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Interferometric Sounding Using a
Metamaterial-based Compressive Reflector Antenna

Ali Molaei, Juan Heredia Juesas, William Blackwell, Jose A. Martinez Lorenzo

Abstract—This paper describes a new coded interferometric
system for sensing the physical temperature radiated from the
Earth’s surface. The proposed system consists of a Compressive
Reflector Antenna (CRA) coated with Metamaterial Absorbers
(MMA). The CRA and the MMA are used to code the received
electromagnetic field in space and in frequency, at the focal plane
array. The MMA is modeled by an equivalent magneto-dielectric
medium having a definite thickness. A high frequency method
based on Physical Optics is used to build the sensing matrix of
the system, and the inverse problem is solved using a Nesterov-
based Compressive Sensing methodology. Numerical examples
are carried out in order to reconstruct the physical temperature
of the Earth’s surface. The performance of the proposed system
is compared to that of the conventional interferometric system
GeoSTAR. Preliminary results show that the metamaterial-based
CRA provides comparable performance to the GeoSTAR config-
uration with only half of the feeding elements, while keeping the
same physical aperture size for the two configurations.

Index Terms—compressive reflector antenna, phased array,
metamaterial absorber, radio interferometry, imaging.

I. INTRODUCTION

RADIO interferometry has been widely used for sounding

the Earth’s atmosphere [1]–[4]. The GeoSTAR system

is one of the most successful interferometers [2], [5], and its

operation is based on performing complex cross-correlations

between the measured field by each pair of receivers in

a Y-shaped array. These complex cross-correlated signals,

which are characterized by the spatial coherence function of

the electromagnetic (EM) field, are used to reconstruct the

physical temperature of the Earth’s atmosphere. The main

drawbacks with these conventional interferometer systems are

their physical dimension, overall weight, and the large number

of receiving modules and correlators.

The aforementioned drawbacks in current sensing and imag-

ing systems may be overcome by the use of metamaterial

absorbers (MMAs) [6]–[11], which were originally introduced

by Landy et al. [8]. Specifically, by using an array of MMAs,

in which each element of the array presents a near-unity

absorption at a specified frequency, one can produce codes

that are changed with the instantaneous frequency of the

radar chirp, as presented in [12]. As a result, the number

of transmitters and receivers required to provide a suitable

imaging performance is drastically reduced. Recently, the

same outcome was achieved by using a Compressive Reflector

Antenna (CRA), which has the ability to provide spatial coding

in the focal plane array region [13]–[18].

In this work, the performance of a CRA is further improved

by coating its surface with multiple MMAs, so that both

spectral and spatial codes can be simultaneously produced,

as shown in Fig. 1. As a result, the sensing capacity of

Fig. 1: 2D cross-section of an offset metamaterial-based CRA.

the system is enhanced [17]; this results in a reduction in

the number of receiving modules, while keeping the imag-

ing performance similar to that provided by the GeoSTAR

interferometric system. The performance of the doubly-curved

pseudo-randomly distorted CRA-MMA system requires an

accurate characterization of the bulk behavior of the MMAs,

which involves modeling the scattering phenomenon at several

spatial scales (spanning five orders of magnitude) for arbitrary

oblique incident excitations. For this purpose, a semi-analytical

model, based on a multi-layer Drude-Lorentz model [7], is also

presented in this work. This model is capable of characterizing

the electric and magnetic response of the electric-field-coupled

absorber (ELCA) metamaterials, which is later used to charac-

terize the reflection coefficient of the multi-layer MMA. These

coefficients are coupled into a high frequency method, the

Modified Equivalent Current Approximation (MECA) [19], in

order to assess the performance of the imaging system.

The presented CRA relies on the use of norm-1 regularized

iterative Compressive Sensing (CS) imaging techniques, and

a few relevant ones are discussed next. (a) Bayesian CS [20]–

[24] enforces a probabilistic hierarchical prior as a sparsity

regularization constraint. It has been shown in [24] that by

employing the formerly studied relevance vector machine from

the sparse Bayesian learning literature, problems in CS can be

solved more effectively and faster compared to the state-of-the-

art algorithms. (b) FISTA [25] is an extension of the classical

gradient algorithm. It preserves the computational simplicity

of ISTA, but it possesses a global rate of convergence that is

significantly faster than the latter. (c) ADMM, [26], [27] is a
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consensus-based imaging algorithm. It is a simple but effective

algorithm that is appropriate to solve in a distributed fashion

large convex optimization problems. (d) NESTA [28] is a

robust first-order method that solves basis-pursuit problems.

The techniques used in the NESTA algorithm —provided as a

MATLAB toolbox [29]— are based on the solution proposed

by Nesterov [30] to smooth non-convex problems, combined

with an improved first-order method [31] that was proven to

have an enhanced convergence rate. In this paper, the NESTA

toolbox [29] is adopted for solving the inverse problem, as it

is suitable for solving large scale CS problems due to its fast

convergence rate; however, other CS solvers could have been

used as well.

The rest of the paper is organized as follows: Section II

introduces the semi-analytical model used for characterizing

the oblique incidence reflection coefficient of the ELCA. Sec-

tion III describes the structure of the CRA, the mathematical

analysis of the cross-correlation radiometry, the computation

of the sensing matrix for imaging, and the use of CS tech-

niques for performing the imaging. Section IV presents the

following results: 1) optimization of the semi-analytical model

of the ELCA; and 2) imaging using the proposed CRA-MMA.

Section V provides a final summary and conclusions.

II. SEMI-ANALYTICAL MODEL FOR CHARACTERIZING THE

ELCA OBLIQUE INCIDENCE REFLECTION COEFFICIENT

A semi-analytical model is presented to characterize the

EM response of the ELCA metamaterials. The semi-analytical

model is derived in three steps: 1) the reflection coefficient

for the multi-layered magneto-dielectric media, characterized

by using the Drude-Lorentz parameters of each medium, is

analytically derived; 2) simulations based on HFSS Finite

Elements Method (FEM) are used to compute the reflection

coefficient of the ELCA; and 3) the Drude-Lorentz parameters

of a three-layered media are optimized in order to find the bulk

parameters that best fit the FEM-simulated ELCA. The semi-

analytical model is capable of accounting for the characteristic

resonances of the ELCA metamaterial; and it is valid for

both TE and TM polarizations and for a wide range of

incident field angles. For the sake of generality, the next two

subsections derive the parameters used for modeling the wave-

propagation in a two-layers and a three-layers lossy isotropic

media; these parameters will be optimized afterwards in order

to characterize the scattering of the proposed CRA-MMA

imaging system.

A. Generalized Wave-Propagation Law for two Lossy
Isotropic Media

A wave propagating in a lossy and isotropic medium is

characterized by the complex wave vector k = β − jα,

where β and α are real-valued propagation and attenuation

vectors, respectively [32]. In the general case, this wave is

obliquely incident into another lossy and isotropic medium,

as shown in Fig. 2(a). The propagation and attenuation

vectors in each medium point in different directions. Each

medium is characterized by their complex permittivity and

permeability [εi, μi, σei, σmi], where εi is the real part of

(a)

(b)

Fig. 2: (a) Phase and attenuation wave vector for a plane wave

obliquely incident on a half-space inhomogeneous medium.

Second medium could be DNG (red line) or DPS (black line).

(b) Schematic of the generalized three-layer stratified model.

permittivity, μi is the real part of permeability, σei is the

electric conductivity, and σmi is the magnetic conductivity

for the i − th medium. According to the phase-matching

condition, the tangential components – u components in Fig.

2(b)– of the second medium’s wave vector must be equal to

the tangential components of the incident field wave vector.

As a result, the transverse components of the wave-vector

in the second medium can be computed using the following

dispersion relationship:

kt · kt =ω2(μ2 − j
σm2

ω
)(ε2 − j

σe2

ω
) (1a)

kr · kr =ω2(μ1 − j
σm1

ω
)(ε1 − j

σe1

ω
) (1b)

in which: ki = βi − jαi, kr = βr − jαr and kt = βt −
jαt are the incident, reflected and transmitted wave vectors,

respectively. Equations (1a) and (1b) can be rewritten in terms

of the real and imaginary parts of the reflected and transmitted

wave vectors as follows:∣∣βt
∣∣2 − ∣∣αt

∣∣2 = ω2μ2ε2 − σe2σm2
(2a)

|βr|2 − |αr|2 = ω2μ1ε1 − σe1σm1 (2b)

2αt · βt = ω(ε2σm2
+ μ2σe2) (2c)

2αr · βr = ω(ε1σm1
+ μ1σe1) (2d)

The transverse components (βt
w, βr

w, αt
w and αr

w) of β and
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α can now be computed in terms of βi
u and αi

u as follows:

βt
w = ±

√
A2 +

√
A2

2 + 4B2
2

2
; (3a)

βr
w = ±

√
A1 +

√
A2

1 + 4B2
1

2
(3b)

αt
w =

√
−A2 +

√
A2

2 + 4B2
2

2
; (3c)

αr
w = −

√
−A1 +

√
A2

1 + 4B2
1

2
(3d)

where

A1 = ω2μ1ε1 − σe1σm1
− (βi2

u − αi2

u ) (4a)

A2 = ω2μ2ε2 − σe2σm2 − (βi2

u − αi2

u ) (4b)

B1 =
1

2
ω(ε1σm1 + μ1σe1)− αi

uβ
i
u (4c)

B2 =
1

2
ω(ε2σm2 + μ2σe2)− αi

uβ
i
u (4d)

The signs for βt
w and βr

w in equations (3a) and (3b) are

selected by the material behavior, whether double positive

(DPS) or double negative (DNG), according to Table I. The

correct directions for the wave vectors are shown in Fig. 2(a).

TABLE I: Signs for the propagation and attenuation numbers

in DPS and DNG media.

MEDIUM \COMPONENT βt
w βr

w αt
w αr

w
DPS + − + −
DNG − + + −

B. Reflection from a Three-Layer Magneto-dielectric Medium

The MMA array can be characterized by solving a three-

layer magneto-dielectric medium problem, where an incident

field is obliquely impinging on a magneto-dielectric medium,

of thickness d, which is backed by a metallic layer. The

magneto-dielectric and metallic layers may be characterized

by the Drude-Lorentz model [7]:

ε̃r(ω) = εinf +
ω2
p,e

ω2
0,e − ω2 − jγeω

(5a)

μ̃r(ω) = μinf +
ω2
p,m

ω2
0,m − ω2 − jγmω

(5b)

in which, εinf and μinf are the static permittivity and per-

meability at infinite frequency, ωp,e and ωp,m are plasma

frequencies, ω0,e and ω0,m are resonant frequencies, and γe
and γm are damping frequencies.

A derivation of the total reflection coefficient Γ from a

stratified three-layer medium, for any oblique incidence, is

presented in Appendix A; and the simplified equation for Γ is

derived to be as follows:

Γ = Γ12 +
T12Γ23T21e

−j2Φtrans

1− Γ23Γ21e−2jΦtrans

=
Γ12 − Γ12Γ23Γ21e

−j2Φtrans

+ T12Γ23T21e
−j2Φtrans

1− Γ23Γ21e−2jΦtrans

(6)

In equation (6), Γij and Tij are, respectively, the reflection

and transmission coefficients associated with the interface be-

tween medium i and medium j. The term e−jΦtrans

accounts

for the phase delay and amplitude attenuation associated with

the wave traveling from the first interface into the second one,

or vice versa.

III. METAMATERIAL-BASED COMPRESSIVE REFLECTOR

ANTENNA FOR INTERFEROMETRIC RADIOMETRY

A. Compressive Reflector Antenna structure

High-capacity imaging systems using a CRA are character-

ized by their ability to create spatial coding of the electromag-

netic field in the imaging domain [13]–[16]. A CRA can be

obtained by placing random Perfect Electric Conductor (PEC)

scatterers on the surface of a conventional parabolic reflector.

Such a CRA produces pseudo-random spatial patterns in both

its focal plane and far-field regions. Moreover, the frequency-

dependent response of MMAs enables the CRA to create

spatially-dependent spectral codes. As a result, each element

in the array used in conjunction with the CRA will possess

a unique near- and far- field pattern acting as a spectral

and spatial code. This coding mechanism is similar to that

described in [33]. Figure 1 shows the 2D cross-section of the

proposed CRA-MMA.

B. Mathematical development for cross-correlation interfero-
metric radiometry

The relationship between the data collected and the bright-

ness temperature distribution of the Earth’s surface is obtained

as follows: for each frequency, the field measured by one re-

ceiver is cross-correlated with those of the remaining receivers,

as shown in Fig. 3 [34]. The auto- and cross- correlation are

described, respectively, by the following equations:

El
m(f) ·El∗

m(f)
.
= AkBBmGm(TAm + TRECm) (7a)

El
m(f) ·El∗

n (f)
.
= AkB

√
BmBn

√
GmGnV

l
mn(u

l
mn, v

l
mn)

(7b)

in which El
i(f), for i ∈ {m,n}, is the analytical signal

collected by the channel i at the center frequency fl; the

symbol ∗ denotes the complex conjugate; kB is the Boltzmann

constant; TAi is the antenna’s temperature; Bi is the equivalent

noise bandwidth; Gi is the power gain of the channel; and A
is a constant. The visibility function, which can be expressed

as

V l
mn(u

l
mn, v

l
mn) =

1

kB
√
BmBn

√
GmGn

El
m(f) ·El∗

n (f),

(8)

is defined in the spatial frequency domain (ul
mn, v

l
mn)

.
=

(xn − xm, yn − ym)/λl, where λl = c/fl, with c being the
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speed of light in free space. From the Van-Cittert Zernicke

theorem [35], the visibility function is related to the brightness

temperature distribution as follows:

V l
mn =

1√
ΩmΩn

∫∫
ξ2+η2≤1

TB(ξ, η)− TREC√
1− ξ2 − η2

×

×Fm(ξ, η)F ∗
n(ξ, η)r̃

l
mn

(
−ul

mnξ + vlmnη

fl

)
×

×e−j2π(ul
mnξ+vl

mnη)dξdη

(9)

where Ωi is the equivalent solid angle of the antennas;

Fig. 3: Interferometric radiometry scheme. The EM field

measured by each pair of receivers is cross-correlated. The

scheme represents all the parameters involved in the process.

1√
1−ξ2−ν2

is the obliquity factor, Fi(ξ, η) is the normalized

antenna pattern, (ξ, η) = (sinθcosφ, sinθsinφ) are the direc-

tional cosines, TB(ξ, η) is the brightness temperature of the

scene, TREC is the physical temperature of the receiver (the

so-called Corbella’s term [36]), and r̃lmn(−ul
mnξ+vl

mnη
fl

) is the

so-called fringe-washing function that can be expressed as

r̃lmn =
e−j2πf0t

√
BmBn

∫ fl+
Δf
2

fl−Δf
2

Hm(f)H∗
n(f)e

j2πftdf, (10)

where Hi(f) is the frequency response and Δf is the band-

width of channel fl.
Equation (9) can be simplified under certain conditions,

[34]. For a narrow bandwidth and reduced dimensions of

the array, the fringe-washing function becomes r̃lmn ≈ 1.

Furthermore, assuming that the patterns of the horn antennas

are identical, that is Fm = Fn, and neglecting the temperature

of the receiver, the visibility function and the brightness

temperature are now related as follows:

V l
mn =

∫∫
ξ2+η2≤1

T (ξ, η)e−j2π(ul
mnξ+vl

mnη)dξdη (11)

where

T (ξ, η) =
TB(ξ, η)√
1− ξ2 − η2

|Fn(ξ, η)|2 (12)

is the modified brightness temperature for each direc-

tion (ξ, η). Under these conditions, the mentioned modi-

fied brightness temperature can be recovered by the inverse

2D Fourier transform of the visibility function, T (ξ, η) =
F−1[V l

mn(u
l
mn, v

l
mn)].

In the case of the CRA, some of the previous simplifications

are not valid. Specifically, the phase front produced on the

receiving array by a source whose radiation is coming from

a given direction (ξ0, η0) is not planar anymore. This is due

to the spectral and spatial coding produced by the CRA when

an incoming wave is reflected towards the receiving array–see

Fig. 1. This coding also makes the far-field patterns produced

by each horn antenna, after interacting with the CRA, to be

different from one another, that is Fm �= Fn. Taking this

into consideration, the modified brightness temperature from

equation (9) is now given by

T (ξ, η) =
TB(ξ, η)√
1− ξ2 − η2

F̃n(ξ, η)F̃
∗
m(ξ, η), (13)

where

F̃i(ξ, η) = max
f∈[f1−Δf

2 ,fNf
+Δf

2 ]
{Fi(ξ, η, fl)} (14)

as shown in Fig. 4. Nf is the total number of frequencies.

Fig. 4: Frequency modulation of the antenna pattern due to

the MMAs.

Then, the appropriate equation that relates the temperature to

the visibility function takes the following form:

V l
mn =

∫∫
ξ2+η2≤1

T (ξ, η)Cl
m(ξ, η)Cl∗

n (ξ, η)×

×e−jφm(ξ,η)ejφn(ξ,η)dξdη

(15)

where

Cl
i(ξ, η) =

Fi(ξ, η, fl)

F̃ (ξ, η)
, (16)

for i ∈ {m,n}, is the code produced by the CRA coated with

the MMA at the aperture of the horn antenna i at the center

frequency fl. It is important to remark that, by the use of the

CRA, the phase difference between each pair of antennas is not

linear anymore φl
m(ξ, η)−φl

n(ξ, η) �= 2π(ul
mnξ+vlmnη). This

reduces the redundancy of the system and the mutual informa-

tion between each pair of antennas, resulting in an enhanced

sensing capacity. This “physical” compression helps to reduce

the total number of horn antennas and, consequently, the

complexity of the system. In addition, the physical dimensions,

weight, budget, and computational costs are reduced, while

having a similar performance in terms of imaging quality,

when compared to the GeoSTAR configuration.
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C. Sensing matrix for Imaging

The reconstructed image is performed in Np pixels. The

interferometric system uses Ns = Nr ·Nr ·Nf measurements to

perform the imaging, where Nr is the number of receivers. The

field measured by each receiver is complex cross-correlated

with that of the remaining elements of the array. Under this

configuration, Eq. (15) can be discretized in order to get a

linear matrix equation that relates the visibility g ∈ C
Ns

(obtained from the measurements) and the unknown brightness

distribution for each pixel r ∈ C
Np , through a sensing matrix

H ∈ C
Ns×Np . This linear relationship can be expressed in a

matrix form as follows:

g = H · r+w (17)

where w ∈ C
Ns represents the noise collected by the correla-

tors from the receiving antennas, for a given frequency.

Each element of the vector g is defined as gq = c
(1)
m,nEl

m ·
El,∗

n , indicating the correlation between the scattered EM

fields corresponding to the m− th and n− th measurements,

depending on the antenna position and frequency fl, with

q = 1, . . . , Ns. The constant c
(1)
m,n = 1/kB

√
BmBn

√
GmGn

relates the correlation of the EM fields with the visibility

function, as in Eq. (8).

Each element of the sensing matrix H is defined as

hq,p = c
(2)
m,nEl

m,p ·El,∗
n,p, indicating the correlation between the

scattered EM field received by the m−th and n−th elements

of the array, for frequency fl, when they are illuminated

by a current source in the p − th pixel of the imaging

domain, with q = 1, . . . , Ns and p = 1, . . . , Np. The constant

c
(2)
m,n = F̃nF̃

∗
m/
√
1− ξ2 − η2, as in Eq. (13).

The complete expressions of the vector g and the matrix H
can be found in [14].

D. Compressive Sensing Imaging

The methodology employed for performing the imaging

process is carried out through Compressive Sensing (CS)

techniques. CS theory was first introduced in [37]. Since then,

many other authors contributed to improve that theory–see, for

example, [38] and references therein for a review of CS.

The main idea of CS is based on the fact that sparse signals

can be recovered from a much smaller number of measure-

ments than those required by the Nyquist sampling criterion. In

order to be able to apply CS, the sensing matrix H has to sat-

isfy the Restricted-Isometry-Property (RIP) condition, which

is related to the independance of its columns. In addition,

the number of non-zero elements Nnz of the reconstructed

image r has to be much smaller than the total number of

elements in the image Np (Nnz � Np). Assuming both

conditions are satisfied, the reconstruction of the unknown

vector for the imaging can be performed with a few number of

measurements. This reduces the imaging computational cost.

The following convex optimization problem is solved in

order to obtain the unknown vector r:

min ‖r‖1 s.t. ‖Hr− g‖2 < δH (18)

where δH is an upper bound for the residual error ‖Hr− g‖2.

Many different algorithms have been developed in order to

solve (18), [38], [39]. In this paper, the NESTA algorithm

[28], has been used for solving the optimization problem.

IV. NUMERICAL RESULTS

Using the mechanism explained in section II, three MMAs

(MMA1, MMA2 and MMA3) were designed to resonate at

different frequencies (50 GHz, 52 GHz and 54 GHz). These

three MMA designs were randomly used to coat the surface

of the CRA. The polarization-independent ELCA was de-

signed using the commercially available software HFSS. Next,

the Drude-Lorentz parameters of the three-layer magneto-

dielectric medium were optimized in order to match the

reflection coefficient of the model and the one obtained from

HFSS for a given incident angle. The pattern search method

embedded in the MATLAB optimization toolbox was used in

order to match these reflection coefficients.

A. MMA Optimization Results

Figure 5 shows the geometry and dimensions of the

polarization-independent ELCA metamaterial. The MMA res-

onating at 52 GHz (MMA2) is designed according to the

following parameters: a = 880μm, l = 361μm, w = 63μm,

g = 46μm, d = 689μm, Rogers substrate (RO 4835)

with permittivity of 3.66, dielectric loss-tangent of 0.0037,

and thickness of 110μm. The parameters of the Drude-

Fig. 5: Schematic of the parameters of the polarization-

independent ELCA: (left) cross section view and (right) top

view.

(a) (b)

Fig. 6: HFSS and semi-analytical calculation of the total

reflection coefficient of the polarization-independent ELCA,

when it is excited with a TM-mode and incident angle of 30o:

(a) magnitude and (b) phase of the reflection coefficient.

Lorentz model for the middle magneto-dielectric medium are

optimized for a TM-wave obliquely impinging the ELCA at
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an angle of 30o with respect to the normal of the ELCA

plane. Figure 6 compares the phase and magnitude-squared

of the reflection coefficient obtained with the HFSS software

and the semi-analytical model. The optimized Drude-Lorentz

parameters are listed in Table II. Then, the performance of

the optimized model is evaluated for other incident angles

and polarization vectors not used during the optimization

step. Figure 7 shows the phase and magnitude squared of

the reflection coefficient of TEM-mode, TE-mode for 45o,

and TM-mode for 45o incident angles. The results show that

the semi-analytical model is capable of accurately matching

the resonance behavior of the ELCA metamaterial for TEM,

TE, and TM modes at different incident angles. MMA1 and

MMA3 are designed following the same method. Figure 8(a)

illustrates the magnitude squared of reflection coefficient ver-

sus frequency for the MMAs. Figures 8(b), 8(c), and 8(d)

represent the PEC scatterer facets associated randomly with

MMA1, MMA2, and MMA3, respectively.

TABLE II: Drude-Lorentz parameters for the magneto-

dielectric media.

PAR. VALUE PAR. VALUE
εinf 2.9 μinf 3.1
ωp,e 2π × 9.01 GHz ωp,m 2π × 7.55 GHz
ω0,e 2π × 52 GHz ω0,m 2π × 52 GHz
γe 2π × 341 MHz γm 2π × 291 MHz

B. Interferometric Sounding Results

The performance of the designed metamaterial-based CRA

interferometric system is evaluated in a microwave sounding

imaging application, and it is then compared with a conven-

tional interferometric system (GeoSTAR). To solve the inverse

problem, a traditional pseudo-inverse method and a current

state-of-the-art compressive sensing algorithm (NESTA) [28]

have been used.

The design parameters used for the numerical simulation

are shown in Table III. Nine receiving horns placed in a Y-

shaped configuration on the focal plane feed the metamaterial-

based CRA. Figure 9 shows the geometry of the metamaterial-

based CRA and GeoSTAR systems. The original image (Fig.

13(a)) is an example of the physical temperature radiated from

the surface of the Earth. The system is assumed to measure

EM fields from a geostationary satellite orbiting around the

Earth. In Fig. 14, white circles are representing the half-power

beamwidth of the antennas covering the surface of the Earth

when they are exciting the TRA. Figure 10 shows the radiation

pattern of the antennas in the CRA configuration calculated in

the imaging domain at 52 GHz. As a result of the spatial

coding, each antenna element used in conjunction with the

CRA possesses a unique radiation pattern, whose field of view

covers the whole imaging domain. Moreover, the Singular

Value (SV) distribution of the CRA system is calculated and

compared to that of the GeoSTAR system, when nine receiving

antennas are used. Figure 11 shows that the SV distribution of

the CRA is better than that of the GeoSTAR, which ultimately

provides a higher sensing capacity (see Fig. 12) and provides

a better reconstruction performance. The sensing capacity of

(a) (b)

(c) (d)

(e) (f)

Fig. 7: HFSS and semi-analytical calculation of the total

reflection coefficient of the polarization-independent ELCA,

when it is excited with a (a), (b) TEM-mode; (c), (d) TE-

mode and incident angle of 45o; and (e), (f) TM-mode and

incident angle of 45o.

the imaging systems are calculated according to the following

equation:

CM
ε ≈ log2

(
M∏

m=1

σH
m · em
ε

)
=

M∑
m=1

log2

(
σH
m · em
ε

)
[bits]

(19)

where σH
m is the m-th Singular Value (SV) of the sensing

matrix H, em is power of the signal received in the m-th

orthogonal channel of H, and M is the number of SVs that are

above the uncertainty level ε. Figure 12 compares the improved

sensing capacity of the CRA as a function of Signal to Noise

Ratio (SNR), with that of the GeoSTAR configuration.

The measurements are done in the frequency range of 50-

54 GHz. To ensure a fair comparison between the proposed

system and GeoSTAR, frequency range and the largest di-

mension of the aperture for both configurations are set to be

equal. However, the metamaterial-based CRA uses half of the

horns used by the GeoSTAR configuration, resulting in less

data required for the reconstruction.

Figure 13 shows the original and reconstructed images

for the metamaterial-based CRA and contrasts it with recon-

structed images for the GeoSTAR configuration. No noise has

been considered in the image reconstructions presented in this
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(a)

(b)

(c)

(d)

Fig. 8: (a) Magnitude of the reflection coefficient, and PEC

scatterer facets associated to (b) MMA1, (c) MMA2 and (d)

MMA3.

example. In order to calculate the error, the Frobenius norm

of the difference between the original and the reconstructed

images is computed, and it is normalized by the Frobenius

norm of the original image. The reconstructed physical temper-

ature using the pseudo-inverse method for the metamaterial-

based CRA and GeoSTAR configuration produces an error of

16.7% and 8.6%, respectively. The error value of the NESTA

algorithm for the metamaterial-based CRA and GeoSTAR

configuration is 6.9% and 5.5%, respectively. This shows that

with the metamaterial-based CRA the number of receivers is

substantially reduced in comparison to that of the GeoSTAR

system (from eighteen to nine), while keeping similar imaging

performance. A comparison between two state of the art CS

solvers has also been performed in terms of the reconstruction

error. Specifically, NESTA and ADMM solvers have been used

for this purpose. The latter presents a 5.8% more error value

than the former, showing that NESTA is a suitable choice for

this particular problem. An analysis showing the dependence

between the image error and the number of receiving antennas

has also been performed. In Fig. 15, the image reconstruction

error for both the GeoSTAR and CRA configurations is

presented when 6, 9, 12, 15, and 18 receiving antennas are

used. In all cases, the CRA possesses a lower image error

when compared to that of the GeoSTAR configuration, except

for the case of six receivers. However, the error for both

configurations is unacceptable (larger than 20%)in the latter

case, thus making such configuration unreliable for imaging

purposes. This study also indicates the minimum number

receiving antennas needed to achieve a reconstruction error

below a specific value. For example, if an error value below

5% is desired, then twelve receiving antennas are required for

the CRA configuration. Note that this error cannot be achieved

in the GeoSTAR configuration, even when 18 elements are

used.

A quantitative evaluation of the noise for different signal-to-

noise ratios (SNRs) has been carried out for the metamaterial-

based CRA configuration. The evaluation shows that a high

SNR value is needed in order to have a good image reconstruc-

tion. However, by averaging Ns samples in the measurement

vector g, the effect of the noise can be mitigated in terms of

the image quality. Figure 16 shows the reconstruction error

for different SNR values ranging from 10 dB to 50 dB and

for 3 different Ns values. Moreover, reconstructed images for

SNR = 50 and different Ns values has been presented in

Fig. 17. The results demonstrate that by increasing the value

of Ns, the reconstruction error converges to that of the noise-

less system.

TABLE III: Parameters for the numerical design.

PARAMETERS CRA GeoSTAR [2]
Frequency band 50− 54 GHz 50− 54 GHz
No. of freq. (Nf ) 7 7
Longest Aperture size (D) 25 [cm] 25 [cm]
Diameter of feed elements 2.1 [cm] 2.1 [cm]
No. of feeds (Nr) 9 18
Focal length (f ) 14 [cm] -
Offset height (ho) 28 [cm] -
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(a)

(b)

Fig. 9: Geometry: (a) GeoSTAR configuration, (b) Compres-

sive Reflector Antenna.

Fig. 10: Radiation pattern of the antennas at 52 GHz, plotted

in the reconstruction domain: (a) Ant. 1; (b) Ant. 2; (c) Ant.

3; (d) Ant. 4; (e) Ant. 5; (f) Ant. 6; (g) Ant. 7; (h) Ant. 8; (i)

Ant. 9.

Fig. 11: Comparison of the normalized SV distribution of the

CRA and GeoSTAR configurations. Both configurations are

considered having 9 antenna elements.

Fig. 12: Comparison of the sensing capacity of the CRA and

GeoSTAR configurations. Both configurations are considered

having 9 antenna elements.

V. CONCLUSION

This paper presents a novel complex interferometric mi-

crowave sounding system, which uses a metamaterial-based

CRA. The proposed system generates spatial and spectral

coding of the EM field in the imaging domain. A semi-

analytical model was used to characterize the electromagnetic

scattering of the MMAs for a wide range of incident angles.

The proposed system substantially reduces the number of

receiving elements, while keeping a similar imaging quality.

This is due to the fact that the spatial and spectral codes reduce

the mutual information between the successive measurements,

thus leading to an enhanced sensing capacity of the system. In

this work, each MMA has a single resonance as a mechanism

to create the spectral coding. Nevertheless, additional research

will be performed in order to explore the use of multiple

resonances in each MMA; this will enhance the sensing

capacity even more, thus leading to further reduction in the

number of receiving elements.
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(a)

(b) (c)

(d) (e)

(f) (g)

(h) (i)

Fig. 13: Image reconstruction for metamaterial-based CRA and

GeoSTAR configurations: (a) Original image; reconstruction

with pseudo-inverse method for (b) metamaterial-based CRA,

and (c) GeoSTAR; error in pseudo-inverse method for (d)

metamaterial-based CRA, and (e) GeoSTAR; reconstruction

with iterative NESTA method for (f) metamaterial-based

CRA, and (g) GeoSTAR; error in NESTA method for (h)

metamaterial-based CRA, and (i) GeoSTAR.

Fig. 14: Half-power beamwidth of the antennas (white circles)

covering the surface of the earth when the antennas are

exciting the TRA.

Fig. 15: Error percentage of the GeoSTAR and CRA systems

with different number of antenna elements.

Fig. 16: Reconstruction error of the metamaterial-based CRA

as a function of SNR. The measurements are averaged over

Ns = 10, Ns = 1000, and Ns = 100000 number of receiving

signals.
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(a) (b)

(c) (d)

Fig. 17: Reconstructed image for the metamaterial-based CRA

configurations with SNR = 50 dB. The measurements are

averaged over (a) Ns = 1, (b) Ns = 10, (c) Ns = 100, and

(d) Ns = 1000 number of receiving signals.

APPENDIX A

TOTAL REFLECTION COEFFICIENT FROM A THREE-LAYER

MEDIUM

As shown in Fig. 2(a), for any oblique incidence, the EM

wave can be decomposed into a TE- and a TM- mode. Using

the characteristic impedance of each medium, the transmission

and reflection coefficients at each interface can be calculated

as described in [40], through the following set of equations:

ZTE
1 =

ω(μ1 − j
σm1

ω )

βi
ω − jαi

ω

; ZTE
2 =

ω(μ2 − j
σm2

ω )

βt
ω − jαt

ω

(20a)

ZTM
1 =

βi
ω − jαi

ω

ω(ε1 − j
σe1

ω )
; ZTM

2 =
βt
ω − jαt

ω

ω(ε2 − j
σe2

ω )
(20b)

ΓTE =
ZTE
2 − ZTE

1

ZTE
2 + ZTE

1

; TTE =
2ZTE

2

ZTE
2 + ZTE

2

(21a)

ΓTM = −Y TM
2 − Y TM

1

Y TM
2 + Y TM

1

; TTM =
2

Y TM
2 + Y TM

1

(21b)

where Y TM
m is the admittance of the TM-wave and is given

by Y TM
m = 1/ZTM

m .

The total reflection coefficient Γ from a stratified three-

layer medium can be calculated by characterizing the electric

and magnetic response of each medium and obtaining the

transverse component of the complex wave vector at interfaces

of the stratified medium. The generalized stratified structure

composing of three lossy isotropic media is depicted in Fig.

2(b). The total reflection Γ is then the superposition of the

multiple reflections and transmissions from the two interfaces

and is described by the following equation:

Γ =Γ12 + T12Γ23T21e
−j2Φtrans

+

T12Γ
2
23Γ21T21e

−j4Φtrans

+ ...

=Γ12 + T12Γ23T21e
−j2Φtrans

.

∞∑
n=0

qn
(22)

in which the infinite summation is obtained as follows:

∞∑
n=0

qn =
1

1− q
; q = Γ23Γ21e

−j2Φtrans

(23)

In equation (22), Γ is the total reflection coefficient of the

structure. Γij and Tij are, respectively, the reflection and

transmission coefficients associated with the interface between

medium i and medium j. The term e−jΦtrans

accounts for

the phase delay and amplitude attenuation associated with the

wave traveling from the first interface into the second one,

or vice versa, and it is computed as e−jΦtrans

= e−jkt
2·r =

e−jβt
2·re−αt

2·r , with r being the distance vector defined as

r = duû+ dwŵ, where

du =
βt
2u

βt
2w

dw; d′u =
αt
2u

αt
2w

dw; (24)

Therefore, the Φtrans term can be written as:

Φtrans = (βt
2wdw + βt

2udu)− j(αt
2wdw + αt

2ud
′
u)

= (βt
2w +

βt2

2u

βt
2w

)dw − j(αt
2w +

αt2

2u

αt
2w

)dw (25)

Having simplified the infinite summation in equation (23)

and calculated the Φtrans term, equation (22) can be reduced

as follows:

Γ = Γ12 +
T12Γ23T21e

−j2Φtrans

1− Γ23Γ21e−2jΦtrans

=
Γ12 − Γ12Γ23Γ21e

−j2Φtrans

+ T12Γ23T21e
−j2Φtrans

1− Γ23Γ21e−2jΦtrans

(26)
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[4] E. L. Kpré and C. Decroze, “Passive coding technique applied to
synthetic aperture interferometric radiometer,” IEEE Geosci. Remote
Sens. Lett., 2017.

[5] B. Lambrigtsen, W. Wilson, A. Tanner, T. Gaier, C. Ruf, and J. Piep-
meier, “Geostar-a microwave sounder for geostationary satellites,” in
IEEE Proc. IGARSS’04, vol. 2, 2004, pp. 777–780.

[6] H. Lee, J. Park, and H. Lee, “Design of double negative metamaterial
absorber cells using electromagnetic-field coupled resonators,” in IEEE
Proc. APMC, 2011, pp. 1062–1065.



11

[7] C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic
wave absorbers,” Advanced materials, vol. 24, no. 23, pp. OP98–OP120,
2012.

[8] N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect
metamaterial absorber,” Phys. rev. lett., vol. 100, no. 20, p. 207402,
2008.

[9] H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui,
“Ultrathin multiband gigahertz metamaterial absorbers,” J. of Appl.
Phys., vol. 110, no. 1, p. 014909, 2011.

[10] S. Bhattacharyya and K. V. Srivastava, “Ultra thin metamaterial ab-
sorbers using electric field driven lc (elc) resonator structure,” in
Progress In Electromagnetics Res. Symp., 2012, pp. 27–30.

[11] O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth,
A. Rose, and D. R. Smith, “Resolution of the frequency diverse
metamaterial aperture imager,” Progress In Electromagnetics Res., vol.
150, pp. 97–107, 2015.

[12] J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady,
and D. R. Smith, “Metamaterial apertures for computational imaging,”
Science, vol. 339, no. 6117, pp. 310–313, 2013.

[13] R. Obermeier and J. A. Martinez-Lorenzo, “Model-based optimization
of compressive antennas for high-sensing-capacity applications,” IEEE
Antennas Wireless Propag. Lett., vol. 16, pp. 1123–1126, 2017.

[14] A. Molaei, G. Allan, J. Heredia, W. Blackwell, and J. Martinez-Lorenzo,
“Interferometric sounding using a compressive reflector antenna,” in
IEEE 10th Eur. Conf. Antennas Propag., 2016, pp. 1–4.

[15] J. Martinez Lorenzo, J. Juesas, and W. Blackwell, “Single-transceiver
compressive antenna for high-capacity sensing and imaging applica-
tions,” in 9th Eur. Conf. Antennas Propag., April 2015, pp. 1–3.

[16] J. H. Juesas, G. Allan, A. Molaei, L. Tirado, W. Blackwell, and J. A. M.
Lorenzo, “Consensus-based imaging using admm for a compressive
reflector antenna,” in IEEE Int. Symp. Antennas and Propag. IEEE,
2015, pp. 1304–1305.

[17] J. Martinez-Lorenzo, J. Heredia Juesas, and W. Blackwell, “A single-
transceiver compressive reflector antenna for high-sensing-capacity
imaging,” IEEE Antennas Wireless Propag. Lett., vol. PP, no. 99, pp.
1–1, 2015.

[18] A. Molaei, J. H. Juesas, G. Allan, and J. Martinez-Lorenzo, “Active
imaging using a metamaterial-based compressive reflector antenna,” in
IEEE Int. Symp. Antennas Propag. IEEE, 2016, pp. 1933–1934.
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