

1 Updated Methods for Global Locally-Interpolated Estimation of Alkalinity, pH, and Nitrate

2 Carter, B. R.^{1,2}, Feely, R. A.², Williams, N. L.³, Dickson, A. G.⁴, Fong, M. B.⁴, Takeshita, Y.⁵,

3 ¹Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, 3737

4 Brooklyn Avenue, Seattle, WA, USA, 98105

5 ²Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric

6 Administration, 7600 Sand Point Way NE, Seattle, WA, USA, 98115

7 ³College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis,

8 Oregon, USA, 97331

9 ⁴Scripps Institution of Oceanography, University of California San Diego, San Diego, CA,

10 USA, 92093

11 ⁵Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA,

12 USA 95039

16 **Abstract**

17 We have taken advantage of the release of version 2 of the Global Data Analysis Project
18 (GLODAPv2) data product (Olsen et al. 2016) to refine the Locally Interpolated Alkalinity
19 Regression (LIAR) code for global estimation of total titration alkalinity of seawater (A_T), and to
20 extend the method to also produce estimates of nitrate (N) and *in situ* pH (total scale). The
21 updated MATLAB software and methods are distributed as supplementary materials for this
22 paper and referred to as LIAR version 2 (LIARv2), Locally Interpolated Nitrate Regression
23 (LINR), and Locally Interpolated pH Regression (LIPHR). Collectively they are referred to as
24 Locally Interpolated Regressions (LIRs). Relative to LIARv1, LIARv2 has an 18% lower
25 average A_T estimate RMSE, improved uncertainty estimates, and fewer regions in which the
26 method has little or no available training data. LIARv2, LINR, and LIPHR produce estimates
27 globally with skill that is comparable to or better than regional alternatives used in their
28 respective regions. LIPHR pH estimates have an optional adjustment to account for ongoing
29 ocean acidification. We have used the improved uncertainty estimates to develop LIR
30 functionality that selects the lowest-uncertainty estimate from among possible estimates. Current
31 and future versions of LIR software will be available on GitHub at
32 <https://github.com/BRCSscienceProducts/LIRs>.

34 **Introduction**

35 The LIAR method and software was developed to estimate A_T globally from other measurable
36 seawater properties (Carter et al. 2016b). The original application for the method was providing
37 A_T estimates as a second carbonate parameter for use with data from the emerging network of
38 biogeochemical floats that measure pH (Wanninkhof et al. 2016; Johnson and Claustre 2016;
39 Johnson et al. 2016). However, LIAR may also prove useful for studies or models interested in

40 estimating a climatological A_T baseline with limited variability or deviations from such a
41 baseline (e.g. Carter et al. 2016a).

42
43 LINR and LIPHR are primarily intended to provide cross-comparisons for nitrate (N) and pH
44 sensor measurements that can be used to assess potential float sensor errors or measurement
45 drifts. Profiling biogeochemical floats cannot typically be retrieved for sensor recalibration, so it
46 is important to have independent means to assess such problems that may arise during or after
47 float deployment. A common approach to this problem is to use known atmospheric, surface, or
48 climatological concentrations (Bushinsky et al. 2016; Plant et al. 2016; Takeshita et al. 2013) to
49 recalibrate sensors, but such known values are not always available for N and pH. LINR and
50 LIPHR are designed to provide estimated values in the stable 1000-2000 m depth range of the
51 ocean as alternatives. All three LIRs have secondary scientific applications when A_T , N , or pH
52 estimates are desirable and some seawater property information is available.

53
54 By default, LIRs have the limitation that they are unable to capture changes in the relationships
55 between the estimated properties and the predictor properties. An example of such an
56 unresolved change comes from the influence of ocean acidification (OA), the effect of
57 continually increasing ocean storage of anthropogenic carbon dioxide (CO_2) on seawater pH.
58 LIPHR contains an option to adjust for the effects of OA on pH, but we expect OA induced pH
59 changes to result in LIPHR estimates becoming less skillful over time even when this adjustment
60 is used because the adjustment does not account for regional or temporal variations in the rate of
61 OA. All three LIRs are expected to be most skillful at reproducing measurements below the
62 ocean surface where the effects of OA and other changes are smaller, or for estimates made close
63 in time and space to the measurements used to train the LIRs. Another limitation of these
64 algorithms is that they break down any time relationships between predictors and the estimated
65 properties become significantly nonlinear. An example of a region where estimate skill would
66 be expected to be diminished by this limitation would be on the margins of O_2 deficient zones
67 where the influences of both denitrification and aerobic respiration can be important.

68
69 Regressions for estimating pH, N , and A_T have been reported numerous times. A_T regressions are
70 the most common variant (e.g. McNeil and Sasse 2016; Lee et al. 2006; Alin et al. 2012; Velo et
71 al. 2013; Bostock et al. 2013; Millero et al. 1998; Sasse et al. 2013) with regressions for pH
72 being less frequently reported (e.g. Juranek et al. 2011; Alin et al. 2012; Williams et al. 2016)
73 and nitrate regressions being even less frequently reported still (e.g. Williams et al. 2016,
74 supplementary information). The LIRs presented here make improvements over earlier versions
75 with respect to global applicability, ease of use, and the ability to scale uncertainty estimates
76 based on input uncertainties. Critically, they also produce estimates that reproduce pH
77 measurements at least as skillfully as earlier versions. The bulk of the improvement results from
78 the larger quantity and span of data available through the GLODAPv2 data product (Olsen et al.
79 2016) than was available to train earlier methods. A similar method to the LIRs developed

80 recently is the Carbonate system and Nutrients concentration from hydrological properties and
81 Oxygen using a Neural-network (CANYON) (Sauz  de et al. 2017). CANYON was also trained
82 using the GLODAPv2 data product and is capable of estimating pH, A_T , silicate (Si), N , total
83 dissolved inorganic carbon (C_T), and pCO_2 globally from O_2 , temperature, salinity (S), latitude,
84 longitude, depth, and day of year. We expect the LIRs we propose here will provide
85 complementary estimates to those provided by CANYON for most applications, and note that the
86 LIRs presented here do not require O_2 and temperature as measurement inputs.

87
88 In the remainder of this paper we describe version 2 of the LIAR software (LIARv2) in the
89 context of the improvements relative to version 1 (LIARv1: Carter et al. 2016b), and extend the
90 LIR approach to nitrate and *in situ* total scale seawater pH estimates with LINR and LIPHR.
91 Particular attention is paid to new procedures required to address complications with extending
92 the LIR framework to pH measurements.

93

94 **2 Methods**

95 *2.1 Summary of LIR methods*

96 As with LIARv1, the LIR methods developed here use regression coefficients that are
97 determined at each location on a 5° latitude and longitude grid with 33 depth surfaces (44,957
98 total locations). Each set of regression coefficients is determined using a robust multiple linear
99 regression of the subset of measurements from the global training dataset that are found within a
100 volume defined by latitude, longitude, and depth/density windows of the grid coordinates (the
101 same grid used by Carter et al., 2016b). The windows used are 5° for latitude, (
102 $10^\circ / \cos(\text{latitude})$) for longitude, and either 0.01 kg m^{-3} for potential density or 50 m for depth
103 (whichever is more inclusive). The dimensions of these windows are iteratively scaled by a
104 factor of the iteration number until at least 100 measurements are selected to train each
105 regression. When generating estimates, the LIAR software then interpolates between regression
106 coefficients specific to these grid locations to arbitrary locations where the user desires
107 regression estimates. LIARv2 works with 16 different combinations of the predictor variables:
108 salinity S , potential temperature θ , nitrate N , apparent oxygen utilization AOU, and silicate Si .
109 LINR uses the same combinations as LIAR with phosphate P in place of N in the 8 regressions
110 that included N . LIPHR uses the same predictors as LIAR, but also includes depth (z) in meters
111 as a predictor. This additional predictor is intended to allow for the effects of pressure on *in situ*
112 pH. The specific combinations of variables used are indicated in sections 3.1 through 3.3. A full
113 description of the LIARv1 method is provided by Carter et al. (2016b). In this update we focus
114 on how LIARv2, LIPHR, and LINR adapt and improve upon the LIARv1 methods.

115

116 In some instances where spectrophotometric pH measurements are unavailable, we use *in situ*
117 total scale pH as calculated from A_T and C_T . These calculations were made with carbonate
118 constants from Lueker et al. (2000), borate dissociation coefficients from Dickson (1990), total

119 borate from Lee et al. (2010), and KF from Perez and Fraga (1987). Calculations are performed
120 using the CO2SYS for MATLAB routine by van Hueven et al. (2011).

121

122 *2.2 Data products used to train and test LIRs*

123 The primary improvement in LIARv2 relative to LIARv1 stems from regression coefficients
124 having been re-estimated using the Global Data Analysis Project version 2 data product
125 (GLODAPv2). All measured and calculated values in GLODAPv2 were used except those from
126 161 cruises (40,303 measurements) that had A_T quality control (QC) adjustments of $\pm 10 \mu\text{mol}$
127 kg^{-1} or greater, were flagged as poor data, or were not quality controlled for A_T (Olsen et al.
128 2016). The new training data set is comprised of 236,852 A_T measurements and A_T estimates
129 from CO₂-calculations based on other CO₂ parameters, 211,704 of which had the property
130 measurements required for training all 16 regressions (Figure 1). The LIAR test data set omits
131 the 2,279 calculated A_T values that are included in the training data set. We use the coefficient
132 re-estimation strategy used by Carter et al. (2016b) to allow overlap between our training and test
133 data sets without compromising the validity of the assessments (described in Section 3).

134

135 LINR regression coefficients were estimated using 684,475 N measurements, 569,761 of which
136 had associated property measurements required for training all 16 regressions. This training
137 dataset is all GLODAPv2 data product N measurements excepting those from 187 cruises that
138 had multiplicative adjustments greater than 10%, that were not QC'd, or that were flagged as
139 having poor quality measurements. GLODAPv2 QC protocols changed reported negative N
140 values to 0 $\mu\text{mol kg}^{-1}$. The LINR code does likewise. The LINR test data set is identical to the
141 training data set.

142

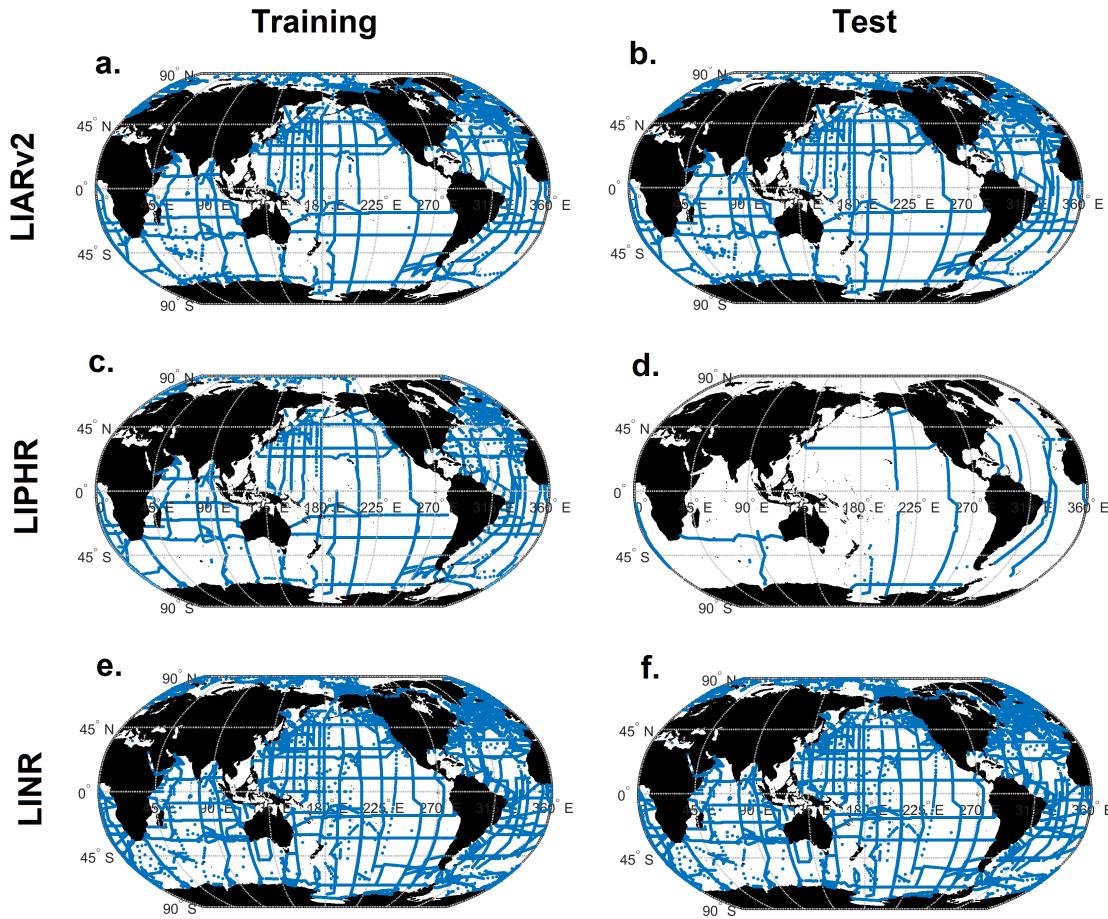


Figure 1. Maps of the data used for the training (left) and test (right) data sets for LIARv2 (top, a. and b.), LIPHR (middle, c. and d.), and LINR (bottom, e. and f.) regression coefficients.

143

144 There are several additional difficulties for constructing a consistent data product for training
 145 LIPHR that originate from changes in ocean pH and in pH measurement practices over time.
 146 Dealing with these inconsistencies requires understanding several adjustments that we and others
 147 (Olsen et al. 2016) have made to pH measurements and estimates. We list these adjustments
 148 here and explain them in this section and the next.

- 149 1. GLODAPv2 adjustments: These are recommended adjustments to cruise pH, A_T , and C_T
 150 measurements based on deep crossovers (Olsen et al. 2016). We do not use these
 151 adjustments for pH, though we do use them for A_T and C_T .
- 152 2. Impure-dye adjustments: These are adjustments to pH measurements that we make for
 153 pH values measured using impure dye (*i.e.* commercially available indicator dye that has
 154 not been specially purified). These adjustments are intended to bring these values in line
 155 with pH calculated from A_T and C_T . They are detailed below.
- 156 3. Calculation-to-purified-dye-pH adjustment: This is a single adjustment we apply to
 157 impure-dye measurements (after they have been adjusted by the impure-dye adjustment)
 158 and to calculated pH values. This adjustment is intended to bring these values in line

159 with pH measurements made with purified dyes. LIPHR includes optional code to apply
160 the inverse of this adjustment to returned pH estimates if the user desires estimates that
161 match what would be expected for pH calculations from A_T and C_T . This adjustment is
162 also detailed below.

- 163 4. Ocean acidification adjustment: This is an optional adjustment applied to LIPHR pH
164 estimates to reflect the impacts of ongoing ocean acidification on seawater pH (detailed
165 in 2.3).

166
167 The primary additional difficulty for pH stems from the variety of ways pH is measured or
168 calculated, as well as the evolution of accepted best practices for pH measurement over the
169 decades for which GLODAPv2 contains data. GLODAPv2 contains a mixture of pH calculated
170 from carbonate system measurements, pH measured using electrodes, and pH measured
171 spectrophotometrically. Also, although the spectrophotometric pH method has been used since
172 the early 1990s (e.g. Clayton and Byrne 1993), Yao et al. (2007) revealed that impurities in the
173 indicator dye used can significantly bias spectrophotometric pH measurements, and Liu et al.
174 (2011) subsequently published calibration equations that allow seawater pH measurements to be
175 made using purified m-cresol purple dye. Others (Carter et al. 2013; Patsavas et al. 2015;
176 Williams et al. 2017) have since shown that measurements with purified dyes appear to have an
177 (unexplained) broadly-consistent-but-pH-dependent discrepancy from the pH calculated from
178 combinations of A_T , C_T , and pCO_2 whether calculated at *in situ* or laboratory conditions (Figure
179 2c). This pH dependent discrepancy is not unique to a single pH sample handling approach, as it
180 exists for both manual and automated pH measurements. It exists also for multiple carbonate
181 constant sets (Carter et al. 2013). It exists for multiple characterizations of the properties of
182 purified dyes: There is a small pH-dependent discrepancy between spectrophotometric pH
183 obtained from various sets of purified dye coefficients (Liu et al., 2011; DeGrandpre et al.,
184 2014), but the discrepancy (ranging from ~0.006 at a pH of 8.2 to ~0.002 at a pH of 7.4) is too
185 small to account for the differences between calculated pH and pH measured with purified dyes.
186 The pH-dependent pH discrepancy is less apparent for electrode pH measurements (Figure 2a)
187 and impure dye measurements (Figure 2b) considered collectively across many cruises.
188 However there are many strongly-differing discrepancy relationships visible when impure dye
189 measurements are considered on a cruise-by-cruise basis (see Supplementary Materials figures),
190 with some discrepancies increasing and some decreasing with pH.

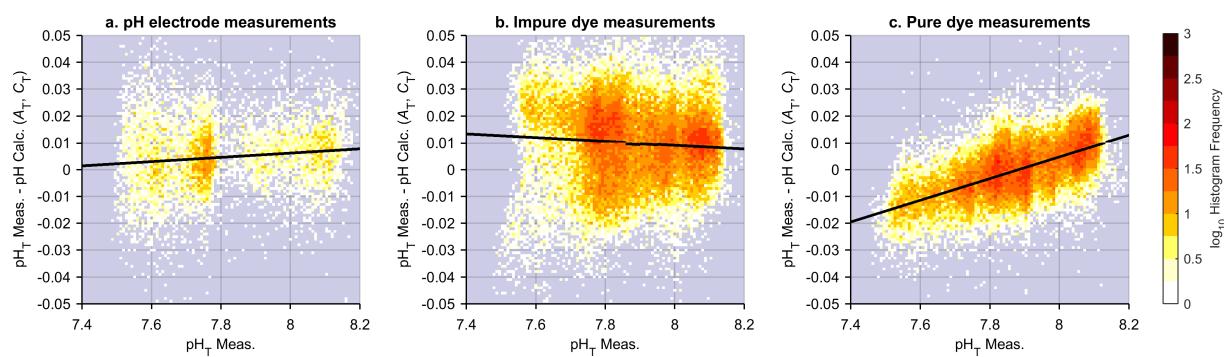
191
192 A second complication arises in the GLODAPv2 data product QC process. This data product
193 relies on deep crossovers to obtain measurement adjustments intended to bring measurements
194 from various cruises in line with one another. However, the variety of pH-dependent pH
195 discrepancies found in various cruises casts doubt on the comparability of deep-ocean pH
196 measured on different cruises. Adjustments based on forcing an agreement at depth between pH
197 distributions obtained with different approaches could therefore create, exacerbate, or
198 inadequately capture a discrepancies at the surface.

199

200 Our approach to these challenges is to first divide the data into three subsets and then apply
 201 linear adjustments to the first two subsets to make them comparable to the third. The first subset
 202 is the earlier measurements made with impure dyes. The second subset is pH calculated from A_T
 203 and C_T . These two subsets collectively comprise the majority of the GLODAPv2 data product.
 204 The third subset is the subset of the GLODAPv2 data product where pH was measured with
 205 purified dyes. We augment the purified dye subset with 11 cruises conducted too recently to
 206 appear in the GLODAPv2 data product (Expocodes: 096U20160108, 096U20160426,
 207 29HE20130320, 318M20130321, 320620140320, 320620151206, 33AT20120324,
 208 33RO20150410, 33RO20150525, and 33RO20161119). We further add data from two recent
 209 cruises measured with impure dye to the impure-dye subset (33RO20130803, 33RO20131223).
 210 Data from one additional recent cruise using purified dyes along the I09N transect
 211 (33RR20160208) is withheld from the pH training data set entirely to provide a completely
 212 independent assessment (Section 3.5). Linear pH-dependent adjustments ($\Delta_{1 \rightarrow 2}$, adjustment 2)
 213 are applied separately to each cruise measured with impure dyes to make the pH measurements
 214 comparable to the “calculated pH” subset. The coefficients for these adjustments are determined
 215 with a robust linear regression of the pH discrepancy (measured minus calculated) against
 216 measured pH. Coefficients for these adjustments are supplied as Supplementary Materials.
 217 Next, a single pH dependent adjustment ($\Delta_{2 \rightarrow 3}$, adjustment 3, $\sim +0.004$ to -0.020 , Fig. 2b) is
 218 applied to the combination of the second subset and the adjusted first subset to make them
 219 comparable to the third “purified-dye” subset. The $\Delta_{2 \rightarrow 3}$ adjustment is (Figure 2c):

$$\text{adjustment 3} \equiv \Delta_{2 \rightarrow 3} \equiv -0.3168 + 0.0404\text{pH} \quad (1)$$

220 After applying $\Delta_{2 \rightarrow 3}$, the combined training pH data set has a pH-dependent pH discrepancy with
 221 calculated pH (Figure 3). Adjustments to the impure data are designed to take the place of the
 222 recommended GLODAPv2 adjustments (adjustment 1), and—except when noted—pH data
 223 presented herein do not include the GLODAPv2 adjustments. Supporting the decision to omit
 224 the GLODAPv2 pH adjustments, the algorithms we produce have a $\sim 3\%$ smaller RMSE and 4%
 225 smaller average bias when reproducing the unadjusted data than adjusted-data-trained algorithms
 226 have when reproducing adjusted data.
 227



228 **Figure 2.** 2-dimensional histograms showing the number of *in situ* total scale pH measurements

falling within bins of discrepancy between measured and calculated pH (y-axis) and measured pH (x-axis) for (a.) the electrode-based measurements; for (b.) the impure-dye subset primarily measured prior to 2011, and (c.) our test data set, which is the purified dye measurement subset predominantly made since 2011.

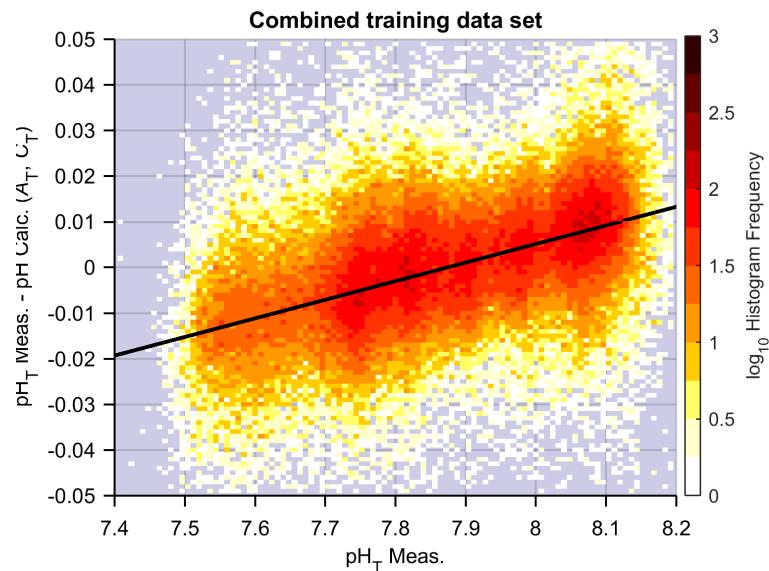


Figure 3. A 2-dimensional histogram showing the number of *in situ* total scale pH measurements falling within bins of discrepancy between measured and calculated pH (y-axis) and measured pH (x-axis) for the LIPHR training data set after adjustments 2 and 3 are applied.

229

230 Our use of the purified-dye adjustment (adjustment 3) reflects our need for a consistent training
 231 data product and not any confidence that purified dye measurements are necessarily more
 232 accurate representations of the “true” seawater pH than pH calculations. The apparent pH-
 233 dependent pH discrepancy remains an unresolved challenge to our carbonate system knowledge.
 234 Our strategy is to allow LIPHR users to decide whether pH estimates specific to purified dye
 235 measurements or pH calculations with Lueker et al. (2000)’s carbonate chemistry coefficients are
 236 more appropriate for their own applications. LIPHR therefore includes an optional counter-
 237 adjustment for adjustment 3 ($\Delta_{3 \rightarrow 2}$) derived from equation 1 to return pH estimates that are
 238 consistent with pH calculated from A_T and C_T . Broadly, we recommend the default “purified dye
 239 estimates” without this counter-adjustment when pH is the parameter of interest, and
 240 “calculation-pH estimates” with this adjustment when LIPHR estimates are being used as one of
 241 two constraints to estimate another carbonate system parameter. Whichever is used, the user
 242 should be aware of this mismatch in our understanding of carbonate system chemistry.

243

244 In total, the LIPHR training data set consists of 51,325 impure-dye measurements (adjusted with
 245 $\Delta_{1 \rightarrow 2}$ and $\Delta_{2 \rightarrow 3}$); 99,061 calculated pH values (adjusted with $\Delta_{2 \rightarrow 3}$); and 35,383 unadjusted
 246 purified dye measurements (185,769 total measurements). The test data set contains only the
 247 35,383 purified dye measurements. These data sets exclude 416 electrode pH measurements and
 248 14,983 impure dye measurements for which no calculated pH value was available. These totals
 249 also exclude measurements and calculations from cruises that either had GLODAPv2 pH
 250 adjustments estimated to be larger than ± 0.015 pH units, that were calculated from cruises with
 251 (applied) total dissolved inorganic carbon (C_T) or total seawater titration alkalinity (A_T)
 252 GLODAPv2 adjustments greater than $\pm 10 \mu\text{mol kg}^{-1}$, or that were flagged as having poor quality
 253 pH measurements. When viable pH measurements and calculations were both available for a
 254 sample, only the pH measurements were included. We also omitted data from 7 cruises
 255 (expocodes: 49K619990523, 49HG19950414, 49HG19940413, 49HG19930807,
 256 49HG19930413, 33RR19971202, 318M19940327) either because they came from series of
 257 cruises with large and variable GLODAPv2 adjustments or because the calculated and measured
 258 pH values did not agree with a ± 0.03 or less RMS or ± 0.015 average difference. A full list of
 259 cruises and how they were classified is provided in Supplementary Materials.

260

261 *2.3 An ocean acidification adjustment for pH estimates*

262 Johnson et al. (2017) find that recent profiling float sensor pH measurements are significantly
 263 lower than most nearby pH stations in the GLODAPv2 record, and that these disagreements are
 264 largest in the better-ventilated surface ocean. LIPHR includes an optional adjustment (on by
 265 default) to reflect these expected effects of OA on modern and future seawater pH (adjustment
 266 4). For this adjustment, the rate of pH change (γ_{OA}) is approximated from the robust regression:

267

$$268 \quad \text{pH}_{\text{TestDat}} - \text{pH}_{\text{LIPHR}} = \gamma_{\text{OA}} (D_{\text{TestData}} - D_{\text{TrainingData}}) \quad (2)$$

269 This is a regression between the reconstruction error ($\text{pH}_{\text{TestDat}} - \text{pH}_{\text{LIPHR}}$) as the dependent
 270 variable and the difference ($D_{\text{TestData}} - D_{\text{TrainingData}}$) between the mean decimal years of the training
 271 measurements used to estimate the regression coefficients ($D_{\text{TrainingData}}$) and the decimal years of
 272 the test data (D_{TestData}) as the independent variable. The term “decimal years” is used to mean the
 273 year (C.E.) with a decimal added to represent the fraction of 365 days elapsed in that year (such
 274 that a measurement on the 200th day of 2020 would be represented by ~ 2020.55). This
 275 regression has been performed for the reconstructions of 10 subsets of the GLODAPv2 data
 276 product used separated by every 10th percentile of potential density (σ_θ) (Figure 4). If the OA
 277 adjustment is enabled in the LIPHR code, γ_{OA} is linearly interpolated to the σ_θ estimated for the
 278 query data location and the adjusted LIPHR estimate ($\text{pH}_{\text{LIPHR}}^*$) is supplied as:

279

$$280 \quad \text{pH}_{\text{LIPHR}}^* = \text{pH}_{\text{LIPHR}} + \gamma_{\text{OA}} (D_{\text{QueryData}} - D_{\text{TrainingData}}) \quad (3)$$

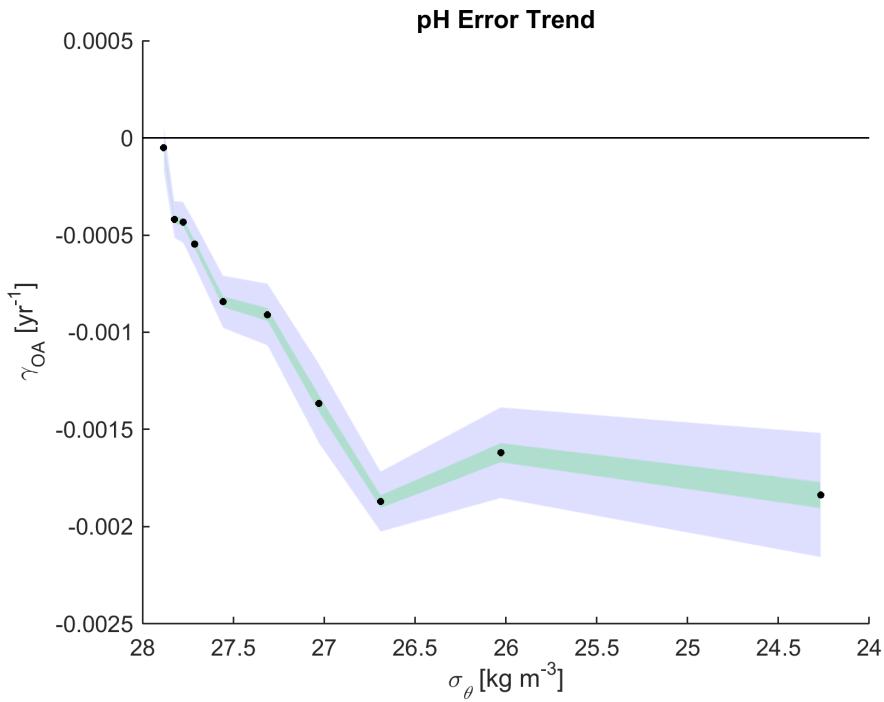


Figure 4. The average annual rate of ocean acidification (OA)-related impacts on LIPHR estimate errors (γ_{OA}) calculated for every 10th percentile of potential density (σ_θ) in the GLODAPv2 data product. If the optional OA adjustment is used (Equation 3), LIPHR uses user-provided dates with this relationship to adjust estimates it returns for the effects of ocean acidification. The green envelope indicates 95% confidence intervals of the fits. The blue envelope shows the larger confidence intervals obtained if one degree of freedom is assumed for each cruise rather than each measurement. Values in this figure are calculated using regression 7 (of the 16 regressions LIPHR can employ, see Table 2). Values for the other 15 regressions would be within $\sim \pm 0.0005 \text{ yr}^{-1}$ of these.

281
 282 The OA pH change rates we find here are consistent with previous estimates (e.g. Feely et al.
 283 2009). These simplistic OA adjustments may be poor estimates of the impacts of OA on
 284 seawater pH generally because they treat all water of a given density identically despite strong
 285 regional differences in the degree of water mass ventilation and C_{anth} storage. Nevertheless, we
 286 believe the optional adjustment is useful for LIPHR pH estimates made in the coming decades,
 287 and note that including the adjustment decreases mean estimate bias by 85% and RMSE by
 288 ~51%. Due to the progressive effects of OA, we contend this adjustment will be yet more
 289 important for modern estimates than for our test data set. Limited experimentation suggested
 290 additional cruises would be needed to adequately constrain regional differences in this
 291 adjustment. The LIPHR code therefore contains an option for users to input γ_{OA} estimates that

292 are specific to the OA rates found in their study regions, if desired. The assessment values we
293 report in section 3 include the OA adjustment.

294

295 *2.4 Update to uncertainty estimation*

296 The LIRs generate uncertainty estimates for each property estimate returned. As with LIARv1,
297 uncertainty estimates (E_{Est}) are quantified as:

298

$$E_{\text{Est}} = \sqrt{E_{\text{Meas}}^2 + E_{\text{MLR}}^2 + \sum_{j=1}^n (U_j \alpha_j)^2} \quad (4)$$

299 E terms refer to the RMS uncertainties as assessed in section 3. E_{Meas} represents A_T , N , and pH
300 measurement uncertainties in our data product, and is assumed to be a constant $2.8 \mu\text{mol kg}^{-1} A_T$,
301 $0.3 \mu\text{mol kg}^{-1} N$, and 0.005 pH units, respectively (Olsen et al. 2016). U_j are the n input
302 uncertainties for the predictor properties provided by the user, or default uncertainties if no U
303 values are provided. The default uncertainties are now 0.005 for S , $0.005 \text{ }^\circ\text{C}$ for θ , 1% O_2 , and
304 2% of N , P , and Si . The α_j terms are the n regression coefficients used in the estimate. E_{MLR}
305 represents the component of the overall uncertainty inherent to regression based estimates. It is
306 estimated for LIR outputs using estimates of E_{MLR} that are specific to each of the 16 equations
307 and to 10 depth ranges (for N and pH) or 50 ranges of depth and S (for A_T). These ranges
308 correspond to every 10th percentile of depth and/or salinity in the training data product (with a
309 single range spanning the 20th through 80th percentile of salinity). E_{MLR} is estimated for the
310 various ranges using the assessment data with known E_{Est} and solving equation (4) for E_{MLR} .
311 These range-specific E_{MLR} estimates are then interpolated by these properties to the depth and/or
312 salinity inputs for the E_{Est} calculations. LINR and LIPHR errors also scale slightly with salinity,
313 but not as strongly as LIAR errors do because of the smaller impact of freshwater cycling on N
314 and pH than on A_T . All LIR uncertainties increase near the surface due to a larger impact of
315 seasonality, episodic biogeochemical cycling, and gas exchange.

316

317 *2.5 Minimum uncertainty estimates*

318 One difficulty with LIRs is choosing between up to 16 possible estimates. We have added
319 (optional, on by default) functionality to all LIR routines that automatically picks the estimate
320 with the smallest estimated uncertainty from among all estimates it is possible to generate using
321 the suite of input predictor data provided by the user. This feature is intended in part to address a
322 limitation of the method, being that some LIR equations have too many terms (i.e. are over-fit)
323 for some of the >2 million combinations of predicted variables, predictor variables, and grid
324 locations. Over-fitting leads to larger-magnitude regression coefficients due to “Variance
325 Inflation.” Larger magnitude coefficients (α_j) propagate through equation 4 to return larger
326 uncertainty estimates. Once the increase in E_{Est} from having more and larger-magnitude
327 coefficients (i.e. from over-fitting) balances the typically lower E_{MLR} values for the equations

328 with more terms, this functionality automatically selects the less complex and less over-fit
329 equation. This feature therefore selects an equation that minimizes overall error from over-
330 fitting, input uncertainties, and method errors generally. This option modestly decreases
331 estimate RMSE by 0 to 11% and, more importantly, makes the function easier to use without
332 compromising estimate skill. The estimate improvement becomes more marked with (known)
333 larger input uncertainties such as those that will be common with sensor measurements. For
334 example, the A_T estimate RMSE improvement with this feature increased from 3% to 10% after
335 simulated errors were applied to AOU (these were normally distributed offsets with a mean of 0
336 and a standard deviation of 5 $\mu\text{mol kg}^{-1} \text{O}_2$).

337

338 **3 Assessment**

339 Estimate bias and RMS errors are calculated in the same way as the error estimates provided by
340 Carter et al. (2016), except using the subsets of the GLODAPv2 data product and additional
341 cruises specified as “test data” sets in section 2.2. These values are presented as “bias
342 ($\pm\text{RMSE}$).” The bias is the mean residual for the assessment and can be positive or negative.
343 LIR bias estimates are small compared to RMSE at the global level, suggesting the LIR estimates
344 are appropriately centered on the measured values. However, bias grows (in an absolute sense)
345 as the number of measurements averaged decreases, so the bias estimates are presented alongside
346 RMSE as potentially useful indicators of how correlated LIR errors are for various regions. Bias
347 estimates are also useful when comparing assessments from various algorithms. In particular,
348 lower biases for LIPHR than for other pH algorithms highlight the importance of the OA
349 adjustment and the dye-impurity-related adjustments applied to the training data set. An
350 important feature of the error estimation method used is that a separate set of regression
351 coefficients is estimated for each data point in our test data sets, and is estimated without using
352 any data from the cruise that produced that particular test pH value. Data from the same cruise is
353 omitted to avoid under-estimating error by including numerous measurements in the training
354 dataset found proximally in time and space to the test measurement.

355

356 *3.1 LIARv2*

357

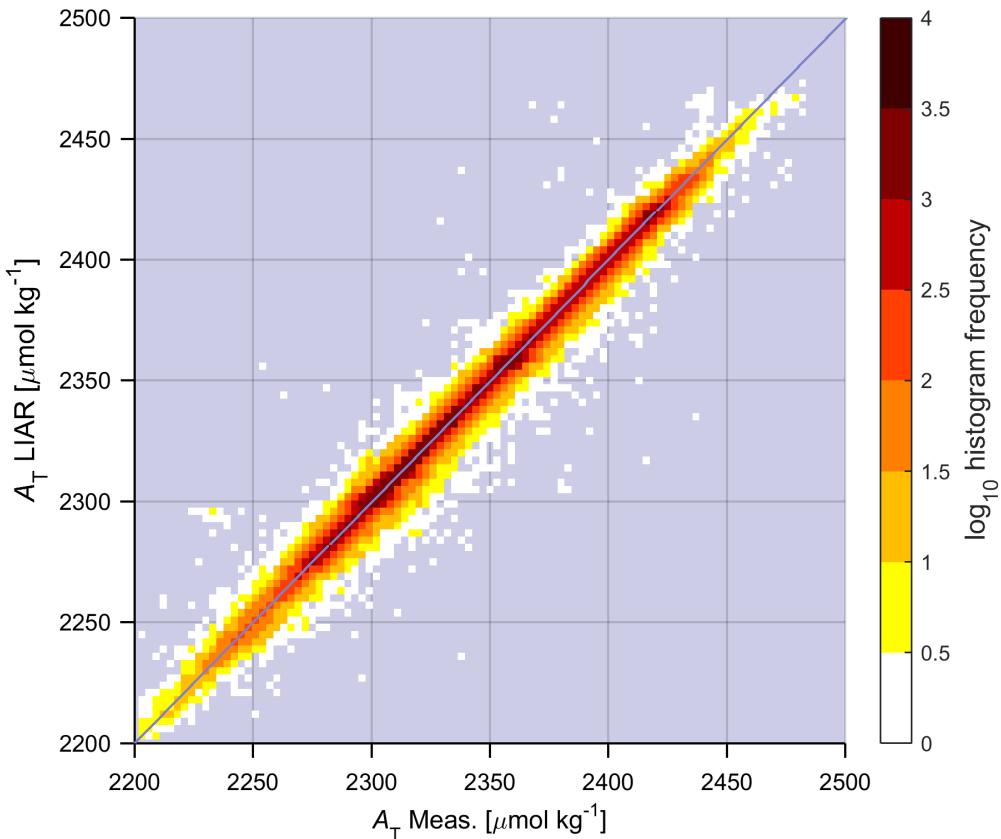


Figure 5. A 2-dimensional histogram of measured A_T (x-axis) against estimated A_T (y-axis). Darker colors along the thin blue 1:1 line indicate orders of magnitude more measurements fall on the line than in the light colored histogram bins off the line.

358
 359 The updates to LIAR decreased the overall reconstruction errors (E_{LIARv2}) for all 16 regressions
 360 relative to E_{LIARv1} by 7% to 26% (average 18%) when both sets of errors are calculated using the
 361 newer test dataset. The largest improvements are for regressions with the fewest predictors. We
 362 attribute the majority of the improvements to the increased size, quality, and consistency of the
 363 subset of the GLODAPv2 data product we used relative to the merged data product we used for
 364 LIARv1 (Figure 5). LIARv1 compared favorably to regional A_T regressions in literature (many
 365 are compared in Carter et al., 2016) and Table 1 shows LIARv2 does somewhat better still.
 366 CANYON A_T estimates reproduce our entire test dataset with errors of -0.2 (± 5.4) $\mu\text{mol kg}^{-1}$
 367 while LIARv2 (Regression 7) has errors of -0.1 (± 5.1) $\mu\text{mol kg}^{-1}$. These errors are slightly
 368 smaller at -0.5 (± 5.2) $\mu\text{mol kg}^{-1}$ for CANYON and 0.2 (± 4.4) $\mu\text{mol kg}^{-1}$ for LIARv2 when
 369 limited to the open ocean test regions used by Sauzède et al. (2017).
 370
 371 Interestingly, regression 3 (S , θ , AOU, and Si) slightly outperforms regression 1 (S , θ , N , AOU,
 372 and Si) on average, and there is little difference between the error estimates for the various
 373 equations for A_T . This suggests that regression 1 and possibly others are over-fitting A_T in places

374 (this observation does not hold true if we include the test data in the training data). See section
375 2.5 for how the LIR minimum-uncertainty functionality automatically avoids using over-fit
376 relationships despite this.

377

Table 1. Error estimates expressed as “bias (\pm RMSE)” for the subset of our data product found within the open-ocean salinity range of 33 to 38. E_{MLR} is uncertainty inherent to the use of a MLR approach, E_{Input} is error arising from uncertainties in the input data (i.e. the summed term in equation 4), E_{LIARv2} is the overall estimate uncertainty for LIARv2. GLODAPv2 data product is used as test data for all estimates. Errors are expressed as standard errors in $\mu\text{mol } A_T \text{ kg}^{-1}$.

Reg. #	Parameters used	E_{MLR}	E_{Input}	E_{LIARv2}
1	$S, \theta, N, \text{AOU}, Si$	(± 3.6)	(± 0.8)	0.1 (± 5.0)
2	S, θ, N, Si	(± 3.7)	(± 0.7)	0.1 (± 5.0)
3	$S, \theta, \text{AOU}, Si$	(± 3.6)	(± 0.7)	0.1 (± 4.9)
4	S, θ, Si	(± 3.7)	(± 0.6)	0.1 (± 5.0)
5	S, θ, N, AOU	(± 3.8)	(± 0.9)	0.0 (± 5.1)
6	S, θ, N	(± 4.0)	(± 0.9)	0.1 (± 5.3)
7	S, θ, AOU	(± 3.8)	(± 0.7)	-0.1 (± 5.1)
8	S, θ	(± 4.4)	(± 0.5)	0.2 (± 5.5)
9	S, N, AOU, Si	(± 3.6)	(± 0.8)	0.1 (± 5.0)
10	S, N, Si	(± 3.7)	(± 0.7)	0.1 (± 5.0)
11	S, AOU, Si	(± 3.6)	(± 0.6)	0.1 (± 5.0)
12	S, Si	(± 3.7)	(± 0.6)	0.1 (± 5.0)
13	S, N, AOU	(± 4.6)	(± 1.2)	-0.1 (± 5.8)
14	S, N	(± 4.4)	(± 1.0)	-0.1 (± 5.6)
15	S, AOU	(± 4.6)	(± 0.8)	-0.2 (± 5.7)
16	S	(± 5.1)	(± 0.4)	0.1 (± 6.1)

378

379

380 3.2 LIPHR

381 LIPHR pH estimates reconstruct the test pH data set well (Table 2, Figure 6). We separately
382 estimate error between 1000 and 2000 m as these estimates are more likely to be used to
383 compare with float data (Table 2).

384

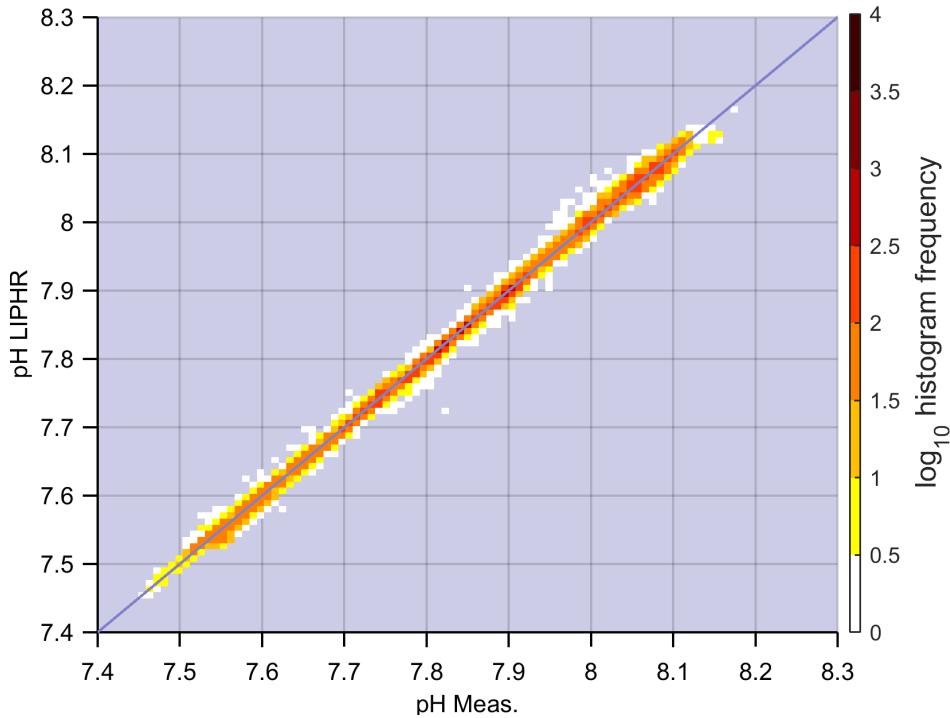


Figure 6. A 2-dimensional histogram of measured or calculated pH (x-axis) against OA-adjusted estimated pH (y-axis). Darker colors along the thin blue 1:1 line indicate orders of magnitude more measurements fall close to the line than in light colored histogram bins off the line.

385

386 LIPHR estimates compare well to the few published pH regression estimates. Williams et al.
 387 (2016) designed regression estimates for south of 45°S between 2006 and 2017 and between 0
 388 and 2100 m depth. For the subset of our data product within these bounds and omitting their
 389 S04P and P16S training cruises, their published regressions have errors of -0.006 (± 0.017) and
 390 -0.006 (± 0.016), while similar LIPHR regressions (6 and 7 respectively) have errors of -0.001
 391 (± 0.010) and -0.001 (± 0.011). Williams et al. (2016) also report a regression for estimates in the
 392 same region but trained specifically for estimates between 1000 and 2100 m depth, the depth
 393 range most useful for assessment of biogeochemical profiling float sensor performance. For the
 394 relevant subset of our test data product, their algorithm has errors of -0.001 (± 0.005), while the
 395 LIPHR regression 7 has errors of 0.002 (± 0.005). LIPHR (also regression 7) estimates have
 396 errors of 0.004 (± 0.014) in the California Current Ecosystem specific window of 114°N to
 397 124°W, 27°N to 36°N and 15 to 500 m depth after 1994 where the algorithm from Alin et al.
 398 (2012) uses temperature and O₂ measurements to generate estimates with errors of -0.008
 399 (± 0.015). CANYON pH estimates reproduce our entire test dataset with errors of 0.009 (± 0.017)
 400 while LIPHR (Regression 7) has errors of 0.000 (± 0.010). At mid depths (1000 m to 2000 m),
 401 these estimates are 0.013 (± 0.017) for CANYON and 0.000 (± 0.006) for LIPHR. The CANYON
 402 error estimates are the same at this precision when the GLODAPv2 adjustments are retained.
 403

Table 2. LIPHR error estimates expressed as “bias (\pm RMSE)” for the subset of our data product found within the open-ocean salinity range of 33 to 38. E_{MLR} is the uncertainty inherent to the use of a MLR approach, E_{Input} is error arising from uncertainties in the input data (i.e. the summed term in Equation 4), and E_{LIPHR} is the overall estimate uncertainty. $E_{\text{LIPHR2000m}}$ is the uncertainty estimate for pH measurements between 1000 and 2000 m, or the approximate depth range at which biogeochemical floats will require pH estimates for cross-comparison.

Reg. #	Parameters used	E_{MLR}	E_{Input}	E_{LIPHR}	$E_{\text{LIPHR2000m}}$
1	$z, S, \theta, N, \text{AOU}, Si$	(± 0.0080)	(± 0.004)	0.002 (± 0.010)	0.001 (± 0.008)
2	z, S, θ, N, Si	(± 0.0110)	(± 0.005)	0.002 (± 0.013)	0.000 (± 0.009)
3	$z, S, \theta, \text{AOU}, Si$	(± 0.0090)	(± 0.003)	0.001 (± 0.011)	0.001 (± 0.007)
4	z, S, θ, Si	(± 0.0190)	(± 0.002)	0.001 (± 0.020)	-0.003 (± 0.014)
5	$z, S, \theta, N, \text{AOU}$	(± 0.0070)	(± 0.004)	0.001 (± 0.010)	0.001 (± 0.006)
6	z, S, θ, N	(± 0.0110)	(± 0.004)	0.002 (± 0.013)	0.000 (± 0.007)
7	z, S, θ, AOU	(± 0.0090)	(± 0.003)	0.001 (± 0.011)	0.001 (± 0.006)
8	z, S, θ	(± 0.0230)	(± 0.001)	0.001 (± 0.024)	-0.003 (± 0.013)
9	z, S, N, AOU, Si	(± 0.0090)	(± 0.004)	0.001 (± 0.011)	0.001 (± 0.007)
10	z, S, N, Si	(± 0.0120)	(± 0.005)	0.002 (± 0.014)	0.001 (± 0.008)
11	z, S, AOU, Si	(± 0.0100)	(± 0.003)	0.001 (± 0.011)	0.001 (± 0.006)
12	z, S, Si	(± 0.0200)	(± 0.002)	0.001 (± 0.021)	-0.003 (± 0.014)
13	z, S, N, AOU	(± 0.0090)	(± 0.004)	0.001 (± 0.011)	0.001 (± 0.007)
14	z, S, N	(± 0.0130)	(± 0.004)	0.002 (± 0.015)	0.000 (± 0.008)
15	z, S, AOU	(± 0.0100)	(± 0.003)	0.001 (± 0.011)	0.001 (± 0.006)
16	z, S	(± 0.0300)	(± 0.001)	0.001 (± 0.031)	-0.003 (± 0.015)

404

405 3.3 LINR

406 LINR estimates also reproduce the test data product well (Table 3, Figure 7). Williams et al.
407 (2016) provide an N estimation algorithm specific to the Pacific sector of the Southern Ocean
408 south of 45°S between 1000 and 2100 m. This algorithm has errors of $0.42 (\pm 0.65) \mu\text{mol kg}^{-1}$ for
409 the portion of our data product in the target region for this regression. LINR (Regression 7) has
410 an error of $-0.11 (\pm 0.45) \mu\text{mol kg}^{-1}$ for this same subset. CANYON nitrate estimates reproduce
411 our entire test dataset with errors of $-0.01 (\pm 0.89) \mu\text{mol kg}^{-1}$ while LINR (Regression 7) has
412 errors of $-0.02 (\pm 0.86) \mu\text{mol kg}^{-1}$. These errors are slightly smaller at $0.03 (\pm 0.66) \mu\text{mol kg}^{-1}$ for
413 CANYON and $-0.02 (\pm 0.65) \mu\text{mol kg}^{-1}$ for LINR when limited to the open ocean test regions
414 used by Sauzède et al. (2017).

415

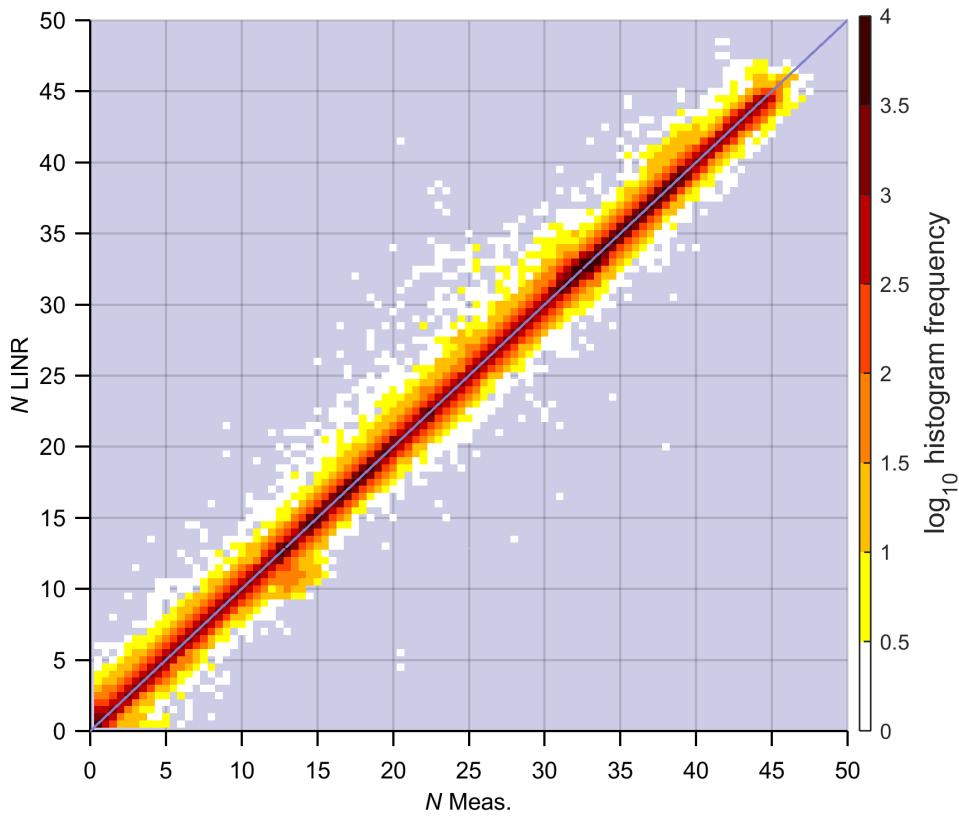


Figure 7. A 2 dimensional histogram of measured N (x-axis) against estimated N (y-axis). Darker colors along the thin blue 1:1 line indicate orders of magnitude more measurements fall on the line than in the light colored histogram bins off the line.

416

417

Table 3. LINR error estimates expressed as “bias (\pm RMSE)” for the subset of our data product found within the open-ocean salinity range of 33 to 38. E_{MLR} is the uncertainty inherent to the use of a MLR approach, E_{Input} is error arising from uncertainties in the input data (i.e. the summed term in Equation 4), and E_{LINR} is the overall estimate uncertainty. $E_{\text{LINR}2000\text{m}}$ is the uncertainty estimate for N measurements between 1000 and 2000 m, or the approximate depth range at which biogeochemical floats will require N estimates for cross-comparison.

Reg. #	Parameters used	E_{MLR}	E_{Input}	E_{LINR}	$E_{\text{LINR}2000\text{m}}$
1	$S, \theta, P, \text{AOU}, Si$	(± 0.56)	(± 0.12)	-0.01 (± 0.64)	0.00 (± 0.45)
2	S, θ, P, Si	(± 0.58)	(± 0.14)	0.00 (± 0.67)	0.02 (± 0.47)
3	$S, \theta, \text{AOU}, Si$	(± 0.81)	(± 0.10)	-0.01 (± 0.87)	0.00 (± 0.84)
4	S, θ, Si	(± 1.00)	(± 0.09)	0.03 (± 1.05)	0.03 (± 0.89)

5	S, θ, P, AOU	(± 0.56)	(± 0.13)	-0.02 (± 0.65)	-0.00 (± 0.44)
6	S, θ, P	(± 0.60)	(± 0.16)	0.00 (± 0.69)	0.01 (± 0.48)
7	S, θ, AOU	(± 0.80)	(± 0.11)	-0.02 (± 0.86)	0.00 (± 0.47)
8	S, θ	(± 1.23)	(± 0.07)	0.05 (± 1.27)	0.04 (± 0.58)
9	S, P, AOU, Si	(± 0.58)	(± 0.13)	-0.01 (± 0.67)	0.00 (± 0.44)
10	S, P, Si	(± 0.61)	(± 0.15)	0.00 (± 0.69)	0.02 (± 0.47)
11	S, AOU, Si	(± 0.87)	(± 0.10)	-0.01 (± 0.92)	-0.00 (± 0.83)
12	S, Si	(± 1.06)	(± 0.10)	0.05 (± 1.11)	0.06 (± 0.81)
13	S, P, AOU	(± 0.62)	(± 0.14)	-0.03 (± 0.70)	-0.00 (± 0.44)
14	S, P	(± 0.65)	(± 0.17)	-0.01 (± 0.74)	0.01 (± 0.49)
15	S, AOU	(± 0.96)	(± 0.11)	-0.03 (± 1.01)	-0.00 (± 0.46)
16	S	(± 1.68)	(± 0.07)	0.06 (± 1.71)	0.07 (± 0.62)

418

419 *3.4 Uncertainty estimation skill*

420 With the changes to the error estimation strategy noted in Section 2.4, the overall standard error
 421 estimates provided by the software are now greater than or equal to the test data set
 422 reconstruction error for 76% of the data product for LIARv2, for 75% for LIPHR, and for 80%
 423 for LINR. For perfectly-estimated normally-distributed RMS uncertainties, this number would
 424 be 68%. This was true for 87% of the data product with LIARv1.

425

426 *3.5 Example section*

427

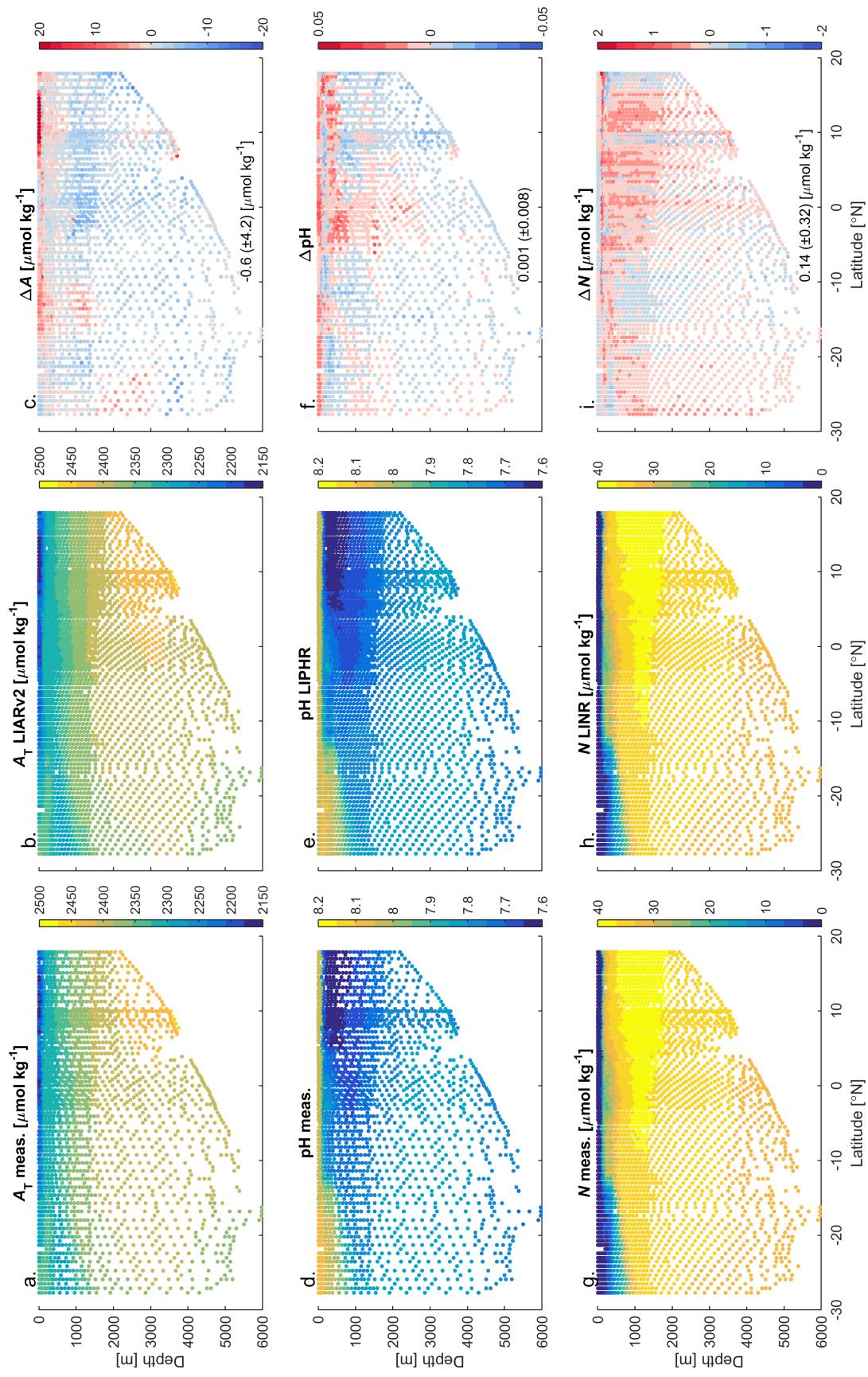


Figure 8. Measured (a., d., and g.) and estimated (b., e., and h.) A_T (a., b., and c.), pH (d., e. and f.), and N (g., h., and i.)—and differences between the two (c., f. and i.)—along the I09N section in the Indian Ocean.

428
429 Example LIAR, LIPHR, and LINR estimates are derived from hydrographic measurements from
430 the 2016 occupations of the I09 section in the Indian Ocean by the Global Ocean Ship Based
431 Hydrographic Investigations Program (GO-SHIP) program (Figure 8). These estimates provide
432 an independent validation when compared to the measurements made along the cruise because
433 the data from these cruises were not included in either the test or training datasets for the LIRs.
434 The LIRs do an excellent job of reproducing the measurements with errors of -0.6 (± 4.2) μmol
435 kg^{-1} for A_T , 0.001 (± 0.008) for pH, and 0.14 (± 0.32) $\mu\text{mol kg}^{-1} N$. LIPHR errors increase to $-$
436 0.014 (± 0.017) when the OA adjustment is omitted.
437

438 Future Directions

439 Climatological distributions of carbonate parameters from LIAR A_T and LIPHR pH—or
440 calculated from this pair of properties—may be of interest and would be simply calculated for
441 the measurement-dense World Ocean Atlas climatology (Locarnini et al., 2013; Zweng et al.,
442 2013; Baranova, 2015) or similar products. Such a regression-based climatology—like the A_T
443 climatologies created by Lee et al. (2006) and used by Takahashi et al. (2014)—would be one
444 step further removed from the measurements than gridded climatologies like those provided by
445 Lauvset et al. (2016) and Key et al. (2004). However, it would have the advantage that it could
446 be based on property measurements (such as O_2 , S , and temperature) that are more numerous,
447 more broadly spatially and temporally distributed, and less seasonally biased than the carbonate
448 measurements.
449

450 With LIAR and LIPHR, it is now possible to estimate two parameters for the carbonate system,
451 thus—in principle—providing a complete carbonate system description. While measurements
452 would be preferable for most applications, this pair of algorithms allows additional context to be
453 added to historical data products.
454

455 As Velo et al. (2013) pointed out, regressions can be potentially powerful tools for data quality
456 control. An algorithm that uses many measured properties to estimate many other measured
457 properties and then assesses the various residuals may provide a fast method for identifying
458 apparent outliers and interesting anomalies in property measurement sets. Such automated
459 measures designed to assist human-QC efforts may be of increased importance as growing
460 sensor networks increase the quantity of data being produced relative to the amount of human-
461 effort available for data QC.
462

463 The OA rate estimation strategy used (Equation 2) provides a means to incorporate a large
464 number of measurements that are disparate in space and time into unified global trend estimates.
465

465 This framework could perhaps be applied to examine the low-signal-to-noise scientific questions
466 of whether long term trends are occurring in A_T (c.f. Carter et al. 2016a), N , or O_2 relative to
467 other measured parameters.

468

469 Acknowledgements

470 This improvement and extension of the LIAR software has been made possible by funding from
471 the Climate Program Office at the National Oceanic and Atmospheric Administration with the
472 US Global Carbon Data Management and Synthesis Project (N8R3CEA-PDM). This is JISAO
473 Publication Contribution Number 2017-02-01 and PMEL contribution number 4661. We are
474 grateful to Joshua Plant, Tanya Maurer, and Kenneth Johnson for beta-testing and helping us
475 improve the code, and to Henry Bittig for sharing the CANYON code with us. We are grateful
476 to Marta Alvarez for help classifying cruises by measurement practices. We are grateful to Kelly
477 Kearney for advice regarding function input parsing and accommodating new code options.

478

479 References

- 480 Alin, S. R., R. A. Feely, A. G. Dickson, J. M. Hernández-Ayón, L. W. Juranek, M. D. Ohman,
481 and R. Goericke, 2012: Robust empirical relationships for estimating the carbonate system
482 in the southern California Current System and application to CalCOFI hydrographic cruise
483 data (2005-2011). *J. Geophys. Res. Ocean.*, **117**, n/a-n/a, doi:10.1029/2011JC007511.
484 <http://doi.wiley.com/10.1029/2011JC007511> (Accessed February 16, 2017).
- 485 Baranova, O., 2015: World ocean atlas 2005.
486 http://www.nodc.noaa.gov/OC5/WOA05/pr_woa05.html (Accessed June 14, 2016).
- 487 Bostock, H. C., S. E. M. Fletcher, and M. J. M. Williams, 2013: Estimating carbonate parameters
488 from hydrographic data for the intermediate and deep waters of the Southern Hemisphere
489 oceans. *Biogeosciences*, **10**, 6199–6213, doi:10.5194/bg-10-6199-2013.
490 www.biogeosciences.net/10/6199/2013/ (Accessed April 14, 2017).
- 491 Bushinsky, S. M., S. R. Emerson, S. C. Riser, and D. D. Swift, 2016: Accurate oxygen
492 measurements on modified argo floats using in situ air calibrations. *Limnol. Oceanogr.*
493 *Methods*, **14**, doi:10.1002/lom3.10107.
- 494 Carter, B. R., J. A. Radich, H. L. Doyle, and A. G. Dickson, 2013: An automated system for
495 spectrophotometric seawater pH measurements. *Limnol. Oceanogr. Methods*, **11**, 16–27.
- 496 Carter, B. R., T. L. Frölicher, J. P. Dunne, K. B. Rodgers, R. D. Slater, and J. L. Sarmiento,
497 2016a: When can ocean acidification impacts be detected from decadadal alkalinity
498 measurements? *Global Biogeochem. Cycles*, **30**, 595–612, doi:10.1002/2015GB005308.
499 <http://doi.wiley.com/10.1002/2015GB005308> (Accessed October 10, 2016).
- 500 —, N. L. Williams, A. R. Gray, and R. A. Feely, 2016b: Locally interpolated alkalinity
501 regression for global alkalinity estimation. *Limnol. Oceanogr. Methods*, **14**, 268–277,
502 doi:10.1002/lom3.10087. <http://doi.wiley.com/10.1002/lom3.10087> (Accessed June 13,
503 2016).
- 504 DeGrandpre, M. D., R. S. Spaulding, J. O. Newton, E. J. Jaqueth, S. E. Hamblck, A. A.
505 Umansky, and K. E. Harris, 2014: Considerations for the measurement of
506 spectrophotometric pH for ocean acidification and other studies. *Limnol. Oceanogr.*
507 *Methods*, **12**, 830–839, doi:10.4319/lom.2014.12.830.
508 <http://doi.wiley.com/10.4319/lom.2014.12.830> (Accessed June 2, 2017).

- 509 Dickson, A. G., 1990: Thermodynamics of the dissociation of boric acid in synthetic seawater
510 from 273.15 to 318.15 K. *Deep Sea Res. Part A. Oceanogr. Res. Pap.*, **37**, 755–766,
511 doi:10.1016/0198-0149(90)90004-F.
512 <http://linkinghub.elsevier.com/retrieve/pii/019801499090004F> (Accessed March 24, 2017).
- 513 Feely, R., S. Doney, and S. Cooley, 2009: Ocean Acidification: Present Conditions and Future
514 Changes in a High-CO₂ World. *Oceanography*, **22**, 36–47, doi:10.5670/oceanog.2009.95.
515 <http://tos.org/oceanography/article/ocean-acidification-present-conditions-and-future-changes-in-a-high-co2-wor> (Accessed July 6, 2016).
- 516 van Hueven, S., D. Pierrot, J. W. B. Rae, E. Lewis, and D. W. R. Wallace, 2011: *MATLAB*
517 *program developed for CO₂ system calculations*, CO₂sys. Oak Ridge, TN.,
- 518 Johnson, K., and H. Claustre, 2016: Bringing biogeochemistry into the Argo age. *Eos. Trans.*
519 *Am. Geophys. Union*, **97**, doi:10.1029/2016EO062427.
- 520 Johnson, K. S., H. W. Jannasch, L. J. Coletti, V. A. Elrod, T. R. Martz, Y. Takeshita, R. J.
521 Carlson, and J. G. Connery, 2016: Deep-Sea DuraFET: A Pressure Tolerant pH Sensor
522 Designed for Global Sensor Networks. *Anal. Chem.*, **88**,
523 doi:10.1021/acs.analchem.5b04653.
- 524 —, and Coauthors, 2017: Biogeochemical sensor performance in the SOCCOM profiling float
525 array. *J. Geophys. Res. Ocean.*, **122**, 6416–6436, doi:10.1002/2017JC012838.
526 <http://doi.wiley.com/10.1002/2017JC012838> (Accessed November 1, 2017).
- 527 Juranek, L. W., R. A. Feely, D. Gilbert, H. Freeland, and L. A. Miller, 2011: Real-time
528 estimation of pH and aragonite saturation state from Argo profiling floats: Prospects for an
529 autonomous carbon observing strategy. *Geophys. Res. Lett.*, **38**, n/a-n/a,
530 doi:10.1029/2011GL048580. <http://doi.wiley.com/10.1029/2011GL048580> (Accessed
531 March 31, 2017).
- 532 Key, R. M., and Coauthors, 2004: A global ocean carbon climatology: Results from Global Data
533 Analysis Project (GLODAP). *Global Biogeochem. Cycles*, **18**, 1–23,
534 doi:10.1029/2004GB002247. <http://doi.wiley.com/10.1029/2004GB002247> (Accessed
535 August 23, 2015).
- 536 Lauvset, S. K., and Coauthors, 2016: A new global interior ocean mapped climatology: the
537 1° × 1° GLODAP version 2. *Earth Syst. Sci. Data*, **8**, 325–340, doi:10.5194/ESSD-8-325-
538 2016.
- 539 Lee, K., and Coauthors, 2006: Global relationships of total alkalinity with salinity and
540 temperature in surface waters of the world's oceans. *Geophys. Res. Lett.*, **33**, L19605,
541 doi:10.1029/2006GL027207. <http://doi.wiley.com/10.1029/2006GL027207> (Accessed
542 February 15, 2017).
- 543 —, T.-W. Kim, R. H. Byrne, F. J. Millero, R. A. Feely, and Y.-M. Liu, 2010: The universal
544 ratio of boron to chlorinity for the North Pacific and North Atlantic oceans. *Geochim. Cosmochim. Acta*, **74**, 1801–1811, doi:10.1016/j.gca.2009.12.027.
545 <http://linkinghub.elsevier.com/retrieve/pii/S0016703709007789> (Accessed June 21, 2017).
- 546 Liu, X., M. C. Patsavas, and R. H. Byrne, 2011: Purification and Characterization of meta-Cresol
547 Purple for Spectrophotometric Seawater pH Measurements. *Environ. Sci. Technol.*, **45**,
548 4862–4868, doi:10.1021/es200665d. <http://pubs.acs.org/doi/abs/10.1021/es200665d>
549 (Accessed June 2, 2017).
- 550 Locarnini, R. A., and Coauthors, 2013: World Ocean Atlas 2013. Vol. 1: Temperature. *S.*
551 *Levitus, Ed.; A. Mishonov, Tech. Ed.; NOAA Atlas NESDIS*, **73**, 40, doi:10.1182/blood-
552 2011-06-357442.

- 555 <http://www.ncbi.nlm.nih.gov/pubmed/22058116> <http://www.bloodjournal.org/cgi/doi/10.1182/blood-2011-06-357442>.
- 556 Lueker, T. J., A. G. Dickson, and C. D. Keeling, 2000: Ocean pCO₂ calculated from dissolved
557 inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory
558 measurements of CO₂ in gas and seawater at equilibrium. *Mar. Chem.*, **70**, 105–119,
559 doi:10.1016/S0304-4203(00)00022-0.
560 <http://linkinghub.elsevier.com/retrieve/pii/S0304420300000220> (Accessed March 24,
561 2017).
- 562 McNeil, B. I., and T. P. Sasse, 2016: Future ocean hypercapnia driven by anthropogenic
563 amplification of the natural CO₂ cycle. *Nature*, **529**, doi:10.1038/nature16156.
- 564 Millero, F. J., K. Lee, and M. Roche, 1998: Distribution of alkalinity in the surface waters of the
565 major oceans. *Mar. Chem.*, **60**, 111–130, doi:10.1016/S0304-4203(97)00084-4.
566 <http://linkinghub.elsevier.com/retrieve/pii/S0304420397000844> (Accessed April 14, 2017).
- 567 Olsen, A., and Coauthors, 2016: The Global Ocean Data Analysis Project version 2
568 (GLODAPv2) – an internally consistent data product for the world ocean. *Earth Syst. Sci.
569 Data*, **8**, 297–323, doi:10.5194/essd-8-297-2016. [http://www.earth-syst-sci-
570 data.net/8/297/2016/](http://www.earth-syst-sci-data.net/8/297/2016/) (Accessed February 6, 2017).
- 571 Patsavas, M. C., R. H. Byrne, R. Wanninkhof, R. A. Feely, and W.-J. Cai, 2015: Internal
572 consistency of marine carbonate system measurements and assessments of aragonite
573 saturation state: Insights from two U.S. coastal cruises. *Mar. Chem.*, **176**, 9–20,
574 doi:10.1016/j.marchem.2015.06.022.
575 <http://www.sciencedirect.com/science/article/pii/S0304420315300074> (Accessed June 2,
576 2017).
- 577 Perez, F. F., and F. Fraga, 1987: Association constant of fluoride and hydrogen ions in seawater.
578 *Mar. Chem.*, **21**, 161–168, doi:10.1016/0304-4203(87)90036-3.
579 <http://linkinghub.elsevier.com/retrieve/pii/0304420387900363> (Accessed June 21, 2017).
- 580 Plant, J. N., K. S. Johnson, C. M. Sakamoto, H. W. Jannasch, L. J. Coletti, S. C. Riser, and D. D.
581 Swift, 2016: Net community production at Ocean Station Papa observed with nitrate and
582 oxygen sensors on profiling floats. *Global Biogeochem. Cycles*, **30**, 859–879,
583 doi:10.1002/2015GB005349. <http://doi.wiley.com/10.1002/2015GB005349> (Accessed
584 March 23, 2017).
- 585 Sasse, T. P., B. I. McNeil, and G. Abramowitz, 2013: A new constraint on global air-sea CO₂
586 fluxes using bottle carbon data. *Geophys. Res. Lett.*, **40**, 1594–1599, doi:10.1002/grl.50342.
587 <http://doi.wiley.com/10.1002/grl.50342> (Accessed April 14, 2017).
- 588 Sauzède, R., H. C. Bittig, H. Claustre, O. Pasqueron de Fommervault, J.-P. Gattuso, L. Legendre,
589 and K. S. Johnson, 2017: Estimates of Water-Column Nutrient Concentrations and
590 Carbonate System Parameters in the Global Ocean: A Novel Approach Based on Neural
591 Networks. *Front. Mar. Sci.*, **4**, 128, doi:10.3389/fmars.2017.00128.
592 <http://journal.frontiersin.org/article/10.3389/fmars.2017.00128/full> (Accessed June 16,
593 2017).
- 594 Takahashi, T., S. C. Sutherland, D. W. Chipman, J. G. Goddard, and C. Ho, 2014:
595 Climatological distributions of pH, pCO₂, total CO₂, alkalinity, and CaCO₃ saturation in
596 the global surface ocean, and temporal changes at selected locations. *Mar. Chem.*, **164**, 95–
597 125.
- 598 Takeshita, Y., T. R. Martz, K. S. Johnson, J. N. Plant, D. Gilbert, S. C. Riser, C. Neill, and B.
599 Tilbrook, 2013: A climatology-based quality control procedure for profiling float oxygen
600 <http://linkinghub.elsevier.com/retrieve/pii/S0304420313000011> (Accessed March 24, 2017).

- 601 data. *J. Geophys. Res. Ocean.*, **118**, 5640–5650, doi:10.1002/jgrc.20399.
602 <http://doi.wiley.com/10.1002/jgrc.20399> (Accessed March 23, 2017).
- 603 Velo, A., F. F. Pérez, T. Tanhua, M. Gilcoto, A. F. Ríos, and R. M. Key, 2013: Total alkalinity
604 estimation using MLR and neural network techniques. *J. Mar. Syst.*, **111–112**, 11–18,
605 doi:10.1016/j.jmarsys.2012.09.002.
606 <http://www.sciencedirect.com/science/article/pii/S0924796312001728> (Accessed November
607 19, 2015).
- 608 Wanninkhof, R., and Coauthors, 2016: *An evaluation of pH and NO₃ sensor data from SOCCOM
609 floats and their utilization to develop ocean inorganic carbon products*. 1-31 pp.
610 https://soccom.princeton.edu/sites/default/files/files/CWG_white_paper_March_13_2016.pdf.
- 612 Williams, N. L., and Coauthors, 2016: Empirical algorithms to estimate water column pH in the
613 Southern Ocean. *Geophys. Res. Lett.*, **43**, 3415–3422, doi:10.1002/2016GL068539.
614 <http://doi.wiley.com/10.1002/2016GL068539> (Accessed February 16, 2017).
- 615 —, and Coauthors, 2017: Calculating surface ocean pCO₂ from biogeochemical Argo floats
616 equipped with pH: An uncertainty analysis. *Global Biogeochem. Cycles*, **31**, 591–604,
617 doi:10.1002/2016GB005541. <http://doi.wiley.com/10.1002/2016GB005541> (Accessed June
618 2, 2017).
- 619 Yao, W., X. Liu, and R. H. Byrne, 2007: Impurities in indicators used for spectrophotometric
620 seawater pH measurements: Assessment and remedies. *Mar. Chem.*, **107**, 167–172,
621 doi:10.1016/j.marchem.2007.06.012.
622 <http://www.sciencedirect.com/science/article/pii/S0304420307001430> (Accessed June 2,
623 2017).
- 624 Zweng, M. M., and Coauthors, 2013: *World Ocean Atlas 2013, Volume 2: Salinity*. 227-237 pp.
625