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Norm-1 Regularized Consensus-Based ADMM for
Imaging With a Compressive Antenna
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Abstract—This letter presents a novel norm-1-regularized,
consensus-based imaging algorithm, based on the alternating di-
rection method of multipliers (ADMM). This algorithm is capable
of imaging metallic targets by using a limited amount of data.
The distributed capabilities of the algorithm enable a fast imaging
convergence. Recently, a compressive reflector antenna (CRA) has
been proposed as a way to provide high sensing capacity with a
minimum cost and complexity in the hardware architecture. The
ADMM algorithm applied to the imaging capabilities of the CRA
outperforms current state-of-the-art iterative reconstruction algo-
rithms, such as Nesterov-based methods, in terms of computational
cost, enabling the use of the CRA in quasi-real-time, compressive
sensing imaging applications.

Index Terms—Consensus alternating direction method of multi-
pliers (ADMM), compressive antenna, norm-1 regularization, real-
time imaging.

I. INTRODUCTION

R EDUCING the cost of electromagnetic sensing and imag-
ing systems is a necessity before they can be ubiquitously

deployed as a part or a large-scale network of sensors. Recently,
a single transceiver compressive reflector antenna (CRA) was
proposed as a vehicle to enhance the sensing capacity of an
active imaging system, which is equivalent to maximizing the
information transfer efficiency from the imaging domain and
radar system [1], [2]. As a result, the cost and hardware archi-
tecture of the imaging system can be drastically reduced [1].
This unique feature of CRAs has triggered its use in a wide
variety of applications, which include the following:

1) active imaging of metallic target at millimeter (mm)-wave
frequencies [1], [3];

2) passive imaging of the physical temperature of the earth
at mm-wave frequencies [4];

3) active imaging of red blood cells at optical frequencies
[5].
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Fig. 1. Two-dimensional cross section of a TRA (x > 0), and CRA (x < 0),
where all the design parameters are described.

CRAs rely on the use of norm-1-regularized iterative com-
pressive sensing (CS) imaging techniques, such as Bayesian CS
[6], by enforcing a probabilistic hierarchical prior as a sparsity
regularization constraint; FISTA [7], an extension of the classi-
cal gradient algorithm; NESTA [8], a robust first-order method
that solves basis-pursuit problems; and others [9], but they are
slow and computationally very expensive. This can compro-
mise CS use in quasi-real-time imaging applications. In order
to overcome these imaging barriers, this letter proposes a new
fully parallelizable, consensus-based imaging algorithm, based
on the alternating direction method of multipliers (ADMM)
formulation.

II. COMPRESSIVE REFLECTOR ANTENNA

A. General Description

The concept of operation of the CRA for sensing and imaging
applications relies on two basic principles: 1) multidimensional
codification, generated by the design of a customized reflec-
tor; and 2) compressed sensing, performed on under-sampled
measured data.

The CRA is fabricated as described in [1]. Fig. 1 shows a
cross section of a reflector, comparing between a traditional re-
flector antenna (TRA) (x > 0) and a CRA, (x < 0), by introduc-
ing discrete scatterers, Ωi , on the surface of the reflector. Each
scatterer Ωi is characterized by the electromagnetic parameters:
conductivity, permeability, and permittivity, {σi, μi, εi}, and the
scatterer size {Dx

i , Dy
i , Dz

i } in {x̂, ŷ, ẑ}. CRA and TRA share
many geometrical parameters: D, aperture size; f , focal length;
and ho , offset height. These scatterers generate a spatially coded
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Fig. 2. Geometry of the CRA with the feed horns at the focal plane.

pattern in the near and far fields of the antenna after reflecting
the incident field produced by the feeding element. When this
coded pattern is changed as a function of time, CS techniques
can be used to generate a three-dimensional (3-D) image of an
object under test.

B. Computation of Sensing Matrix

Following the example carried out in this letter, the configu-
ration defined in Fig. 2 is selected to generate the coded pattern
with NTx transmitter and NRx receiver horns, arranged in a
cross-shaped configuration around the focal point. Each receiver
collects the signal from each transmitter for Nf different fre-
quencies, for a total of Nm = NTx · NRx · Nf measurements.
The image reconstruction domain is performed in Np pixels, on
a region of interest (ROI) located zT

0 meters away from the focal
point of the CRA. Under this configuration, the sensing matrix
H ∈ CNm ×Np , computed as described in [10], establishes a
linear relationship between the unknown complex vector of re-
flectivity in each pixel u ∈ CNp , and the measured complex
field data g ∈ CNm . This relationship can be expressed in a
matrix form as follows:

g = Hu + w (1)

where w ∈ CNm represents the noise collected by each receiver
antenna, when transmitting with a given transmitter antenna and
for a given frequency.

III. ADMM FORMULATION

Equation (1) may be solved by minimizing the convex func-
tion f(u) = ‖Hu − g‖2

2 together with the norm-1 regularized
g(u) = λ ‖u‖1 , in order to obtain a sparse solution. Since we
are applying CS, the matrix H must satisfy the restricted isom-
etry property [2], [11] and a suitable sampling criteria. The
minimization of the conjunction of f(u) + g(u) can be solved
via a novel method for optimizing convex functions called the
ADMM, [12], [13]. The general representation of an optimiza-
tion problem through the ADMM takes the following form:

minimize f(u) + g(v)
s.t. Pu + Qv = c

(2)

where f and g are convex, closed, and proper functions over the
unknown vectors u ∈ Cn and v ∈ Cm . The known matrices
P ∈ Cp×n and Q ∈ Cp×m , and vector c ∈ Cp , are the ones
that define the constraint. In order to be able to optimize over f

Fig. 3. Division of the system by rows.

and g separately, the methodology of the ADMM introduces the
new variable v, so that both variables u and v can be updated
in an alternating direction fashion. Due to the incorporation of
that variable, a constraint needs to be added. Thus, the ADMM
problem for solving (1) takes the lasso form, and is formulated
as follows:

minimize 1
2 ‖Hu − g‖2

2 + λ ‖v‖1

s.t. u − v = 0
(3)

where P = I, Q = −I, and c = 0 enforce that the variables u
and v are equal. This problem can be solved in a distributed
fashion, by splitting the original matrix H and the vector g into
N submatrices Hi (by rows) and N subvectors gi , respectively,
as shown in Fig. 3. Additionally, it is possible to define N
different variables ui , so that (3) turns into

minimize 1
2

N∑
i=1

‖Hiui − gi‖2
2 + λ ‖v‖1

s.t. ui = v, ∀i = 1, ..., N.
(4)

Equation (4) is solved as N different problems. The variable v
works as a consensus variable, imposing the agreement between
all the variables ui . See, for example, [14]–[17]. The augmented
Lagrangian function for this problem is of the following form:

Lρ (ui ,v, si) =
1
2

N∑
i=1

‖Hiui − gi‖2
2 + λ ‖v‖1

+
ρ

2

N∑
i=1

‖ui − v + si‖2
2 −

ρ

2

N∑
i=1

‖si‖2
2 (5)

where si is the dual variable for each constraint i, and ρ is
the augmented parameter that enforces the convexity of the
function. This problem can be solved by the following iterative
scheme:

uk+1
i = (H∗

i Hi + ρI)−1 (
H∗

i gi + ρ
(
vk − sk

i

))
(6)

vk+1 = S λ
ρ N

(
ūk+1 + s̄k

)
(7)

sk+1
i = sk

i + uk+1
i − vk+1 (8)

where Sκ (a) is the soft thresholding operator [18] interpreted
element wise, defined as follows:

Sκ(a) =

{
a − κ sign(a), |a| > κ

0, |a| ≤ κ.
(9)

ū and s̄ are the mean of ui and si , respectively, for all i. As
it can be noticed in (7), the variable v imposes the consen-
sus, by using all the independent solutions ui and si . The term
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TABLE I
PARAMETERS FOR THE NUMERICAL EXAMPLE

PARAM. CONFIG. PARAM. CONFIG.

λc 4.08 · 10−3 m Np 30000
D 61 λc ho 0 λc

〈Dx 〉 = 〈Dy 〉 10 λc zT
0 195 λc

Dz
i U (∓0.88 λc ) ΔxT

0 54 λc

f 122 λc ΔyT
0 54 λc

NTx 6 ΔzT
0 7.5 λc

NRx 6 lx 1.08 λc

Nf 12 ly 1.08 λc

Nm 432 lz 1.25 λc

(H∗
i Hi + ρI)−1 requires the inversion of an Np × Np matrix,

which is computationally expensive. However, the matrix inver-
sion lemma [19] can be applied in order to perform N inversions
of matrices of reduced size Nm

N × Nm

N , as follows

(
H∗

i Hi + ρINp

)−1 =
INp

ρ
− H∗

i

ρ2

(
I N m

N
+

HiH∗
i

ρ

)−1

Hi

(10)
where INp

and I N m
N

indicate the identity matrices of sizes Np

and Nm

N , respectively.

IV. NUMERICAL RESULTS

The performance of the CRA is evaluated via a mm-wave
imaging application. The parameters used for the numerical sim-
ulation are shown in Table I. The total number of measurements
used for the reconstruction is given by NTx · NRx · Nf = 432.
The center frequency of the system is 73.5 GHz, with a band-
width of 7 GHz. In this example, each scatterer Ωi is considered
as a perfect electric conductor (PEC), so σi = σPEC. The CRA is
discretized into triangular patches, as described in [10]. These
triangles are characterized by an averaged size of 〈Dx〉 and
〈Dy 〉 in x̂ and ŷ dimensions, respectively. The scatterer size Dz

i
of each triangle in ẑ is modeled as a uniform random variable.
The parameter λc is the wavelength at the center frequency. The
imaging ROI is located zT

0 away from the focal point of the
CRA; and it encloses a volume determined by the following
dimensions: ΔxT

0 , ΔyT
0 , and ΔzT

0 in x̂, ŷ, and ẑ dimensions.
The ROI is discretized into parallelepipeds of side length lx , ly ,
and lz in x̂, ŷ, and ẑ dimensions, respectively.

With the paremeters shown in Table I, the sensing matrix H
has a size of 432 × 30 000. The proposed method divides H
into N = 24 submatrices of size 18 × 30 000, which are used
for each optimization of ui . As a result of applying the matrix
inversion lemma, only 24 matrices of dimension 18 × 18 need
to be inverted instead of one large 30 000 × 30 000 matrix. The
inversion of these 24 matrices is performed just once and used
afterward in each iteration, as indicated in (6). The proposed
ADMM algorithm highly accelerates the optimization process.
Fig. 4 shows the imaging results using: 1) a traditional pseu-
doinverse approach, where many artifacts appear; 2) constrained
NESTA algorithm [8] (tol var = 10−5 , μ = 0.1, δ = 0.7); and
3) ADMM, with a norm-1 weight of λ = 10 and an augmented
parameter ρ = 0.01, for a structure of four differently shaped
targets located among six possible parallel planes. The regu-
larized ADMM solution clearly outperforms the pseudoinverse

Fig. 4. Imaging reconstruction (top, front, and side views) using (a) pseu-
doinverse, (b) NESTA, and (c) ADMM. The targets are represented with the
transparent black triangles and the reconstructed reflectivity is presented in the
colored map.
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Fig. 5. Imaging reconstruction (top, front, and side views) using ADMM for
50 itearation. The targets are represented with the transparent black triangles,
and the reconstructed reflectivity is presented in the colored map.

TABLE II
SIMULATION TIME FOR DIFFERENT ITERATIVE METHODS

Iterative method Iterations Time [s]

NESTA using CPU 1000 245.7
ADMM using CPU 300 120.8
ADMM using GPU (double precision) 300 5.7
ADMM using GPU (single precision) 300 4.2
ADMM using GPU (single precision) 50 1.0

solution in terms of image quality. Additionally, the ADMM al-
gorithm solved the problem in 121 s for 300 iterations, using a
single-threaded M code running on a hexa-core CPU @3.5GHz.
In order to show the same image quality, NESTA solves the
problem in 246 s for 1000 iterations. (Notice that the number of
iterations is independent for each algorithm and cannot be com-
pared.) Since consensus-based ADMM algorithm is efficiently
parallelizable, it can solve the problem in just 4.2 s running a
MATLAB PCT M code using a GTX 1080 GPU (single pre-
cision computation), accelerating the computational time more
than 96%. Even more, a good image reconstruction can be ob-
tained in just 1 s (50 iteration) with the GPU parallelized ADMM
code, as it can be seen in Fig. 5. This speed improvement shows
the efficacy of the proposed approach, making real-time imaging
possible. Table II shows the time measurements comparison for
different methods of performing the norm-1 regularized ADMM
solution, compared to NESTA.

V. CONCLUSION

This letter has presented the mathematical principles of a
newly distributed, consensus-based, imaging algorithm using
the norm-1-regularized ADMM for a CRA. The methodology

explanation, the graphical comparison to other techniques, and
the convergence process have been explained in this letter. In ad-
dition to the simplicity of the proposed algorithm, it outperforms
traditional pseudoinverse imaging algorithms in terms of image
quality, and current state-of-the-art iterative algorithms (i.e.,
NESTA) in terms of computational cost. The distributive capa-
bilities of the ADMM for fast imaging, combined with the high
sensing capacity of the recently proposed CRA, allow the imag-
ing of metallic targets in a 3-D domain in quasi-real time, with
a reduced hardware and a reduced number of measurements.
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