IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 3, NO. 2, JUNE 2017

217

Sensing Matrix Design via Mutual Coherence
Minimization for Electromagnetic Compressive
Imaging Applications

Richard Obermeier and Jose Angel Martinez-Lorenzo

Abstract—Compressive sensing (CS) theory states that sparse
signals can be recovered from a small number of linear mea-
surements y = Ax using £;- norm minimization techniques,
provided that the sensing matrix satisfies a restricted isometry
property (RIP). Unfortunately, the RIP is difficult to verify in
electromagnetic imaging applications, where the sensing matrix
is computed deterministically. Although it provides weaker recon-
struction guarantees than the RIP, the mutual coherence is a more
practical metric for assessing the CS recovery properties of deter-
ministic matrices. In this paper, we describe a method for minimiz-
ing the mutual coherence of sensing matrices in electromagnetic
imaging applications. Numerical results for the design method are
presented for a simple multiple monostatic imaging application,
in which the sensor positions for each measurement serve as the
design variables. These results demonstrate the algorithm’s ability
to both decrease the coherence and to generate sensing matrices
with improved CS recovery capabilities.

Index Terms—Compressive sensing (CS), nonconvex optimiza-
tion, sensing matrix design.

I. INTRODUCTION

N ELECTROMAGNETIC imaging applications, one at-
I tempts to reconstruct the constitutive parameters or reflec-
tivity profile of an object of interest from a set of scattered
electric field measurements. Reconstruction accuracy is largely
dependent upon the fidelity of the measurements, that is, the to-
tal number of measurements and their degree of independence.
When classical imaging algorithms are employed, the recon-
struction accuracy can be improved by increasing the number
of measurements, for example by recording measurements at
more locations or by exciting the object of interest using more
frequencies. If performed naively, however, this approach can
be expensive, both in terms of the hardware complexity of the
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imaging system and in terms of the information efficiency of
each measurement. As more measurements are added to the
system, the amount of additional information obtained by each
new measurement can decrease dramatically.

Compressive Sensing (CS) [1]-[3] is a novel signal process-
ing paradigm, which states that sparse signals can be recovered
from a small number of linear measurements by solving a convex
and computationally tractable /1 — norm minimization problem.
Accurate recovery is only guaranteed when the sensing matrix is
“well-behaved” according to a set of performance measures that
relate the independence of the columns of the sensing matrix.
CS has been applied to electromagnetic imaging applications
with some success [4]-[6]. In the context of electromagnetic
inverse problems, CS theory allows one to produce high resolu-
tions images of the object of interest using undersampled data.
However, CS has largely been applied as a heuristic in these ap-
plications, due to the fact that the Restricted Isometry Property
(RIP), the most powerful performance measure for guaranteeing
recovery using CS techniques, is very difficult to verify for ma-
trices that are deterministically designed. In contrast, the mutual
coherence is a computationally tractable measure that has been
used to assess the CS recovery capabilities of sensing matrices
[71, albeit with weaker reconstruction guarantees than the RIP.
These properties make the coherence a suitable design measure
for assessing the recovery capabilities of an electromagnetic
imaging system. In this paper, we describe an algorithm for
minimizing the mutual coherence of deterministically created
sensing matrices. Although our motivation for this algorithm is
derived from electromagnetic imaging, the method can be ap-
plied to any CS application that utilizes deterministic sensing
matrices.

The remainder of this paper is organized as follows. In
Section II, we discuss the fundamental theory of compressive
sensing, and we describe the motivation for using the mutual
coherence as the sensing matrix design metric for electromag-
netic imaging applications. In this process, we describe how the
mutual coherence relates to the maximum sidelobe level of the
imaging system’s point spread function (PSF). In Section III,
we describe a first-order algorithm that can be used to minimize
the coherence of a sensing matrix. Our method is more general
than existing methods, e.g. [8]-[10], in that it can minimize
the coherence of sensing matrices that are computed through
a nonlinear, but differentiable relationship, as opposed to the
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simple linear relationships that govern dictionary-based repre-
sentations. In Section IV, we present results of the optimization
technique applied to a multiple monostatic imaging system, in
which the design variables are the position of the transmitting
antenna in each measurement. These results demonstrate the al-
gorithm’s ability to reduce the mutual coherence of the sensing
matrix, thereby improving its CS recovery capabilities. Finally,
in Section V we conclude the paper by discussing several other
imaging applications in which the coherence minimization can
be applied.

II. MOTIVATION

Consider a typical electromagnetic imaging problem, in
which one seeks to recover the unknown reflectivity vector
x € CV from a set of y € CY noisy measurements. Ignoring
the mutual coupling between scattering elements in the imaging
region, the relationship between x and y can be approximately
linearized as y = Az + n, where n € CM represents the noise
in the measurements. When M < N, there exist an infinite num-
ber of solutions x satisfying y = Ax, and so regularization tech-
niques must be employed in order to induce a unique solution.
A particularly interesting scenario arises when the vector z is
sparse, that is the number of non-zero elements S in x is much
smaller than the total number of elements V. In this case, CS
theory [1]—-[3] establishes that the sparse vector can be stably
recovered from an incomplete set of measurements by solving
the following convex optimization program:

minimize ||z,
T

subject to [|[Az —yll,, <1 (D)

provided that the sensing matrix A is “well behaved.” Several
methods have been used in the literature in order to measure the
recovery properties of sensing matrices. The Restricted Isom-
etry Property (RIP), arguably the most popular measure, uses
the concept of restricted isometry constants in order to estab-
lish the tightest performance guarantees currently known. For a
fixed sparsity level .S, the restricted isometry constant dg is the
smallest positive constant such that

(1= ds)ll=ll7, < llAz]?, < 1+ ds)llF, 2)

is satisfied for all vectors with ||z ||s, < S, where the “/y — norm”
measures the number of non-zero elements in the vector. In other
words, the restricted isometry constant §g establishes bounds for
the singular values of submatrices obtained by selecting any .S
columns from the complete sensing matrix A. It is important to
note that this formulation assumes that the sensing matrix A has
05— normalized columns.

The RIP has been expressed in many forms over the years.
One of these forms, developed by Candes [11], states that dis-
tance between the optimal solution x* to (1) and the true sparse

vector z; is bounded according to
2" —aille, < Cn 3)

provided that the restricted isometry constant dpg < v/2 — 1.
The positive constant C' in (3) depends only on the value of
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0955 see [11] for details. The RIP establishes a very powerful
result; for the noiseless case where 1 = 0, the RIP guarantees
exact recovery of sparse vectors. In practice, it is very difficult
to compute the restricted isometry constants of a given sensing
matrix A, as one must perform a search over all combinations
of S columns that can be extracted from A. This fact has led
researches to utilize random matrices, where each element is
drawn from an i.i.d. sub-Gaussian distribution, in order to con-
struct sensing matrices that satisfy the RIP with high probability.
Unfortunately, this approach cannot be taken in electromagnetic
imaging applications, where the sensing matrix is constrained
by a number of practical factors, such as the positions of the
transmitting and receiving antennas and the excitation frequen-
cies.

The mutual coherence [12] is a more practical measure for
deterministic matrices, such as those used in electromagnetic
imaging applications. The mutual coherence of a sensing matrix
is defined as follows:

n(A) =

C max jafa;
1=i#i=N laille, llajle,

“4)

where a; is the i—th column of A. The coherence has several
properties that make it an intriguing measure for assessing the
CS recovery capabilities of the deterministic sensing matrices.
First, it can be shown that the coherence is fundamentally re-
lated to the restricted isometry constants by the following two
relations [13]:

02
0g <

w %)
(S—1)u (6)

Therefore, an upper bound on the restricted isometry constants
can be established using the O(N?) computations required to
evaluate the coherence, which represents a significant improve-
ment over the combinatorial complexity of the restricted isom-
etry constants. Second, the theoretical limitations of the coher-
ence are also well established in the literature. It is well known
that the coherence is bounded by [14] :

N-M

oM <t
M(N-1) - "=

(N
The lower bound in particular is useful for “grading” the de-
signed sensing matrices. Third, the coherence is intimately re-
lated to the point spread function (PSF) commonly used to assess
the focusing capabilities of imaging systems. The Gramian ma-
trix A” A can be seen as a focusing operation, in which each
column represents the PSF achieved when focusing at a specific
position. The mutual coherence therefore measures the absolute
value of the largest sidelobe over all focusing positions. Mini-
mizing the mutual coherence ensures that the maximum sidelobe
level in the PSF is minimized. These three properties make the
mutual coherence a desirable and practical metric for designing
sensing matrices in electromagnetic imaging applications.

III. COHERENCE MINIMIZATION ALGORITHM

The coherence minimization algorithm described in this sec-
tion is related to the prior works [8]-[10] and the references
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therein. The method described in [9] uses a specialized formu-
lation for the sensing matrix and utilizes a coherence metric
based upon the ¢5-norm. The method described in [10] requires
the design variables to be the elements of the sensing matrix and
utilizes a coherence metric based on the ¢5-norm. The method
described in [8] minimizes the mutual coherence as it is de-
fined in (4), but requires the sensing matrix to be represented
as a projected dictionary, i.e. A = PD. In contrast, our method
minimizes the mutual coherence of (4) in applications where
the sensing matrix is some nonlinear function of the design
variables, i.e. A = f(p). To this end, the algorithm described
herein is an extension to the prior works and can used in any
CS application, not just electromagnetic imaging applications.
A specific instance of the coherence minimization problem for
electromagnetic imaging is presented in Section V.

Consider the general design problem, in which the sensing
matrix A € CM>*V js related to the p € CL design variables
according to the differentiable and nonlinear relationship A =
f(p). The design algorithm then seeks the minimizer of the
following optimization program:

minimize p(A)
p,A

subjectto A = f(p)
PEQy (3)

where (), defines the set of feasible values that the design vari-
ables p can take. Equation (8) is a nonlinear, non-convex, non-
differentiable optimization program that cannot be easily solved
in its current form. To simplify the problem, we shall make the
following modifications to the optimization program. First, we
consider the Gramian matrix U = A? fl, where A is equiva-
lent to the sensing matrix A but has normalized columns. The
matrix U is Hermitian, and so it can be expressed in terms of
N(N + 1)/2 variables as follows:

U =
U1 1 U1 .2 Uu13 UL N -2 Ul N-1 U1, N
UT,2 U2,2 Uu2,3 U2, N -2 U2 N1 U2, N
uj 3 U§,3 u3z,3 U3 N -2 U3 N-1 U3, N
Ul N9 U5 N 9 UF N 9 - UN-2N-2 UN-2,N-1 UN-2,N
Ul Ny Up g UZN_q --- Un_9 N_1 UN-1,N-1 UN-1,N
uy U;A,N u3 N vafzzv Uy_1 N UNN
)

Only the upper triangular components of U that do not
lie on the main diagonal are required in order to compute
the mutual coherence, so we introduce the vector u = (u 2,
UL 3y UL N U3y s Uy 1) € CVIV=D/2 to compactly
represent these elements. Consequently, we shall use the nota-
tion u; ; to represent the element in the vector u that corresponds
to the value of U at the location (i, 7). In the second modifica-
tion, we expand the definition of f(p) as follows:

f(p) = (fl(p)v fQ(p)’ R fV(p)) (10)

that is, f;(p) computes the i—th column of the sensing matrix
A.

With these two modifications, the coherence minimization
problem can be expressed in terms of p and u as follows:

minimize |||,
DU

[i (p)H i (p)

1<i#4i<N
Tl ol P Si7 s

subject to wu; ; =

peEQ (11)

Note that (8) and (11) are equivalent; no approximations were
made in formulating (11). The Augmented Lagrangian method
[15] can be used in order to represent this constrained opti-
mization problem in an unconstrained form. Using the indica-
tor function, I, (p) = {fcg ;8;) , for the feasible set @), the
Augmented Lagrangian for this problem can be expressed as
follows:

La(p,u, 55 p) = |lulle. + Lo, (p)

(o fi®)" £;(p)
+ > Bz,j(m 17 (p) Ifj(p)||z2>

|€2

1<i#j<N
el E@TEE [
' 1§7;§N 2| 1 (D)le. [1f5 () lle

12)

where p is a positive scaling factor and 8 = (512,013, -,
Bin, P23, BN-1n) € CNV-1)/2 are the Lagrange mul-
tipliers. Often times, it is convenient to express the Augmented
Lagrangian in the following equivalent form [16]:

La(p;u, B;p) = [lulle, + Ig, (p)

4 fi)" f;(p)
+1<757£Zj<N 2 ”fl(p)H(z”fJ(p)”fz

2
+ Bii/p

Uij —

13)

The Augmented Lagrangian method finds a local optimal solu-
tion to (11) by solving a sequence of unconstrained subproblems
of the form of (13), where (3 is held fixed. These subproblems can
be solved using an alternating minimization procedure, which
is described in detail in the Appendix.

When a given instance of (13) is solved, the Lagrange multi-
pliers are updated using the following equation:

BUEFD = g1 4 0 (uw )" 1) )
TG )

where the superscripts indicate the iteration number, i.e. the

Lagrange multiplier 6&’? is used on the k—th instance of (13).
To ensure that the algorithm converges to a stationary point, it
is often necessary to increase p at each iteration. Our design
method utilizes the update approach described in [15]. The co-
herence minimization optimization procedure is summarized in
Algorithm 1.
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Algorithm 1: Summary of the Augmented Lagrangian
update procedure for the coherence minimization problem
of Eq.(11)
1 Choose the initial values for p(©), p(1)

© _ S 5 0) M _q-
2 Set Uy ; = TN, T (e, Pig = 0
3 for k = 1,2,3... do

4 Solve the unconstrained subproblem

(puc), u(k-)) — argmin £ 4 (p, YO8 p(k))

p,u

5 Update the dual variables

B+ = g8 | (0 (u

w _ _ ST L") )
Y @) e 15 (05 ey

6 | Compute p*+1) using the method described in [15]

IV. NUMERICAL RESULTS

In this section, we present numerical results for the coherence
minimization technique applied to an electromagnetic imaging
application. Consider a scenario in which a single transmitting
and receiving antenna is used to excite a region of interest with a
single frequency. The discretized measurement process for this
system can be modeled as follows:

N N
§ —j2k|rm —rnlle, — E
Ym = e J2k| e - Amnxn

n=1 n=1

5)

where y,,, is the measured scattered field, r,,, is the position of the
antenna, r,, is a position in the imaging region, k is the wavenum-
ber, and z,, is the reflectivity at the position in the imaging
region. This linear sensing model can be derived by applying
the Born approximation to a transmitter that radiates uniformly
over the imaging region, i.e. s(k,7,,) = Qe /*lmm =7ulle; When
the signal interaction with the scatterers is linearized, the sig-
nal received by the antenna has an additional phase term
e~ Iklrm =rulley due to the Green’s function of the homogeneous
background medium. Combining these terms and absorbing the
constant scale factors into the reflectivity vector leads to the
sensing matrix formulation of (15).

Keeping the wavenumber fixed, the objective is to select the
antenna positions 7, such that the coherence is minimized.
Assuming that r,, # r,, the sensing matrix relationship A =
flr1,ma,. ..,y ) is differentiable, and so the method described
in Section III and the Appendix can be applied. We consider two
different instances of this problem, one in which the positions of
the antenna are restricted to lie along a circle centered about the
imaging region, and one in which the positions of the antenna
are restricted to lie on a two-dimensional plane parallel to the
imaging region.

A. Circular Configuration

Table I summarizes the design parameters and constraints im-
posed on the circular optimization problem. The antenna was
constrained to operate at M = 60 positions along the circle of
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TABLE I
SUMMARY OF DESIGN PARAMETERS AND CONSTRAINTS FOR THE CIRCULAR
OPTIMIZATION PROBLEM

Design Parameters and Constraints

Parameter Baseline Value Constraint
M 60 -
N 121 —
T 5 A by 5 A grid centered at origin —
T'm Uniformly spaced over circle 7 lley =204
Antenna Positions
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Fig. 1. Antenna positions of the baseline (blue) and optimized (red) designs
in the circular configuration.

radius 20 A relative to the center of the imaging region. The ini-
tial positions were selected by distributing the points uniformly
over the circle. The sensing matrix was computed using (15) at
N = 121 imaging points, uniformly located on a 2D 5 A by 5 A
grid centered at the origin. This corresponds to a grid size of
approximately 0.5 A.

Fig. 1 displays the baseline antenna positions in blue and
the optimized antenna positions in red. The optimized antenna
positions are approximately symmetric about the line y = x
and have clearly been shifted relative to the baseline positions.
Figs. 2 and 3 display the magnitude of the Gramian matrices
G = AM A of the normalized sensing matrices obtained using
(15) with the baseline and optimized antenna positions. Note
that the red ellipses in these figures highlight the regions where
the off-diagonal elements differ significantly between the two
configurations. It is clear from these plots that the maximum off-
diagonal element has been decreased in the optimized design.
Specifically, the optimized design has a mutual coherence of
approximately 0.1943, which is still an improvement over the
0.3232 coherence of the baseline design even though it does
not achieve the minimum coherence of 0.0920 defined by (7).
Given the restrictive nature of the design constraints in this
problem, it is not surprising that the minimum coherence was
not achieved. In problems where the designer has more control
over the individual elements of the sensing matrices, such as the
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Fig. 2. Gramian matrix of the baseline design sensing matrix for the circu-
lar configuration. The mutual coherence, given by the maximum off-diagonal
element, is approximately 0.3232.

Gramian Matrix for Optimized Sensing Matrix
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Fig. 3. Gramian matrix of the optimized design sensing matrix for the circu-
lar configuration. The mutual coherence, given by the maximum off-diagonal
element, is approximately 0.1943.

linear problems addressed in [8], the design method is likely to
achieve solutions closer to the Welch bound.

The improvement in mutual coherence can be more greatly
appreciated by inspecting the point spread functions. Figs. 4 and
5 display the PSF’s of the baseline and optimized designs when
focused at the origin. These plots are equivalent to the center
columns of the Gramian matrices displayed in Figs. 2 and 3. For
improved visibility, the PSF’s are displayed in dB over the range
(—7.5,0). The main lobes of the baseline and optimized designs
are approximately equal in size. However, the two designs differ
significantly in their sidelobe distribution. The baseline design
PSFis largely concentrated near the center, and its sidelobes tend
to decrease below the —7.5 dB threshold near the edges of the
imaging region. The optimized design PSF has more sidelobes
that exceed the lower-limit of —7.5 dB used in the plots, but it
has a smaller maximum amplitude overall. This result is to be

Baseline Point Spread Function
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Fig. 4. Point spread function of the baseline design for the circular configu-
ration focused at (0, 0) in dB.

Optimized Point Spread Function
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Fig. 5. Point spread function of the optimized design for the circular config-
uration focused at (0,0) in dB.

expected, since the coherence minimizes the maximum sidelobe
level.

Figs. 6 and 7 display the PSF’s of the baseline and optimized
designs when focused at the point (—1.9 1, —1.9 ). The base-
line design PSF has a significant number of large amplitude
sidelobes along an arc centered at the focusing point. This phe-
nomenon commonly occurs in systems that utilize uniformly
spaced sensors. In contrast, the optimized design PSF has side-
lobes that are comparable to the PSF obtained when focused at
the origin.

In order to further assess the improved CS recovery capabil-
ities of the optimized design, we compared the reconstruction
accuracies of two different algorithms, Orthogonal Matching
Pursuit (OMP) [17] and Basis Pursuit (BP, equality-constrained
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Baseline Point Spread Function
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Fig. 6. Point spread function of the baseline design for the circular configu-
ration focused at (—1.9 1, —1.9 1) in dB.

Optimized Point Spread Function
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Fig. 7.  Point spread function of the optimized design for the circular config-
uration focused at (—1.91, —1.9 1) in dB.

£1-norm minimization). OMP is a greedy algorithm that has a
lower computational complexity than BP. In practice, BP tends
to outperform OMP in terms of reconstruction accuracy. Nev-
ertheless, OMP has the same reconstruction guarantees as BP
when the mutual coherence is used as the performance metric
[13]. OMP and BP were tested using three different sensing ma-
trices: that of the baseline design, that of the optimized design,
and that of a randomized design where the sensor locations were
randomly distributed over the feasible set. The random sensing
matrix was considered in order to demonstrate that a random
sensing matrix is not guaranteed to have good CS reconstruc-
tion capabilities when its elements are highly correlated to each
other.

For the analysis, the noiseless measurements were generated
directly from the linearized relationship y = Ax in order to
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Fig. 8. Numerical comparison of the reconstruction accuracies of OMP using
the baseline design (blue), optimized design (red), and random design (green)
in the circular configuration.
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Fig. 9. Numerical comparison of the reconstruction accuracies of BP using
the baseline design (blue), optimized design (red), and random design (green)
in the circular configuration.

assess the matrices under ideal conditions. As a result, this anal-
ysis does not consider the effects of either measurement noise or
modeling error (e.g. Born approximation) on the reconstruction
accuracy. Fig. 8 displays the probability of recovering a solution
vector with a normalized error ||z, — 2¢||¢, /||¢]|¢, < 0.001 us-
ing OMP with the baseline sensing matrix (blue), the optimized
sensing matrix (red), and the random sensing matrix (green),
whose coherence of (0.3257 is comparable to that of the base-
line sensing matrix. The probability at each sparsity level was
estimated by generating 1000 vectors at each sparsity level and
computing the fraction of vectors that were recovered within
the tolerance criteria. For low sparsity levels, OMP performed
equally well with all three sensing matrices. However, the op-
timized sensing matrix clearly outperformed both the baseline
and random sensing matrices at higher sparsity levels. Interest-
ingly, the random sensing matrix performed the worst.

Fig. 9 displays the reconstruction probabilities obtained us-
ing BP instead of OMP. The CVX optimization toolbox [18]
was used in order to solve the BP problems. In this case, the
optimized and baseline sensing matrices provided comparable
reconstruction accuracy, and the random sensing matrix per-
formed slightly worse than the other two. Interestingly, OMP
outperformed BP when the baseline and optimized sensing ma-
trices were used, and BP outperformed OMP when the random
sensing matrix was used. Note that the same random number
seed was used to randomly generate the sparse vectors in all four
tests, so that each test operated with the same set of ground-truth
vectors.
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Fig. 10. Magnitude of the true reflectivity (S = 30).
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Fig. 11. Magnitude of the estimated reflectivity recovered by OMP using the
baseline circular antenna configuration. The reconstruction has a normalized
error ||l ze — x¢|¢, /|2t ]le, = 0.375.

The difference in reconstruction accuracy between the base-
line, optimized, and random designs can be further appreciated
through visual inspection of the reconstructed vectors. Fig. 10
displays the magnitude of the true scalar reflectivity vector with
S = 30 non-zero values, and Figs. 11-13 display the recon-
structions obtained by OMP using the baseline, optimized, and
random antenna configurations respectively. While the baseline
and random reconstructions suffer from significant errors in both
the magnitudes of the scalar reflectivity and in the positions of
the scatterers, the optimized design recovers the sparse vector
exactly. This result is to be expected on average, given the spar-
sity level of the true reflectivity and the reconstruction accuracy
results of Fig. 8.

B. Planar Configuration

Table II summarizes the design parameters and constraints
imposed on the planar optimization problem. The antenna was
constrained to operate at M = 64 positions within a 5A by
5 X grid centered at x = y = 0 on the z = 5 A plane. The initial

5 Optimized _
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Fig. 12.  Magnitude of the estimated reflectivity recovered by OMP using the
optimized circular antenna configuration. The reflectivity is recovered exactly.

Random

125

Fig. 13.  Magnitude of the estimated reflectivity recovered by OMP using the
random circular antenna configuration. The reconstruction has a normalized
error ||z, — ¢ ||¢y /[|@¢[le, = 0.678.

TABLE II
SUMMARY OF DESIGN PARAMETERS AND CONSTRAINTS IN THE PLANAR
OPTIMIZATION PROBLEM

Design Parameters and Constraints

Parameter Baseline Value Constraint

M 64 —

N 121 —

Tn 5 X1 by 5 A grid centered at origin —

Tm Uniformly spaced over 5 A by [T | <25 |y, | <2.54

Sigridatz =5 A Zm = DA

positions were selected by distributing the points uniformly over
the rectangular grid, and the sensing matrix was computed at
the same positions as in the circular example.

Fig. 14 displays the baseline antenna positions in blue and
the optimized antenna positions in red. Once again, the opti-
mized design distributes the antenna positions symmetrically.
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Fig. 14.  Antenna positions of the baseline (blue) and optimized (red) designs
in the planar configuration.
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Fig. 15. Gramian matrix of the baseline design sensing matrix for the pla-
nar configuration. The mutual coherence, given by the maximum off-diagonal
element, is approximately 0.8300.

Figs. 15 and 16 display the magnitude of the Gramian matrices
computed from the baseline and optimized sensing matrices. In
this example, the optimized design has a mutual coherence of
approximately 0.2252, which is a significant improvement over
the 0.8300 coherence of the baseline design even though it does
not achieve the minimum coherence of 0.0862.

Like in the previous example, the improvement in mutual
coherence can be appreciated by inspecting the point spread
functions. Figs. 17 and 18 display the PSF’s of the baseline and
optimized designs when focused at the origin, and Figs. 19 and
20 display the PSF’s of the baseline and optimized designs when
focused at the point (—1.9 A, —1.9 A). Once again, the baseline
design suffers from significant sidelobe levels when focused
off-center, while the optimized design provides a more uniform
performance over all focusing positions.

To further assess the reconstruction capabilities of the opti-
mized planar design, we repeated the reconstruction analysis
of the previous subsection using the baseline, optimized, and
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Gramian Matrix for Optimized Sensing Matrix
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Fig. 16. Gramian matrix of the optimized design sensing matrix for the pla-
nar configuration. The mutual coherence, given by the maximum off-diagonal

element, is approximately 0.2252.
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Fig. 17.  Point spread function of the baseline design for the planar configura-
tion focused at (0, 0) in dB.
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Fig. 18.  Point spread function of the optimized design for the planar config-
uration focused at (0, 0) in dB.
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Fig. 19. Point spread function of the baseline design for the planar configura-
tion focused at (—1.9 4, —1.9 A) in dB.
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Fig. 20.  Point spread function of the optimized design for the planar config-
uration focused at (—1.9 1, —1.9 1) in dB.
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Fig.21. Numerical comparison of the reconstruction accuracies of OMP using

the baseline design (blue), optimized design (red), and random design (green)
in the planar configuration.
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Fig. 22.  Numerical comparison of the reconstruction accuracies of BP using

the baseline design (blue), optimized design (red), and random design (green)
in the planar configuration.
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Fig. 23.  Magnitude of the true reflectivity (S = 26).

random sensing matrices for the planar configuration. The ran-
dom sensing matrix for this example had a coherence of 0.33564,
which is much better than that of the baseline sensing matrix
and worse than that of the optimized sensing matrix. Fig. 21
displays the probability of recovering a solution vector with a
normalized error ||z, — 2¢||¢, /||2t|le, < 0.001 using OMP with
the baseline sensing matrix (blue), the optimized sensing matrix
(red), and the random sensing matrix (green). The probability at
each sparsity level was again estimated by generating 1000 vec-
tors at each sparsity level and computing the fraction of vectors
that were recovered within the tolerance criteria. The optimized
sensing matrix for this problem significantly outperformed both
the baseline and random sensing matrices, with the baseline
sensing matrix performing the worst. Fig. 22 displays the re-
construction probabilities obtained using BP instead of OMP.
While the optimized sensing matrix outperformed the baseline
sensing matrix, it performed about the same as the random sens-
ing matrix.

To get an idea of how noise affects the reconstruction accu-
racies, OMP was used to reconstruct the ground truth geometry
displayed in Fig. 23 using measurements corrupted by addi-
tive noise. The elements of the additive noise vector were drawn
fromi.i.d. Gaussian distributions so that the measurement signal
to noise ratio (SNR) was equal to 20 dB. The reconstructions
for the baseline, optimized, and random sensing matrices are
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Fig. 24.  Magnitude of the estimated reflectivity recovered by OMP using the
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displayed in Figs. 24-26 respectively. These figures clearly show
that the optimized configuration generated more accurate recon-
structions than the baseline and random configurations.

V. CONCLUSION

This paper describes a novel technique for deterministically
designing sensing matrices used in electromagnetic imaging
applications. By minimizing the mutual coherence, the design
technique directly enhances the reconstruction capabilities of
the imaging system when compressive sensing techniques are
employed. Although this paper only analyzed a simple multiple
monostatic imaging application, there are several other scenar-
ios where this technique can be employed. Dictionary learn-
ing techniques, similar to those studied in [8], can be applied
to imaging problems. Given a dictionary of possible measure-
ments, the method selects a subset of them such that the mutual
coherence is minimized. The method can also be applied to
energy allocation problems. Given several transmitting antenna
and a single receiving sensor, the method designs the magnitude
and phase of the currents driving each of the transmitting anten-
nas such that the coherence is minimized. The design technique
can also be applied to related imaging applications, such as the
ultrasonic imaging of cargo containers [19]. Finally, the method
can be used to design novel compressive antennas [20], [21],
in which case the constitutive parameters of the scattering ele-
ments added to a baseline reflector antenna are optimized such
that the coherence of the sensing matrix is minimized. The use
of the coherence minimization technique in these applications
and in others will be investigated in our future research.

APPENDIX A
AUGMENTED LAGRANGIAN SUBPROBLEM

In Section III, we described an Augmented Lagrangian
method for minimizing the mutual coherence of a sensing ma-
trix. One of the key steps in this procedure solves the un-
constrained subproblem of (13), which is repeated here for
convenience:

La(pu, B5p) = lJulle, + 1o, (p)

P ()" f;(p)
P @, )

2

+ Bij/p

U,j‘j‘ —

s
(13)

This subproblem can be solved using an alternating minimiza-
tion procedure, in which u is updated while p is held fixed
and vice versa. The alternating minimization procedure is sum-
marized in Algorithm 2. Note that the subscript (m) denotes
the value of the variable at the m-th iteration of the uncon-
strained subproblem, while the superscript (k) denotes the value
of the variable at the k-th iteration of the outer loop defined in
Algorithm 1. Consequently, “Efn)) denotes the value of u at the
m-th inner iteration of the k-th outer iteration, and by conven-
tion, u(¥) = uEf;z)k), where my, is the last iteration of the k-th
subproblem. The u and p update steps displayed in Algorithm 2
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Algorithm 2: Summary of the alternating minimization
procedure for solving the Augmented Lagrangian subprob-
lem of Eq.(13)

1 Given pglg)), ugg)), Bk pk)

2 form =0,12,... do
3 Update » while holding p fixed

%2+n==wg?h1£A(¢2quﬂ“;ﬁ“)

4 Update p while holding u fixed

p&LJ):zu%?hch(pﬂQQ+m7gw5pwg

are described in detail in Appendix VI and Appendix C respec-
tively.

APPENDIX B
u UPDATE STEP

In the u update step, we seek the minimizer of (13) with
respect to u while keeping p, p, and (3 constant. By introduc-

ing the auxiliary variable z; ; IADINIIOINS Bi.j / p, this
subproblem can be reduced to the proximal operator for the

{~-norm, i.e.:

minimize ||ul,, + B||u — 2|3 (16)

u 2 2
This proximal operator can be efficiently solved by introducing
the following simplifications. First, we note that the optimal
solution »* to (16) has the same sign pattern as z, i.e. sign(u*) =
sign(z). To demonstrate this, consider the following scenario.
Suppose that an oracle has told us the ¢,,-norm of the optimal
solution u* to (16), which we denote by ¢. Given the value of ¢,
minimizing (16) requires one to solve several scalar problems
of the form:

minimize B\ui — 2z
Ui 2

subjectto  |u;| <t (17)

Clearly, if |z;| < ¢, then the minimizer of (17) is necessarily
uf = z. If |z;| > t, then one can express u; and z; in polar
coordinates, i.e. u; = te/? and z; = |2;|¢’, and minimize the
quadratic term |te’? — |z;|e/? |2. By expanding this term out

(18)

we see that the solution is minimized if ¢; = 6;, or equivalently,
if sign(u;) = sign(z;). As a result, (16) can be solved using
strictly real and positive variables by making the change of
variables w = |z| and ¢ = |u.

With this change of variables, the problem can be recast as
follows:

tel? — |zi|e?%|* = % + | 2| — 2|2 cos(¢: — 6;)

S p
minimize g, + 5 llg — w7,

5 19)

subjectto ¢ = 0

Algorithm 3: Summary of the procedure used to solve Eq.
(16)

1 Compute z; ; =

£i ()" 15 (p)
17 (P)leg 1£5 (P) ey
2 Compute w = |z ;

3 Sort w in descending order ;

4 Find t* by finding the smallest value of m such that Eq.

27 is satisfied ;

Compute ¢* = max(w, t*);

6 Unsort ¢* so that the elements are arranged in their
original order ;

7 Compute u* = diag (sign(2)) ¢*;

—Bij/ps

wn

where ¢ and w are real vectors. In order to remove the non-
smooth /,.-norm from the objective function, we can convert
the objective into its epigraph form [22] by introducing the
auxiliary variable ¢ and modifying the constraints as follows:

L Py
minimize t+2||q wl|7,

subjectto — t <X g Xt

t>0 (20)

Considering that the elements of w are strictly positive, the con-
straints ¢ > 0 and —t < ¢ can be ignored, and so the simplified
Lagrangian can be written in terms of a single dual variable o

p
Llg,t,a) =t+ Sl —wlf, + > eia =) @D

The Karush Kuhn Tucker (KKT) conditions [23] mandate

that the following conditions are satisfied at the optimal point

* gk *.
gt ot

¢ =w—a"/p (22)

Z af =1 (23)
a(gi—t")=0Vi (24)
ot >0 25)

Itis clear from (22) and (24) that the Lagrange multipliers satisfy
the following relationship:

a; = max(p(w; —t),0) (26)

Therefore, one only needs to find the m non-zero elements of
a where the constraints are active. Assuming that w is sorted in
descending order, we can combine (26) and (23) to reveal the
following condition:

m

tr = —1/P+sz‘ > Wy 41
i=1

27)

One therefore needs only to find the smallest value of p that
satisfies (27) in order to solve (20). In total, the steps for solving
(16) are summarized in Algorithm 3.
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APPENDIX C
p UPDATE

In the p update step, we seek the minimizer of (13) with
respect to p while keeping u, p, and 3 constant. By introducing
the auxiliary variable z; ; = u; ; + [3; ;/p, this subproblem can
be reduced to the following non-convex optimization program:

’ ")
2| fi(p IIfz 1£ ®)lle. ™

(28)
The optimal solution to (28) is difficult to compute, even when
fi(+) takes a simple form. Instead, we consider an approximate
update using the proximal gradient. Technically, the right-most
term is not differentiable with respect to p when f;(p) = 0 or
fj(p) = 0. However, this scenario should not occur in practi-
cal applications. Indeed, if a feasible value p € (), can lead to
fi(p) = 0for some value of 7, then the designer should seriously
reconsider the choice of the design function and the feasible set.
After-all, f;(p) computes the i—th column of the sensing ma-
trix, and a column of all zeros is utterly useless for any sensing
application, even when compressive sensing is not employed.
Proceeding under the assumption that || f; (p)||,, > 0V, the gra-
dient of the quadratic term in (28) can be computed as follows.
First, the chain rule can be applied in order to compute the partial

2

minimize I, (p) + Z
v 1<i#j<N

derivative ai),f 2 — a(z), (”f{( (pﬁ(z ):
%@:8<LU>
o O \|Ifi(P)lle,
i = ofi
M@Wf@ﬁﬁﬁgﬁ el

Second, the chain rule can be applied once again in order to
compute the partial derivative %( fE(p)fi(p)):

0fH( ) ¢

8 ( FH o rPH af j (p )
ffv-pf-p) filp) + £ (p) =5
5 (£ 0 0) )+ 1 ()5
Finally, this result can be used in order to compute the [-th
element of the gradient, which we denote by the vector g:

a= ¥ o(a (i wiw))

1<i#j<N

( L) i) )
I1fi@)le 15 @ le, ™

Given the gradient g, the proximal gradient method updates p
by solving the following optimization program:

(30)

3D

(z —ag) |7, (32)

S 1
minimize I, (p) + 50, Ilp

where the step size « is computed using an inexact line search
method. Our implementation of the design method uses the
inexact proximal gradient line search method described in [24].
This line search method ensures that the objective function of
(13) decreases on each iteration.

Equation (32) is simply the proximal operator for the feasible
set (), which will differ from problem to problem. For the
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design problem presented in Section IV-A, the proximal operator
simply projects the updated sensor location onto the circle of
radius 20 A, i.e.:

ag) |17,

minimize —||1r — (2 —
r 2

subject to ||7||,, =201 (33)

This problem has the following convenient closed-form solu-
tion:
. 20A(z—ag)
I (z = ag) e,
For the design problem presented in Section IV-B, the proximal
operator simply projects the = and y co-ordinates onto the 5\
by 5 A box centered at the origin and enforces z = 5 A. Setting
hy = (—2.5,—2.5,5)" rand h, = (2.5,2.5,5)" A, this proxi-
mal operator can be expressed as follows:

(34)

minif‘nize i”r —(z — ag) ||§2

subjectto h;y <X r <X h, (35)
This problem has the following closed-form solution:

r* = max (min (z — ag, hy ), hy) (36)

where max and min operate on the individual vector compo-
nents.

APPENDIX D
COMPLETE SUMMARY OF THE DESIGN ALGORITHM

A complete summary of the design algorithm is displayed in
Algorithm 4.

Algorithm 4: Complete summary of the Augmented La-
grangian update procedure for the coherence minimization
problem of Eq.(11)

1 Choose the initial values for p(®), p(!) ;
(0 ) L) () 1 _nq.
Set ; § = TrGonT, 1, el Pig =0
for k = 1,2,3... do
k - k _
Set ugo)) = u(k b, pgo)) :p(’C b
for m = 0,1,2,... do
Update » while holding p fixed

S A W [S]

()

U1y = arginin L4 (p( ) u u, B (k))

7 Update p while holding u fixed

(k)

p(m+1) = arg;nin £A (p: (m+1)76(k)a P(k))

8 Update the dual variables
Fi" )™ £ (™) )

ﬁgkﬂ) _ ﬁlgkv) +p® (ugk) B
N . T i) lea 15 (05 e

9 Compute p*+1) using the method described in [15]
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