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Abstract 16 
We have taken advantage of the release of version 2 of the Global Data Analysis Project 17 
(GLODAPv2) data product (Olsen et al. 2016) to refine the Locally Interpolated Alkalinity 18 
Regression (LIAR) code for global estimation of total titration alkalinity of seawater (AT), and to 19 
extend the method to also produce estimates of nitrate (N) and in situ pH (total scale).  The 20 
updated MATLAB software and methods are distributed as supplementary materials for this 21 
paper and referred to as LIAR version 2 (LIARv2), Locally Interpolated Nitrate Regression 22 
(LINR), and Locally Interpolated pH Regression (LIPHR).  Collectively they are referred to as 23 
Locally Interpolated Regressions (LIRs).  Relative to LIARv1, LIARv2 has an 18% lower 24 
average AT estimate RMSE, improved uncertainty estimates, and fewer regions in which the 25 
method has little or no available training data.  LIARv2, LINR, and LIPHR produce estimates 26 
globally with skill that is comparable to or better than regional alternatives used in their 27 
respective regions.  LIPHR pH estimates have an optional adjustment to account for ongoing 28 
ocean acidification.  We have used the improved uncertainty estimates to develop LIR 29 
functionality that selects the lowest-uncertainty estimate from among possible estimates.  Current 30 
and future versions of LIR software will be available on GitHub at 31 
https://github.com/BRCScienceProducts/LIRs.   32 
 33 
Introduction 34 
The LIAR method and software was developed to estimate AT globally from other measurable 35 
seawater properties (Carter et al. 2016b).  The original application for the method was providing 36 
AT estimates as a second carbonate parameter for use with data from the emerging network of 37 
biogeochemical floats that measure pH (Wanninkhof et al. 2016; Johnson and Claustre 2016; 38 
Johnson et al. 2016).  However, LIAR may also prove useful for studies or models interested in 39 



2 
 

estimating a climatological AT baseline with limited variability or deviations from such a 40 
baseline (e.g. Carter et al. 2016a).   41 

 42 
LINR and LIPHR are primarily intended to provide cross-comparisons for nitrate (N) and pH 43 
sensor measurements that can be used to assess potential float sensor errors or measurement 44 
drifts.  Profiling biogeochemical floats cannot typically be retrieved for sensor recalibration, so it 45 
is important to have independent means to assess such problems that may arise during or after 46 
float deployment.  A common approach to this problem is to use known atmospheric, surface, or 47 
climatological concentrations (Bushinsky et al. 2016; Plant et al. 2016; Takeshita et al. 2013) to 48 
recalibrate sensors, but such known values are not always available for N and pH.  LINR and 49 
LIPHR are designed to provide estimated values in the stable 1000-2000 m depth range of the 50 
ocean as alternatives.  All three LIRs have secondary scientific applications when AT, N , or pH 51 
estimates are desirable and some seawater property information is available.   52 
 53 
By default, LIRs have the limitation that they are unable to capture changes in the relationships 54 
between the estimated properties and the predictor properties.  An example of such an 55 
unresolved change comes from the influence of ocean acidification (OA), the effect of 56 
continually increasing ocean storage of anthropogenic carbon dioxide (CO2) on seawater pH.  57 
LIPHR contains an option to adjust for the effects of OA on pH, but we expect OA induced pH 58 
changes to result in LIPHR estimates becoming less skillful over time even when this adjustment 59 
is used because the adjustment does not account for regional or temporal variations in the rate of 60 
OA.  All three LIRs are expected to be most skillful at reproducing measurements below the 61 
ocean surface where the effects of OA and other changes are smaller, or for estimates made close 62 
in time and space to the measurements used to train the LIRs.  Another limitation of these 63 
algorithms is that they break down any time relationships between predictors and the estimated 64 
properties become significantly nonlinear.  An example of a region where estimate skill would 65 
be expected to be diminished by this limitation would be on the margins of O2 deficient zones 66 
where the influences of both denitrification and aerobic respiration can be important. 67 
 68 
Regressions for estimating pH, N, and AT have been reported numerous times.  AT regressions are 69 
the most common variant (e.g. McNeil and Sasse 2016; Lee et al. 2006; Alin et al. 2012; Velo et 70 
al. 2013; Bostock et al. 2013; Millero et al. 1998; Sasse et al. 2013) with regressions for pH 71 
being less frequently reported (e.g. Juranek et al. 2011; Alin et al. 2012; Williams et al. 2016) 72 
and nitrate regressions being even less frequently reported still (e.g. Williams et al. 2016, 73 
supplementary information). The LIRs presented here make improvements over earlier versions 74 
with respect to global applicability, ease of use, and the ability to scale uncertainty estimates 75 
based on input uncertainties.  Critically, they also produce estimates that reproduce pH 76 
measurements at least as skillfully as earlier versions.  The bulk of the improvement results from 77 
the larger quantity and span of data available through the GLODAPv2 data product (Olsen et al. 78 
2016) than was available to train earlier methods.  A similar method to the LIRs developed 79 
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recently is the Carbonate system and Nutrients concentration from hYdrological properties and 80 
Oxygen using a Neural-network (CANYON) (Sauzède et al. 2017).  CANYON was also trained 81 
using the GLODAPv2 data product and is capable of estimating pH, AT, silicate (Si), N, total 82 
dissolved inorganic carbon (CT), and pCO2 globally from O2, temperature, salinity (S), latitude, 83 
longitude, depth, and day of year.  We expect the LIRs we propose here will provide 84 
complementary estimates to those provided by CANYON for most applications, and note that the 85 
LIRs presented here do not require O2 and temperature as measurement inputs. 86 
 87 
In the remainder of this paper we describe version 2 of the LIAR software (LIARv2) in the 88 
context of the improvements relative to version 1 (LIARv1: Carter et al. 2016b), and extend the 89 
LIR approach to nitrate and in situ total scale seawater pH estimates with LINR and LIPHR.  90 
Particular attention is paid to new procedures required to address complications with extending 91 
the LIR framework to pH measurements. 92 
 93 
2 Methods 94 
2.1 Summary of LIR methods 95 
As with LIARv1, the LIR methods developed here use regression coefficients that are 96 
determined at each location on a 5° latitude and longitude grid with 33 depth surfaces (44,957 97 
total locations).  Each set of regression coefficients is determined using a robust multiple linear 98 
regression of the subset of measurements from the global training dataset that are found within a 99 
volume defined by latitude, longitude, and depth/density windows of the grid coordinates (the 100 
same grid used by Carter et al., 2016b).  The windows used are 5° for latitude, (101 

) for longitude, and either 0.01 kg m˗3 for potential density or 50 m for depth 102 

(whichever is more inclusive).  The dimensions of these windows are iteratively scaled by a 103 
factor of the iteration number until at least 100 measurements are selected to train each 104 
regression.  When generating estimates, the LIAR software then interpolates between regression 105 
coefficients specific to these grid locations to arbitrary locations where the user desires 106 
regression estimates.  LIARv2 works with 16 different combinations of the predictor variables: 107 
salinity S, potential temperature θ, nitrate N, apparent oxygen utilization AOU, and silicate Si.  108 
LINR uses the same combinations as LIAR with phosphate P in place of N in the 8 regressions 109 
that included N.  LIPHR uses the same predictors as LIAR, but also includes depth (z) in meters 110 
as a predictor.  This additional predictor is intended to allow for the effects of pressure on in situ 111 
pH.  The specific combinations of variables used are indicated in sections 3.1 through 3.3.  A full 112 
description of the LIARv1 method is provided by Carter et al. (2016b).  In this update we focus 113 
on how LIARv2, LIPHR, and LINR adapt and improve upon the LIARv1 methods.  114 
 115 

In some instances where spectrophotometric pH measurements are unavailable, we use in situ 116 
total scale pH as calculated from AT and CT.  These calculations were made with carbonate 117 
constants from Lueker et al. (2000), borate dissociation coefficients from Dickson (1990), total 118 

10 / cos(latitude)!
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borate from Lee et al. (2010), and KF from Perez and Fraga (1987).  Calculations are performed 119 
using the CO2SYS for MATLAB routine by van Hueven et al. (2011).   120 

 121 
2.2 Data products used to train and test LIRs 122 
The primary improvement in LIARv2 relative to LIARv1 stems from regression coefficients 123 
having been re-estimated using the Global Data Analysis Project version 2 data product 124 
(GLODAPv2).  All measured and calculated values in GLODAPv2 were used except those from 125 
161 cruises (40,303 measurements) that had AT quality control (QC) adjustments of ±10 µmol 126 
kg-1 or greater, were flagged as poor data, or were not quality controlled for AT (Olsen et al. 127 
2016).  The new training data set is comprised of 236,852 AT measurements and AT estimates 128 
from CO2-calculations based on other CO2 parameters, 211,704 of which had the property 129 
measurements required for training all 16 regressions (Figure 1).  The LIAR test data set omits 130 
the 2,279 calculated AT values that are included in the training data set.  We use the coefficient 131 
re-estimation strategy used by Carter et al. (2016b) to allow overlap between our training and test 132 
data sets without compromising the validity of the assessments (described in Section 3). 133 
 134 
LINR regression coefficients were estimated using 684,475 N measurements, 569,761 of which 135 
had associated property measurements required for training all 16 regressions.  This training 136 
dataset is all GLODAPv2 data product N measurements excepting those from 187 cruises that 137 
had multiplicative adjustments greater than 10%, that were not QC’d, or that were flagged as 138 
having poor quality measurements.  GLODAPv2 QC protocols changed reported negative N 139 
values to 0 µmol kg˗1.  The LINR code does likewise.  The LINR test data set is identical to the 140 
training data set. 141 
 142 
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Figure 1.  Maps of the data used for the training (left) and test (right) data sets for LIARv2 (top, 
a. and b.), LIPHR (middle, c. and d.), and LINR (bottom, e. and f.) regression coefficients.   
 143 
There are several additional difficulties for constructing a consistent data product for training 144 
LIPHR that originate from changes in ocean pH and in pH measurement practices over time.  145 
Dealing with these inconsistencies requires understanding several adjustments that we and others 146 
(Olsen et al. 2016) have made to pH measurements and estimates.  We list these adjustments 147 
here and explain them in this section and the next. 148 

1. GLODAPv2 adjustments: These are recommended adjustments to cruise pH, AT, and CT 149 
measurements based on deep crossovers (Olsen et al. 2016).  We do not use these 150 
adjustments for pH, though we do use them for AT and CT. 151 

2. Impure-dye adjustments: These are adjustments to pH measurements that we make for 152 
pH values measured using impure dye (i.e. commercially available indicator dye that has 153 
not been specially purified).  These adjustments are intended to bring these values in line 154 
with pH calculated from AT and CT.  They are detailed below. 155 

3. Calculation-to-purified-dye-pH adjustment: This is a single adjustment we apply to 156 
impure-dye measurements (after they have been adjusted by the impure-dye adjustment) 157 
and to calculated pH values.  This adjustment is intended to bring these values in line 158 
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with pH measurements made with purified dyes.  LIPHR includes optional code to apply 159 
the inverse of this adjustment to returned pH estimates if the user desires estimates that 160 
match what would be expected for pH calculations from AT and CT.  This adjustment is 161 
also detailed below. 162 

4. Ocean acidification adjustment: This is an optional adjustment applied to LIPHR pH 163 
estimates to reflect the impacts of ongoing ocean acidification on seawater pH (detailed 164 
in 2.3). 165 

 166 
The primary additional difficulty for pH stems from the variety of ways pH is measured or 167 
calculated, as well as the evolution of accepted best practices for pH measurement over the 168 
decades for which GLODAPv2 contains data.  GLODAPv2 contains a mixture of pH calculated 169 
from carbonate system measurements, pH measured using electrodes, and pH measured 170 
spectrophotometrically.  Also, although the spectrophotometric pH method has been used since 171 
the early 1990s (e.g. Clayton and Byrne 1993), Yao et al. (2007) revealed that impurities in the 172 
indicator dye used can significantly bias spectrophotometric pH measurements, and Liu et al. 173 
(2011) subsequently published calibration equations that allow seawater pH measurements to be 174 
made using purified m-cresol purple dye.  Others (Carter et al. 2013; Patsavas et al. 2015; 175 
Williams et al. 2017) have since shown that measurements with purified dyes appear to have an 176 
(unexplained) broadly-consistent-but-pH-dependent discrepancy from the pH calculated from 177 
combinations of AT, CT, and pCO2 whether calculated at in situ or laboratory conditions (Figure 178 
2c).  This pH dependent discrepancy is not unique to a single pH sample handling approach, as it 179 
exists for both manual and automated pH measurements.  It exists also for multiple carbonate 180 
constant sets (Carter et al. 2013).  It exists for multiple characterizations of the properties of 181 
purified dyes: There is a small pH-dependent discrepancy between spectrophotometric pH 182 
obtained from various sets of purified dye coefficients (Liu et al., 2011; DeGrandpre et al., 183 
2014), but the discrepancy (ranging from ~0.006 at a pH of 8.2 to ~0.002 at a pH of 7.4) is too 184 
small to account for the differences between calculated pH and pH measured with purified dyes.  185 
The pH-dependent pH discrepancy is less apparent for electrode pH measurements (Figure 2a) 186 
and impure dye measurements (Figure 2b) considered collectively across many cruises.  187 
However there are many strongly-differing discrepancy relationships visible when impure dye 188 
measurements are considered on a cruise-by-cruise basis (see Supplementary Materials figures), 189 
with some discrepancies increasing and some decreasing with pH.   190 
 191 
A second complication arises in the GLODAPv2 data product QC process.  This data product 192 
relies on deep crossovers to obtain measurement adjustments intended to bring measurements 193 
from various cruises in line with one another.  However, the variety of pH-dependent pH 194 
discrepancies found in various cruises casts doubt on the comparability of deep-ocean pH 195 
measured on different cruises.  Adjustments based on forcing an agreement at depth between pH 196 
distributions obtained with different approaches could therefore create, exacerbate, or 197 
inadequately capture a discrepancies at the surface. 198 
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 199 
Our approach to these challenges is to first divide the data into three subsets and then apply 200 
linear adjustments to the first two subsets to make them comparable to the third.  The first subset 201 
is the earlier measurements made with impure dyes.  The second subset is pH calculated from AT 202 
and CT.  These two subsets collectively comprise the majority of the GLODAPv2 data product.  203 
The third subset is the subset of the GLODAPv2 data product where pH was measured with 204 
purified dyes.  We augment the purified dye subset with 11 cruises conducted too recently to 205 
appear in the GLODAPv2 data product (Expocodes: 096U20160108, 096U20160426, 206 
29HE20130320, 318M20130321, 320620140320, 320620151206, 33AT20120324, 207 
33RO20150410, 33RO20150525, and 33RO20161119).  We further add data from two recent 208 
cruises measured with impure dye to the impure-dye subset (33RO20130803, 33RO20131223).  209 
Data from one additional recent cruise using purified dyes along the I09N transect 210 
(33RR20160208) is withheld from the pH training data set entirely to provide a completely 211 
independent assessment (Section 3.5).  Linear pH-dependent adjustments ( , adjustment 2) 212 

are applied separately to each cruise measured with impure dyes to make the pH measurements 213 
comparable to the “calculated pH” subset.  The coefficients for these adjustments are determined 214 
with a robust linear regression of the pH discrepancy (measured minus calculated) against 215 
measured pH.  Coefficients for these adjustments are supplied as Supplementary Materials.  216 
Next, a single pH dependent adjustment ( , adjustment 3, ~ +0.004 to ˗0.020, Fig. 2b) is 217 

applied to the combination of the second subset and the adjusted first subset to make them 218 
comparable to the third “purified-dye” subset.  The adjustment is (Figure 2c): 219 

   (1) 220 

After applying , the combined training pH data set has a pH-dependent pH discrepancy with 221 

calculated pH (Figure 3).  Adjustments to the impure data are designed to take the place of the 222 
recommended GLODAPv2 adjustments (adjustment 1), and—except when noted—pH data 223 
presented herein do not include the GLODAPv2 adjustments.  Supporting the decision to omit 224 
the GLODAPv2 pH adjustments, the algorithms we produce have a ~3% smaller RMSE and 4% 225 
smaller average bias when reproducing the unadjusted data than adjusted-data-trained algorithms 226 
have when reproducing adjusted data.   227 
 228 

 
Figure 2. 2-dimensional histograms showing the number of in situ total scale pH measurements 
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falling within bins of discrepancy between measured and calculated pH (y-axis) and measured 
pH (x-axis) for (a.) the electrode-based measurements; for (b.) the impure-dye subset primarily 
measured prior to 2011, and (c.) our test data set, which is the purified dye measurement subset 
predominantly made since 2011. 
 

 
Figure 3. A 2-dimensional histogram showing the number of in 
situ total scale pH measurements falling within bins of 
discrepancy between measured and calculated pH (y-axis) and 
measured pH (x-axis) for the LIPHR training data set after 
adjustments 2 and 3 are applied. 

 
 
 229 
Our use of the purified-dye adjustment (adjustment 3) reflects our need for a consistent training 230 
data product and not any confidence that purified dye measurements are necessarily more 231 
accurate representations of the “true” seawater pH than pH calculations.  The apparent pH-232 
dependent pH discrepancy remains an unresolved challenge to our carbonate system knowledge.  233 
Our strategy is to allow LIPHR users to decide whether pH estimates specific to purified dye 234 
measurements or pH calculations with Lueker et al. (2000)’s carbonate chemistry coefficients are 235 
more appropriate for their own applications.  LIPHR therefore includes an optional counter-236 
adjustment for adjustment 3 ( ) derived from equation 1 to return pH estimates that are 237 

consistent with pH calculated from AT and CT.  Broadly, we recommend the default “purified dye 238 
estimates” without this counter-adjustment when pH is the parameter of interest, and 239 
“calculation-pH estimates” with this adjustment when LIPHR estimates are being used as one of 240 
two constraints to estimate another carbonate system parameter.  Whichever is used, the user 241 
should be aware of this mismatch in our understanding of carbonate system chemistry. 242 
 243 

3 2®D
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In total, the LIPHR training data set consists of 51,325 impure-dye measurements (adjusted with244 
 and ); 99,061 calculated pH values (adjusted with ); and 35,383 unadjusted 245 

purified dye measurements (185,769 total measurements).  The test data set contains only the 246 
35,383 purified dye measurements.  These data sets exclude 416 electrode pH measurements and 247 
14,983 impure dye measurements for which no calculated pH value was available.  These totals 248 
also exclude measurements and calculations from cruises that either had GLODAPv2 pH 249 
adjustments estimated to be larger than ±0.015 pH units, that were calculated from cruises with 250 
(applied) total dissolved inorganic carbon (CT) or total seawater titration alkalinity (AT) 251 
GLODAPv2 adjustments greater than ±10 µmol kg˗1, or that were flagged as having poor quality 252 
pH measurements.  When viable pH measurements and calculations were both available for a 253 
sample, only the pH measurements were included.  We also omitted data from 7 cruises 254 
(expocodes: 49K619990523, 49HG19950414, 49HG19940413, 49HG19930807, 255 
49HG19930413, 33RR19971202, 318M19940327) either because they came from series of 256 
cruises with large and variable GLODAPv2 adjustments or because the calculated and measured 257 
pH values did not agree with a ±0.03 or less RMS or ±0.015 average difference.  A full list of 258 
cruises and how they were classified is provided in Supplementary Materials. 259 
  260 
2.3 An ocean acidification adjustment for pH estimates 261 
Johnson et al. (2017) find that recent profiling float sensor pH measurements are significantly 262 
lower than most nearby pH stations in the GLODAPv2 record, and that these disagreements are 263 
largest in the better-ventilated surface ocean.  LIPHR includes an optional adjustment (on by 264 
default) to reflect these expected effects of OA on modern and future seawater pH (adjustment 265 
4).  For this adjustment, the rate of pH change ( ) is approximated from the robust regression: 266 

  267 

   (2) 268 

This is a regression between the reconstruction error ( ) as the dependent 269 

variable and the difference ( ) between the mean decimal years of the training 270 

measurements used to estimate the regression coefficients ( ) and the decimal years of 271 

the test data ( ) as the independent variable.  The term “decimal years” is used to mean the 272 

year (C.E.) with a decimal added to represent the fraction of 365 days elapsed in that year (such 273 
that a measurement on the 200th day of 2020 would be represented by ~2020.55).  This 274 
regression has been performed for the reconstructions of 10 subsets of the GLODAPv2 data 275 
product used separated by every 10th percentile of potential density (σθ) (Figure 4).  If the OA 276 

adjustment is enabled in the LIPHR code, is linearly interpolated to the σθ estimated for the 277 

query data location and the adjusted LIPHR estimate ( ) is supplied as: 278 

   (3) 279 

 280 

1 2®D 2 3®D 2 3®D
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( )TestDat LIPHR OA TestData TrainingDatapH pH D Dg- = -
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TestData TrainingDataD D-

TrainingDataD

TestDataD

OAg
*
LIPHRpH

( )*
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Figure 4. The average annual rate of ocean acidification (OA)-related 
impacts on LIPHR estimate errors ( ) calculated for every 10th 
percentile of potential density (σθ) in the GLODAPv2 data product.  If the 
optional OA adjustment is used (Equation 3), LIPHR uses user-provided 
dates with this relationship to adjust estimates it returns for the effects of 
ocean acidification.  The green envelope indicates 95% confidence 
intervals of the fits.  The blue envelope shows the larger confidence 
intervals obtained if one degree of freedom is assumed for each cruise 
rather than each measurement.  Values in this figure are calculated using 
regression 7 (of the 16 regressions LIPHR can employ, see Table 2).  
Values for the other 15 regressions would be within ~±0.0005 yr˗1 of 
these.  

 281 
The OA pH change rates we find here are consistent with previous estimates (e.g. Feely et al. 282 
2009).  These simplistic OA adjustments may be poor estimates of the impacts of OA on 283 
seawater pH generally because they treat all water of a given density identically despite strong 284 
regional differences in the degree of water mass ventilation and Canth storage.  Nevertheless, we 285 
believe the optional adjustment is useful for LIPHR pH estimates made in the coming decades, 286 
and note that including the adjustment decreases mean estimate bias by 85% and RMSE by 287 
~51%.  Due to the progressive effects of OA, we contend this adjustment will be yet more 288 
important for modern estimates than for our test data set.  Limited experimentation suggested 289 
additional cruises would be needed to adequately constrain regional differences in this 290 

adjustment.  The LIPHR code therefore contains an option for users to input estimates that 291 

OAg

OAg
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are specific to the OA rates found in their study regions, if desired.  The assessment values we 292 
report in section 3 include the OA adjustment. 293 
 294 
2.4 Update to uncertainty estimation 295 
The LIRs generate uncertainty estimates for each property estimate returned.  As with LIARv1, 296 
uncertainty estimates ( ) are quantified as: 297 

  (4) 298 

E terms refer to the RMS uncertainties as assessed in section 3.  represents AT, N, and pH 299 

measurement uncertainties in our data product, and is assumed to be a constant 2.8 µmol kg−1 AT, 300 
0.3 µmol kg−1 N, and 0.005 pH units, respectively (Olsen et al. 2016). Uj are the n input 301 
uncertainties for the predictor properties provided by the user, or default uncertainties if no U 302 
values are provided.  The default uncertainties are now 0.005 for S, 0.005 °C for θ, 1% O2, and 303 
2% of N, P, and Si.  The terms are the n regression coefficients used in the estimate.   304 

represents the component of the overall uncertainty inherent to regression based estimates.  It is 305 
estimated for LIR outputs using estimates of that are specific to each of the 16 equations 306 

and to 10 depth ranges (for N and pH) or 50 ranges of depth and S (for AT).  These ranges 307 
correspond to every 10th percentile of depth and/or salinity in the training data product (with a 308 
single range spanning the 20th through 80th percentile of salinity).  is estimated for the 309 

various ranges using the assessment data with known and solving equation (4) for .  310 

These range-specific estimates are then interpolated by these properties to the depth and/or 311 

salinity inputs for the  calculations.  LINR and LIPHR errors also scale slightly with salinity, 312 

but not as strongly as LIAR errors do because of the smaller impact of freshwater cycling on N 313 
and pH than on AT.  All LIR uncertainties increase near the surface due to a larger impact of 314 
seasonality, episodic biogeochemical cycling, and gas exchange.   315 
 316 
2.5 Minimum uncertainty estimates 317 
One difficulty with LIRs is choosing between up to 16 possible estimates.  We have added 318 
(optional, on by default) functionality to all LIR routines that automatically picks the estimate 319 
with the smallest estimated uncertainty from among all estimates it is possible to generate using 320 
the suite of input predictor data provided by the user.  This feature is intended in part to address a 321 
limitation of the method, being that some LIR equations have too many terms (i.e. are over-fit) 322 
for some of the >2 million combinations of predicted variables, predictor variables, and grid 323 
locations.  Over-fitting leads to larger-magnitude regression coefficients due to “Variance 324 
Inflation.”  Larger magnitude coefficients ( ) propagate through equation 4 to return larger 325 

uncertainty estimates.  Once the increase in  from having more and larger-magnitude 326 

coefficients (i.e. from over-fitting) balances the typically lower values for the equations 327 
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with more terms, this functionality automatically selects the less complex and less over-fit 328 
equation.  This feature therefore selects an equation that minimizes overall error from over-329 
fitting, input uncertainties, and method errors generally.  This option modestly decreases 330 
estimate RMSE by 0 to 11% and, more importantly, makes the function easier to use without 331 
compromising estimate skill.  The estimate improvement becomes more marked with (known) 332 
larger input uncertainties such as those that will be common with sensor measurements.  For 333 
example, the AT estimate RMSE improvement with this feature increased from 3% to 10% after 334 
simulated errors were applied to AOU (these were normally distributed offsets with a mean of 0 335 
and a standard deviation of 5 µmol kg˗1 O2). 336 
 337 
3 Assessment 338 
Estimate bias and RMS errors are calculated in the same way as the error estimates provided by 339 
Carter et al. (2016), except using the subsets of the GLODAPv2 data product and additional 340 
cruises specified as “test data” sets in section 2.2.  These values are presented as “bias 341 
(±RMSE).”  The bias is the mean residual for the assessment and can be positive or negative.  342 
LIR bias estimates are small compared to RMSE at the global level, suggesting the LIR estimates 343 
are appropriately centered on the measured values.  However, bias grows (in an absolute sense) 344 
as the number of measurements averaged decreases, so the bias estimates are presented alongside 345 
RMSE as potentially useful indicators of how correlated LIR errors are for various regions.  Bias 346 
estimates are also useful when comparing assessments from various algorithms.  In particular, 347 
lower biases for LIPHR than for other pH algorithms highlight the importance of the OA 348 
adjustment and the dye-impurity-related adjustments applied to the training data set.  An 349 
important feature of the error estimation method used is that a separate set of regression 350 
coefficients is estimated for each data point in our test data sets, and is estimated without using 351 
any data from the cruise that produced that particular test pH value.  Data from the same cruise is 352 
omitted to avoid under-estimating error by including numerous measurements in the training 353 
dataset found proximally in time and space to the test measurement. 354 
 355 
3.1 LIARv2 356 
  357 
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Figure 5. A 2-dimensional histogram of measured AT (x-axis) against estimated AT (y-axis).  
Darker colors along the thin blue 1:1 line indicate orders of magnitude more measurements fall 
on the line than in the light colored histogram bins off the line. 
 358 

The updates to LIAR decreased the overall reconstruction errors ( ) for all 16 regressions 359 

relative to  by 7% to 26% (average 18%) when both sets of errors are calculated using the 360 

newer test dataset.  The largest improvements are for regressions with the fewest predictors.  We 361 
attribute the majority of the improvements to the increased size, quality, and consistency of the 362 
subset of the GLODAPv2 data product we used relative to the merged data product we used for 363 
LIARv1 (Figure 5). LIARv1 compared favorably to regional AT regressions in literature (many 364 
are compared in Carter et al., 2016) and Table 1 shows LIARv2 does somewhat better still.  365 
CANYON AT estimates reproduce our entire test dataset with errors of -0.2 (±5.4) µmol kg˗1 366 
while LIARv2 (Regression 7) has errors of -0.1 (±5.1) µmol kg˗1.  These errors are slightly 367 
smaller at -0.5 (±5.2) µmol kg˗1 for CANYON and 0.2 (±4.4) µmol kg˗1 for LIARv2 when 368 
limited to the open ocean test regions used by Sauzède et al. (2017).   369 
 370 
Interestingly, regression 3 (S, θ, AOU, and Si) slightly outperforms regression 1 (S, θ, N, AOU, 371 
and Si) on average, and there is little difference between the error estimates for the various 372 
equations for AT.  This suggests that regression 1 and possibly others are over-fitting AT in places 373 

LIARv2E

LIARv1E
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(this observation does not hold true if we include the test data in the training data).  See section 374 
2.5 for how the LIR minimum-uncertainty functionality automatically avoids using over-fit 375 
relationships despite this.  376 
 377 

Table 1. Error estimates expressed as “bias (±RMSE)” for the 
subset of our data product found within the open-ocean salinity 
range of 33 to 38.  is uncertainty inherent to the use of a 

MLR approach, is error arising from uncertainties in the 

input data (i.e. the summed term in equation 4),  is the 
overall estimate uncertainty for LIARv2.  GLODAPv2 data 
product is used as test data for all estimates.  Errors are 
expressed as standard errors in µmol AT kg‒1.   
Reg. # Parameters used    

1 S, θ, N, AOU, Si (±3.6) (±0.8) 0.1 (±5.0) 
2 S, θ, N, Si (±3.7) (±0.7) 0.1 (±5.0) 
3 S, θ, AOU, Si (±3.6) (±0.7) 0.1 (±4.9) 
4 S, θ, Si (±3.7) (±0.6) 0.1 (±5.0) 
5 S, θ, N, AOU (±3.8) (±0.9) 0.0 (±5.1) 
6 S, θ, N (±4.0) (±0.9) 0.1 (±5.3) 
7 S, θ, AOU (±3.8) (±0.7) -0.1 (±5.1) 
8 S, θ (±4.4) (±0.5) 0.2 (±5.5) 
9 S, N, AOU, Si (±3.6) (±0.8) 0.1 (±5.0) 
10 S, N, Si (±3.7) (±0.7) 0.1 (±5.0) 
11 S, AOU, Si (±3.6) (±0.6) 0.1 (±5.0) 
12 S, Si (±3.7) (±0.6) 0.1 (±5.0) 
13 S, N, AOU (±4.6) (±1.2) -0.1 (±5.8) 
14 S, N (±4.4) (±1.0) -0.1 (±5.6) 
15 S, AOU (±4.6) (±0.8) -0.2 (±5.7) 
16 S (±5.1) (±0.4) 0.1 (±6.1) 

 378 
 379 
3.2 LIPHR 380 
LIPHR pH estimates reconstruct the test pH data set well (Table 2, Figure 6).  We separately 381 
estimate error between 1000 and 2000 m as these estimates are more likely to be used to 382 
compare with float data (Table 2).   383 
 384 

MLRE
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Figure 6. A 2-dimensional histogram of measured or calculated pH (x-axis) against OA-
adjusted estimated pH (y-axis).  Darker colors along the thin blue 1:1 line indicate orders of 
magnitude more measurements fall close to the line than in light colored histogram bins off the 
line. 
 385 
LIPHR estimates compare well to the few published pH regression estimates.  Williams et al. 386 
(2016) designed regression estimates for south of 45°S between 2006 and 2017 and between 0 387 
and 2100 m depth.  For the subset of our data product within these bounds and omitting their 388 
S04P and P16S training cruises, their published regressions have errors of ˗0.006 (±0.017) and 389 
˗0.006 (±0.016), while similar LIPHR regressions (6 and 7 respectively) have errors of ˗0.001 390 
(±0.010) and ˗0.001 (±0.011).  Williams et al. (2016) also report a regression for estimates in the 391 
same region but trained specifically for estimates between 1000 and 2100 m depth, the depth 392 
range most useful for assessment of biogeochemical profiling float sensor performance.  For the 393 
relevant subset of our test data product, their algorithm has errors of ˗0.001 (±0.005), while the 394 
LIPHR regression 7 has errors of 0.002 (±0.005).  LIPHR (also regression 7) estimates have 395 
errors of 0.004 (±0.014) in the California Current Ecosystem specific window of 114°N to 396 
124°W, 27°N to 36°N and 15 to 500 m depth after 1994 where the algorithm from Alin et al. 397 
(2012) uses temperature and O2 measurements to generate estimates with errors of ˗0.008 398 
(±0.015).  CANYON pH estimates reproduce our entire test dataset with errors of 0.009 (±0.017) 399 
while LIPHR (Regression 7) has errors of 0.000 (±0.010).  At mid depths (1000 m to 2000 m), 400 
these estimates are 0.013 (±0.017) for CANYON and 0.000 (±0.006) for LIPHR.  The CANYON 401 
error estimates are the same at this precision when the GLODAPv2 adjustments are retained. 402 
 403 
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Table 2. LIPHR error estimates expressed as “bias (±RMSE)” for the subset of our data 

product found within the open-ocean salinity range of 33 to 38. is the uncertainty inherent 

to the use of a MLR approach,  is error arising from uncertainties in the input data (i.e. 

the summed term in Equation 4), and is the overall estimate uncertainty.  is the 
uncertainty estimate for pH measurements between 1000 and 2000 m, or the approximate depth 
range at which biogeochemical floats will require pH estimates for cross-comparison. 
Reg. # Parameters used     

1 z, S, θ, N, AOU, Si (±0.0080) (±0.004) 0.002 (±0.010) 0.001 (±0.008) 
2 z, S, θ, N, Si (±0.0110) (±0.005) 0.002 (±0.013) 0.000 (±0.009) 
3 z, S, θ, AOU, Si (±0.0090) (±0.003) 0.001 (±0.011) 0.001 (±0.007) 
4 z, S, θ, Si (±0.0190) (±0.002) 0.001 (±0.020) -0.003 (±0.014) 
5 z, S, θ, N, AOU (±0.0070) (±0.004) 0.001 (±0.010) 0.001 (±0.006) 
6 z, S, θ, N (±0.0110) (±0.004) 0.002 (±0.013) 0.000 (±0.007) 
7 z, S, θ, AOU (±0.0090) (±0.003) 0.001 (±0.011) 0.001 (±0.006) 
8 z, S, θ (±0.0230) (±0.001) 0.001 (±0.024) -0.003 (±0.013) 
9 z, S, N, AOU, Si (±0.0090) (±0.004) 0.001 (±0.011) 0.001 (±0.007) 
10 z, S, N, Si (±0.0120) (±0.005) 0.002 (±0.014) 0.001 (±0.008) 
11 z, S, AOU, Si (±0.0100) (±0.003) 0.001 (±0.011) 0.001 (±0.006) 
12 z, S, Si (±0.0200) (±0.002) 0.001 (±0.021) -0.003 (±0.014) 
13 z, S, N, AOU (±0.0090) (±0.004) 0.001 (±0.011) 0.001 (±0.007) 
14 z, S, N (±0.0130) (±0.004) 0.002 (±0.015) 0.000 (±0.008) 
15 z, S, AOU (±0.0100) (±0.003) 0.001 (±0.011) 0.001 (±0.006) 
16 z, S (±0.0300) (±0.001) 0.001 (±0.031) -0.003 (±0.015) 
 404 
3.3 LINR 405 
LINR estimates also reproduce the test data product well (Table 3, Figure 7).  Williams et al. 406 
(2016) provide an N estimation algorithm specific to the Pacific sector of the Southern Ocean 407 
south of 45°S between 1000 and 2100 m.  This algorithm has errors of 0.42 (±0.65) µmol kg˗1 for 408 
the portion of our data product in the target region for this regression.  LINR (Regression 7) has 409 
an error of ˗0.11 (±0.45) µmol kg˗1 for this same subset.  CANYON nitrate estimates reproduce 410 
our entire test dataset with errors of -0.01 (±0.89) µmol kg˗1 while LINR (Regression 7) has 411 
errors of ˗0.02 (±0.86) µmol kg˗1.  These errors are slightly smaller at 0.03 (±0.66) µmol kg˗1 for 412 
CANYON and ˗0.02 (±0.65) µmol kg˗1 for LINR when limited to the open ocean test regions 413 
used by Sauzède et al. (2017).   414 
 415 
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Figure 7. A 2 dimensional histogram of measured N (x-axis) against estimated N (y-axis).  
Darker colors along the thin blue 1:1 line indicate orders of magnitude more measurements fall 
on the line than in the light colored histogram bins off the line. 
 416 
 417 

Table 3. LINR error estimates expressed as “bias (±RMSE)” for the subset of our 

data product found within the open-ocean salinity range of 33 to 38. is the 

uncertainty inherent to the use of a MLR approach,  is error arising from 

uncertainties in the input data (i.e. the summed term in Equation 4), and is 

the overall estimate uncertainty.  is the uncertainty estimate for N 
measurements between 1000 and 2000 m, or the approximate depth range at 
which biogeochemical floats will require N estimates for cross-comparison. 
Reg. # Parameters used     

1 S, θ, P, AOU, Si (±0.56) (±0.12) -0.01 (±0.64) 0.00 (±0.45) 
2 S, θ, P, Si (±0.58) (±0.14) 0.00 (±0.67) 0.02 (±0.47) 
3 S, θ, AOU, Si (±0.81) (±0.10) -0.01 (±0.87) 0.00 (±0.84) 
4 S, θ, Si (±1.00) (±0.09) 0.03 (±1.05) 0.03 (±0.89) 

MLRE

InputE
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5 S, θ, P, AOU (±0.56) (±0.13) -0.02 (±0.65) -0.00 (±0.44) 
6 S, θ, P (±0.60) (±0.16) 0.00 (±0.69) 0.01 (±0.48) 
7 S, θ, AOU (±0.80) (±0.11) -0.02 (±0.86) 0.00 (±0.47) 
8 S, θ (±1.23) (±0.07) 0.05 (±1.27) 0.04 (±0.58) 
9 S, P, AOU, Si (±0.58) (±0.13) -0.01 (±0.67) 0.00 (±0.44) 
10 S, P, Si (±0.61) (±0.15) 0.00 (±0.69) 0.02 (±0.47) 
11 S, AOU, Si (±0.87) (±0.10) -0.01 (±0.92) -0.00 (±0.83) 
12 S, Si (±1.06) (±0.10) 0.05 (±1.11) 0.06 (±0.81) 
13 S, P, AOU (±0.62) (±0.14) -0.03 (±0.70) -0.00 (±0.44) 
14 S, P (±0.65) (±0.17) -0.01 (±0.74) 0.01 (±0.49) 
15 S, AOU (±0.96) (±0.11) -0.03 (±1.01) -0.00 (±0.46) 
16 S (±1.68) (±0.07) 0.06 (±1.71) 0.07 (±0.62) 

 418 
3.4 Uncertainty estimation skill 419 
With the changes to the error estimation strategy noted in Section 2.4, the overall standard error 420 
estimates provided by the software are now greater than or equal to the test data set 421 
reconstruction error for 76% of the data product for LIARv2, for 75% for LIPHR, and for 80% 422 
for LINR.  For perfectly-estimated normally-distributed RMS uncertainties, this number would 423 
be 68%.  This was true for 87% of the data product with LIARv1.   424 
 425 
3.5 Example section 426 
 427 
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Figure 8. Measured (a., d., and g.) and estimated (b., e., and h.) AT (a., b., and c.), pH (d., e. and 
f.), and N (g., h., and i.)—and differences between the two (c., f. and i.)—along the I09N section 
in the Indian Ocean.  
 428 
Example LIAR, LIPHR, and LINR estimates are derived from hydrographic measurements from 429 
the 2016 occupations of the I09 section in the Indian Ocean by the Global Ocean Ship Based 430 
Hydrographic Investigations Program (GO-SHIP) program (Figure 8).  These estimates provide 431 
an independent validation when compared to the measurements made along the cruise because 432 
the data from these cruises were not included in either the test or training datasets for the LIRs.  433 
The LIRs do an excellent job of reproducing the measurements with errors of ˗0.6 (±4.2) µmol 434 
kg˗1 for AT, 0.001 (±0.008) for pH, and 0.14 (±0.32) µmol kg˗1 N.  LIPHR errors increase to ˗ 435 
0.014 (±0.017) when the OA adjustment is omitted.   436 
 437 
Future Directions 438 
Climatological distributions of carbonate parameters from LIAR AT and LIPHR pH—or 439 
calculated from this pair of properties—may be of interest and would be simply calculated for 440 
the measurement-dense World Ocean Atlas climatology (Locarnini et al., 2013; Zweng et al., 441 
2013; Baranova, 2015) or similar products.  Such a regression-based climatology—like the AT 442 
climatologies created by Lee et al. (2006) and used by Takahashi et al. (2014)—would be one 443 
step further removed from the measurements than gridded climatologies like those provided by 444 
Lauvset et al. (2016) and Key et al. (2004).  However, it would have the advantage that it could 445 
be based on property measurements (such as O2, S, and temperature) that are more numerous, 446 
more broadly spatially and temporally distributed, and less seasonally biased than the carbonate 447 
measurements. 448 
 449 
With LIAR and LIPHR, it is now possible to estimate two parameters for the carbonate system, 450 
thus—in principle—providing a complete carbonate system description.  While measurements 451 
would be preferable for most applications, this pair of algorithms allows additional context to be 452 
added to historical data products. 453 
 454 
As Velo et al. (2013) pointed out, regressions can be potentially powerful tools for data quality 455 
control.  An algorithm that uses many measured properties to estimate many other measured 456 
properties and then assesses the various residuals may provide a fast method for identifying 457 
apparent outliers and interesting anomalies in property measurement sets.  Such automated 458 
measures designed to assist human-QC efforts may be of increased importance as growing 459 
sensor networks increase the quantity of data being produced relative to the amount of human-460 
effort available for data QC. 461 
 462 
The OA rate estimation strategy used (Equation 2) provides a means to incorporate a large 463 
number of measurements that are disparate in space and time into unified global trend estimates.  464 
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This framework could perhaps be applied to examine the low-signal-to-noise scientific questions 465 
of whether long term trends are occurring in AT (c.f. Carter et al. 2016a), N, or O2 relative to 466 
other measured parameters.   467 
 468 
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