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Abstract

We have taken advantage of the release of version 2 of the Global Data Analysis Project
(GLODAPv2) data product (Olsen et al. 2016) to refine the Locally Interpolated Alkalinity
Regression (LIAR) code for global estimation of total titration alkalinity of seawater (4t), and to
extend the method to also produce estimates of nitrate (N) and in situ pH (total scale). The
updated MATLAB software and methods are distributed as supplementary materials for this
paper and referred to as LIAR version 2 (LIARv2), Locally Interpolated Nitrate Regression
(LINR), and Locally Interpolated pH Regression (LIPHR). Collectively they are referred to as
Locally Interpolated Regressions (LIRs). Relative to LIARv1, LIARv2 has an 18% lower
average At estimate RMSE, improved uncertainty estimates, and fewer regions in which the
method has little or no available training data. LIARv2, LINR, and LIPHR produce estimates
globally with skill that is comparable to or better than regional alternatives used in their
respective regions. LIPHR pH estimates have an optional adjustment to account for ongoing
ocean acidification. We have used the improved uncertainty estimates to develop LIR
functionality that selects the lowest-uncertainty estimate from among possible estimates. Current
and future versions of LIR software will be available on GitHub at
https://github.com/BRCScienceProducts/LIRs.

Introduction

The LIAR method and software was developed to estimate At globally from other measurable
seawater properties (Carter et al. 2016b). The original application for the method was providing
At estimates as a second carbonate parameter for use with data from the emerging network of
biogeochemical floats that measure pH (Wanninkhof et al. 2016; Johnson and Claustre 2016;
Johnson et al. 2016). However, LIAR may also prove useful for studies or models interested in
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estimating a climatological At baseline with limited variability or deviations from such a
baseline (e.g. Carter et al. 2016a).

LINR and LIPHR are primarily intended to provide cross-comparisons for nitrate (N) and pH
sensor measurements that can be used to assess potential float sensor errors or measurement
drifts. Profiling biogeochemical floats cannot typically be retrieved for sensor recalibration, so it
is important to have independent means to assess such problems that may arise during or after
float deployment. A common approach to this problem is to use known atmospheric, surface, or
climatological concentrations (Bushinsky et al. 2016; Plant et al. 2016; Takeshita et al. 2013) to
recalibrate sensors, but such known values are not always available for N and pH. LINR and
LIPHR are designed to provide estimated values in the stable 1000-2000 m depth range of the
ocean as alternatives. All three LIRs have secondary scientific applications when At, N, or pH
estimates are desirable and some seawater property information is available.

By default, LIRs have the limitation that they are unable to capture changes in the relationships
between the estimated properties and the predictor properties. An example of such an
unresolved change comes from the influence of ocean acidification (OA), the effect of
continually increasing ocean storage of anthropogenic carbon dioxide (COz) on seawater pH.
LIPHR contains an option to adjust for the effects of OA on pH, but we expect OA induced pH
changes to result in LIPHR estimates becoming less skillful over time even when this adjustment
is used because the adjustment does not account for regional or temporal variations in the rate of
OA. All three LIRs are expected to be most skillful at reproducing measurements below the
ocean surface where the effects of OA and other changes are smaller, or for estimates made close
in time and space to the measurements used to train the LIRs. Another limitation of these
algorithms is that they break down any time relationships between predictors and the estimated
properties become significantly nonlinear. An example of a region where estimate skill would
be expected to be diminished by this limitation would be on the margins of O, deficient zones
where the influences of both denitrification and aerobic respiration can be important.

Regressions for estimating pH, N, and At have been reported numerous times. At regressions are
the most common variant (e.g. McNeil and Sasse 2016; Lee et al. 2006; Alin et al. 2012; Velo et
al. 2013; Bostock et al. 2013; Millero et al. 1998; Sasse et al. 2013) with regressions for pH
being less frequently reported (e.g. Juranek et al. 2011; Alin et al. 2012; Williams et al. 2016)
and nitrate regressions being even less frequently reported still (e.g. Williams et al. 2016,
supplementary information). The LIRs presented here make improvements over earlier versions
with respect to global applicability, ease of use, and the ability to scale uncertainty estimates
based on input uncertainties. Critically, they also produce estimates that reproduce pH
measurements at least as skillfully as earlier versions. The bulk of the improvement results from
the larger quantity and span of data available through the GLODAPv2 data product (Olsen et al.
2016) than was available to train earlier methods. A similar method to the LIRs developed
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recently is the Carbonate system and Nutrients concentration from hYdrological properties and
Oxygen using a Neural-network (CANYON) (Sauzede et al. 2017). CANYON was also trained
using the GLODAPv2 data product and is capable of estimating pH, A4, silicate (S7), NV, total
dissolved inorganic carbon (Crt), and pCO- globally from O», temperature, salinity (S), latitude,
longitude, depth, and day of year. We expect the LIRs we propose here will provide
complementary estimates to those provided by CANYON for most applications, and note that the
LIRs presented here do not require O2 and temperature as measurement inputs.

In the remainder of this paper we describe version 2 of the LIAR software (LIARV2) in the
context of the improvements relative to version 1 (LIARv1: Carter et al. 2016b), and extend the
LIR approach to nitrate and in situ total scale seawater pH estimates with LINR and LIPHR.
Particular attention is paid to new procedures required to address complications with extending
the LIR framework to pH measurements.

2 Methods

2.1 Summary of LIR methods

As with LIARv1, the LIR methods developed here use regression coefficients that are
determined at each location on a 5° latitude and longitude grid with 33 depth surfaces (44,957
total locations). Each set of regression coefficients is determined using a robust multiple linear
regression of the subset of measurements from the global training dataset that are found within a
volume defined by latitude, longitude, and depth/density windows of the grid coordinates (the
same grid used by Carter et al., 2016b). The windows used are 5° for latitude, (

10° / cos(latitude)) for longitude, and either 0.01 kg m™ for potential density or 50 m for depth

(whichever is more inclusive). The dimensions of these windows are iteratively scaled by a
factor of the iteration number until at least 100 measurements are selected to train each
regression. When generating estimates, the LIAR software then interpolates between regression
coefficients specific to these grid locations to arbitrary locations where the user desires
regression estimates. LIARv2 works with 16 different combinations of the predictor variables:
salinity S, potential temperature 0, nitrate N, apparent oxygen utilization AOU, and silicate Si.
LINR uses the same combinations as LIAR with phosphate P in place of N in the § regressions
that included N. LIPHR uses the same predictors as LIAR, but also includes depth (z) in meters
as a predictor. This additional predictor is intended to allow for the effects of pressure on in situ
pH. The specific combinations of variables used are indicated in sections 3.1 through 3.3. A full
description of the LIARv1 method is provided by Carter et al. (2016b). In this update we focus
on how LIARv2, LIPHR, and LINR adapt and improve upon the LIARv1 methods.

In some instances where spectrophotometric pH measurements are unavailable, we use in situ
total scale pH as calculated from At and Ct. These calculations were made with carbonate
constants from Lueker et al. (2000), borate dissociation coefficients from Dickson (1990), total
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borate from Lee et al. (2010), and KF from Perez and Fraga (1987). Calculations are performed
using the CO2SYS for MATLAB routine by van Hueven et al. (2011).

2.2 Data products used to train and test LIRs

The primary improvement in LIARV2 relative to LIARv1 stems from regression coefficients
having been re-estimated using the Global Data Analysis Project version 2 data product
(GLODAPv2). All measured and calculated values in GLODAPv2 were used except those from
161 cruises (40,303 measurements) that had At quality control (QC) adjustments of +10 umol
kg! or greater, were flagged as poor data, or were not quality controlled for At (Olsen et al.
2016). The new training data set is comprised of 236,852 At measurements and At estimates
from CO»-calculations based on other CO» parameters, 211,704 of which had the property
measurements required for training all 16 regressions (Figure 1). The LIAR test data set omits
the 2,279 calculated At values that are included in the training data set. We use the coefficient
re-estimation strategy used by Carter et al. (2016b) to allow overlap between our training and test
data sets without compromising the validity of the assessments (described in Section 3).

LINR regression coefficients were estimated using 684,475 N measurements, 569,761 of which
had associated property measurements required for training all 16 regressions. This training
dataset is all GLODAPv2 data product N measurements excepting those from 187 cruises that
had multiplicative adjustments greater than 10%, that were not QC’d, or that were flagged as
having poor quality measurements. GLODAPv2 QC protocols changed reported negative N
values to 0 umol kg™!. The LINR code does likewise. The LINR test data set is identical to the
training data set.
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Figure 1. Maps of the data used for the training (left) and test (right) data sets for LIARv2 (top,
a. and b.), LIPHR (middle, c. and d.), and LINR (bottom, e. and f.) regression coefficients.

There are several additional difficulties for constructing a consistent data product for training
LIPHR that originate from changes in ocean pH and in pH measurement practices over time.
Dealing with these inconsistencies requires understanding several adjustments that we and others
(Olsen et al. 2016) have made to pH measurements and estimates. We list these adjustments
here and explain them in this section and the next.

1.

GLODAPv2 adjustments: These are recommended adjustments to cruise pH, AT, and Ct
measurements based on deep crossovers (Olsen et al. 2016). We do not use these
adjustments for pH, though we do use them for At and Cr.

Impure-dye adjustments: These are adjustments to pH measurements that we make for
pH values measured using impure dye (i.e. commercially available indicator dye that has
not been specially purified). These adjustments are intended to bring these values in line
with pH calculated from At and Ct. They are detailed below.
Calculation-to-purified-dye-pH adjustment: This is a single adjustment we apply to
impure-dye measurements (after they have been adjusted by the impure-dye adjustment)
and to calculated pH values. This adjustment is intended to bring these values in line



159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

with pH measurements made with purified dyes. LIPHR includes optional code to apply
the inverse of this adjustment to returned pH estimates if the user desires estimates that
match what would be expected for pH calculations from At and Cr. This adjustment is
also detailed below.

4. Ocean acidification adjustment: This is an optional adjustment applied to LIPHR pH
estimates to reflect the impacts of ongoing ocean acidification on seawater pH (detailed
in 2.3).

The primary additional difficulty for pH stems from the variety of ways pH is measured or
calculated, as well as the evolution of accepted best practices for pH measurement over the
decades for which GLODAPvV2 contains data. GLODAPv2 contains a mixture of pH calculated
from carbonate system measurements, pH measured using electrodes, and pH measured
spectrophotometrically. Also, although the spectrophotometric pH method has been used since
the early 1990s (e.g. Clayton and Byrne 1993), Yao et al. (2007) revealed that impurities in the
indicator dye used can significantly bias spectrophotometric pH measurements, and Liu et al.
(2011) subsequently published calibration equations that allow seawater pH measurements to be
made using purified m-cresol purple dye. Others (Carter et al. 2013; Patsavas et al. 2015;
Williams et al. 2017) have since shown that measurements with purified dyes appear to have an
(unexplained) broadly-consistent-but-pH-dependent discrepancy from the pH calculated from
combinations of A1, Ct, and pCO> whether calculated at in situ or laboratory conditions (Figure
2¢). This pH dependent discrepancy is not unique to a single pH sample handling approach, as it
exists for both manual and automated pH measurements. It exists also for multiple carbonate
constant sets (Carter et al. 2013). It exists for multiple characterizations of the properties of
purified dyes: There is a small pH-dependent discrepancy between spectrophotometric pH
obtained from various sets of purified dye coefficients (Liu et al., 2011; DeGrandpre et al.,
2014), but the discrepancy (ranging from ~0.006 at a pH of 8.2 to ~0.002 at a pH of 7.4) is too
small to account for the differences between calculated pH and pH measured with purified dyes.
The pH-dependent pH discrepancy is less apparent for electrode pH measurements (Figure 2a)
and impure dye measurements (Figure 2b) considered collectively across many cruises.
However there are many strongly-differing discrepancy relationships visible when impure dye
measurements are considered on a cruise-by-cruise basis (see Supplementary Materials figures),
with some discrepancies increasing and some decreasing with pH.

A second complication arises in the GLODAPv2 data product QC process. This data product
relies on deep crossovers to obtain measurement adjustments intended to bring measurements
from various cruises in line with one another. However, the variety of pH-dependent pH
discrepancies found in various cruises casts doubt on the comparability of deep-ocean pH
measured on different cruises. Adjustments based on forcing an agreement at depth between pH
distributions obtained with different approaches could therefore create, exacerbate, or
inadequately capture a discrepancies at the surface.
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Our approach to these challenges is to first divide the data into three subsets and then apply
linear adjustments to the first two subsets to make them comparable to the third. The first subset
is the earlier measurements made with impure dyes. The second subset is pH calculated from At
and Cr. These two subsets collectively comprise the majority of the GLODAPv2 data product.
The third subset is the subset of the GLODAPv2 data product where pH was measured with
purified dyes. We augment the purified dye subset with 11 cruises conducted too recently to
appear in the GLODAPv2 data product (Expocodes: 096U20160108, 096U20160426,
29HE20130320, 318M20130321, 320620140320, 320620151206, 33AT20120324,
33R020150410, 33R0O20150525, and 33R0O20161119). We further add data from two recent
cruises measured with impure dye to the impure-dye subset (33R020130803, 33R0O20131223).
Data from one additional recent cruise using purified dyes along the IO9N transect
(33RR20160208) is withheld from the pH training data set entirely to provide a completely

independent assessment (Section 3.5). Linear pH-dependent adjustments ( A adjustment 2)

1527
are applied separately to each cruise measured with impure dyes to make the pH measurements
comparable to the “calculated pH” subset. The coefficients for these adjustments are determined
with a robust linear regression of the pH discrepancy (measured minus calculated) against
measured pH. Coefficients for these adjustments are supplied as Supplementary Materials.
adjustment 3, ~ +0.004 to -0.020, Fig. 2b) is

applied to the combination of the second subset and the adjusted first subset to make them

Next, a single pH dependent adjustment ( A

232

comparable to the third “purified-dye” subset. TheA, ,adjustment is (Figure 2c):
adjustment 3=A, ,, =-0.3168+0.0404pH (1)

After applying A the combined training pH data set has a pH-dependent pH discrepancy with

23
calculated pH (Figure 3). Adjustments to the impure data are designed to take the place of the
recommended GLODAPv2 adjustments (adjustment 1), and—except when noted—pH data
presented herein do not include the GLODAPv2 adjustments. Supporting the decision to omit
the GLODAPvV2 pH adjustments, the algorithms we produce have a ~3% smaller RMSE and 4%
smaller average bias when reproducing the unadjusted data than adjusted-data-trained algorithms
have when reproducing adjusted data.
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Figure 2. 2-dimensional histograms showing the number of in situ total scale pH measurements
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falling within bins of discrepancy between measured and calculated pH (y-axis) and measured
pH (x-axis) for (a.) the electrode-based measurements; for (b.) the impure-dye subset primarily
measured prior to 2011, and (c.) our test data set, which is the purified dye measurement subset
predominantly made since 2011.
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Figure 3. A 2-dimensional histogram showing the number of in
situ total scale pH measurements falling within bins of
discrepancy between measured and calculated pH (y-axis) and
measured pH (x-axis) for the LIPHR training data set after
adjustments 2 and 3 are applied.

Our use of the purified-dye adjustment (adjustment 3) reflects our need for a consistent training
data product and not any confidence that purified dye measurements are necessarily more
accurate representations of the “true” seawater pH than pH calculations. The apparent pH-
dependent pH discrepancy remains an unresolved challenge to our carbonate system knowledge.
Our strategy is to allow LIPHR users to decide whether pH estimates specific to purified dye
measurements or pH calculations with Lueker et al. (2000)’s carbonate chemistry coefficients are
more appropriate for their own applications. LIPHR therefore includes an optional counter-
adjustment for adjustment 3 (A, ,) derived from equation 1 to return pH estimates that are

consistent with pH calculated from 4t and Cr. Broadly, we recommend the default “purified dye
estimates” without this counter-adjustment when pH is the parameter of interest, and
“calculation-pH estimates” with this adjustment when LIPHR estimates are being used as one of
two constraints to estimate another carbonate system parameter. Whichever is used, the user
should be aware of this mismatch in our understanding of carbonate system chemistry.
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In total, the LIPHR training data set consists of 51,325 impure-dye measurements (adjusted with
A, ,, andA, ,); 99,061 calculated pH values (adjusted with A, ,); and 35,383 unadjusted

purified dye measurements (185,769 total measurements). The test data set contains only the
35,383 purified dye measurements. These data sets exclude 416 electrode pH measurements and
14,983 impure dye measurements for which no calculated pH value was available. These totals
also exclude measurements and calculations from cruises that either had GLODAPv2 pH
adjustments estimated to be larger than +0.015 pH units, that were calculated from cruises with
(applied) total dissolved inorganic carbon (Ct) or total seawater titration alkalinity (4r)
GLODAPv2 adjustments greater than +10 umol kg™, or that were flagged as having poor quality
pH measurements. When viable pH measurements and calculations were both available for a
sample, only the pH measurements were included. We also omitted data from 7 cruises
(expocodes: 49K619990523, 49HG19950414, 49HG 19940413, 49HG19930807,
49HG19930413, 33RR19971202, 318M19940327) either because they came from series of
cruises with large and variable GLODAPv2 adjustments or because the calculated and measured
pH values did not agree with a =0.03 or less RMS or £0.015 average difference. A full list of
cruises and how they were classified is provided in Supplementary Materials.

2.3 An ocean acidification adjustment for pH estimates

Johnson et al. (2017) find that recent profiling float sensor pH measurements are significantly
lower than most nearby pH stations in the GLODAPvV2 record, and that these disagreements are
largest in the better-ventilated surface ocean. LIPHR includes an optional adjustment (on by
default) to reflect these expected effects of OA on modern and future seawater pH (adjustment
4). For this adjustment, the rate of pH change (y,,, ) is approximated from the robust regression:

pHTestDat - pHLIPHR =7 OA (D TestData D TrainingData ) (2)
This is a regression between the reconstruction error (pH

-D

TrainingData

—pH, ;pir) as the dependent

TestDat

variable and the difference ( D, ) between the mean decimal years of the training

estData

measurements used to estimate the regression coefficients (D} ) and the decimal years of

rainingData

the test data ( Dy, ) as the independent variable. The term “decimal years” is used to mean the

estData
year (C.E.) with a decimal added to represent the fraction of 365 days elapsed in that year (such
that a measurement on the 200th day of 2020 would be represented by ~2020.55). This
regression has been performed for the reconstructions of 10 subsets of the GLODAPv2 data
product used separated by every 10" percentile of potential density (cs) (Figure 4). If the OA

adjustment is enabled in the LIPHR code, y,,,1s linearly interpolated to the oy estimated for the
query data location and the adjusted LIPHR estimate (pH| ;) is supplied as:

pH;WHR =PHypir +70a (DQueryData - DTrainingData ) 3)
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Figure 4. The average annual rate of ocean acidification (OA)-related
impacts on LIPHR estimate errors (7, ) calculated for every 10

percentile of potential density (6s) in the GLODAPv2 data product. If the
optional OA adjustment is used (Equation 3), LIPHR uses user-provided
dates with this relationship to adjust estimates it returns for the effects of
ocean acidification. The green envelope indicates 95% confidence
intervals of the fits. The blue envelope shows the larger confidence
intervals obtained if one degree of freedom is assumed for each cruise
rather than each measurement. Values in this figure are calculated using
regression 7 (of the 16 regressions LIPHR can employ, see Table 2).
Values for the other 15 regressions would be within ~+0.0005 yr! of
these.

The OA pH change rates we find here are consistent with previous estimates (e.g. Feely et al.
2009). These simplistic OA adjustments may be poor estimates of the impacts of OA on
seawater pH generally because they treat all water of a given density identically despite strong

regional differences in the degree of water mass ventilation and Cann storage. Nevertheless, we
believe the optional adjustment is useful for LIPHR pH estimates made in the coming decades,
and note that including the adjustment decreases mean estimate bias by 85% and RMSE by
~51%. Due to the progressive effects of OA, we contend this adjustment will be yet more

important for modern estimates than for our test data set. Limited experimentation suggested
additional cruises would be needed to adequately constrain regional differences in this

adjustment. The LIPHR code therefore contains an option for users to input 7, estimates that

10
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are specific to the OA rates found in their study regions, if desired. The assessment values we
report in section 3 include the OA adjustment.

2.4 Update to uncertainty estimation
The LIRs generate uncertainty estimates for each property estimate returned. As with LIARv1,
uncertainty estimates ( £, ) are quantified as:

EEst = \/EMeasz + E‘MLR2 + Z(Ujaj)z (4)
j=l

E terms refer to the RMS uncertainties as assessed in section 3. E,, represents At, N, and pH

measurement uncertainties in our data product, and is assumed to be a constant 2.8 umol kg™! Ar,
0.3 umol kg™ ' N, and 0.005 pH units, respectively (Olsen et al. 2016). U; are the n input
uncertainties for the predictor properties provided by the user, or default uncertainties if no U
values are provided. The default uncertainties are now 0.005 for S, 0.005 °C for 8, 1% O, and

2% of N, P, and Si. The « terms are the n regression coefficients used in the estimate. E\; ,

represents the component of the overall uncertainty inherent to regression based estimates. It is
estimated for LIR outputs using estimates of E,, , that are specific to each of the 16 equations

and to 10 depth ranges (for NV and pH) or 50 ranges of depth and S (for A1). These ranges
correspond to every 10™ percentile of depth and/or salinity in the training data product (with a

single range spanning the 20" through 80" percentile of salinity). is estimated for the

E MLR

various ranges using the assessment data with known £ and solving equation (4) for £, . .

These range-specific E,

g EStimates are then interpolated by these properties to the depth and/or

salinity inputs for the £ calculations. LINR and LIPHR errors also scale slightly with salinity,

but not as strongly as LIAR errors do because of the smaller impact of freshwater cycling on N
and pH than on A7. All LIR uncertainties increase near the surface due to a larger impact of
seasonality, episodic biogeochemical cycling, and gas exchange.

2.5 Minimum uncertainty estimates

One difficulty with LIRs is choosing between up to 16 possible estimates. We have added
(optional, on by default) functionality to all LIR routines that automatically picks the estimate
with the smallest estimated uncertainty from among all estimates it is possible to generate using
the suite of input predictor data provided by the user. This feature is intended in part to address a
limitation of the method, being that some LIR equations have too many terms (i.e. are over-fit)
for some of the >2 million combinations of predicted variables, predictor variables, and grid
locations. Over-fitting leads to larger-magnitude regression coefficients due to “Variance
Inflation.” Larger magnitude coefficients (¢« ;) propagate through equation 4 to return larger

uncertainty estimates. Once the increase in £, from having more and larger-magnitude

coefficients (i.e. from over-fitting) balances the typically lower E

g Values for the equations

11
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with more terms, this functionality automatically selects the less complex and less over-fit
equation. This feature therefore selects an equation that minimizes overall error from over-
fitting, input uncertainties, and method errors generally. This option modestly decreases
estimate RMSE by 0 to 11% and, more importantly, makes the function easier to use without
compromising estimate skill. The estimate improvement becomes more marked with (known)
larger input uncertainties such as those that will be common with sensor measurements. For
example, the At estimate RMSE improvement with this feature increased from 3% to 10% after
simulated errors were applied to AOU (these were normally distributed offsets with a mean of 0
and a standard deviation of 5 pmol kg™! O»).

3 Assessment

Estimate bias and RMS errors are calculated in the same way as the error estimates provided by
Carter et al. (2016), except using the subsets of the GLODAPv2 data product and additional
cruises specified as “test data” sets in section 2.2. These values are presented as “bias
(¥RMSE).” The bias is the mean residual for the assessment and can be positive or negative.
LIR bias estimates are small compared to RMSE at the global level, suggesting the LIR estimates
are appropriately centered on the measured values. However, bias grows (in an absolute sense)
as the number of measurements averaged decreases, so the bias estimates are presented alongside
RMSE as potentially useful indicators of how correlated LIR errors are for various regions. Bias
estimates are also useful when comparing assessments from various algorithms. In particular,
lower biases for LIPHR than for other pH algorithms highlight the importance of the OA
adjustment and the dye-impurity-related adjustments applied to the training data set. An
important feature of the error estimation method used is that a separate set of regression
coefficients is estimated for each data point in our test data sets, and is estimated without using
any data from the cruise that produced that particular test pH value. Data from the same cruise is
omitted to avoid under-estimating error by including numerous measurements in the training
dataset found proximally in time and space to the test measurement.

3.1 LIARv?2

12
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Figure 5. A 2-dimensional histogram of measured At (x-axis) against estimated At (y-axis).
Darker colors along the thin blue 1:1 line indicate orders of magnitude more measurements fall
on the line than in the light colored histogram bins off the line.

The updates to LIAR decreased the overall reconstruction errors ( £, ,z,,) for all 16 regressions

relative to E by 7% to 26% (average 18%) when both sets of errors are calculated using the

LIARvV1
newer test dataset. The largest improvements are for regressions with the fewest predictors. We
attribute the majority of the improvements to the increased size, quality, and consistency of the
subset of the GLODAPv2 data product we used relative to the merged data product we used for
LIARv1 (Figure 5). LIARv1 compared favorably to regional At regressions in literature (many
are compared in Carter et al., 2016) and Table 1 shows LIARv2 does somewhat better still.
CANYON A estimates reproduce our entire test dataset with errors of -0.2 (+5.4) umol kg™!
while LIARv2 (Regression 7) has errors of -0.1 (£5.1) pumol kg™'. These errors are slightly
smaller at -0.5 (+5.2) umol kg™! for CANYON and 0.2 (+4.4) umol kg™!' for LIARv2 when
limited to the open ocean test regions used by Sauzede et al. (2017).

Interestingly, regression 3 (S, 8, AOU, and Si) slightly outperforms regression 1 (S, 6, N, AOU,
and S7) on average, and there is little difference between the error estimates for the various

equations for At. This suggests that regression 1 and possibly others are over-fitting At in places

13



374  (this observation does not hold true if we include the test data in the training data). See section
375 2.5 for how the LIR minimum-uncertainty functionality automatically avoids using over-fit
376  relationships despite this.

377
Table 1. Error estimates expressed as “bias (tRMSE)” for the
subset of our data product found within the open-ocean salinity
range of 33 to 38. E|, .1s uncertainty inherent to the use of a
MLR approach, E, is error arising from uncertainties in the
input data (i.e. the summed term in equation 4), E, ., is the
overall estimate uncertainty for LIARv2. GLODAPv2 data
product is used as test data for all estimates. Errors are
expressed as standard errors in pmol At kg™
Reg. # Parameters used Eyir E\ E v
1 S, 0,N, AOU, Si  (£3.6) (+0.8) 0.1 (£5.0)
2 S,0,N, Si  (£3.7) (£0.7) 0.1 (£5.0)
3 S, 6, AOU, Si  (£3.6) (+0.7) 0.1 (+4.9)
4 S, 0,8 (£3.7) (+0.6) 0.1 (£5.0)
5 S, 0, N, AOU (£3.8) (+0.9) 0.0 (£5.1)
6 S, 00N (£4.0) (+0.9) 0.1 (£5.3)
7 S, 6, AOU  (£3.8) (+0.7) -0.1 (£5.1)
8 S, 0 (x4.4) (+0.5) 0.2 (£5.5)
9 S, N, AOU, Si  (£3.6) (+0.8) 0.1 (£5.0)
10 S,N, Si  (£3.7) (+0.7) 0.1 (£5.0)
11 S, AOU, Si  (£3.6) (+0.6) 0.1 (£5.0)
12 S, S (£3.7) (+0.6) 0.1 (£5.0)
13 S, N, AOU (44.6) (*1.2) -0.1 (£5.8)
14 SSN (4.4 (£1.0) -0.1 (£5.6)
15 S, AOU  (+4.6) (+0.8) -0.2 (£5.7)
16 S (£5.1) (+0.4) 0.1 (£6.1)

378

379

380 3.2 LIPHR

381  LIPHR pH estimates reconstruct the test pH data set well (Table 2, Figure 6). We separately
382  estimate error between 1000 and 2000 m as these estimates are more likely to be used to

383  compare with float data (Table 2).

384
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Figure 6. A 2-dimensional histogram of measured or calculated pH (x-axis) against OA-
adjusted estimated pH (y-axis). Darker colors along the thin blue 1:1 line indicate orders of
magnitude more measurements fall close to the line than in light colored histogram bins off the
line.

LIPHR estimates compare well to the few published pH regression estimates. Williams et al.
(2016) designed regression estimates for south of 45°S between 2006 and 2017 and between 0
and 2100 m depth. For the subset of our data product within these bounds and omitting their
S04P and P16S training cruises, their published regressions have errors of -0.006 (+0.017) and
-0.006 (+0.016), while similar LIPHR regressions (6 and 7 respectively) have errors of -0.001
(£0.010) and -0.001 (+0.011). Williams et al. (2016) also report a regression for estimates in the
same region but trained specifically for estimates between 1000 and 2100 m depth, the depth
range most useful for assessment of biogeochemical profiling float sensor performance. For the
relevant subset of our test data product, their algorithm has errors of -0.001 (+0.005), while the
LIPHR regression 7 has errors of 0.002 (£0.005). LIPHR (also regression 7) estimates have
errors of 0.004 (£0.014) in the California Current Ecosystem specific window of 114°N to
124°W, 27°N to 36°N and 15 to 500 m depth after 1994 where the algorithm from Alin et al.
(2012) uses temperature and O, measurements to generate estimates with errors of -0.008
(£0.015). CANYON pH estimates reproduce our entire test dataset with errors of 0.009 (+0.017)
while LIPHR (Regression 7) has errors of 0.000 (+£0.010). At mid depths (1000 m to 2000 m),
these estimates are 0.013 (£0.017) for CANYON and 0.000 (£0.006) for LIPHR. The CANYON
error estimates are the same at this precision when the GLODAPv2 adjustments are retained.
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Table 2. LIPHR error estimates expressed as “bias (:RMSE)” for the subset of our data

product found within the open-ocean salinity range of 33 to 38. E,; is the uncertainty inherent

to the use of a MLR approach, Elnput is error arising from uncertainties in the input data (i.e.

the summed term in Equation 4), and |, is the overall estimate uncertainty.

E

LIPHR2000m 1S the

uncertainty estimate for pH measurements between 1000 and 2000 m, or the approximate depth
range at which biogeochemical floats will require pH estimates for cross-comparison.

Reg. i Parameters used EMLR Elnput ELTPHR ELIPHRZOOOm
1 z, S, 0, N, AOU, Si (£0.0080) (£0.004) 0.002 (£0.010) 0.001 (£0.008)
2 z, S,0,N,Si (£0.0110)  (£0.005) 0.002 (£0.013) 0.000 (£0.009)
3 z, S, 0, AOU, Si  (£0.0090)  (+0.003) 0.001 (£0.011) 0.001 (£0.007)
4 z S, 0,8 (£0.0190)  (+0.002) 0.001 (£0.020) -0.003 (+0.014)
5 z, S, 0, N, AOU (£0.0070)  (+0.004) 0.001 (£0.010) 0.001 (£0.006)
6 z, 8,0, N (£0.0110) (£0.004) 0.002 (£0.013) 0.000 (£0.007)
7 z, S, 0, AOU (£0.0090) (£0.003) 0.001 (£0.011) 0.001 (£0.006)
8 z, S,0 (£0.0230) (£0.001) 0.001 (£0.024) -0.003 (+0.013)
9 z, S, N, AOU, Si (+0.0090) (£0.004) 0.001 (£0.011) 0.001 (£0.007)
10 z, S, N, Si (+£0.0120) (£0.005) 0.002 (£0.014) 0.001 (£0.008)
11 z, S, AOU, Si (+£0.0100)  (£0.003) 0.001 (£0.011) 0.001 (£0.006)
12 z, 5,81 (£0.0200)  (£0.002) 0.001 (£0.021) -0.003 (£0.014)
13 z, S, N, AOU (+0.0090) (£0.004) 0.001 (£0.011) 0.001 (£0.007)
14 z, S, N (£0.0130) (£0.004) 0.002 (£0.015) 0.000 (£0.008)
15 z, S, AOU (£0.0100) (+0.003) 0.001 (£0.011) 0.001 (£0.006)
16 z, S (£0.0300) (+0.001) 0.001 (£0.031) -0.003 (+0.015)
3.3 LINR

LINR estimates also reproduce the test data product well (Table 3, Figure 7). Williams et al.
(2016) provide an N estimation algorithm specific to the Pacific sector of the Southern Ocean
south of 45°S between 1000 and 2100 m. This algorithm has errors of 0.42 (+0.65) umol kg! for
the portion of our data product in the target region for this regression. LINR (Regression 7) has
an error of -0.11 (+£0.45) umol kg™! for this same subset. CANYON nitrate estimates reproduce
our entire test dataset with errors of -0.01 (+0.89) umol kg™! while LINR (Regression 7) has
errors of -0.02 (+0.86) pmol kg!. These errors are slightly smaller at 0.03 (£0.66) pmol kg™! for
CANYON and -0.02 (+0.65) umol kg™! for LINR when limited to the open ocean test regions
used by Sauzede et al. (2017).
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Figure 7. A 2 dimensional histogram of measured N (x-axis) against estimated N (y-axis).
Darker colors along the thin blue 1:1 line indicate orders of magnitude more measurements fall
on the line than in the light colored histogram bins off the line.

Table 3. LINR error estimates expressed as “bias (:RMSE)” for the subset of our

data product found within the open-ocean salinity range of 33 to 38. EMLR is the

uncertainty inherent to the use of a MLR approach, E, . is error arising from

Input

uncertainties in the input data (i.e. the summed term in Equation 4), and ELINR is

the overall estimate uncertainty. £ \zoo00mis the uncertainty estimate for N

measurements between 1000 and 2000 m, or the approximate depth range at
which biogeochemical floats will require N estimates for cross-comparison.

Reg. # Parameters used
£ EMLR Elnput ELINR ELINR2000m

1 S,0,P, AOU, Si  (£0.56) (£0.12) -0.01 (0.64) | 0.00 (£0.45)
2 S,0,P,Si  (+0.58) (x0.14)  0.00 (0.67) | 0.02 (+0.47)
3 S,0,AOU, Si  (£0.81)  (+0.10) -0.01 (£0.87) | 0.00 (+0.84)
4 S,0,S  (£1.00) (£0.09)  0.03 (£1.05) | 0.03 (+0.89)
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418
419
420
421
422
423
424
425
426
427

S, 0, P, AOU
S, 0, P

S, 6, AOU

S, 0

S, P, AOU, Si
S, P, Si

S, AOU, Si
S, Si

S, P, AOU
S, P

S, AOU

S

(£0.56)
(£0.60)
(£0.80)
(£1.23)
(£0.58)
(£0.61)
(£0.87)
(£1.06)
(£0.62)
(£0.65)
(£0.96)
(£1.68)

(£0.13)
(£0.16)
(£0.11)
(£0.07)
(£0.13)
(£0.15)
(£0.10)
(£0.10)
(£0.14)
(£0.17)
(£0.11)
(£0.07)

-0.02 (£0.65)
0.00 (+0.69)
-0.02 (+0.86)
0.05 (£1.27)
-0.01 (£0.67)
0.00 (+0.69)
-0.01 (£0.92)
0.05 (£1.11)
-0.03 (£0.70)
-0.01 (£0.74)
-0.03 (£1.01)
0.06 (£1.71)

-0.00 (+0.44)
0.01 (+0.48)
0.00 (+0.47)
0.04 (+0.58)
0.00 (+0.44)
0.02 (+0.47)

-0.00 (+0.83)
0.06 (+0.81)

-0.00 (+0.44)
0.01 (+0.49)

-0.00 (+0.46)
0.07 (+0.62)

3.4 Uncertainty estimation skill
With the changes to the error estimation strategy noted in Section 2.4, the overall standard error
estimates provided by the software are now greater than or equal to the test data set
reconstruction error for 76% of the data product for LIARv2, for 75% for LIPHR, and for 80%
for LINR. For perfectly-estimated normally-distributed RMS uncertainties, this number would
be 68%. This was true for 87% of the data product with LIARv1.

3.5 Example section

18
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Figure 8. Measured (a., d., and g.) and estimated (b., e., and h.) 4t (a., b., and c.), pH (d., . and
f.), and N (g., h., and i.)—and differences between the two (c., f. and i.)—along the IO9N section
in the Indian Ocean.

Example LIAR, LIPHR, and LINR estimates are derived from hydrographic measurements from
the 2016 occupations of the 109 section in the Indian Ocean by the Global Ocean Ship Based
Hydrographic Investigations Program (GO-SHIP) program (Figure 8). These estimates provide
an independent validation when compared to the measurements made along the cruise because
the data from these cruises were not included in either the test or training datasets for the LIRs.
The LIRs do an excellent job of reproducing the measurements with errors of -0.6 (+4.2) umol
kg for Ar, 0.001 (+£0.008) for pH, and 0.14 (+0.32) umol kg' N. LIPHR errors increase to -
0.014 (£0.017) when the OA adjustment is omitted.

Future Directions

Climatological distributions of carbonate parameters from LIAR At and LIPHR pH—or
calculated from this pair of properties—may be of interest and would be simply calculated for
the measurement-dense World Ocean Atlas climatology (Locarnini et al., 2013; Zweng et al.,
2013; Baranova, 2015) or similar products. Such a regression-based climatology—Ilike the At
climatologies created by Lee et al. (2006) and used by Takahashi et al. (2014)—would be one
step further removed from the measurements than gridded climatologies like those provided by
Lauvset et al. (2016) and Key et al. (2004). However, it would have the advantage that it could
be based on property measurements (such as O, S, and temperature) that are more numerous,
more broadly spatially and temporally distributed, and less seasonally biased than the carbonate
measurements.

With LIAR and LIPHR, it is now possible to estimate two parameters for the carbonate system,
thus—in principle—providing a complete carbonate system description. While measurements
would be preferable for most applications, this pair of algorithms allows additional context to be
added to historical data products.

As Velo et al. (2013) pointed out, regressions can be potentially powerful tools for data quality
control. An algorithm that uses many measured properties to estimate many other measured
properties and then assesses the various residuals may provide a fast method for identifying
apparent outliers and interesting anomalies in property measurement sets. Such automated
measures designed to assist human-QC efforts may be of increased importance as growing
sensor networks increase the quantity of data being produced relative to the amount of human-
effort available for data QC.

The OA rate estimation strategy used (Equation 2) provides a means to incorporate a large
number of measurements that are disparate in space and time into unified global trend estimates.
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This framework could perhaps be applied to examine the low-signal-to-noise scientific questions
of whether long term trends are occurring in At (c.f. Carter et al. 2016a), N, or O: relative to
other measured parameters.
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