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Abstract—This paper describes a new coded interferometric
system for sensing the physical temperature radiated from the
Earth’s surface. The proposed system consists of a Compressive
Reflector Antenna (CRA) coated with Metamaterial Absorbers
(MMA). The CRA and the MMA are used to code the received
electromagnetic field in space and in frequency, at the focal plane
array. The MMA is modeled by an equivalent magneto-dielectric
medium having a definite thickness. A high frequency method
based on Physical Optics is used to build the sensing matrix of
the system, and the inverse problem is solved using a Nesterov-
based Compressive Sensing methodology. Numerical examples
are carried out in order to reconstruct the physical temperature
of the Earth’s surface. The performance of the proposed system
is compared to that of the conventional interferometric system
GeoSTAR. Preliminary results show that the metamaterial-based
CRA provides comparable performance to the GeoSTAR config-
uration with only half of the feeding elements, while keeping the
same physical aperture size for the two configurations.

Index Terms—compressive reflector antenna, phased array,
metamaterial absorber, radio interferometry, imaging.

I. INTRODUCTION

ADIO interferometry has been widely used for sounding

the Earth’s atmosphere [1]-[4]. The GeoSTAR system
is one of the most successful interferometers [2], [5], and its
operation is based on performing complex cross-correlations
between the measured field by each pair of receivers in
a Y-shaped array. These complex cross-correlated signals,
which are characterized by the spatial coherence function of
the electromagnetic (EM) field, are used to reconstruct the
physical temperature of the Earth’s atmosphere. The main
drawbacks with these conventional interferometer systems are
their physical dimension, overall weight, and the large number
of receiving modules and correlators.

The aforementioned drawbacks in current sensing and imag-
ing systems may be overcome by the use of metamaterial
absorbers (MMASs) [6]-[11], which were originally introduced
by Landy et al. [8]. Specifically, by using an array of MMAs,
in which each element of the array presents a near-unity
absorption at a specified frequency, one can produce codes
that are changed with the instantaneous frequency of the
radar chirp, as presented in [12]. As a result, the number
of transmitters and receivers required to provide a suitable
imaging performance is drastically reduced. Recently, the
same outcome was achieved by using a Compressive Reflector
Antenna (CRA), which has the ability to provide spatial coding
in the focal plane array region [13]-[18].

In this work, the performance of a CRA is further improved
by coating its surface with multiple MMAs, so that both
spectral and spatial codes can be simultaneously produced,
as shown in Fig. 1. As a result, the sensing capacity of
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Fig. 1: 2D cross-section of an offset metamaterial-based CRA.

the system is enhanced [17]; this results in a reduction in
the number of receiving modules, while keeping the imag-
ing performance similar to that provided by the GeoSTAR
interferometric system. The performance of the doubly-curved
pseudo-randomly distorted CRA-MMA system requires an
accurate characterization of the bulk behavior of the MMAs,
which involves modeling the scattering phenomenon at several
spatial scales (spanning five orders of magnitude) for arbitrary
oblique incident excitations. For this purpose, a semi-analytical
model, based on a multi-layer Drude-Lorentz model [7], is also
presented in this work. This model is capable of characterizing
the electric and magnetic response of the electric-field-coupled
absorber (ELCA) metamaterials, which is later used to charac-
terize the reflection coefficient of the multi-layer MMA. These
coefficients are coupled into a high frequency method, the
Modified Equivalent Current Approximation (MECA) [19], in
order to assess the performance of the imaging system.

The presented CRA relies on the use of norm-1 regularized
iterative Compressive Sensing (CS) imaging techniques, and
a few relevant ones are discussed next. (a) Bayesian CS [20]-
[24] enforces a probabilistic hierarchical prior as a sparsity
regularization constraint. It has been shown in [24] that by
employing the formerly studied relevance vector machine from
the sparse Bayesian learning literature, problems in CS can be
solved more effectively and faster compared to the state-of-the-
art algorithms. (b) FISTA [25] is an extension of the classical
gradient algorithm. It preserves the computational simplicity
of ISTA, but it possesses a global rate of convergence that is
significantly faster than the latter. (c) ADMM, [26], [27] is a



consensus-based imaging algorithm. It is a simple but effective
algorithm that is appropriate to solve in a distributed fashion
large convex optimization problems. (d) NESTA [28] is a
robust first-order method that solves basis-pursuit problems.
The techniques used in the NESTA algorithm —provided as a
MATLAB toolbox [29]— are based on the solution proposed
by Nesterov [30] to smooth non-convex problems, combined
with an improved first-order method [31] that was proven to
have an enhanced convergence rate. In this paper, the NESTA
toolbox [29] is adopted for solving the inverse problem, as it
is suitable for solving large scale CS problems due to its fast
convergence rate; however, other CS solvers could have been
used as well.

The rest of the paper is organized as follows: Section II
introduces the semi-analytical model used for characterizing
the oblique incidence reflection coefficient of the ELCA. Sec-
tion III describes the structure of the CRA, the mathematical
analysis of the cross-correlation radiometry, the computation
of the sensing matrix for imaging, and the use of CS tech-
niques for performing the imaging. Section IV presents the
following results: 1) optimization of the semi-analytical model
of the ELCA; and 2) imaging using the proposed CRA-MMA.
Section V provides a final summary and conclusions.

II. SEMI-ANALYTICAL MODEL FOR CHARACTERIZING THE
ELCA OBLIQUE INCIDENCE REFLECTION COEFFICIENT

A semi-analytical model is presented to characterize the
EM response of the ELCA metamaterials. The semi-analytical
model is derived in three steps: 1) the reflection coefficient
for the multi-layered magneto-dielectric media, characterized
by using the Drude-Lorentz parameters of each medium, is
analytically derived; 2) simulations based on HFSS Finite
Elements Method (FEM) are used to compute the reflection
coefficient of the ELCA; and 3) the Drude-Lorentz parameters
of a three-layered media are optimized in order to find the bulk
parameters that best fit the FEM-simulated ELCA. The semi-
analytical model is capable of accounting for the characteristic
resonances of the ELCA metamaterial; and it is valid for
both TE and TM polarizations and for a wide range of
incident field angles. For the sake of generality, the next two
subsections derive the parameters used for modeling the wave-
propagation in a two-layers and a three-layers lossy isotropic
media; these parameters will be optimized afterwards in order
to characterize the scattering of the proposed CRA-MMA
imaging system.

A. Generalized Wave-Propagation Law for
Isotropic Media

two Lossy

A wave propagating in a lossy and isotropic medium is
characterized by the complex wave vector k = 3 — ja,
where B and « are real-valued propagation and attenuation
vectors, respectively [32]. In the general case, this wave is
obliquely incident into another lossy and isotropic medium,
as shown in Fig. 2(a). The propagation and attenuation
vectors in each medium point in different directions. Each
medium is characterized by their complex permittivity and
permeability [e;, i4i, Oci, Omi|, Where &; is the real part of
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Fig. 2: (a) Phase and attenuation wave vector for a plane wave
obliquely incident on a half-space inhomogeneous medium.
Second medium could be DNG (red line) or DPS (black line).
(b) Schematic of the generalized three-layer stratified model.

permittivity, p; is the real part of permeability, o.; is the
electric conductivity, and o,,; is the magnetic conductivity
for the ¢ — th medium. According to the phase-matching
condition, the tangential components — u components in Fig.
2(b)— of the second medium’s wave vector must be equal to
the tangential components of the incident field wave vector.
As a result, the transverse components of the wave-vector
in the second medium can be computed using the following
dispersion relationship:
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in which: k* = B¢ — ja?, k" = 8" — ja” and kt = 3t —
jat are the incident, reflected and transmitted wave vectors,
respectively. Equations (1a) and (1b) can be rewritten in terms
of the real and imaginary parts of the reflected and transmitted
wave vectors as follows:

‘,Bt|2— ‘ozt|2 = W2 ligEy — TeyOmm, (2a)
\,87’\2 — \C\c"|2 = WliE] — 00, Om, (2b)
2at - B = w(egom, + H20e,) (2¢)
2a” - B" = w(e10m, + p10e,) (2d)

The transverse components (3%, 37, af, and a”)) of 3 and



a can now be computed in terms of 3¢, and o, as follows:
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The signs for §!, and B!, in equations (3a) and (3b) are
selected by the material behavior, whether double positive
(DPS) or double negative (DNG), according to Table 1. The

correct directions for the wave vectors are shown in Fig. 2(a).

TABLE I: Signs for the propagation and attenuation numbers
in DPS and DNG media.

MEDIUM \COMPONENT | 3% | A5, | of, | ol
DPS + [ - [+ [ -
DNG - [+ [+ [ -

B. Reflection from a Three-Layer Magneto-dielectric Medium

The MMA array can be characterized by solving a three-
layer magneto-dielectric medium problem, where an incident
field is obliquely impinging on a magneto-dielectric medium,
of thickness d, which is backed by a metallic layer. The
magneto-dielectric and metallic layers may be characterized
by the Drude-Lorentz model [7]:
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in which, ej,¢ and pi,r are the static permittivity and per-
meability at infinite frequency, wp. and wy ,, are plasma
frequencies, wy, and wy, ,, are resonant frequencies, and -,
and ~,, are damping frequencies.

A derivation of the total reflection coefficient I' from a
stratified three-layer medium, for any oblique incidence, is
presented in Appendix A; and the simplified equation for I' is
derived to be as follows:
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In equation (6), I';; and Tj;; are, respectively, the reflection
and transmission coefficients associated with the interface be-
tween medium 4 and medium 5. The term e~/ @7 accounts
for the phase delay and amplitude attenuation associated with
the wave traveling from the first interface into the second one,
or vice versa.

III. METAMATERIAL-BASED COMPRESSIVE REFLECTOR
ANTENNA FOR INTERFEROMETRIC RADIOMETRY

A. Compressive Reflector Antenna structure

High-capacity imaging systems using a CRA are character-
ized by their ability to create spatial coding of the electromag-
netic field in the imaging domain [13]-[16]. A CRA can be
obtained by placing random Perfect Electric Conductor (PEC)
scatterers on the surface of a conventional parabolic reflector.
Such a CRA produces pseudo-random spatial patterns in both
its focal plane and far-field regions. Moreover, the frequency-
dependent response of MMAs enables the CRA to create
spatially-dependent spectral codes. As a result, each element
in the array used in conjunction with the CRA will possess
a unique near- and far- field pattern acting as a spectral
and spatial code. This coding mechanism is similar to that
described in [33]. Figure 1 shows the 2D cross-section of the
proposed CRA-MMA.

B. Mathematical development for cross-correlation interfero-
metric radiometry

The relationship between the data collected and the bright-
ness temperature distribution of the Earth’s surface is obtained
as follows: for each frequency, the field measured by one re-
ceiver is cross-correlated with those of the remaining receivers,
as shown in Fig. 3 [34]. The auto- and cross- correlation are
described, respectively, by the following equations:

EL,(f) - EY%(f) = AkpBnGo(Tam + Trecm)  (T2)

Efn(f) : Eg(f) = Akp\/ BmBnvy GmGnVrﬁLn(uinn7 v'inn)
(7b)

in which EL(f), for i € {m,n}, is the analytical signal
collected by the channel ¢ at the center frequency f;; the
symbol * denotes the complex conjugate; kg is the Boltzmann
constant; T4, is the antenna’s temperature; B; is the equivalent
noise bandwidth; G; is the power gain of the channel; and A
is a constant. The visibility function, which can be expressed
as

1 *
V'rlrm(u'lmn? Uﬁnn) = kpy/BnB \/WE?HL(JC) ! E?n (f)7
l l

®)
is defined in the spatial frequency domain (u;,,,,v

mn> mn) =
(xn — Tm,Yn —

Ym)/ N, Where \; = ¢/ f;, with ¢ being the



speed of light in free space. From the Van-Cittert Zernicke
theorem [35], the visibility function is related to the brightness
temperature distribution as follows:
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Fig. 3: Interferometric radiometry scheme. The EM field
measured by each pair of receivers is cross-correlated. The
scheme represents all the parameters involved in the process.

\/% is the obliquity factor, F;(&,n) is the normalized

antenna pattern, (£,n) = (sinfcose, sinfsing) are the direc-
tional cosines, T5(€,7) is the brightness temperature of the
scene, Trec is the physical temperature of the receiver (the

so-called Corbella’s term [36]), and fﬁnn(—W) is the

so-called fringe-washing function that can be expressed as

. A
. e—i2mfot fi+ 5
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where H;(f) is the frequency response and Af is the band-
width of channel f;.

Equation (9) can be simplified under certain conditions,
[34]. For a narrow bandwidth and reduced dimensions of
the array, the fringe-washing function becomes 7 ~ 1.
Furthermore, assuming that the patterns of the horn antennas
are identical, that is F},, = F),, and neglecting the temperature
of the receiver, the visibility function and the brightness
temperature are now related as follows:

Vi, = / / T(€, n)e 2ot dedy (1)
2+n?<1

Ho(f)H(f)e*™tdf,  (10)

where
TB (57 77)

i-e-r
is the modified brightness temperature for each direc-
tion (£,7). Under these conditions, the mentioned modi-
fied brightness temperature can be recovered by the inverse
2D Fourier transform of the visibility function, T'(§,n) =
F = Vi (s U ))-

In the case of the CRA, some of the previous simplifications
are not valid. Specifically, the phase front produced on the
receiving array by a source whose radiation is coming from

\Fn(f,??)|2

(&) = 12)

a given direction (&g, 79) is not planar anymore. This is due
to the spectral and spatial coding produced by the CRA when
an incoming wave is reflected towards the receiving array—see
Fig. 1. This coding also makes the far-field patterns produced
by each horn antenna, after interacting with the CRA, to be
different from one another, that is F,, # F,. Taking this
into consideration, the modified brightness temperature from
equation (9) is now given by

— M n [
T(&n) = 1_§2_n2Fn(£,n)Fm(£,n), (13)
where
Fi(&n) = max {Fi(&n, f)} (14)

fE[fl—%nyf-F%]

as shown in Fig. 4. Ny is the total number of frequencies.
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Fig. 4: Frequency modulation of the antenna pattern due to
the MMAs.

Then, the appropriate equation that relates the temperature to
the visibility function takes the following form:

Vl _ T 1 Ix
=[] TEMChENCE €

(15)
Xe—j¢m(€m)ej</>n(£;r7)d§dn
where
Fi s 1)y
Cie, ) = Zlem ), (16)
F(&,m)

for i € {m,n}, is the code produced by the CRA coated with
the MMA at the aperture of the horn antenna ¢ at the center
frequency f;. It is important to remark that, by the use of the
CRA, the phase difference between each pair of antennas is not
linear anymore !, (€, 1) — 6L, (€, ) # 2 (i, €+vl,.,m). This
reduces the redundancy of the system and the mutual informa-
tion between each pair of antennas, resulting in an enhanced
sensing capacity. This “physical” compression helps to reduce
the total number of horn antennas and, consequently, the
complexity of the system. In addition, the physical dimensions,
weight, budget, and computational costs are reduced, while
having a similar performance in terms of imaging quality,
when compared to the GeoSTAR configuration.



C. Sensing matrix for Imaging

The reconstructed image is performed in NN, pixels. The
interferometric system uses N, = N,.-N,.- N measurements to
perform the imaging, where NV, is the number of receivers. The
field measured by each receiver is complex cross-correlated
with that of the remaining elements of the array. Under this
configuration, Eq. (15) can be discretized in order to get a
linear matrix equation that relates the visibility g € C™¢
(obtained from the measurements) and the unknown brightness
distribution for each pixel r € C™V», through a sensing matrix
H ¢ CN+*Ne_ This linear relationship can be expressed in a
matrix form as follows:

g=H r+w (17

where w € C+ represents the noise collected by the correla-
tors from the receiving antennas, for a given frequency.

Each element of the vector g is defined as g, = cgi?nEfn .
EL*, indicating the correlation between the scattered EM
fields corresponding to the m — th and n — th measurements,
depending on the antenna position and frequency f;, with
qg=1,..., N, The constant C%)n = 1/kpvBmBnvVGnGyp
relates the correlation of the EM fields with the visibility
function, as in Eq. (8).

Each element of the sensing matrix H is defined as
hyp = c%?nEﬁn’p -Eﬁ;j‘p, indicating the correlation between the
scattered EM field received by the m —th and n —th elements
of the array, for frequency f;, when they are illuminated
by a current source in the p — th pixel of the imaging
domain, with g =1,..., Ny and p = 1,..., N,,. The constant
D, = F,Fx/\/T— & — 12, as in Eq. (13).

The complete expressions of the vector g and the matrix H
can be found in [14].

D. Compressive Sensing Imaging

The methodology employed for performing the imaging
process is carried out through Compressive Sensing (CS)
techniques. CS theory was first introduced in [37]. Since then,
many other authors contributed to improve that theory—see, for
example, [38] and references therein for a review of CS.

The main idea of CS is based on the fact that sparse signals
can be recovered from a much smaller number of measure-
ments than those required by the Nyquist sampling criterion. In
order to be able to apply CS, the sensing matrix H has to sat-
isfy the Restricted-Isometry-Property (RIP) condition, which
is related to the independance of its columns. In addition,
the number of non-zero elements V,,, of the reconstructed
image r has to be much smaller than the total number of
elements in the image N, (IV,., < N,). Assuming both
conditions are satisfied, the reconstruction of the unknown
vector for the imaging can be performed with a few number of
measurements. This reduces the imaging computational cost.

The following convex optimization problem is solved in
order to obtain the unknown vector r:

min ||rl|, st ||Hr—gl, <dg (18)

where g is an upper bound for the residual error |[Hr — g,.
Many different algorithms have been developed in order to

solve (18), [38], [39]. In this paper, the NESTA algorithm
[28], has been used for solving the optimization problem.

IV. NUMERICAL RESULTS

Using the mechanism explained in section II, three MMAS
(MMAI, MMA2 and MMA3) were designed to resonate at
different frequencies (50 GHz, 52 GHz and 54 GHz). These
three MMA designs were randomly used to coat the surface
of the CRA. The polarization-independent ELCA was de-
signed using the commercially available software HFSS. Next,
the Drude-Lorentz parameters of the three-layer magneto-
dielectric medium were optimized in order to match the
reflection coefficient of the model and the one obtained from
HFSS for a given incident angle. The pattern search method
embedded in the MATLAB optimization toolbox was used in
order to match these reflection coefficients.

A. MMA Optimization Results

Figure 5 shows the geometry and dimensions of the
polarization-independent ELCA metamaterial. The MMA res-
onating at 52 GHz (MMA?2) is designed according to the
following parameters: a = 880um, | = 361um, w = 63um,
g = 46pum, d = 689um, Rogers substrate (RO 4835)
with permittivity of 3.66, dielectric loss-tangent of 0.0037,
and thickness of 110pum. The parameters of the Drude-
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Fig. 5: Schematic of the parameters of the polarization-

independent ELCA: (left) cross section view and (right) top
view.
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Fig. 6: HFSS and semi-analytical calculation of the total
reflection coefficient of the polarization-independent ELCA,
when it is excited with a TM-mode and incident angle of 30°:
(a) magnitude and (b) phase of the reflection coefficient.

Lorentz model for the middle magneto-dielectric medium are
optimized for a TM-wave obliquely impinging the ELCA at



an angle of 30° with respect to the normal of the ELCA
plane. Figure 6 compares the phase and magnitude-squared
of the reflection coefficient obtained with the HFSS software
and the semi-analytical model. The optimized Drude-Lorentz
parameters are listed in Table II. Then, the performance of
the optimized model is evaluated for other incident angles
and polarization vectors not used during the optimization
step. Figure 7 shows the phase and magnitude squared of
the reflection coefficient of TEM-mode, TE-mode for 45°,
and TM-mode for 45° incident angles. The results show that
the semi-analytical model is capable of accurately matching
the resonance behavior of the ELCA metamaterial for TEM,
TE, and TM modes at different incident angles. MMAI and
MMAS3 are designed following the same method. Figure 8(a)
illustrates the magnitude squared of reflection coefficient ver-
sus frequency for the MMAs. Figures 8(b), 8(c), and 8(d)
represent the PEC scatterer facets associated randomly with
MMAI, MMA?2, and MMA3, respectively.

TABLE II: Drude-Lorentz parameters for the magneto-
dielectric media.

PAR. | VALUE PAR. | VALUE

Einf 2.9 Winf 3.1

Wpe 2m x 9.01 GHz || wpm | 2m X 7.55 GHz
wo,e 2w X 52 GHz wo,m 2w X 52 GHz
Ye 2m x 341 M Hz Ym 27 x 291 M H=z

B. Interferometric Sounding Results

The performance of the designed metamaterial-based CRA
interferometric system is evaluated in a microwave sounding
imaging application, and it is then compared with a conven-
tional interferometric system (GeoSTAR). To solve the inverse
problem, a traditional pseudo-inverse method and a current
state-of-the-art compressive sensing algorithm (NESTA) [28]
have been used.

The design parameters used for the numerical simulation
are shown in Table IIl. Nine receiving horns placed in a Y-
shaped configuration on the focal plane feed the metamaterial-
based CRA. Figure 9 shows the geometry of the metamaterial-
based CRA and GeoSTAR systems. The original image (Fig.
13(a)) is an example of the physical temperature radiated from
the surface of the Earth. The system is assumed to measure
EM fields from a geostationary satellite orbiting around the
Earth. In Fig. 14, white circles are representing the half-power
beamwidth of the antennas covering the surface of the Earth
when they are exciting the TRA. Figure 10 shows the radiation
pattern of the antennas in the CRA configuration calculated in
the imaging domain at 52 GHz. As a result of the spatial
coding, each antenna element used in conjunction with the
CRA possesses a unique radiation pattern, whose field of view
covers the whole imaging domain. Moreover, the Singular
Value (SV) distribution of the CRA system is calculated and
compared to that of the GeoSTAR system, when nine receiving
antennas are used. Figure 11 shows that the SV distribution of
the CRA is better than that of the GeoSTAR, which ultimately
provides a higher sensing capacity (see Fig. 12) and provides
a better reconstruction performance. The sensing capacity of
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Fig. 7: HFSS and semi-analytical calculation of the total
reflection coefficient of the polarization-independent ELCA,
when it is excited with a (a), (b) TEM-mode; (c), (d) TE-
mode and incident angle of 45°; and (e), (f) TM-mode and
incident angle of 45°.

the imaging systems are calculated according to the following
equation:

MooH e M ol . e
oM~ Zm " Em o 1 Im Emo rpit
o I 7202 ) = 3wy (2 s
19)
where ofl is the m-th Singular Value (SV) of the sensing

matrix H, e,, is power of the signal received in the m-th
orthogonal channel of H, and M is the number of SVs that are
above the uncertainty level e. Figure 12 compares the improved
sensing capacity of the CRA as a function of Signal to Noise
Ratio (SNR), with that of the GeoSTAR configuration.

The measurements are done in the frequency range of 50-
54 GHz. To ensure a fair comparison between the proposed
system and GeoSTAR, frequency range and the largest di-
mension of the aperture for both configurations are set to be
equal. However, the metamaterial-based CRA uses half of the
horns used by the GeoSTAR configuration, resulting in less
data required for the reconstruction.

Figure 13 shows the original and reconstructed images
for the metamaterial-based CRA and contrasts it with recon-
structed images for the GeoSTAR configuration. No noise has
been considered in the image reconstructions presented in this
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Fig. 8: (a) Magnitude of the reflection coefficient, and PEC
scatterer facets associated to (b) MMAI, (¢c) MMA2 and (d)
MMAS.

example. In order to calculate the error, the Frobenius norm
of the difference between the original and the reconstructed
images is computed, and it is normalized by the Frobenius
norm of the original image. The reconstructed physical temper-
ature using the pseudo-inverse method for the metamaterial-
based CRA and GeoSTAR configuration produces an error of
16.7% and 8.6%, respectively. The error value of the NESTA
algorithm for the metamaterial-based CRA and GeoSTAR
configuration is 6.9% and 5.5%, respectively. This shows that
with the metamaterial-based CRA the number of receivers is
substantially reduced in comparison to that of the GeoSTAR
system (from eighteen to nine), while keeping similar imaging
performance. A comparison between two state of the art CS
solvers has also been performed in terms of the reconstruction
error. Specifically, NESTA and ADMM solvers have been used
for this purpose. The latter presents a 5.8% more error value
than the former, showing that NESTA is a suitable choice for
this particular problem. An analysis showing the dependence
between the image error and the number of receiving antennas
has also been performed. In Fig. 15, the image reconstruction
error for both the GeoSTAR and CRA configurations is
presented when 6, 9, 12, 15, and 18 receiving antennas are
used. In all cases, the CRA possesses a lower image error
when compared to that of the GeoSTAR configuration, except
for the case of six receivers. However, the error for both
configurations is unacceptable (larger than 20%)in the latter
case, thus making such configuration unreliable for imaging
purposes. This study also indicates the minimum number
receiving antennas needed to achieve a reconstruction error
below a specific value. For example, if an error value below
5% is desired, then twelve receiving antennas are required for
the CRA configuration. Note that this error cannot be achieved
in the GeoSTAR configuration, even when 18 elements are
used.

A quantitative evaluation of the noise for different signal-to-
noise ratios (SNRs) has been carried out for the metamaterial-
based CRA configuration. The evaluation shows that a high
SNR value is needed in order to have a good image reconstruc-
tion. However, by averaging N samples in the measurement
vector g, the effect of the noise can be mitigated in terms of
the image quality. Figure 16 shows the reconstruction error
for different SNR values ranging from 10 dB to 50 dB and
for 3 different N values. Moreover, reconstructed images for
SNR = 50 and different /Ny values has been presented in
Fig. 17. The results demonstrate that by increasing the value
of N, the reconstruction error converges to that of the noise-
less system.

TABLE III: Parameters for the numerical design.

PARAMETERS CRA GeoSTAR [2]
Frequency band 50 — 54 GHz | 50 — 54 GHz
No. of freq. (Ny) 7 7

Longest Aperture size (D) | 25 [cm] 25 [cm]
Diameter of feed elements | 2.1 [cm] 2.1 [cm]

No. of feeds (N,) 9 18
Focal length (f) 14 [cm] -
Offset height (ho) 28 [cm] -
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Fig. 9: Geometry: (a) GeoSTAR configuration, (b) Compres-
sive Reflector Antenna.

6
%10 0 0 0
-5 -5 -5
'E' -10 -10 -10
> -15 -15 -15
-20 _ -20 -20
-25 -25 -25
5 0 5
a X[m] x1o6 (b)  X[m] 108
6 6
x10 0 x10 0 0
-5 5 -5 -5
E, 0 g, -10 -10
> -5 > -15 -15
-20 5 l. -20 -20
-25 -25 -25
5 0 5
X[m] ><106 (e) XIml x10° X[m] 108
6 6
113 - —0 0 10 0
-5
E -10 -10 E -10
> 15 i 15 > -15
-20 -20 -20
-25 -25 -25
><[m1 ><106 (h)  Xml x108 (i) ><[rn1 ><106

Fig. 10: Radiation pattern of the antennas at 52 GHz, plotted
in the reconstruction domain: (a) Ant. 1; (b) Ant. 2; (c) Ant.
3; (d) Ant. 4; (e) Ant. 5; (f) Ant. 6; (2) Ant. 7; (h) Ant. 8; (i)
Ant. 9.
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Fig. 11: Comparison of the normalized SV distribution of the
CRA and GeoSTAR configurations. Both configurations are
considered having 9 antenna elements.
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Fig. 12: Comparison of the sensing capacity of the CRA and

GeoSTAR configurations. Both configurations are considered
having 9 antenna elements.

V. CONCLUSION

This paper presents a novel complex interferometric mi-
crowave sounding system, which uses a metamaterial-based
CRA. The proposed system generates spatial and spectral
coding of the EM field in the imaging domain. A semi-
analytical model was used to characterize the electromagnetic
scattering of the MMAs for a wide range of incident angles.
The proposed system substantially reduces the number of
receiving elements, while keeping a similar imaging quality.
This is due to the fact that the spatial and spectral codes reduce
the mutual information between the successive measurements,
thus leading to an enhanced sensing capacity of the system. In
this work, each MMA has a single resonance as a mechanism
to create the spectral coding. Nevertheless, additional research
will be performed in order to explore the use of multiple
resonances in each MMA; this will enhance the sensing
capacity even more, thus leading to further reduction in the
number of receiving elements.
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Fig. 13: Image reconstruction for metamaterial-based CRA and
GeoSTAR configurations: (a) Original image; reconstruction
with pseudo-inverse method for (b) metamaterial-based CRA,
and (c) GeoSTAR; error in pseudo-inverse method for (d)
metamaterial-based CRA, and (e) GeoSTAR; reconstruction
with iterative NESTA method for (f) metamaterial-based
CRA, and (g) GeoSTAR; error in NESTA method for (h)
metamaterial-based CRA, and (i) GeoSTAR.
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Fig. 14: Half-power beamwidth of the antennas (white circles)
covering the surface of the earth when the antennas are
exciting the TRA.
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Fig. 16: Reconstruction error of the metamaterial-based CRA

as a function of SNR. The measurements are averaged over

Ng =10, Ny = 1000, and Ng = 100000 number of receiving
signals.
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Fig. 17: Reconstructed image for the metamaterial-based CRA
configurations with SNR = 50 dB. The measurements are
averaged over (a) Ny = 1, (b) Ny, = 10, (¢) Ny = 100, and
(d) Ns = 1000 number of receiving signals.

APPENDIX A
TOTAL REFLECTION COEFFICIENT FROM A THREE-LAYER
MEDIUM

As shown in Fig. 2(a), for any oblique incidence, the EM
wave can be decomposed into a TE- and a TM- mode. Using
the characteristic impedance of each medium, the transmission
and reflection coefficients at each interface can be calculated
as described in [40], through the following set of equations:

w i Omy w i Omy
ZTE _ (Mil I ). grE_ (u;z I ) 200)
ﬂw — JCy ﬁw — JGy,

Bi, — ja Be, — ja
Z,lrM:i.Uela ZQTM:%% (20b)
w(er —j—2+) wlea — j=2)

Z3F + 21 Z3F + Z3F
YTM _ YTM 92
PTM _ 2 1 TTM (21b)

- 1/2TM + 1/1TM’ - Y2TM + YlTM
where Y,I'M is the admittance of the TM-wave and is given
by YIM = 1/7TM,

The total reflection coefficient I' from a stratified three-
layer medium can be calculated by characterizing the electric
and magnetic response of each medium and obtaining the
transverse component of the complex wave vector at interfaces
of the stratified medium. The generalized stratified structure
composing of three lossy isotropic media is depicted in Fig.
2(b). The total reflection I' is then the superposition of the
multiple reflections and transmissions from the two interfaces
and is described by the following equation:

T =Ty + TyoTosTore 727" 4

2 _ -4<I>trans
T12F23F21T21€ J +

N (22)
=T1g + TioTa3Tore 722" Z q"
n=0
in which the infinite summation is obtained as follows:
o 1 ) )
Yoat =g a=Talne 2y
n=0

In equation (22), I' is the total reflection coefficient of the
structure. I';; and Tj; are, respectively, the reflection and
transmission coefficients associated with the interface between
medium ¢ and medium j. The term e~ accounts for
the phase delay and amplitude attenuation associated with the
wave traveling from the first interface into the second one,
or vice versa, and it is computed as eI gk
e‘jﬁé're_"‘é"’, with 7 being the distance vector defined as
r = d,u + d,, W, where

B ab,
d, = Edw; d; = @dw; 24)
Therefore, the @7 term can be written as:
O = (B, du + B3y du) = §(Qbydw + A, dy,)
52 at22
= (Baw + 7w = jlagy + 7)duw (25)
2w 2w

Having simplified the infinite summation in equation (23)
and calculated the ®!"%"* term, equation (22) can be reduced
as follows:

@‘f,’!‘(l’nﬁ‘

T12T23To1e792
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