " P " to capture the effect of natural variability on C_T (Equation 1):	
186	$f(P) = C_{\rm T} \tag{1}$	
187	Then the function from each decade is applied to the same set of measurements to yield estimates	
188	of what the measured $C_{\rm T}$ would have been had the modes of natural variability acted identically	
189	during both occupations. The differences between these estimates are then the portions of $C_{\rm T}$	
190	changes that are not accounted for by natural variability, which are therefore attributed to C_{anth}	
191	uptake (Equation 2). For the earlier decade, this is expressed as:	
192	$C_{anth} = f_2(P_2) - f_1(P_2) $ (2)	
193	In these equations the subscripts indicate the decades the terms are specific to, with 1 and 2 being	
194	the early and middle decades, respectively. The recent decade is later denoted with a 3,	
195		
196	Goodkin et al. [2011] warn eMLR users that circulation changes will render the empirical	
197	relationships determined for an earlier decade unsuitable for reproducing variability in a later	
198	decade when reoccupations are separated by 30 years or more, and <i>Plancherel et al.</i> [2013] show	
199	bias can be introduced when the sampling network is inconsistent between reoccupations.	

 Deleted: 1 and 2

 Deleted: terms

 Deleted: that are specific to the earlier and more recent decades, respectively.

204	However, we only consider overlapping portions of sections with maximum reoccupation	
205	intervals of 15 years, so neither of these cautions applies to our work.	
206		
207	We use several modifications to the eMLR approach to isolate $C_{\text{anth}}\xspace$ storage changes from natural	
208	$C_{\rm T}$ variability. Modifications are listed here and details follow. Assertions about the efficacy of	
209	these modifications are based on tests detailed in Appendix B:	
210	1. As done by <i>Friis et al.</i> [2005], we compare $C_{\rm T}$ estimates from regressions to one another	
211	(Equation 2) rather than directly to the measurements (i.e. we use eMLR, not MLR) $_{\circ}$	
212	thereby cancelling a portion of the C_T fit error.	Deleted: .
213	2. As done by Sabine et al. [2008], we include an adjustment based on AOU changes to	Formatted: Font: Italic
214	account for potential additional changes in biogeochemical $C_{\rm T}$ cycling that are not	Formatted: Subscript
215	resolved by the eMLR regressions. We find this adjustment decreases mean estimate	
216	error and r.m.s. error by ~7-15%.	
217	3. As done by <i>Velo et al.</i> [2013] for A_T regressions, we use "robust" multiple linear	
218	regression, Robust regression minimizes the impact of outliers on our regressions by	Deleted: , which includes an iterative outlier exclusion step prior to regression
219	iteratively re-estimating regression coefficients after assigning smaller weights to	
220	measurements with larger residuals, thereby excluding outliers. We use the "robustfit"	
221	MATLAB robust regression routine with a bisquare outlier test and the recommended	
222	default turning constant, meaning data with residuals in excess of 4.685 times the	
223	standard residuals are given no weight.	
224	4. Like <i>Velo et al.</i> [2013] and <i>Carter et al.</i> [2016], we use a moving window in depth, γ^N ,	
225	and latitude or longitude to select data for each regression. This moving window	
226	removes the need to make arbitrary decisions regarding which depth or density intervals	

230		to use for each regression, and reduces the number of independent variables required to
231		capture the modes of variability along hydrographic sections bisecting many
232		heterogeneous water masses. Omitting the moving window doubles mean errors, though
233		most error increase occurs when omitting the moving window in depth/density, and many
234		previous studies have included multiple regressions for various depth ranges. Omitting
235		the horizontal component of the moving window only improves mean error by ~10%.
236		Neither window has a strong impact on r.m.s. error. The primary advantage the moving
237		window offers is eliminating the need for choices regarding how to partition the water
238		column vertically.
239	5.	Finally, we use $\frac{16}{16}$ combinations (Table 2) of our 5 regression seawater properties (θ , S ,
240		AOU, Si, and N) for our regressions and use the mean C_{anth} estimate returned by these
241		varied regressions as our final Canth estimates. Plancherel et al. [2013] tested various
242		approaches for reconstructing known simulated Canth distributions and showed that the
243		choice of which properties to include in a regression can have a substantial impact on the
244		Canth estimates returned. Their mean estimate was also somewhat better than the estimate
245		from the best AIC approach, which scrupulously chose the regression parameter
246		combination with the best fit relative to the number of degrees of freedom for several
247		depth intervals. We find this adjustment decreases our mean estimate errors by ~30-40%
248		and r.m.s. errors by ~60-80%.
249	We are	e unaware of steps 3 through 5 being used for eMLR ΔC_{anth} estimates before. We refer to
250	our ap	proach as an "ensemble eMLR" because of step 5.
251		

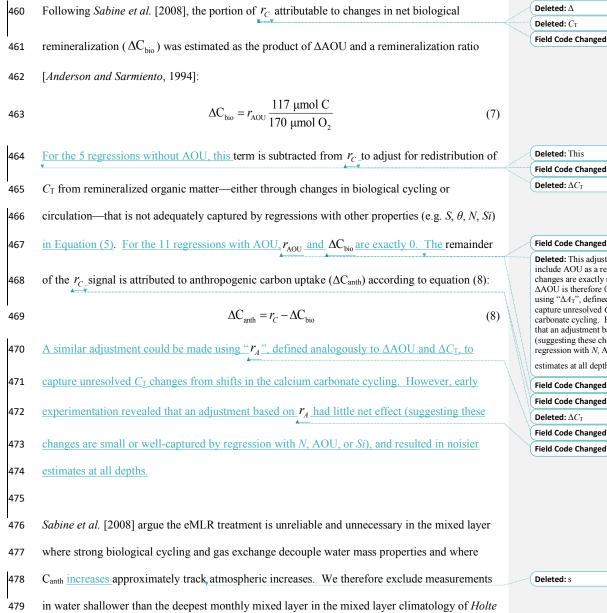
Deleted: many

253	The first step of the ensemble eMLR method is to select "local" data for each of our 33,000+	
254	regression locations by applying moving windows around each data point (one for each	
255	measured location in each dataset). Local data are data remaining after excluding all	
256	measurements:	
200	ineasurements.	
257	1. within the mixed layer (more below),	
258	2. more than 15° of latitude or longitude away,	
259	3. found on a different hydrographic line than the location (i.e. along P02 vs. P16), and	
260	4. that are both more than 200 m deeper or shallower and either 0.1 kg m ⁻³ γ^{N} denser or less	
261	dense than the density of the seawater for which regression constants are being	
262	determined.	
202		
263	Requirement 4 is designed to have the local data window rely on γ^N , but it also includes a depth	
264	threshold to ensure the inclusion of enough measurements to constrain a regression within	
265	regions of large vertical density gradients.	
266		
267	Next, the regression coefficients are estimated for C_{T} . The general form of the equation fit to	Deleted: both AOU and
268	data is;	Deleted: Example regressions using θ , S , and N are:
269	$C_{\rm T} = \alpha_1^1 + i^\theta \alpha_1^\theta \theta + i^S \alpha_1^S S + i^N \alpha_1^N N + i^{Si} \alpha_1^{Si} Si + i^{\rm AOU} \alpha_1^{\rm AOU} AOU $ (3)	
270	In Equations 3 and 4, the α values are the regression coefficients. Superscripts link coefficients	Deleted: -
271	to their associated predictors, and subscripts refer to occupations (as before). The <i>i</i> terms are	$AOU = c_{AOU}^{1} + i_{\theta}c_{AOU}^{\theta}\theta + i_{s}c_{AOU}^{s}S + i_{N}c_{AOU}^{N}N + i_{si}c_{AOU}^{si}S$
211		
272	either 1's or 0's depending on whether the specific regressions contain each of the 5 properties	Field Code Changed
273	(see Table 2). Regression coefficients are similarly estimated for AOU for the 5 regressions that	Deleted: lowercase c
		Deleted: and subscripts Deleted: and independent variables
274	omit AOU as a predictor variable:	Deleted: , respectively
275	$\underline{\text{AOU}} = \beta_1^1 + i^\theta \beta_1^\theta \theta + i^S \beta_1^S S + i^N \beta_1^N N + i^{Si} \beta_1^{Si} Si \underline{\qquad} (4)$	Deleted: Regressions with 16 combinations of 3 to
213	$\qquad \qquad $	Field Code Changed

,	
287	β regression coefficients are estimated at every location for which there are $C_{\rm T}$ measurements in
288	the early, middle, and recent datasets. These regressions implicitly include latitude/longitude
289	and depth as regression coefficients by virtue of allowing the fits to change in space. It is
290	possible to obtain smaller regression residuals using fits with more regression parameters.
291	However, the strength of regression fits has been shown to be a poor indicator of eMLR skill and
292	including more regression parameters increases the risk of over fitting the signal. We therefore
293	consider estimates from each of these 16 regressions to be equally likely. For discussion
294	purposes only, a 17 th regression is performed using only θ and S.
295	
I	Table 2. Properties used in each of the 16 regressions for $C_{T} = A^{(1)}$

The large state in the properties used in the large size in the property is used and a "0" indicates the property is used and a "0" indicates it is not. AOU is regressed only for the 5 regressions with i_{AOU} of 0.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>0</u> _1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>0</u> _1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>0</u> _1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1
1 1 0 1 1	
- 1 0 1 0	0
$5 \qquad 1 \qquad 0 \qquad 0 \qquad 1$	_1
	0
3 0 1 1 0	1
0 1 0 1	1
	1
	0
	1
$13 \qquad 1 \qquad 1 \qquad 0 \qquad 1$	1
	1
	1
	1


296

Field Code Changed ... [1] Deleted: are used ... for regressions of both CT and AOU. ap] **Deleted:** both $\triangle AOU$ and \triangle **Deleted:** Regressions with AOU always return a $\triangle AOU$. [4] Field Code Changed ... [3] Deleted: θ Field Code Changed ... [6] Deleted: S Field Code Changed ... [7] Deleted: AOU Field Code Changed . [8] Deleted: Si Field Code Changed ... [5] Field Code Changed ... [9] Deleted: N Deleted: ✓ Deleted: 🗸 Deleted: ✓ Deleted: 🗸 Deleted: ✓ Deleted: ✓ Deleted: 🗸 Deleted: ✓ Deleted: ✓

14

Deleted: ✓ Deleted: ✓

429	The next step in the process is to grid the regression coefficients from the paired datasets onto a	
430	regular 2D depth-longitude grid. Properties are gridded vertically onto every 50 m increment	
431	between 25 m and 5475 m depth using the cubic Hermite piecewise polynomial linear	
432	interpolation scheme described by Carter et al. [2014] (Supplementary Materials section SA).	
433	Seawater properties and regression coefficients are then linearly interpolated onto every quarter	
434	degree of longitude and latitude along the two sections. All further analysis is carried out using	
435	these gridded values. However, for figure clarity, data are smoothed using a $\pm 1^{\circ}$ latitude or	
436	longitude averaging window centered on each grid point before plotting sections.	
437		
438	The <u>residual</u> portions of AOU and $C_{\rm T}$ water-mass changes that are not captured by the	
439	regressions (r_{AOU} and r_C) are estimated at each grid location for each regression by differencing	Deleted:
440	the interpolated regression coefficients according to equations (5) and (6) and multiplying by the	
441	property distributions:	
	$r_{c} = (\alpha_{1}^{1} - \alpha_{1}^{1}) + i_{\theta}(\alpha_{2}^{\theta} - \alpha_{1}^{\theta})\theta + i_{s}(\alpha_{2}^{s} - \alpha_{1}^{s})S + i_{AOU}(\alpha_{2}^{AOU} - \alpha_{1}^{AOU})AOU + (\alpha_{2}^{AOU} - \alpha_{1}^{AOU} - \alpha_{1}^{AOU})AOU + (\alpha_{2}^{AOU} - \alpha_{1}^{AOU} - \alpha_{1}^{AOU})AOU$	
442	$+i_{N}(\alpha_{2}^{N}-\alpha_{1}^{N})N+i_{Si}(\alpha_{2}^{Si}-\alpha_{1}^{Si})Si$ (5)	Field Code Changed
443	$r_{AOU} = (\beta_2^{1} - \beta_1^{1}) + i_{\theta}(\beta_2^{\theta} - \beta_1^{\theta})\theta + i_{s}(\beta_2^{s} - \beta_1^{s})S + i_{AOU}(\beta_2^{AOU} - \beta_1^{AOU})AOU + $ (6)	$r_{\text{AOU}} = (C_{\text{AOU}}^{1} - c_{\text{AOU}}^{1}) + i_{\theta}(C_{\text{AOU}}^{\theta} - c_{\text{AOU}}^{\theta})\theta + i_{S}$ Deleted: $+i_{N}(C_{\text{AOU}}^{N} - c_{\text{AOU}}^{N})N + i_{Si}(C_{\text{AOU}}^{Si} - c_{\text{AOU}}^{Si})\theta$
	$+i_N(\beta_2^N-\beta_1^N)N+i_{Si}(\beta_2^N-\beta_1^N)Si$	Deleted: In Equations 5 and 6, lowercase constants are from the earlier occupations and capitalized constants are from the recent occupations
444	Equation (6) is only applied to the 5 regressions lacking AOU as a predictor variable (Table 2).	Deleted: θ , S, and N
445	Except when otherwise specified, the property values used to estimate these changes are from the	Formatted: Font: Not Italic
5	Zacept men oner whe operated, me property talkes used to containe mose changes are normal	Formatted: Font: Not Italic
446	later occupation of each pair. We caution that r_{AOU} estimates are not equivalent to AOU changes	Formatted: Font: Not Italic
		Formatted: Font: Not Italic
447	at a location ($\triangle AOU$), as a portion of $\triangle AOU$ will correlate with the regression parameters and be	Field Code Changed
448	removed by Equation (6) (see also Section 3.1).	Deleted: R _{AOU}
-		Deleted: n unknown
449		Deleted: the Deleted: change

eleted: Δ
eleted: CT
eld Code Changed
eleted: This
eld Code Changed
eleted: ΔC_{T}
eld Code Changed
eleted: This adjustment is 0 for the 11 regressions that
clude AOU as a regression parameter because all AOU
anges are exactly resolved when AOU is included, and AOU is therefore 0. A similar adjustment could be made
ing " ΔA_T ", defined analogously to ΔAOU and ΔC_T , to
pture unresolved $C_{\rm T}$ changes from shifts in the calcium
rbonate cycling. However, early experimentation revealed
at an adjustment based on $\Delta A_{\rm T}$ had little net effect
uggesting these changes are small or well-captured by
gression with <i>N</i> , AOU, or <i>Si</i>), and resulted in noisier timates at all depths. After removing ΔC_{bio} , the

497	et al. (accessed Nov. 2014) from eMLR. For the mixed layer, which is better equilibrated with		
498	the atmosphere than deeper layers, anthropogenic storage is estimated in several steps. We:		
499	1. estimate pCO_2 for the later occupation from A_T , C_T , and carbonate constants [<i>Dickson</i>		
500	and Millero, 1987];		
501	2. subtract the increase in annual mean atmospheric pCO_2 between the earlier and later		
502	occupations according to the Mauna Loa observatory record [Keeling, 1986];		
503	3. estimate $C_{\rm T}$ using the $A_{\rm T}$ measured during the later occupation and the diminished $p{\rm CO}_2$;		
504	4. and assume the anthropogenic storage equals the difference between the measured $C_{\rm T}$ and		
505	this lower $C_{\rm T}$ estimate.		
506			
507	These steps produce a ΔC_{anth} estimate at each grid location for both decades considered for each		
508	of the 16 regressions. These 16 estimates are then averaged for the final ΔC_{anth} distribution		
509	estimates. We forgo performing a weighted average because there is no solid <i>a priori</i> basis from		
510	which to determine weights for the regressions.		
511			
512	2.3 Column inventory change, basin storage, and overall Canth estimates		
513	C_{anth} column inventory changes are estimated in mol C $m^{-2} a^{-1}$ by summing ΔC_{anth} over depth and		
514	dividing by the years between reoccupations. We sum from the surface to depth at which the		
515	mean ΔC_{anth} across latitude or longitude is 0.5 μ mol kg ⁻¹ . This threshold is smaller than typical		
516	uncertainties for individual estimates (3-5 μ mol kg ⁻¹ , see Appendix A) because we are averaging		
517	across the large number of estimates obtained at each station along a line, each of which has		
518	partially independent uncertainties. Thresholds between 0 and 1 µmol kg-1 return similar average		

results. Higher thresholds yield consistently smaller column inventory estimates, and lowerthresholds return greater variability among estimates from different regressions.

521

Basin scale storage is estimated using the gridded World Ocean Atlas annual mean temperature 522 and salinity data product [Locarnini et al., 2013; Zweng et al., 2013]. First, potential density σ_{θ} 523 is calculated for each of the gridded data product locations (difficulties were encountered 524 525 calculating γ^{N} in some nearshore environments). Next, C_{anth} changes at each location are estimated as the ΔC_{anth} on the same σ_{θ} surface at the same latitude along P16, normalized to a 10 526 527 year time change. The overall change is estimated as the grid cell volume-weighted sum of the ΔC_{anth} . This estimate uses only P16 because the asymmetry of the gyres in the Northern and 528 Southern Hemispheres suggests the meridional P16 section might be better able to capture the 529 530 density structure of the Pacific than the zonal P02 section. Extrapolation errors are estimated by comparing our estimates along P02 to our extrapolated estimates along P02 from P16 (Appendix 531 A). 532 533

Overall Canth is estimated for both sections in the CLIVAR and GO-SHIP decades by adding the 534 535 eMLR ΔC_{anth} estimates to the WOCE-era ΔC^* -based C_{anth} estimates by Sabine et al., [2002] in the GLODAPv1.1 bottle data product [Key et al., 2004]. These WOCE-era ΔC^* estimates are 536 first interpolated in the γ^{N} space observed during the CLIVAR and GOSHIP occupations. One 537 or both ΔC_{anth} estimates are then added to update the overall C_{anth} estimates. Aragonite 538 saturation state (Ω_A) and pH are calculated from the measured C_T and A_T , and the preindustrial 539 540 Ω_A and pH (calculated from measured A_T and the difference between the measured C_T and estimated C_{anth}) are subtracted from them. These calculations provide an estimate of the overall 541 impact of C_{anth} on Ω_A ($\Delta\Omega_A$) and pH (ΔpH). We linearly interpolate (and extrapolate where 542

543	necessary) these estimates in time from 1991 to 2015. The overall C_{anth} estimates and a simple	
544	animation showing C_{anth} and $\Delta\Omega_A$ over time are provided as Supplementary Materials.	
545		
546	Errors are assessed in Appendix A. Uncertainty estimates should be considered to be $\pm 1\sigma$,	
547	though 95% confidence intervals are used for determining statistical significance. The error	
548	analysis reveals eMLR C_{anth} estimates vary by $\pm 3.3~\mu mol~kg^{-1}~C_{anth}$ between regression	
549	coefficient sets. This uncertainty would apply in full to non-ensemble eMLR estimates that rely	
550	on a single property combination, and would be the largest single component of estimate	
551	uncertainty for such estimates. However, we argue (and show in Appendix B) this error is	
552	reduced for our 16-member ensemble eMLR. The largest remaining source of uncertainty for	Deleted: by a factor of 4 for
553	this analysis is then potential errors in $C_{\rm T}$ measurements or the adjustments applied to them.	
554		
555	3. Results and Discussion	
556		
557	Results are presented from the surface to 1500 m depth. We do not find any statistically	
558	significant changes below this depth in the Pacific. This is expected because of the great age of	
559	most deep Pacific waters [Matsumoto, 2007; Gebbie and Huybers, 2012]. While changes in	
560	Antarctic Bottom Water Canth are possible, we do not expect these changes to be detectable on	
561	decadal timescales using our methods.	
562		
563	3.1 r _{AOU_}	Deleted: <i>AAOU</i> Field Code Changed
	AUU	Field Code Changed
564	We briefly exemine the exempted for the frequencies (T-h- 2) that did not a AOU	Deleted: ΔAOU
564	We briefly examine r_{AOU} averaged for the 5 regressions (see Table 2) that did not use AOU as a	Field Code Changed
		Deleted: AAOU
565	regression parameter (Fig. 4). These r_{AOU} estimates are not comprehensive estimates of $\triangle AOU$ in	Deleted: change

571	a water mass because the eMLR regressions with N and Si remove the portions of $\triangle AOU_{that}$	Deleted: changes
572	correlate with these nutrients, as recently pointed out by Chu et al. [2016]. It is therefore likely	
573	that most AOU changes from shifts in net organic matter decomposition-resulting from rain	
574	rate changes or circulation shifts—are missing from r_{AOU} estimates. We attribute the remaining	Field Code Changed
		 Deleted: ΔAOU
575	r_{AOU} signal primarily to variations in organic matter export that occur near the surface and are	 Field Code Changed
576	followed by re-equilibration of O_2 and C_T (but not nutrients) with the atmosphere. Phrased	 Deleted: ΔAOU
577	differently, we believe the r_{AOU} term primarily reflects variations in <i>Broecker</i> [1974]'s quasi-	Field Code Changed
578	conservative tracer "NO," which is oxygen adjusted for the amount of nitrate present. Since CO_2	Deleted: ΔAOU
579	and O ₂ can both be restored to equilibrium by gas exchange, the AOU adjustment (Equation 8)	
580	remains appropriate for eMLR analyses when <u>AOU</u> is not used as a regression parameter.	 Deleted: O ₂
581		Deleted:
582	Along both sections, our r_{AOU} estimates for the first decade (Fig. 4a and c) have a similar pattern,	Field Code Changed
302		 Deleted: ∆AOU
583	though of generally smaller magnitude, to the estimates obtained for the same decade by Sabine	
584	et al. [2008]. An exception is found for waters shallower than 400 m depth along P02, where	
585	Sabine et al. [2008] find consistently positive r_{AOU} and we do not. In this region their results	Field Code Changed
	۸	Deleted: ∆AOU
586	appear dissimilar from our mean estimates but still fall within the range of results from	
586	appear dissimilar from our mean estimates, but still fall within the range of results from	
586 587	appear dissimilar from our mean estimates, but still fall within the range of results from individual regression coefficient combinations. This apparent disagreement highlights how	
	individual regression coefficient combinations. This apparent disagreement highlights how	Deleted: AAOU
587		Deleted: ∆AOU Field Code Changed
587	individual regression coefficient combinations. This apparent disagreement highlights how sensitive r_{AOU} patterns are to the choice of regression coefficients (Appendix A). Due in part to	Field Code Changed Deleted: most
587 588	individual regression coefficient combinations. This apparent disagreement highlights how sensitive r_{AOU} patterns are to the choice of regression coefficients (Appendix A). Due in part to this sensitivity, most of the mean r_{AOU} estimates cannot be distinguished from 0 at >95%	Field Code Changed Deleted: most Field Code Changed
587 588	individual regression coefficient combinations. This apparent disagreement highlights how sensitive r_{AOU} patterns are to the choice of regression coefficients (Appendix A). Due in part to this sensitivity, most of the mean r_{AOU} estimates cannot be distinguished from 0 at >95%	Field Code Changed Deleted: most Field Code Changed Deleted: ΔAOU
587 588 589 590	individual regression coefficient combinations. This apparent disagreement highlights how sensitive r_{AOU} patterns are to the choice of regression coefficients (Appendix A). Due in part to this sensitivity, most of the mean r_{AOU} estimates cannot be distinguished from 0 at >95% confidence. Another likely reason for the predominance of non-significant r_{AOU} estimates is that	Field Code Changed Deleted: most Field Code Changed
587 588 589	individual regression coefficient combinations. This apparent disagreement highlights how sensitive r_{AOU} patterns are to the choice of regression coefficients (Appendix A). Due in part to this sensitivity, most of the mean r_{AOU} estimates cannot be distinguished from 0 at >95%	Field Code Changed Deleted: most Field Code Changed Deleted: ΔAOU Deleted: in

606	and therefore the mean r_{AOU} estimates are small. While mostly small, significant positive r_{AOU}	
607	estimates are found near the northern and eastern edges of the P16 and P02 sections respectively	
608	in water between 26 and 27 kg m ⁻³ γ^{N}_{v} extending between the base of the mixed layer and ~500	
609	m. Another exception is a broadly distributed, but rarely statistically significant, positive r_{AOU}	
610	between 27 and 27.25 kg m ⁻³ across P02 during the earlier decade. Emerson et al. [2004],	
611	Deutsch et al. [2006], and Mecking et al. [2008] attributed similar but significantly more intense	
612	changes in modeled and observed AOU along density surfaces to a decrease in ventilation of the	
613	deepest and densest (26.6 kg m 3 σ_θ or about 26.7 kg m $^3\gamma^N)$ portions of the North Pacific	
614	Subtropical Gyre. A more-direct comparison to their $\triangle AOU$ estimates can be made with r_{AOU} .	
615	estimates obtained using only θ and S (not shown), which were broadly 10 to 20 μ mol kg ⁻¹	******
616	higher than our mean ensemble eMLR r_{AOU} estimates between the 26 and 27 kg m ⁻³ γ^{N} surfaces	
617	along P02 and the northernmost portions of P16. These estimates from only θ and S, which we	
618	contend only have △AOU from shifts in the distributions of water masses removed, more closely	
619	match Mecking et al. [2008]'s findings.	
620		
621	Our r_{AOU} estimates are of smaller magnitude along both sections for the recent decade (Fig. 4b	
622	and d) than for the earlier decade. However, in the recent decade, r_{AOU} estimates obtained using	
623	only θ and S (not shown) were again large and positive between 25.5 and 26.7 kg m ⁻³ γ^{N} between	
624	${\sim}160^\circ\text{E}$ and 160°W along P02, but negative east of ${\sim}140^\circ\text{W}$ at densities lighter than 26 kg m $^{-3}$	
625	γ^{N} . This observation suggests waters perhaps continued to age between ~160°E and 160°W,	
626	while being partially ventilated in the shallowest and easternmost portions of the gyre (c.f. Fig.	
627	5a and b).	

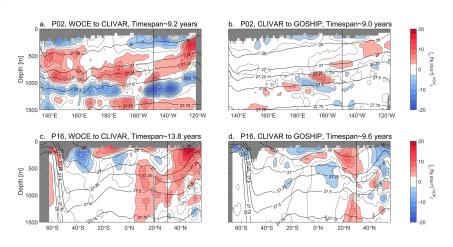
Deleted: One exception
Field Code Changed
Field Code Changed
Deleted: is
Deleted, where significant positive peer surfa

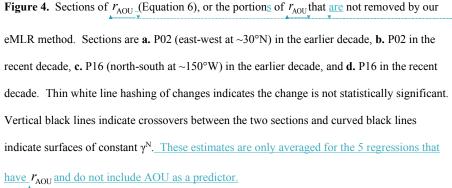
Deleted: , where significant positive near-surface ΔAOU values are found Deleted: The

Field Code Changed

Deleted: ∆AOU

-(Deleted: change
(Field Code Changed
(Deleted: $\Delta AOU'$
1	
1	Field Code Changed
(Deleted: ∆AOU


Deleted: changes

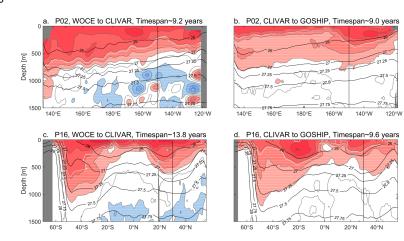

 Deleted: ΔAOU

 Field Code Changed

 Field Code Changed

 Deleted: ΔAOU

643 3.2 ΔC_{anth}


644 Estimates of ΔC_{anth} along the two sections for both decades (Fig. 5) reveal a familiar pattern of ΔC_{anth} of 8-13 µmol kg⁻¹ near the surface extending to depth in the lower density thermocline 645 waters of the subtropical gyres. The surface change is slightly larger in the subtropics where 646 higher temperatures and alkalinities lead to greater CO₂ storage for a given pCO₂ change. In the 647 interior, C_{anth} penetration is deeper in the Southern Pacific (>5 µmol kg⁻¹ to at least 700 m depth 648

-(Deleted: ∆AOU
(Deleted: AOU changes
\geq	Deleted: are
$\langle \rangle$	Field Code Changed
Ì	Field Code Changed

Field Code Changed

652	in both decades) where Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water
653	(AAIW) ventilate the deepest portions of the subtropical thermoclines. The less voluminous
654	mode and intermediate water masses of the North Pacific Gyre thermocline create a shallower
655	local ΔC_{anth} maximum in the Northern Hemisphere. Penetration is shallowest in the subpolar,
656	subantarctic, equatorial, and eastern boundary current regions where older waters upwell that
657	have not been as recently exposed to the atmosphere. Along P02, ΔC_{anth} broadly tracks
658	isopycnal surfaces that shoal rapidly west of 140°E across the northward-flowing Kuroshio and
659	gradually east of there across the generally southward-flowing gyre. An exception is found east
660	of 160°W along P02 in the recent decade where there is a local ΔC_{anth} maximum. This exception
661	suggests there has been an increase in ventilation along the eastern portion of P02 during the
662	recent decade, as suggested earlier in Section 3.1 and as found along the P17N section (also in
663	the NE Pacific) by Chu et al. [2016]. ΔC_{anth} extends across the thermocline, and is found in
664	North Pacific Intermediate Water (NPIW) [Talley, 1993; Yasuda, 1997] and multiple varieties of
665	North Pacific mode water [Hanawa and Talley, 2001].

-20

1 I	Eigene 5. Solving of AC_{1} (Equation 8) on actimates of the decadel increases in C_{1} , then	Delated and
	Figure 5. Sections of ΔC_{anth} (Equation 8), or estimates of the decadal increases in C_{anth} along	Deleted: our Formatted: Font: Not Italic
•	each section. Sections are a. P02 (east-west at ~30°N) in the earlier decade, b. P02 in the	
	recent decade, c. P16 (north-south at \sim 150°W) in the earlier decade, and d. P16 in the recent	
	decade. Thin white line hashing of changes indicates the change is not statistically significant.	
	Vertical black lines indicate crossovers between the two sections and curved black lines	
	indicate surfaces of constant γ^{N}_{γ}	Deleted: .
667		
668	The ΔC_{anth} distributions agree with those found by <i>Sabine et al.</i> [2008] for the earlier decade	
669	within expected uncertainties. We find smaller C_{anth} increases in the triangle bound by [0°S at	
670	200 m; 25°S at 200 m; and 25°S at 800 m] depth, though Sabine et al. [2008] also find a	
671	minimum at 20°S at ~200 m depth. Along P02, we both find local maxima near the California	
672	and Kuroshio Currents, though our Kuroshio ΔC_{anth} maximum is less pronounced than theirs.	
673	We also find higher ΔC_{anth} at the surface across P02 than they do. Disagreements between our	
674	estimates and theirs of this order (~3-5 μ mol kg ⁻¹ , 1 σ) are expected because, as <i>Plancherel et al.</i>	
675	[2013] showed and we show in Appendix A, the non-ensemble eMLR estimate distributions	Deleted: our a
676	provided by other eMLR studies are highly sensitive to the choice of regression parameters.	
677		
678	Comparing ΔC_{anth} estimates for the earlier and recent decades reveals several changes in ΔC_{anth}	
679	estimate patterns. To quantify these shifts, we normalize the ΔC_{anth} distributions to a 10-year	
680	timespan and then directly difference them ($\Delta\Delta C_{anth}$, for a change in the change, in Fig. 6). The	
681	largest statistically significant feature is a large increase in ΔC_{anth} in densities between the 26 kg	
682	$m^{\text{-}3}$ iso-neutral surface and the base of the mixed layers between 30°S and 10°S along P16. A	
683	second broad ΔC_{anth} decrease can be seen along P02 in densities lighter than 26 kg m ⁻³ γ^{N} west of	

687	160°W (and somewhat deeper further west). While these ΔC_{anth} changes along P02 are rarely
688	statistically significant individually, they are collectively a distinguishable feature. In Sections
689	3.3 and 3.5, we rule out the possibility that either of these changes result from shifts in the
690	locations of water masses, so we attribute them instead to changes in the degree of ventilation of
691	water masses at these locations. A likely explanation for the South Pacific storage change
692	increase is variability in the overturning of the Southern Pacific Subtropical Cell (STC), which
693	transports water equatorward along the ${\sim}25$ kg m 3 γ^N isoneutral surface, where this feature is at a
694	maximum. The STC exhibits substantial decadal variability, and was declining prior to 1998
695	[McPhaden and Zhang, 2002] before rebounding [McPhaden and Zhang, 2004] and intensifying
696	through the recent decade [England et al., 2014]. The (barely statistically significant) portions of
697	this signal in waters denser than 26 kg $m^{\text{-}3} \ \gamma^{\text{N}}$ may be due to an intensification of SAMW
698	formation in the earlier decade [Waugh et al., 2013], that, sustained in the recent decade, is now
699	propagating further North.

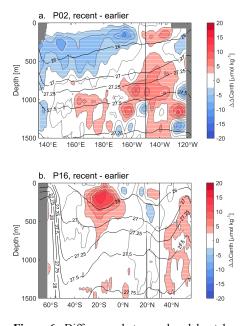
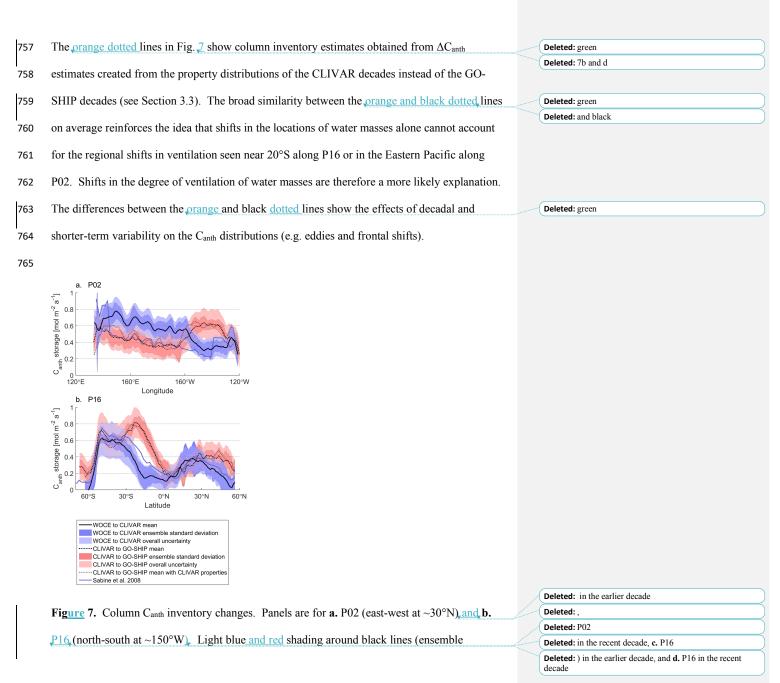


Figure 6. Differences between decadal uptake of C_{anth} in the recent and earlier decades considered ($\Delta\Delta C_{anth}$). These estimates are calculated directly along **a**. P02 (east-west at ~30°N) and **b**. P16 (north-south at ~150°W). Thin white hashing of changes indicates the change is not statistically significant. Vertical black lines indicate crossovers between the two sections and curved black lines indicate surfaces of constant γ^{N} .


702 $3.3 \Delta C_{anth}$ variability

- 703 While eMLR removes the effects of many forms of sub-decadal variability on C_{T} , the method
- does not also remove <u>all</u> sub-decadal variability in C_{anth}. For example, *Woosley et al.*, [2016]
- vsed eMLR to show mesoscale eddies redistribute Canth along sections. Water mass
- redistributions such as eddies and frontal shifts can appear in ΔC_{anth} estimates when the eMLR
- regressions are applied to property distributions that were measured in shifting water masses (i.e.

708	P in Equation 2). For example, a passing eddy during a hydrographic occupation would	
709	rearrange the density structure of the water being measured and result in a redistribution of the	
710	physical and biogeochemical measurements used in equations (5 and 6). We estimate the impact	
711	of this variability on ΔC_{anth} estimates as the differences between estimates obtained from	Deleted: from
712	different property distributions (i.e. using <i>P</i> from a different decade). Expressed in the notation	Formatted: Font: Italic
713	of Equation (2), we estimate this term as:	
714	"Variability" $\Delta C_{\text{anth}} = f_2(P_2) - f_1(P_2) - (f_2(P_1) - f_1(P_1))$ (9)	
715	<u>for a WOCE to CLIVAR comparison.</u> This "Variability" ΔC_{anth} estimate averages (mean±r.m.s.)	
716	$0.1{\pm}0.9~\mu\text{mol}~\text{kg}^{\text{-1}}$ between the base of the mixed layer and 1500 m depth in our four sets of	
717	estimates, suggesting it is a small contribution to overall ΔC_{anth} estimate variability. However,	Formatted: Font color: Auto
718	eMLR can fail to identify local ΔC_{anth} variability when determining regression coefficients with	
719	measurements made over broad areas. Therefore this analysis does not rule out such variability	
720	meaningfully redistributing Canth, it merely suggests a small role for such variability in governing	
721	$eMLR \Delta C_{anth}$ estimates.	Deleted: ¶
722		
723	3.4 Column inventory change rates	
724	As shown in Section 3.2, ΔC_{anth} is greatest in low-density recently ventilated thermocline waters.	
725	C_{anth} column inventory increases (Fig. 7) are therefore greatest along P02 in the earlier decade in	
726	the Eastern Pacific where isopycnal surfaces are deepest. A similar pattern is seen along P02 in	
727	the recent decade though the region of elevated increases east of 160° W noted in section 3.2 is	
728	also apparent. Mean column inventory stayed approximately constant at 0.53±0,11 and	Deleted: 12
729	0.46±0,11 mol C m ⁻² a ⁻¹ along P02 in the earlier and recent decades, respectively. Along P16	Deleted: 12
730	there is a double hump characteristic of the deeper penetration of low density mode and	

735	intermediate water types in the North and South Pacific Gyres than in the surrounding Antarctic,
736	Subpolar, and Equatorial Pacific. A similar pattern is seen in the recent decade along P16,
737	though a new local column storage maximum at ~20°S is also visible. Mean C_{anth} storage along
738	P16 increased slightly from 0.29±0.10 to 0.45±0.11 mol C m ⁻² a ⁻¹ in the earlier and recent
739	decades, respectively. This change was driven by a statistically significant Canth storage
740	acceleration from 0.36 \pm 0.10 to 0.58 \pm 0.10 mol C m ⁻² a ⁻¹ in the South Pacific, and a comparable or
741	increasing North Pacific storage of 0.23 ± 0.1 and 0.31 ± 0.1 mol C m ⁻² a ⁻¹ in the earlier and recent
742	decades, respectively.
743	
744	The lighter blue bands in Fig. 7 indicate the overall uncertainty estimates (1 σ) for our eMLR
745	method (see Appendix A). A major source of the overall uncertainty for traditional eMLR and
746	ensemble eMLR is uncertainty in the $C_{\rm T}$ measurements or measurement adjustments (Section
747	2.1), where a 1 μ mol kg ⁻¹ error over 10 years—integrated over 1000 m of seawater—creates a
748	${\sim}0.1$ mol $m^{-2}~a^{-1}$ storage change error. With these large uncertainties, it is difficult to conclude
749	whether shifts in column storage are real, especially because errors in adjustments derived from
750	CLIVAR era measurements could have opposing effects on the two decadal records, amplifying
751	the apparent differences. Nevertheless, the largest apparent change is more than double the
752	overall uncertainty; at 15.75°S, the decadal column inventory increase grew from 0.15 to 0.61
753	mol C m ⁻² a ⁻¹ . The second largest changes are the increases noted along the eastern portion of

P02. As discussed throughout Section 3, we attribute these two features primarily to shifts in thedegree of ventilation of these water masses.

means) indicate the overall uncertainties on our estimates. Dark blue and red shading

indicates the standard deviation between ensemble members. <u>Solid blue lines are estimates</u> from *Sabine et al.* [2008] for the same sections and <u>carlier WOCE to CLIVAR decades</u>. <u>Orange dotted lines provided for comparison with the black lines, are estimates of the column</u> inventory change rates calculated using the CLIVAR era property distributions instead of the GO-SHIP era distributions. We argue the differences between the <u>orange and black dotted</u> lines represent the effects of sub-decadal redistribution of C_{anth} (Section 3.3).

-	eleted: Orange
۲	eleted: Orange
D	eleted: lines in a. and b.
D	eleted: time
D	eleted: period
D	eleted: Green
D	eleted: in panels b. and d.,

777

778	Our estimates from the earlier decade generally match estimates in the literature to within				
779	uncertainties. Sabine et al. [2008] estimated column inventories with eMLR along both of these				
780	sections, so we plot their results directly with ours (solid blue lines in Fig. 7), Considering P02				
781	and P16 results collectively, their results and ours agree to within uncertainties (i.e. the blue lines				
782	are within the light blue windows for >68% of the two panels), Williams et al. [2015] also used				
783	eMLR to estimate column inventories along S4P in the Pacific sector of the Southern Ocean				
784	(67°S) over the period spanning both of the decades considered, and found an average of 0.1 mol				
785	C m ⁻² a ⁻¹ . Our nearest estimates along P16 that span both decades (at 62.5°S) average 0.06 \pm 0.1				
786	C m ⁻² a ⁻¹ . Murata et al. [2007] used the ΔnCT^{CAL} method—which uses a collection of				
787	assumptions in lieu of empirical relationships to adjust for the influences of natural variability-				
788	to estimate column C_{anth} inventories along P06, which crosses P16 at 32°S and spans a similar				
789	time period to our earlier decade. They find a Canth storage of 0.64 \pm ~0.4 mol C m ⁻² a ⁻¹ west of				
790	P16 and 1.25 ± 0.4 C mol m ⁻² a ⁻¹ east of P16. Our estimate of 0.53 ± 0.11 mol C m ⁻² a ⁻¹ is within				
791	uncertainties of one of these estimates and is lower than the other. Chu et al. [2016] estimate				
792	C_{anth} changes along P17N between 2001 and 2012. The P17N section angles from near P16 at				

Deleted: a and c Deleted: in orange

Deleted: green

Deleted: The *Sabine et al.* [2008] estimates are generally within 1 ensemble standard deviation of ours, suggesting their results can be thought of as another member of our ensemble

806	~50°N to near P02 at 135°W. <i>Chu et al.</i> [2016]'s estimates decrease from 0.55 ± 0.12 mol m ⁻² a ⁻¹
807	at 34°N to ~0.2 \pm 0.12 m ⁻² a ⁻¹ at 50°N, while the nearest estimates on our sections in the recent
808	decades are 0.50 \pm 0.11 mol m ⁻² yr ⁻¹ and 0.35 \pm 0.11 mol m ⁻² yr ⁻¹ , respectively. They attribute
809	differences between their estimates and the estimates of Sabine et al. [2008] along P16 and P02
810	to differences in methods used and regions considered. Our results confirm the importance of
811	such methodological differences, and also suggest that differences in the timeframes considered
812	are also likely important.

814 3.5 Basin inventory changes

Basin inventory change estimates are averaged by 10° latitude bands and by hemispheres in 815 Table 3. Pacific Canth storage increased on average from 6.1±1.6 to 8.9±2.2 PgC decade⁻¹. By 816 817 comparison, Woosley et al. [2016] found anthropogenic carbon storage also increased in the 818 recent decade in the North Atlantic, leading to an overall Atlantic storage increase from 5.1 to 8.1 PgC decade⁻¹. Pacific storage is comparable to Atlantic storage—despite the formation of 819 820 North Atlantic Deep Water in the Atlantic-because of the larger volume of the Pacific Ocean. The Pacific storage increase between the earlier and the later decades was primarily driven by a 821 822 large increase in Southern Pacific storage from 3.8±1.0 to 6.8±1.7 PgC decade⁻¹. The North Pacific inventory increase remained constant to within uncertainties at 2.4±0.6 PgC decade-1 in 823 the earlier and 2.8±0.6 PgC decade⁻¹ in the later decade. Pacific decadal storage increases 824 outpaced the slightly increased rate of atmospheric CO2 accumulation. The increases in 825 Southern Pacific storage estimates cannot be explained by variability in the depths of isopycnal 826 827 surfaces because both of these estimates were extrapolated onto the same World Ocean Atlas climatological density field. This suggests changes in ventilation, or displacement of water 828

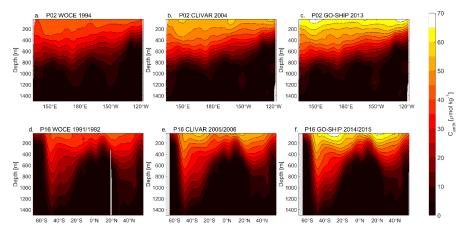

- 829 masses with differing degrees of ventilation, also occurred. We note that our decadal basin and
- 830 latitude band inventory estimates might be overestimates if any shifts were unique to the time or
- 831 longitude windows around the GO-SHIP P16 occupation (e.g. related to El Niño or the Blob
- 832 [Amaya et al., 2016]). Upcoming reoccupations of the P15 (170°W), P06 (~30°S), and P18
- 833 (103°W) lines will afford the opportunity to test temporal and regional extent of these changes,
- and will provide means to reduce the uncertainties associated with these extrapolations from only
- a single section. There are re-occupied sections that could be analyzed in the Northern Pacific as
- well, including P14 (180°E).
- 837

Table 3. Pacific decadal Canth storage for the
latitude bands spanned by P16 in Pg C decade ⁻¹ .
The "total" values include estimates for (not
shown) data-poor latitude bands from 60°N to
67°N and 70°S to 80°S, and therefore do not
exactly equal the sum of all rows.

Latitude Band	WOCE	CLIVAR to
	to	GOSHIP
	CLIVAR	
70 to 60°S	Ť	0.65
60 to 50°S	0.56	0.84
50 to 40°S	0.90	0.97
40 to 30°S	0.96	1.07
30 to 20°S	0.65	1.31
20 to 10°S	0.35	1.20
10 to 0°S	0.29	0.72
0 to 10°N	0.46	0.56
10 to 20°N	0.79	0.52
20 to 30°N	0.60	0.64
30 to 40°N	0.35	0.53
40 to 50°N	0.13	0.35
50 to 60°N	0.07	0.21
S. Hemisphere	3.8±1.0	6.8±1.7
N. Hemisphere	2.4±0.6	2.8±0.7
Total (60°S to 60°N)	6.1±1.6	8.9±2.2

[†] insufficient data

3.6 Overall Canth and impacts on pH and aragonite saturation

Figure 8. Estimates of total C_{anth} accumulation since the preindustrial era. Sections are **a.** P02 (east-west at ~30°N) in the WOCE occupation, **b.** P02 in the CLIVAR occupation, **c.** P02 in the GOSHIP occupation, **d.** P16 (north-south at ~150°W) in the WOCE occupation, **e.** P16 in the CLIVAR occupation, and **f.** P16 in the GOSHIP occupation.

842	Canth distributions have been steadily increasing throughout the gyre thermoclines of the Pacific				
843	(Fig. 8). The highest concentrations of 65 to 70 $\mu mol~kg^{-1}~C_{anth}$ are found in the surface ocean in				
844	the GO-SHIP occupations, corresponding the approximate expected increase from equilibration				
845	with a changing atmosphere (assuming seawater at ~20 °C with a salinity of 33, an A_T 2200, and				
846	a pCO_2 increase from 280 to 400 ppm). Surface concentrations fall at higher latitudes where				
847	colder seawater temperatures correspond to less C_{anth} gain for a given atmospheric change. C_{anth}				
848	concentrations fall also with depth. In the interior, C_{anth} becomes a passive tracer, and				
849	distributions broadly track the isopycnal surfaces along which advection and diffusion are				

strongest. Upwelling lifts isopycnal surfaces, decreasing Canth along, for example, equatorial

851 latitudes and the U.S. West Coast.

852

Table 4. Net impacts of ocean acidification since the preindustrial era on surface aragonite mineral saturation ($\Delta\Omega_A$) and pH (ΔpH) estimated for latitude bands along P16 (running north-south at ~150°W) in 1994, 2004, and 2014. Uncertainties on these estimates are small (5-10%), but we do not account for unknown potential errors in our presumption of fixed average surface atmospheric disequilibrium since the WOCE occupation.

autospherie disequitorian since the woel occupation.						
Latitude Band	$\Delta\Omega_{\rm A}$	$\Delta\Omega_{\rm A}$	$\Delta\Omega_{\rm A}$	ΔpH	ΔpH	∆pH
	1994	2004	2014	1994	2004	2014
60 to 50°S	-0.29	-0.32	-0.39	-0.09	-0.10	-0.13
50 to 40°S	-0.56	-0.67	-0.78	-0.10	-0.12	-0.14
40 to 30°S	-0.57	-0.69	-0.82	-0.08	-0.10	-0.12
30 to 20°S	-0.52	-0.65	-0.79	-0.07	-0.09	-0.11
20 to 10°S	-0.44	-0.54	-0.70	-0.06	-0.07	-0.09
10 to 0°S	-0.44	-0.51	-0.60	-0.06	-0.07	-0.08
0 to 10°N	-0.47	-0.54	-0.63	-0.07	-0.08	-0.09
10 to 20°N	-0.52	-0.63	-0.74	-0.07	-0.09	-0.10
20 to 30°N	-0.54	-0.67	-0.80	-0.07	-0.09	-0.11
30 to 40°N	-0.55	-0.65	-0.77	-0.08	-0.10	-0.12
40 to 50°N	-0.49	-0.59	-0.69	-0.09	-0.11	-0.13
50 to 60°N	-0.41	-0.50	-0.57	-0.09	-0.12	-0.14
Average all lats.	-0.48	-0.58	-0.69	-0.08	-0.09	-0.11

853

As expected [Doney et al., 2009; Feely et al., 2009, 2012], Canth storage has continued to acidify

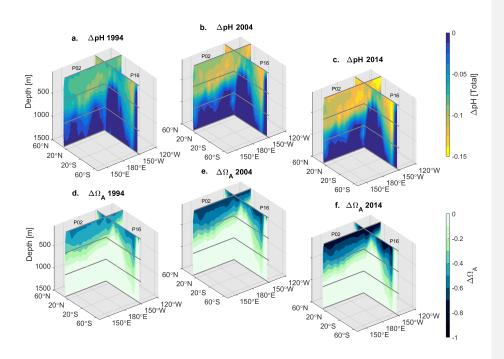
855 the ocean and decrease carbonate mineral saturations. Aragonite saturation decreases from Canth

storage increased in approximate proportion to the Canth concentrations stored since the

preindustrial era ($\Delta\Omega_A$ in Fig. 9d, e, and f), while changes in pH were more complex (Δ pH in

Fig. 9a, b, and c). Net surface $\Delta\Omega_A$ ranged between -0.41 and -0.57 in 1994 and between -0.57

and -0.82 in 2014 (Table 4), while surface ΔpH ranged from -0.06 to -0.10 in 1994 and from


end to -0.08 to -0.14 in 2014. Surface aragonite saturation (and pH) fell at an average rate of 0.29%

(0.020%) per year and 0.34% (0.023%) per year in the earlier and recent decades, respectively.

863 concentration increases.

864

865 Understanding pH and Ω_A change variability with latitude (along P16 in Table 4) and with depth 866 (Fig. 9) requires understanding two properties of the carbonate system in seawater: First, colder seawater holds more $C_{\rm T}$ at a given pCO₂ or pH, and has lower $\Omega_{\rm A}$. Second, the higher the $C_{\rm T}$ of 867 seawater, the less a given change in pCO₂ will change $C_{\rm T}$ and $\Omega_{\rm A}$. High-latitude surface waters 868 that are naturally rich in $C_{\rm T}$ due to cold temperatures (e.g. polar surface seawater) exhibit smaller 869 870 changes in Ω_A . Similarly, upwelling regions (e.g. equatorial surface seawater) also exhibit a smaller Ω_A decreases for a fixed pCO₂ changes than warm low-C_T surface waters (e.g. 871 872 subtropical surface waters). This accounts for the two Ω_A change maxima at mid-latitudes in Table 4. The sensitivity of pH to a changing atmospheric pCO₂ increases as temperature 873 decreases whereas the opposite is true for Ω_{A} . For this reason, the magnitude of ΔpH reaches 874 875 local maxima rather than local minima in cold high-latitude waters. Anthropogenic changes in pH are amplified at depth where pH is naturally lower-implying a larger change in pCO2 and 876 pH for a given change in $C_{\rm T}$ —and where there is no contact with the atmosphere to hold pCO_2 877 near the atmospheric value. For this reason, the largest pH decreases are at ~500 m depth (Fig. 878 9) where high near-surface C_{anth} storages combine with elevated subsurface C_T from biological 879 880 remineralization. The large variability of the ΔpH signal can be attributed to the strong 881 sensitivity of ΔpH to the naturally variable $C_{\rm T}$ distribution (c.f. Fig. 2). There is no comparable amplification for $\Delta\Omega_A$, which exhibits more laterally homogenous distributions (Fig. 9). 882

Figure 9. 3D sections of the net impact of ocean acidification on pH (total scale, panels **a** through **c**) and aragonite saturation ($\Delta\Omega_A$, panels **d** through **f**) along P02 (sections from lower left to upper right) and P16 (sections from upper left to lower right) from the preindustrial era to (**a**. and **e**.) 1994, (**b**. and **d**.) 2004 and (**c**. and **f**.) 2014.

885 Conclusions

- 886 We have used a modified eMLR method to estimate two decades of anthropogenic carbon
- storage along the P02 (east-west at \sim 30°N) and P16 (north-south at \sim 150°W) sections. C_{anth}
- storage increased in the Pacific Ocean from 6.1±1.5 to 8.9±2.2 PgC decade⁻¹ between 60°N and
- 889 60°S due largely to storage increases in the Southern Pacific. The increase in the rate of storage

890	in the South Pacific is attributed to increased ventilation of the Pacific Subtropical Cell. Decadal	
891	storage was smaller west of 160°W along P02 in the recent decade, and slightly higher east of	
892	there. This may be due to continued changes in the ventilation of the North Pacific Gyre	
893	thermocline. This hypothesis could be tested by examining changes in chlorofluorocarbon	
894	distributions and AOU. By 2014, C_{anth} storage had changed Pacific surface Ω_A and pH by an	
895	average of -0.69 and -0.11, respectively.	
896		
897	We adapted the eMLR method to quantify and reduce the impact on our estimates of several	
898	semi-arbitrary methodological choices. The primary modification is to use an ensemble of	
899	regression coefficients instead of a single set. We have tested our modified methods using model	Deleted: hile w
900	outputs with known values and found each modification yields improved estimates. , We also	Deleted: not yet
		Deleted: , we ha similar estimates estimates from e
901	demonstrate the value of our ensemble approach for estimating a subset of uncertainties inherent	estimates from e
902	to the eMLR method. Finally, we have demonstrated that our methods return similar estimates	
903	to within expected uncertainties to estimates from eMLR given in literature.	
904		
905	One weakness of our study is the need to extrapolate across the Pacific Ocean from just two	
906	sections in order to infer basin inventory changes. A greatly improved estimate of Pacific basin	
907	inventories will be possible following the completion of, for example, the P18, P15, and P06	
908	lines planned for 2016 and 2017. Estimates of Canth changes along these lines would also	
909	provide means to assess the spatial and temporal extent of the C_{anth} storage patterns observed.	
910		

911 Acknowledgements **Deleted:** , we have demonstrated that our methods return similar estimates to within expected uncertainties to estimates from eMLR given in literature.

917	All data used can be accessed at http://cchdo.ucsd.edu/. Anthropogenic carbon estimates	4		Formatted: Space After: 8 pt
918	generated in this research are available as a supplement. This research would not be possible			
919	without the hard work of the scientists and crew aboard the RVs Revelle, Palmer, Brown,			
920	Discoverer, Washington, Thompson, Knorr, and Kaiyo-Maru. We thank funding agencies and			
921	program managers: BRC was supported by the Carbon Data Management and Synthesis NOAA			
922	grant (N8R1SE3-PGC) managed by Kathy Tedesco. AMM was supported by NOAA grant			
923	NA11OAR4310063. The support of KBR comes through awards NA17RJ2612 and		(Formatted: Font: 12 pt
924	A08OAR4320752, including support through the NOAA Office of Climate Observations,		(Formatted: Font: 12 pt
925	NOAA award NA11OAR4310066. This is PMEL contribution number 4519 and JISAO		(Formatted: Font: 12 pt
926	contribution number 2016-01-22		(Formatted: Font:
927				
928	References			
929	Amaya, D, N. E. Bond, J. A. Miller, and M. J. DeFlorio (2016), The evolution and known			

- atmospheric forcing mechanisms behind the 2013-2015 North Pacific warm anomalies, US
- 931 CLIVAR Var. Newsl., 14(2), 1–6.
- Anderson, J. L. et al. (2004), The new GFDL global atmosphere and land model AM2-LM2:
- 933 Evaluation with prescribed SST simulations, J. Clim., 17(24), 4641–4673.
- Anderson, L. A., and J. L. Sarmiento (1994), Redfield ratios of remineralization determined by
- nutrient data analysis, *Global Biogeochem. Cycles*, 8(1), 65–80, doi:10.1029/93GB03318.
- 936 Böning, C. W., A. Dispert, M. Visbeck, S. R. Rintoul, and F. U. Schwarzkopf (2008), The
- 937 response of the Antarctic Circumpolar Current to recent climate change, Nat. Geosci.,
- 938 *l*(12), 864–869, doi:10.1038/ngeo362.
- 939 Broecker, W. S. (1974), "NO", a conservative water-mass tracer, Earth Planet. Sci. Lett., 23(1),

- 940 100–107, doi:10.1016/0012-821X(74)90036-3.
- 941 Canadell, J. G., C. Le Quéré, M. R. Raupach, C. B. Field, E. T. Buitenhuis, P. Ciais, T. J.
- 942 Conway, N. P. Gillett, R. A. Houghton, and G. Marland (2007), Contributions to
- 943 accelerating atmospheric CO₂ growth from economic activity, carbon intensity, and
- 944 efficiency of natural sinks., Proc. Natl. Acad. Sci. U. S. A., 104(47), 18866–70,
- 945 doi:10.1073/pnas.0702737104.
- 946 Carter, B. R., J. R. Toggweiler, R. M. Key, and J. L. Sarmiento (2014), Processes determining
- 947 the marine alkalinity and calcium carbonate saturation state distributions, *Biogeosciences*,
 948 *11*(24), 7349–7362, doi:10.5194/bg-11-7349-2014.
- 949 Carter, B. R., N. L. Williams, A. R. Gray, and R. A. Feely (2016a), Locally interpolated
- alkalinity regression for global alkalinity estimation, *Limnol. Oceanogr. Methods*, *14*(4),
 268–277, doi:10.1002/lom3.10087.
- 952 Carter, B. R., T. L. Frölicher, J. P. Dunne, K. B. Rodgers, R. D. Slater, and J. L. Sarmiento
- 953 (2016b), When can ocean acidification impacts be detected from decadal alkalinity
- 954 measurements?, *Global Biogeochem. Cycles*, *30*(4), 595–612, doi:10.1002/2015GB005308.
- 955 Chu, S. N., Z. A. Wang, S. C. Doney, G. L. Lawson, and K. A. Hoering (2016), Changes in
- anthropogenic carbon storage in the Northeast Pacific in the last decade, *J. Geophys. Res.*
- 957 Ocean., doi:10.1002/2016JC011775.
- Deutsch, C., S. Emerson, and L. Thompson (2006), Physical-biological interactions in North
 Pacific oxygen variability, *J. Geophys. Res.*, 111(C9), C09S90, doi:10.1029/2005JC003179.
- 960 Dickson, A. G., and F. J. Millero (1987), A comparison of the equilibrium constants for the
- 961 dissociation of carbonic acid in seawater media, Deep Sea Res. Part A. Oceanogr. Res.
- 962 Pap., 34(10), 1733–1743, doi:10.1016/0198-0149(87)90021-5.

- 963 Doney, S. C., V. J. Fabry, R. A. Feely, and J. A. Kleypas (2009), Ocean acidification: the other
- 964 CO2 problem., Ann. Rev. Mar. Sci., 1, 169–92,
- 965 doi:10.1146/annurev.marine.010908.163834.
- 966 Dunne, J. P. et al. (2013), GFDL's ESM2 Global Coupled Climate–Carbon Earth System
- Models. Part II: Carbon System Formulation and Baseline Simulation Characteristics, J.
 Clim., 26(7), 2247–2267, doi:10.1175/JCLI-D-12-00150.1.
- Durack, P. J., S. E. Wijffels, and R. J. Matear (2012), Ocean salinities reveal strong global water
 cycle intensification during 1950 to 2000., *Science*, *336*(6080), 455–8,
- 971 doi:10.1126/science.1212222.
- 972 Emerson, S., Y. W. Watanabe, T. Ono, and S. Mecking (2004), Temporal Trends in Apparent
- 973 Oxygen Utilization in the Upper Pycnocline of the North Pacific: 1980–2000, J. Oceanogr.,
- 974 *60*(1), 139–147, doi:10.1023/B:JOCE.0000038323.62130.a0.
- 975 England, M. H., S. McGregor, P. Spence, G. A. Meehl, A. Timmermann, W. Cai, A. Sen Gupta,
- 976 M. J. McPhaden, A. Purich, and A. Santoso (2014), Recent intensification of wind-driven
- 977 circulation in the Pacific and the ongoing warming hiatus, *Nat. Clim. Chang.*, 4(3), 222–
- 978 227, doi:10.1038/nclimate2106.
- 979 Feely, R., S. Doney, and S. Cooley (2009), Ocean Acidification: Present Conditions and Future
- 980 Changes in a High-CO2 World, *Oceanography*, 22(4), 36–47,
- 981 doi:10.5670/oceanog.2009.95.
- 982 Feely, R. A., C. L. Sabine, R. H. Byrne, F. J. Millero, A. G. Dickson, R. Wanninkhof, A. Murata,
- 983 L. A. Miller, and D. Greeley (2012), Decadal changes in the aragonite and calcite saturation
- state of the Pacific Ocean, *Global Biogeochem. Cycles*, *26*(3), doi:10.1029/2011GB004157.
- 985 Friis, K., A. Körtzinger, J. Pätsch, and D. W. R. Wallace (2005), On the temporal increase of

- 986 anthropogenic CO₂ in the subpolar North Atlantic, *Deep Sea Res. Part I Oceanogr. Res.*
- 987 *Pap.*, *52*(5), 681–698, doi:10.1016/j.dsr.2004.11.017.
- Gattuso, J. P., and R. A. Feely (2016), *Future of the Ocean and its Seas: a non-governmental scientific perspective on seven marine research issues of G7 interest.*, Paris.
- 990 Gattuso, J.-P. et al. (2015), OCEANOGRAPHY. Contrasting futures for ocean and society from
- 991 different anthropogenic CO_2 emissions scenarios., *Science*, *349*(6243), aac4722,
- 992 doi:10.1126/science.aac4722.
- 993 Gebbie, G., and P. Huybers (2012), The Mean Age of Ocean Waters Inferred from Radiocarbon
- 994 Observations: Sensitivity to Surface Sources and Accounting for Mixing Histories, J. Phys.
- 995 *Oceanogr.*, 42(2), 291–305, doi:10.1175/JPO-D-11-043.1.
- 996 Goodkin, N. F., N. M. Levine, S. C. Doney, and R. Wanninkhof (2011), Impacts of temporal
- 997 CO₂ and climate trends on the detection of ocean anthropogenic CO₂ accumulation, *Global*
- 998 Biogeochem. Cycles, 25(3), n/a–n/a, doi:10.1029/2010GB004009.
- 999 Griffies, S., M. Schmidt, and M. Herzfeld (2009), *Elements of mom4p1*, Princeton, NJ.
- 1000 Hanawa, K., and L. Talley (2001), Mode waters, Int. Geophys. Ser.
- 1001 Jackett, D. R., and T. J. McDougall (1997), A Neutral Density Variable for the World's Oceans,
- 1002 J. Phys. Oceanogr., 27(2), 237–263, doi:10.1175/1520-
- 1003 0485(1997)027<0237:ANDVFT>2.0.CO;2.
- Keeling, C. D. (1986), *Atmospheric CO2 Concentrations Mauna Loa Observatory, Hawaii 1958-1986*, Oak Ridge National Laboratory.
- 1006 Key, R. M., A. Kozyr, C. L. Sabine, K. Lee, R. Wanninkhof, J. L. Bullister, R. A. Feely, F. J.
- 1007 Millero, C. Mordy, and T.-H. Peng (2004), A global ocean carbon climatology: Results
- 1008 from Global Data Analysis Project (GLODAP), Global Biogeochem. Cycles, 18(4), 1–23,

1009 doi:10.1029/2004GB002247.

- 1010 Khatiwala, S., F. Primeau, and T. Hall (2009), Reconstruction of the history of anthropogenic
- 1011 CO₂ concentrations in the ocean., *Nature*, *462*(7271), 346–9, doi:10.1038/nature08526.
- 1012 Levine, N. M., S. C. Doney, R. Wanninkhof, K. Lindsay, and I. Y. Fung (2008), Impact of ocean
- 1013 carbon system variability on the detection of temporal increases in anthropogenic CO_2 , J.
- 1014 *Geophys. Res.*, *113*(C3), C03019, doi:10.1029/2007JC004153.
- 1015 Locarnini, R. A. et al. (2013), World Ocean Atlas 2013. Vol. 1: Temperature., S. Levitus, Ed.; A.
- 1016 Mishonov, Tech. Ed.; NOAA Atlas NESDIS, 73(September), 40, doi:10.1182/blood-2011-
- 1017 06-357442.
- Matsumoto, K. (2007), Radiocarbon-based circulation age of the world oceans, J. Geophys. Res.,
 112(C9), C09004, doi:10.1029/2007JC004095.
- 1020 McPhaden, M. J., and D. Zhang (2002), Slowdown of the meridional overturning circulation in
- 1021 the upper Pacific Ocean, *Nature*, *415*(6872), 603–608, doi:10.1038/415603a.
- 1022 McPhaden, M. J., and D. Zhang (2004), Pacific Ocean circulation rebounds, Geophys. Res. Lett.,
- 1023 *31*(18), L18301, doi:10.1029/2004GL020727.
- 1024 Mecking, S., C. Langdon, R. A. Feely, C. L. Sabine, C. A. Deutsch, and D.-H. Min (2008),
- 1025 Climate variability in the North Pacific thermocline diagnosed from oxygen measurements:
- 1026 An update based on the U.S. CLIVAR/CO 2 Repeat Hydrography cruises, *Global*
- 1027 Biogeochem. Cycles, 22(3), 1–11, doi:10.1029/2007GB003101.
- 1028 Morgan, P., and L. Pender (2006), CSIRO Marine Research MATLAB Seawater Software
- 1029 Library, Available from:
- 1030 http://www.marine.csiro.au/marq/edd_search.Browse_Citation?txtSession=6438&brief=Y
- 1031 (Accessed 12 March 2016)

- 1032 Murata, A., Y. Kumamoto, S. Watanabe, and M. Fukasawa (2007), Decadal increases of
- anthropogenic CO_2 in the South Pacific subtropical ocean along $32^{\circ}S$, J. Geophys. Res.,
- 1034 *112*(C5), C05033, doi:10.1029/2005JC003405.
- 1035 Pfister, C. A. et al. (2014), Detecting the unexpected: a research framework for ocean
- 1036 acidification., *Environ. Sci. Technol.*, 48(17), 9982–94, doi:10.1021/es501936p.
- 1037 Plancherel, Y., K. Rodgers, R. Key, A. Jacobson, and J. Sarmiento (2013), Role of regression
- 1038 model selection and station distribution on the estimation of oceanic anthropogenic carbon
- 1039 change by eMLR, *Biogeosciences*, 10(7), 4801–4831, doi:10.5194/bg-10-4801-2013.
- 1040 Purkey, S. G., and G. C. Johnson (2010), Warming of Global Abyssal and Deep Southern Ocean
- Waters between the 1990s and 2000s: Contributions to Global Heat and Sea Level Rise
 Budgets, J. Clim., 23(23), 6336–6351, doi:10.1175/2010JCLI3682.1.
- 1043 Purkey, S. G., and G. C. Johnson (2013), Antarctic Bottom Water Warming and Freshening:
- 1044 Contributions to Sea Level Rise, Ocean Freshwater Budgets, and Global Heat Gain, J.
 1045 *Clim.*, 26(16), 6105–6122, doi:10.1175/JCLI-D-12-00834.1.
- 1046 Le Quéré, C., R. Moriarty, R. M. Andrew, G. P. Peters, P. Ciais, P. Friedlingstein, and S. D.
- 1047 Jones (2015), Global carbon budget 2014, Earth Syst. Sci. Data, 7(1), 47–85,
- 1048 doi:10.5194/essd-7-47-2015.
- 1049 Sabine, C. L., R. A. Feely, R. M. Key, J. L. Bullister, F. J. Millero, K. Lee, T.-H. Peng, B.
- Tilbrook, T. Ono, and C. S. Wong (2002), Distribution of anthropogenic CO₂ in the Pacific
 Ocean, *Global Biogeochem. Cycles*, *16*(4), 30–1–30–17, doi:10.1029/2001GB001639.
- 1052 Sabine, C. L. et al. (2004), The oceanic sink for anthropogenic CO₂., Science, 305(5682), 367-
- 1053 71, doi:10.1126/science.1097403.
- 1054 Sabine, C. L., R. A. Feely, F. J. Millero, A. G. Dickson, C. Langdon, S. Mecking, and D. Greeley

- 1055 (2008), Decadal changes in Pacific carbon, J. Geophys. Res., 113(C7), C07021,
- 1056 doi:10.1029/2007JC004577.
- 1057 Talley, L. D. (1993), Distribution and Formation of North Pacific Intermediate Water, *J. Phys.*
- 1058 Oceanogr., 23(3), 517–537, doi:10.1175/1520-0485(1993)023<0517:DAFONP>2.0.CO;2.
- 1059 Velo, A., F. F. Pérez, T. Tanhua, M. Gilcoto, A. F. Ríos, and R. M. Key (2013), Total alkalinity
- estimation using MLR and neural network techniques, *J. Mar. Syst.*, *111-112*, 11–18,
- 1061 doi:10.1016/j.jmarsys.2012.09.002.
- 1062 Wallace, D. (1995), Monitoring Global Ocean Carbon Inventories, College Station, TX.
- 1063 Wanninkhof, R., S. C. Doney, J. L. Bullister, N. M. Levine, M. Warner, and N. Gruber (2010),
- Detecting anthropogenic CO 2 changes in the interior Atlantic Ocean between 1989 and
 2005, J. Geophys. Res., 115(C11), C11028, doi:10.1029/2010JC006251.
- 1066 Waugh, D. W., T. M. Hall, B. I. McNeil, R. Key, and R. J. Matear (2006), Anthropogenic CO 2
- 1067 in the oceans estimated using transit time distributions, *Tellus B*, 58(5), 376–389,
- 1068 doi:10.1111/j.1600-0889.2006.00222.x.
- Waugh, D. W. et al. (2013), Recent changes in the ventilation of the southern oceans., *Science*, *339*(6119), 568–70, doi:10.1126/science.1225411.
- 1071 Williams, N. L., R. A. Feely, C. L. Sabine, A. G. Dickson, J. H. Swift, L. D. Talley, and J. L.
- 1072 Russell (2015), Quantifying anthropogenic carbon inventory changes in the Pacific sector of
- 1073 the Southern Ocean, *Mar. Chem.*, *174*, 147–160, doi:10.1016/j.marchem.2015.06.015.
- 1074 Woosley, R. J., F. J. Millero, and R. Wanninkhof (2016), Rapid Anthropogenic Changes in CO 2
- and pH in the Atlantic Ocean: 2003-2014, *Global Biogeochem. Cycles*, 30, 1–21,
- doi:10.1002/2015GB005248.
- 1077 Yasuda, I. (1997), The origin of the North Pacific Intermediate Water, J. Geophys. Res. Ocean.,

1078 102(C1), 893-909, doi:10.1029/96JC02938.

1079	Zweng, M. M., J. R. Reagan, J. I. Antonov, A. V. Mishonov, T. P. Boyer, H. E. Garcia, O. K.
1080	Baranova, D. R. Johnson, D. Seidov, and M. M. Bidlle (2013), World Ocean Atlas 2013,
1081	Volume 2: Salinity.

1082

Appendix A. Error assessment 1083

- 1084 A common approach for estimating eMLR errors relies on propagation of residuals between
- 1085 regression estimates and measurements. We avoid this approach because unresolved modes of
- 1086 variability are not necessarily a problem for the eMLR method if the impact of the variability on

 $C_{\rm T}$ is constant between reoccupations [Goodkin et al., 2011] or adjusted for using a $\Delta C_{\rm bio}$ 1087

1088 correction. Additionally, our use of multiple combinations of regression parameters revealed

that regressions with relatively poor fits to data (e.g. Regression 2, lacking both AOU and N) 1089

1090 produce ΔC_{anth} estimates that agree within expectations with estimates for regressions with better

1091

fits.

1092

1093 Instead, we build our error estimate from a consideration of the likely error sources:

1094 1. __measurement errors or errors in our measurement adjustments (see Section 2.1);

2. violations of the eMLR assumption that C_T changes from C_{anth} increases are the only non-1095 1096 stationary mode of variability;

3. the semi-arbitrary choice of regression constant combinations; 1097

1098 4. and other deficiencies inherent on eMLR,

Errors from these sources are estimated independently and combined as the square root of the 1099

1100 sum of squared error contributions from these 4 items. Field Code Changed

Deleted: ∆AOU

Formatted: Font: (Default) Times New Roman, 12 pt

Deleted: <#>violations of the eMLR assumption that CT changes from Canth increases are the only non-stationary mode of variability;

Deleted: :1

Formatted: Font: (Default) Times New Roman, 12 pt

Deleted: 3

Formatted: Font: (Default) Times New Roman, 12 pt

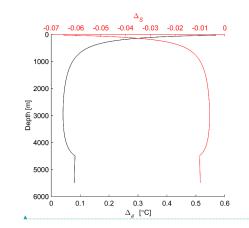
1107

Errors from the first two sources are estimated using C_{anth} estimates made with perturbed data.
We perturb the later data sets of each data set pair by subtracting offsets that represent either
long-term trends or measurement inaccuracies in the properties. For
$$\rho_{...S.} C_{T}$$
, AOU, *N*, and *Si*,
our perturbations (0.002, 0.002, 2, 2, 0.4, and 0.4 µmol kg⁻¹, respectively) primarily reflect
assumed measurement or adjustment uncertainties. For *T* and *S*, seasonal cycling and ongoing
climate changes are creating greater property differences than measurement inaccuracies are.
We therefore scale warming and freshening rate estimates for SAMW and AAIW from [*Böning*
et al., 2008] and for bottom waters from *Purkey and Johnson* [2010; 2013] with depth (*z*) and the
length of time elapsed between occupations (δt), and add them together to obtain an ad hoc
estimate of likely *T* and *S* changes (Δs):

1118
$$\Delta_T = \left(0.009 \frac{600 \text{ m}}{z + 100 \text{ m}} + 0.005 \min\left(1, \frac{500 \text{ m}}{abs(z - 5000 \text{ m})}\right)\right) \stackrel{\circ}{\simeq} \frac{C}{\text{yr}} \delta t \quad \text{(A1)}$$

1119
$$\Delta_{s} = \left(0.001 \frac{600 \text{ m}}{z + 100 \text{ m}} + 0.0005 \min\left(1, \frac{500 \text{ m}}{abs(z - 5000 \text{ m})}\right)\right) \frac{1}{\text{yr}} \delta t \quad (A2)$$

The first terms in parentheses reflect changes in thermocline water masses. The second terms 1120 1121 use minimum functions to allow AABW changes to apply uniformly over the 4500 to 5500 m depth range and decrease outside of this range. Figure A1 is an example of the changes that 1122 would be assigned T and S from sections repeated 10 years apart. The 6 perturbed data sets are 1123 1124 then propagated through our calculations (omitting the deep data difference adjustment) and the 1125 differences between the estimates produced with the perturbed and un-perturbed runs are used as error estimates. Differences between the 6 perturbed runs and the unperturbed run create 6 sets 1126 of C_{anth} concentration, column inventory, and basin inventory error estimates (e_1 through e_6). 1127

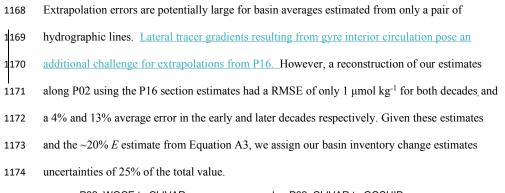

Deleted: two sources

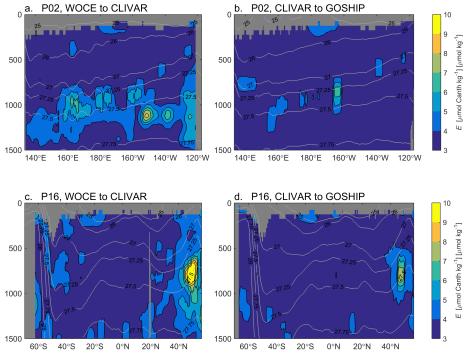
Formatted: Font: Italic	
Formatted: Font: Italic	
Deleted: of	

Formatted: Normal

- 1130 For column and basin inventory estimates, e_1 and e_2 —representing uncertainties in C_T and
- 1131 AOU—are divided by 2 because we are more confident in our dataset adjustments than in
- 1132 individual measurements for these measurements, These perturbations only affect our estimate
- 1133 uncertainties, so errors in our assumed rates of warming and freshening have no impact on our
- 1134 Canth estimates.

Figure A1. Example warming and freshening estimates for temperature (Δ_T , black line, lower X-axis) and salinity (Δ_S , red line, upper X-axis) as a function of depth for data from cruises 10 years apart. Equations for these lines are given in equations (A1) and (A2).


1136


- 1137 Plancherel et al. [2013] showed eMLR estimates are sensitive to the choice of properties
- 1138 included in the regressions. We estimate the resulting uncertainty as the standard deviation of
- 1139 the population of C_{anth}, column inventory, and basin storage estimates from the 16 regression

Formatted: Font: (Default) Times New Roman, 12 pt, Italic

Deleted:

1	property combinations (s_{16}). This uncertainty only reflects errors in our estimate of an ideal	
2	mean ensemble eMLR estimate and does not reflect limitations inherent on the eMLR or	
3	ensemble eMLR method generally. We assume this error is uncorrelated between our 16	Deleted: We
4	regression property combinations and that it therefore, becomes a factor of 4 smaller for ensemble	Deleted: , so this error
5	eMLR after averaging our 16 sets of results.	
5 7	We estimate the final source of error attributable to other inadequacies of the eMLR method in	
3	<u>Appendix B, where we find a reconstruction error of $0.55\pm2.6\mu$mol kg⁻¹ (mean±r.m.s.e.) for</u>	
Э	simulated property distributions with no measurement errors. We call this the minimum error, or	
D	e_{\min} . This e_{\min} estimate reflects an unknown contribution from errors from source 2, as these	Field Code Changed
L	errors also apply to reconstructions of simulated fields with non-stationary modes of variability.	Field Code Changed
2		
8	Overall estimate errors (<i>E</i> , Fig. A2) are estimated according to equation A3:	Deleted: is
Ļ	$E = \sqrt{\sum_{n=1}^{6} e_n^2 + \left(\frac{s_{16}}{4}\right)^2} $ (A3)	
,	We do not include e_{\min} in this estimate because the average r.m.s.e. for individual ΔC_{anth}	Field Code Changed
5	estimates ($\pm 3.5 \mu$ mol kg ⁻¹) obtained from Equation A3 is already larger than the average	Formatted: Not Superscript/ Subscript
7	estimate we obtain from an independent approach to estimating overall r.m.s.e ($\pm 2.7 \mu mol kg^{-1}$)	
3	in Appendix B. We therefore contend the majority of e_{\min} is accounted for by the perturbation	Field Code Changed
Э	analysis. In our figures estimates are considered significant in figures if they exceed 1.96 times	Deleted: E
D	the E specific to that estimate,	Deleted: estimate
1		

Figure A2. Sections of regionally varying overall uncertainty estimates *E*. Panels are for **a**. P02 in the earlier decade, **b**. P02 in the recent decade, **c**. P16 in the earlier decade, and **d**. P16 in the recent decade. Grey lines are isoneutral surfaces of the labeled γ^{N} .

1175	
1176	Appendix B. Assessing the efficacy of moving windows and ensemble eMLR modifications
1177	We test the efficacy of the ΔC_{bio} (step 2), moving windows (step 4), and ensemble eMLR (step
1178	5) methodological modifications to eMLR for improving C_{anth} storage change estimates using
1179	Earth System Model output with known C _{anth} changes. We use a pair of simulations of ocean
1180	biogeochemistry with the coupled Earth System Model ESM2M developed at the National
1181	Oceanic and Atmospheric Administration's Geophysical Fluid Dynamics Laboratory (NOAA-
1182	GFDL). The model consists of a 1° MOM4p1 ocean version [Griffies et al., 2009] coupled to an
1183	approximately 2° version of the AM2 atmospheric model [Anderson et al., 2004]. Ocean
1184	biogeochemistry is modeled with version 2 of the Tracers of Ocean Plankton with Allometric
1185	Zooplankton (TOPAZ2) biogeochemical model [Dunne et al., 2013].
1186	
1187	We consider a perturbation study focusing on the behavior of the TOAPZ2 model in ESM2M
1188	that was first presented by <i>Carter et al</i> [2016b]. This specific perturbation study meets our
1189	scientific needs as it is based on a concentration-pathway configuration of the model, and allows
1190	for a simple definition of C _{anth} . The model was spun up under preindustrial atmospheric CO ₂
1191	boundary conditions for more than 1000 model years to minimize drift. Subsequent to the spin-
1192	up, the model was run for an additional 70 years with preindustrial boundary conditions for CO ₂
1193	as seen by the atmospheric radiation code. Over this same 70 year interval, two instances of the
1194	full TOPAZ2 biogeochemical model were run concurrently online. The first instance of
1195	TOPAZ2 maintained a constant preindustrial CO ₂ boundary condition, while the second imposed
1196	a 1% year ⁻¹ increase in the atmospheric boundary condition for CO ₂ , such that it achieved
1197	doubling after approximately 70 years. As such, the difference in the carbon state variables as
1	

Formatted: Subscript

Deleted: [Deleted: ,

1200	they evolve	at each time step	between the two	TOPAZ2 instances	of the 70 ye	ar period serves as

- 1201 our definition of Canth. With identical ocean circulation, the CT disparity that evolves over these
- 1202 70 years is thereby attributable to C_{anth} storage. We use ensemble eMLR to reconstruct these C_{T}
- changes from model year 1995 to 2005 along 5 meridional sections from 90°S to 60°N along 1203

179.5°E, 79.5°E, 59.5°E, 24.5°W, and 95.5°W between 150 and 1000 m depth. We then 1204

1205 determine the mean and r.m.s. errors along each section. Finally, we average the absolute values

<u>*C*</u>_T

2

1

2

1

of these errors. We repeat this test with and without latitudinal restrictions on the moving 1206

1207 windows, depth/density restrictions on the moving windows, and ensemble averaging.

S

0.002

0.01

 θ

°C

0.002

0.01

Formatted: Font: Italic Formatted: Subscript

- Table B1. Standard deviations of normally distributed populations of offsets applied to Formatted: Font: Bold Formatted Table Formatted: Font: Not Bold, Not Italic, Font color: Auto AOU N <u>Si</u> Formatted: Space After: 0 pt, Line spacing: single µmol kg⁻¹ µmol kg⁻¹ µmol kg⁻¹ µmol kg⁻¹ Formatted: Space After: 0 pt, Line spacing: single <u>0.1</u> 0.1 Formatted: Space After: 0 pt, Line spacing: single 0.4 0.4 Formatted: Space After: 0 pt, Line spacing: single of tests is conducted using model outputs that have been perturbed to simulate
- 1209

1208

simulated measurements.

Error type

represented Units

Imprecision

Inaccuracies

or shifts

Offset

1

2

1210	A second set of tests is conducted using model outputs that have been perturbed to simulate
1211	measurement inaccuracies and imprecisions. We apply two sets of simulated errors to represent
1212	these sources of uncertainty. First, we perturb each simulated property value by applying a
1213	random offset selected from a normally distributed population with a mean of 0 and a standard
1214	deviation equal to the values given in the first row of Table B1 (representing measurement
1215	imprecisions). Second, we apply an offset that is identical for all measurements of a given
1216	parameter (representing measurement inaccuracy) using standard deviations from the second row
1217	in Table B1. The standard deviations for θ and S for this second set of perturbations are large
1210	because they also represent notential unresolved up modeled shifts in the relationships between

- because they also represent potential unresolved un-modeled shifts in the relationships between 1218

Formatted: Font: Italic

1219	properties (see Appendix A, error source 2). We repeat this process 20 times for each of our 5		
1220	sections, creating a population of 100 realizations of the simulated parameter fields with		
1221	simulated measurement errors. We then analyze these 100 realizations using traditional and		
1222	ensemble eMLR and repeat our assessment as before. We also analyze these simulated fields		
1223	with and without the ΔC_{bio} adjustment in equation (8).	(Formatted: Font: Not Italic
1224		(Formatted: Font: Not Italic
1225	The skill of the technique within these sets of simulations is shown in Table B2. We find the		
1226	mean error increases by 30-40% when a single regression is used in place of the ensemble mean,		
1227	while the r.m.s.e. increases nearly twice this amount. Omitting the moving window in latitude		
1228	leads to a small ~10% improvement in mean error while omitting the moving window in density		
1229	or depth doubles the mean error (though it is likely the common practice of using multiple		
1230	regressions for various depth/density ranges works as well as a moving window). Neither		
1231	window has a strong impact on the r.m.s.e. when the ensemble approach is used. Omitting the		
1232	ΔC_{pio} adjustment increases the ensemble mean error and the r.m.s.e by ~7-15%. This analysis	(Formatted: Subscript
1233	suggests the overall error with our approach with measurement uncertainties is $1.45\pm2.7 \mu mol$		
1234	kg ⁻¹ (mean±r.m.s.e.), which is smaller than the estimates in Appendix A, and likely represents a		
1235	best case scenario with little mesoscale variability and an even measurement grid. Except when		
1236	noted, errors in presented in this manuscript are the errors estimated in Appendix A.		
1237			
	Table B2. Mean error \pm r.m.s.e.) in µmol kg ⁻¹ for eMLR	•(Formatted: Font: Bold
	reconstructions of C _{anth} changes in seawater deeper than	(Formatted Table
	150 m depth between 1995 and 2005 along 5 meridional		Formatted: Subscript
	transects in the ESM2M. Columns correspond to analyses		
	done with and without ensemble averaging.		
	Ensemble Non-ensemble	•(Formatted: Space After: 0 pt, Line spacing: single
	<u>No modifications</u> 0.55±2.6 0.73±4.6	٠(Formatted: Space After: 0 pt, Line spacing: single
	$\underline{\infty} \underline{\text{Lat. window}} \underline{0.60 \pm 2.7} \underline{1.31 \pm 5.3}$		Formatted: Space After: 0 pt. Line spacing: single

52

Formatted: Space After: 0 pt, Line spacing: single

	∞ depth/density window	<u>1.10±2.5</u>	<u>1.50±4.6</u>			·	Formatted: Space After: 0 pt, Line sp
	+ simulated errors	1.45±2.7	2.02±4.4				
	+ simulated errors, no ΔC_{biq}	<u>1.67±2.9</u>	<u>2.50±4.8</u>		•	~	Formatted: Font: Not Bold, Not Italic, Subscript
1238							Formatted: Space Before: 0 pt, Line
1239	OA-related biogeochemical C	redistributi	on slightly compli	cates our use of sim	ulated <u>C_T</u>		Formatted: Font: Italic
				~			Formatted: Subscript
1240	changes as a ΔC_{anth} benchmar	k because it i	s a process affectu	ng $C_{\rm T}$ distributions of	other than C _{anth}		Formatted: Font: Italic
1241	storage [Carter et al., 2016b].	This redistr	ibution may or ma	v not be removed by	v subtracting		Formatted: Subscript
	<u>@- [,]</u> .						
1242	regression coefficients during	eMLR. Nev	ertheless, these ch	anges are at most a	small portion of		
12.12		41 A A 11-*		1 [2016]]	: .		
1243	the overall <u>C_T changes: using</u>	the DAIK* m	etric of Carter et a	<i>il.</i> [2016b] to quanti	ity the impact of	1	Formatted: Font: Italic
		4 11 1		1 1 4 1	1 . 1		Formatted: Subscript
1244	these changes reveals 0.08±0.4	4 μmol kg ⁻¹	I_{T} (mean±r.m.s.e.)	change can be attril	buted to these	$^{\prime}$	Deleted: [
1245	feedbacks over our study area	This small	A _T redistribution y	yould result in an ev	ven smaller Cr		Deleted: ,
1245	recubacks over our study area	. 11115 SIIIdII	21 reason button v		ven smarter <u>er</u>	V/	Formatted: Font: Italic

1246 redistribution from solubility changes or changed activity of the hard tissue pump.

atted: Space After: 0 pt, Line spacing: single Form

1	Formatted: Font: Not Bold, Not Italic, Font color: Auto, Subscript					
γ	Formatted: Space Before: 0 pt, Line spacing: single					
(Formatted: Font: Italic					
	Formatted: Subscript					
$\langle \rangle$	Formatted: Font: Italic					
Ì	Formatted: Subscript					

-(Formatted: Font: Italic
-(Formatted: Subscript
)	Deleted: [
X	Deleted: ,
) (Formatted: Font: Italic
Ì	Formatted: Subscript
Y,	Formatted: Font: Italic
$\langle \rangle$	Formatted: Subscript
$\langle \rangle$	Formatted: Font: Italic
ľ	Formatted: Subscript

Page 14: [1] Change	Unknown	
Field Code Changed		
Page 14: [2] Deleted	Brendan Carter	9/30/16 5:08:00 PM
are used		
Page 14: [2] Deleted	Brendan Carter	9/30/16 5:08:00 PM
are used		
Page 14: [3] Change	Unknown	
Field Code Changed		
Page 14: [4] Deleted	Brendan Carter	9/30/16 5:14:00 PM
Regressions with AOU alway correspond to Reg. # 3 in this	ys return a ΔAOU equaling 0. E table.	Example Equations (3) and (4)
Page 14: [5] Change	Unknown	
Field Code Changed		
Page 14: [6] Change	Unknown	
Field Code Changed		
Page 14: [7] Change	Unknown	
Field Code Changed		
Page 14: [8] Change	Unknown	
Field Code Changed		
Page 14: [9] Change	Unknown	
Field Code Changed		