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Abstract

In this paper, we propose to use a set

of simple, uniform in architecture LSTM-

based models to recover different kinds

of temporal relations from text. Using

the shortest dependency path between en-

tities as input, the same architecture is im-

plemented to extract intra-sentence, cross-

sentence, and document creation time rela-

tions. A “double-checking” technique re-

verses entity pairs in classification, boost-

ing the recall of positive cases and reduc-

ing misclassifications between opposite

classes. An efficient pruning algorithm

resolves conflicts globally. Evaluated on

QA-TempEval (SemEval2015 Task 5), our

proposed technique outperforms state-of-

the-art methods by a large margin. We also

conduct intrinsic evaluation and post state-

of-the-art results on Timebank-Dense.

1 Introduction

Recovering temporal information from text is es-

sential to many text processing tasks that require

deep language understanding, such as answering

questions about the timeline of events or auto-

matically producing text summaries. This work

presents intermediate results of an effort to build a

temporal reasoning framework with contemporary

deep learning techniques.

Until recently, there has been remarkably few

attempts to evaluate temporal information extrac-

tion (TemporalIE) methods in context of down-

stream applications that require reasoning over

the temporal representation. One recent effort to

conduct such evaluation was SemEval2015 Task

5, a.k.a. QA-TempEval (Llorens et al., 2015a),

which used question answering (QA) as the tar-

get application. QA-TempEval evaluated systems

producing TimeML (Pustejovsky et al., 2003) an-

notation based on how well their output could

be used in QA. We believe that application-based

evaluation of TemporalIE should eventually com-

pletely replace the intrinsic evaluation if we are

to make progress, and therefore we evaluated our

techniques mainly using QA-TempEval setup.

Despite the recent advances produced by multi-

layer neural network architectures in a variety of

areas, the research community is still struggling to

make neural architectures work for linguistic tasks

that require long-distance dependencies (such as

discourse parsing or coreference resolution). Our

goal was to see if a relatively simple architecture

with minimal capacity for retaining information

was able to incorporate the information required

to identify temporal relations in text.

Specifically, we use several simple LSTM-

based components to recover ordering relations

between temporally relevant entities (events and

temporal expressions). These components are

fairly uniform in their architecture, relying on de-

pendency relations recovered with a very small

number of mature, widely available processing

tools, and require minimal engineering otherwise.

To our knowledge, this is the first attempt to apply

such simplified techniques to the TemporalIE task,

and we demonstrate this streamlined architecture

is able to outperform state-of-the-art results on a

temporal QA task with a large margin.

In order to demonstrate generalizability of our

proposed architecture, we also evaluate it intrin-

sically using TimeBank-Dense1 (Chambers et al.,

2014). TimeBank-Dense annotation aims to ap-

proximate a complete temporal relation graph by

including all intra-sentential relations, all relations

between adjacent sentences, and all relations with

document creation time. Although our system

1https://www.usna.edu/Users/cs/

nchamber/caevo/#corpus
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was not optimized for such a paradigm, and this

data is quite different in terms of both the annota-

tion scheme and the evaluation method, we obtain

state-of-the-art results on this corpus as well.

2 Related Work

A multitude of TemporalIE systems have been de-

veloped over the past decade both in response to

the series of shared tasks organized by the com-

munity (Verhagen et al., 2007, 2010; UzZaman

et al., 2012; Sun et al., 2013; Bethard et al., 2015;

Llorens et al., 2015b; Minard et al., 2015) and in

standalone efforts (Chambers et al., 2014; Mirza,

2016).

The best methods used by TemporalIE systems

to date tend to rely on highly engineered task-

specific models using traditional statistical learn-

ing, typically used in succession (Sun et al., 2013;

Chambers et al., 2014). For example, in a recent

QA-TempEval shared task, the participants rou-

tinely used a series of classifiers (such as support

vector machine (SVM) or hidden Markov chain

SVM) or hybrid methods combining hand crafted

rules and SVM, as was used by the top system in

that challenge (Mirza and Minard, 2015). While

our method also relies on decomposing the tem-

poral relation extraction task into subtasks, we use

essentially the same simple LSTM-based archi-

tecture for different components, that consume a

highly simplified representation of the input.

Although there has not been much work ap-

plying deep learning techniques to TemporalIE,

some relevant work has been done on a similar

(but typically more local) task of relation extrac-

tion. Convolutional neural networks (Zeng et al.,

2014) and recurrent neural networks both have

been used for argument relation classification and

similar tasks (Zhang and Wang, 2015; Xu et al.,

2015; Vu et al., 2016). We take inspiration from

some of this work, including specifically the ap-

proach proposed by Xu et al. (2015) which uses

syntactic dependencies.

3 Dataset

We used QA-TempEval (SemEval 2015 Task 5)2

data and evaluation methods in our experiments.

The training set contains 276 annotated TimeML

files, mostly news articles from major agencies or

Wikinews from late 1990s to early 2000s. This

2http://alt.qcri.org/semeval2015/

task5/

data contains annotations for events, temporal ex-

pressions (referred to as TIMEXes), and temporal

relations (referred to as TLINKs). The test set con-

tains unannotated files in three genres: 10 news

articles composed in 2014, 10 Wikipedia articles

about world history, and 8 blogs entries from early

2000s.

In QA-TempEval, evaluation is done via a QA

toolkit which contains yes/no questions about tem-

poral relations between two events or an event and

a temporal expression. QA evaluation is not avail-

able for most of the training data except for 25

files, for which 79 questions are available. We

used used this subset of the training data for vali-

dation. The test set contains unannotated files, so

QA is the only way to measure the performance.

The total of 294 questions is available for the test

data, see Table 6.

We also use TimeBank-Dense dataset, which

contains a subset of the documents in QA-

TempEval. In TimeBank-Dense, all entity pairs in

the same sentence or in consecutive sentences are

labeled. If there is no information about the rela-

tion between two entities, it is labeled as “vague”.

We follow the experimental setup in (Chambers

et al., 2014), which splits the corpus into train-

ing/validation/test sets of 22, 5, and 9 documents,

respectively.

4 TIMEX and Event Extraction

The first task in our TemporalIE pipeline (TEA) is

to identify time expressions (TIMEXes) and events

in text. We utilized the HeidelTime package

(Strötgen and Gertz, 2013) to identify TIMEXes.

We trained a neural network model to identify

event mentions. Contrary to common practice in

TemporalIE, our models do not rely on event at-

tributes, and thus we did not attempt to identify

them.

Feature Explanation

is main verb whether the token is the main verb of a sentence

is predicate whether the token is the predicate of a phrase

is verb whether the token is a verb

is noun whether the token is a noun

Table 1: Token features for event extraction

We perform tokenization, part-of-speech tag-

ging, and dependency parsing using NewsReader

(Agerri et al., 2014). Every token is represented

with a set of features derived from preprocess-

ing. Syntactic dependencies are not used for event

extraction, but are used later in the pipeline for
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Figure 1: System overview for our temporal extraction annotator (TEA) system

TLINK classification. The features used to identify

events are listed in Table 1.

The event extraction model uses long short-term

memory (LSTM) (Hochreiter and Schmidhuber,

1997), an RNN architecture well-suited for se-

quential data. The extraction model has two com-

ponents, as shown on the right of Figure 2. One

component is an LSTM layer which takes word

embeddings as input. The other component takes

4 token-level features as input. These components

produce hidden representations which are concate-

nated, and fed into an output layer which performs

binary classification. For each token, we use four

tokens on each side to represent the surrounding

context. The resulting sequence of nine word em-

beddings is then used as input to an LSTM layer. If

a word is near the edge of a sentence, zero padding

is applied. We only use the token-level features of

the target token, and ignore those from the context

words. The 4 features are all binary, as shown in

Table 1. Since the vast majority of event mentions

in the training data are single words, we only mark

single words as event mentions.

5 TLINK Classification

Our temporal relation (TLINK) classifier con-

sists of four components: an LSTM-based model

for intra-sentence entity relations, an LSTM-

based model for cross-sentence relations, another

LSTM-based model for relations with document

creation time, and a rule-based component for

TIMEX pairs. The four models perform TLINK

classifications independently, and the combined

results are fed into a pruning module to remove

the conflicting TLINKs. The three LSTM-based

components use the same streamlined architecture

over token sequences recovered from shortest de-

pendency paths between entity pairs.

Left Branch Right Branch

Max PoolMax Pool

Dropout

DropoutDropout

FC1

LSTM LSTM

FC1

FC2

Softmax

Word 
Embeddings

Token 
Features

Max PoolMax Pool

Dropout

DropoutDropout

FC1

LSTM

Concatenation

FC1

FC3

Sigmoid

FC2

Concatenation

Figure 2: Model architecture. Left: intra-sentence and cross-
sentence model. Right: Event extraction model.

5.1 Intra-Sentence Model

A TLINK extraction model should be able to learn

the patterns that correspond to specific temporal

relations, such as specific temporal prepositional

phrases and clauses with temporal conjunctions.

This suggests such models may benefit from en-

coding syntactic relations, rather than linear se-

quences of lexical items.

We use the shortest path between entities in a

dependency tree to capture the essential context.

Using the NewsReader pipeline, we identify the

shortest path, and use the word embeddings for

all tokens in the path as input to a neural net-

work. Similar to previous work in relation extrac-

tion (Xu et al., 2015), we use two branches, where

the left branch processes the path from the source

entity to the least common ancestor (LCA), and

the right branch processes the path from the target

entity to the LCA. However, our TLINK extrac-

tion model uses only word embeddings as input,

not POS tags, grammatical relations themselves,

or WordNet hypernyms.

For example, for the sentence “Their marriage

ended before the war”, given an event pair (mar-

riage, war), the left branch of the model will re-

ceive the sequence (marriage, ended), while the
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right branch will receive (war, before, ended). The

LSTM layer processes the appropriate sequence of

word embeddings in each branch. This is followed

by a separate max pooling layer for each branch,

so for each LSTM unit, the maximum value over

the time steps is used, not the final step value.

During the early stages of model design, we ob-

served that this max pooling approach (also used

in Xu et al. (2015)) resulted in a slight improve-

ment in performance. Finally, the results from

the max pooling layers of both branches are con-

catenated and fed to a hidden layer, followed by

a softmax to yield a probability distribution over

the classes. The model architecture is shown in

Figure 2 (left). We also augment the training data

by flipping every pair, i.e. if (e1, e2) → BEFORE,

(e2, e1) → AFTER is also included.

5.2 Cross-Sentence Model

TLINKs between the entities in consecutive sen-

tences can often be identified without any external

context or prior knowledge. For example, the or-

der of events may be indicated by discourse con-

nectives, or the events may follow natural order,

potentially encoded in their word embeddings.

To recover such relations, we use a model sim-

ilar to the one used for intra-sentence relations, as

described in Section5.1. Since there is no common

root between entities in different sentences, we use

the path between an entity and the sentence root to

construct input data. A sentence root is often the

main verb, or a conjunction.

5.3 Relations to DCT

The document creation time (DCT) naturally

serves as the “current time”. In this section, we

discuss how to identify temporal relations between

an event and DCT. The assumption here is that an

event mention and its local context can often suf-

fice for DCT TLINKs. For example, English has

inflected verbs for tense in finite clauses, and uses

auxiliaries to express aspects.

The model we use is again similar to the one in

Section5.2. Although one branch would suffice in

this case, we use two branches in our implementa-

tion. One branch processes the path from a given

entity to the sentence root, and the other branch

processes the same path in reverse, from the root

to the entity.

5.4 Relations between TIMEXes

Time expressions explicitly signify a time point or

an interval of time. Without the TIMEX entities

serving as “hubs”, many events would be isolated

from each other. We use rule-based techniques to

identify temporal relations between TIMEX pairs

that have been identified and normalized by Hei-

delTime. The relation between the DCT and other

time expressions is just a special case of TIMEX-

to-TIMEX TLINK and is handled with rules as well.

DATE value Calculation Representation

2017-08-04 START = 2017 + 7/12 + 3/365 (2017.591, 2017.591)

= 2017.591
END = START

2017-SU START = 2017 + 5/12 = 2017.416 (2017.416, 2017.666)

(Summer 2017) END = 2017 + 8/12 = 2017.666

Table 2: Examples of DATE values and their tuple represen-
tations

In the present implementation, we focus on the

DATE class of TIMEX tags, which is prevalent in

the newswire text. The TIME class tags which con-

tain more information are converted to DATE. Ev-

ery DATE value is mapped to a tuple of real val-

ues (start, end). The “value” attribute of TIMEX

tags follows the ISO-8601 standard, so the map-

ping is straightforward. Table 2 provides some

examples. We set the minimum time interval to

be a day. Practically, such a treatment suffices

for our data. After mapping DATE values to tu-

ples of real numbers, we can define 5 relations

between TIMEX entities T1 = (start1, end1) and

T2 = (start2, end2) as follows:

T1 × T2 →































































BEFORE if end1 < start2

AFTER if start1 > end2

INCLUDES if start1 < start2

and end1 > end2

IS INCLUDED if start1 > start2

and end1 < end2

SIMULTANEOUS if start1 = start2

and end1 = end2

(1)

The TLINKs from training data contain more

types of relations than the five described in Equa-

tion 1. However relations such as IBEFORE (“im-

mediately before”), IAFTER(“immediately after”)

and IDENTITY are only used on event pairs, not

TIMEX pairs. The QA system also does not tar-

get questions on TIMEX pairs. The purpose here

is to use the TIMEX relations to link the otherwise

isolated events.
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6 Double-checking

A major difficulty we have is that the TLINKs for

intra-sentence, cross-sentence, and DCT relations

in the training data are not comprehensive. Of-

ten, the temporal relation between two entities is

clear, but the training data provides no TLINK an-

notation. We downsampled the NO-LINK class in

training in order to address both the class imbal-

ance and the fact that TimeML-style annotation is

de-facto sparse, with only a fraction of positive in-

stances annotated.

In addition to that, we introduce a technique to

boost the recall of positive classes (not NO-LINK)

and to reduce the misclassification between the op-

posite classes. Since entity pairs are always classi-

fied in both orders, if both orders produce a TLINK

relation, rather than NO-LINK, we adopt the label

with a higher probability score, as assigned by the

softmax classifier. We call this technique “double-

checking”. It serves to reduce the errors that are

fundamentally harmful (e.g. BEFORE misclassi-

fied as AFTER, and vice versa). We also allow

a positive class to have the “veto power” against

NO-LINK class. For instance, if our model pre-

dicts (e1, e2) → AFTER but NO-LINK reversely,

we adopt the former.

NO-LINK ratio Recall Recall BEFORE AFTER

BEFORE AFTER as AFTER as BEFORE

0.5 0.451 0.445 0.075 0.092

0.1 0.643 0.666 0.145 0.159

0.1 + double-check 0.721 0.721 0.125 0.125

Table 3: Effects of downsampling and double-checking on
intra-sentence results. 0.5 NO-LINK ratio means that NO-
LINKs are downsampled to a half of the number of all positive
instances combined. BEFORE as AFTER shows the fraction of
BEFORE misclassified as AFTER, and vice versa.

Table 3 shows the effects of double-checking

and downsampling the NO-LINK cases on the

intra-sentence model. Double-checking technique

not only further boosts recall, but also reduces the

misclassification between the opposite classes.

7 Pruning TLINKs

The four TLINK classification models in Section 5

deal with different kinds of TLINKs, so their output

does not overlap. Nevertheless temporal relations

are transitive in nature, so the deduced relations

from given TLINKs can be in conflict.

Most conflicts arise from two types of

relations, namely BEFORE/AFTER and IN-

CLUDES/IS INCLUDED. Naturally, we can

convert TLINKs of opposite relations and put them

all together. If we use a directed graph to repre-

sent the BEFORE relations between all entities, it

should be acyclic. Sun (2014) proposed a strategy

that “prefers the edges that can be inferred by

other edges in the graph and remove the ones

that are least so”. Another strategy is to use the

results from separate classifiers or “sieves” to

rank TLINKs according to their confidence (Mani

et al., 2007; Chambers et al., 2014). High-ranking

results overwrite low-ranking ones.

We follow the same idea of purging the weak

TLINKs. Given a directed graph, our approach

is to remove the edges to break cycles, so that

the sum of weights from the removed edges is

minimal. This problem is actually an extension

of the minimum feedback arc set problem and

is NP-hard (Karp, 1972). We therefore adopt

a heuristic-based approach, applied separately to

the graphs induced by BEFORE/AFTER and IN-

CLUDES/IS INCLUDED relations.3 The softmax

layer provides a probability score for each re-

lation class, which represents the strength of a

link. TLINKs between TIMEX pairs are gener-

ated by rules, so we assume them to be reli-

able and assign them a score of 1. Although IN-

CLUDES/IS INCLUDED edges can generate con-

flicts in a BEFORE/AFTER graph as well, we cur-

rently do not resolve such conflicts because they

are relatively rare. We also do not use SIMULTA-

NEOUS/IDENTITY relations to merge nodes, be-

cause we found that it leads to very unstable re-

sults.

For a given relation (e.g., BEFORE), we incre-

mentally build a directed graph with all edges rep-

resenting that relation. We first initialize the graph

with TIMEX-to-TIMEX relations. Event vertices

are then added to this graph in a random order.

For each event, we add all edges associated with

it. If this creates a cycle, the edges are removed

one by one until there is no cycle, keeping track

of the sum of the scores associated with removed

edges. We choose the order in which the edges are

removed to minimize that value.4 The algorithm

is shown above.

In practice, the vertices do not have a high de-

3We found that ENDS and BEGINS TLINKs are too infre-
quent to warrant a separate treatment.

4By removing an edge, we mean resetting the relation to
NO-LINK. Another possibility may be to set the relation asso-
ciated with the edge to the one with the second highest prob-
ability score, however this may create additional cycles.
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X ← EVENTS;
V ← TIMEXes;
E ← TIMEX pairs;
Initialize G←< V, E >;
for x∈ X do

V ′ ← V + {x};
C ← {(x, v) ∪ (v, x)|v ∈ V } ;

E′ ← E ∪ C ;

G′ ←< V ′, E′ > ;
if cycle exists(G’) then

for Ci ∈ π(C) do
scorei = 0;
while Ci 6= φ & cycle exists(G ∪ Ci)

do
c← Ci.pop();
scorei+ = weight(c);

end

end

end
G← G ∪ Ci s.t. i = argmin(scorei);

end

Algorithm 1: Algorithm to prune edges. π(C) denotes

some permutations of C, where C is a list of weighted

edges.

gree for a given relation, so permuting the candi-

dates N × (N − 1) times (i.e., not fully), where

N is the number of candidates, produces only a

negligible slowdown. We also make sure to try

the greedy approach, dropping the edges with the

smallest weights first.

8 Model Settings

In this section, we describe the model settings used

in our experiments. All models requiring word

embeddings use 300-dimensional word2vec vec-

tors trained on Google News corpus (3 billion run-

ning words).5 Our models are written in Keras on

top of Theano.

TIMEX and Event Annotation The LSTM

layer of the event extraction model contains 128

LSTM units. The hidden layer on top of that has

30 neurons. The input layer corresponding to the

4 token features is connected with a hidden layer

with 3 neurons. The combined hidden layer is then

connected with a single-neuron output layer. We

set a dropout rate 0.5 on input layer, and another

drop out rate 0.5 on the hidden layer before output.

As mentioned earlier, we do not attempt to tag

event attributes. Since the vast majority of tokens

are outside of event mention boundaries, we set

higher weights for the positive class. In order to

answer questions about temporal relations, it is not

5https://github.com/mmihaltz/

word2vec-GoogleNews-vectors

particularly harmful to introduce spurious events,

but missing an event makes it impossible to an-

swer any question related to it. Therefore we in-

tentionally boost the recall while sacrificing preci-

sion. Table 4 shows the performance of our event

extraction, as well as the performance of Heidel-

Time TIMEX tagging. For events, partial overlap

of mention boundaries is considered an error.

Annotation Prec Rec F1

TIMEX 0.838 0.850 0.844

Event 0.729 0.963 0.830

Table 4: TIMEX and event evaluation on validation set.

Intra-Sentence Model We identify 12 classes

of temporal relations, plus a NO-LINK class. For

training, we downsampled NO-LINK class to 10%

of the number of positive instances. Our system

does not attempt to resolve coreference. For the

purpose of identifying temporal relations, SIMUL-

TANEOUS and IDENTITY links capture the same

relation of simultaneity, which allowed us to com-

bine them. The LSTM layer of the intra-sentence

model contains 256 LSTM units on each branch.

The hidden layer on top of that has 100 neurons.

We set a dropout rate 0.6 on input layer, and an-

other drop out rate 0.5 on the hidden layer before

output.

Cross-Sentence Model The training and evalu-

ation procedures are very similar to what we did

for intra-sentence models, and the hyperparame-

ters for the neural networks are the same. Now the

vast majority of entity pairs have no TLINKs ex-

plicitly marked in training data. Unlike the intra-

sentence scenario, however, a NO-LINK label is

truly adequate in most cases. We found that down-

sampling NO-LINK instances to match the number

of all positive instances (ratio=1) yields desirable

results. Since positive instances are very sparse

in both the training and validation data, the ratio

should not be too low, so as not to risk overfitting.

DCT Model We use the same hyperparameters

for the DCT model as for the intra-sentence and

cross-sentence models. Again, the training files do

not sufficiently annotate TLINKs with DCT even if

the relations are clear, so there are many false neg-

atives. We downsample the NO-LINK instances so

that they are 4 times the number of positive in-

stances.
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system coverage prec rec f1

human-fold1-original 0.43 0.91 0.38 0.54

human-fold1-timlinks 0.52 0.93 0.47 0.62

TIPSem-fold1-original 0.35 0.57 0.22 0.32

TIPSem-fold1-timex 0.53 0.69 0.38 0.50

orig. validation data 0.37 0.93 0.34 0.50

orig. tags TEA tlinks 0.81 0.58 0.47 0.52

TEA-initial 0.78 0.60 0.47 0.52

TEA-double-check 0.89 0.60 0.53 0.56

TEA-prune 0.82 0.58 0.48 0.53

TEA-flat 0.81 0.44 0.35 0.39

TEA-Dense 0.68 0.70 0.48 0.57

TEA-final 0.84 0.64 0.53 0.58

Table 5: QA results on validation data. There are 79 ques-
tions in total. The 4 systems on the top of the table are pro-
vided with the toolkit. The systems starting with “human-
” are annotated by human experts. TEA-final utilizes both
double-check and pruning. TEA-flat uses the flat context.
TEA-Dense is trained on TimeBank-Dense.

9 Experiments

In this section, we first describe the model se-

lection experiments on QA-TempEval validation

data, selectively highlighting results of interest.

We then present the results obtained with the op-

timized model on the QA-TempEval task and on

TimeBank-Dense.

9.1 Model Selection Experiments

As mentioned before, “gold” TLINKs are sparse,

so we cannot merely rely on the F1 scores on val-

idation data to do model selection. Instead, we

used the QA toolkit. The toolkit contains 79 yes-

no questions about temporal relations between en-

tities in the validation data. Originally, only 6

questions have “no” as the correct answer, and 1

question is listed as “unknown”. After investigat-

ing the questions and answers, however, we found

some errors and typos6. After fixing the errors,

there are 7 no-questions and 72 yes-questions in

total. All evaluations are performed on the fixed

data.

The evaluation tool draws answers from the an-

notations only. If an entity (event or TIMEX) in-

volved in a question is not annotated, or the TLINK

cannot be found, the question will then be counted

as not answered. There is no way for partici-

pants to give an answer directly, other than de-

6Question 24 from XIE19980821.0077.tml should be
answered with “yes”, but the answer key contains a typo
“is”. Question 34 from APW19980219.0476.tml has BE-
FORE that should be replaced with AFTER. Question 29 from
XIE19980821.0077.tml has “unknown” in the answer key,
but after reading the article, we believe the correct answer is
“no”.

livering the annotations. The program generates

Timegraphs to infer relations from the annotated

TLINKs. As a result, relations without explicit

TLINK labels can still be used if they can be in-

ferred from the annotations. The QA toolkit uses

the following evaluation measures:

coverage =
#answered
#questions

, precision =
#correct

#answered

recall =
#correct

#questions
, f1 =

2×precision×recall
precision+recall

Table 5 shows the results produced by different

models on the validation data. The results of the

four systems above the first horizontal line are pro-

vided by the task organizer. Among them, the top

two use annotations provided by human experts.

As we can see, the precision is very high, both

above 0.90. Our models cannot reach that preci-

sion. In spite of the lower precision, automated

systems can have much higher coverages i.e. an-

swer a lot more questions.

As a starting point, we evaluated the valida-

tion files in their original form, and the results are

shown as “orig. validation data” of Table 5. The

precision was good, but with very low coverage.

This supports our claim that the TLINKs provided

by the training/validation files are not complete.

We also tried using the event and TIMEX tags from

the validation data, but performing TLINK classifi-

cation with our system. As shown with “orig. tags

TEA tlinks” in the table, now the coverage rises to

64 (or 0.81), and the overall F1 score reaches 0.52.

The TEA-initial system uses our own annotators.

The performance is similar, with a slight improve-

ment in precision. This result shows our event and

TIMEX tags work well, and are not inferior to the

ones provided by the training data.

The double-checking technique boosts the cov-

erage a lot, probably because we allow positive

results to veto NO-LINKs. Combining double-

checking with the pruning technique yields the

best results, with F1 score 0.58, answering 42 out

of 79 questions correctly.

In order to validate the choice of the depen-

dency path-based context, we also experimented

with a conventional flat context window, using the

same hyperparameters. Every entity is represented

by a 11-word window, with the entity mention in

the middle. If two entities are near each other, their

windows are cut short before reaching the other

entity. Using the flat context instead of depen-

dency paths yields a much weaker performance.
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This confirms our hypothesis that syntactic depen-

dencies represent temporal relations better than

word windows. However, it should be noted that

we did not separately optimize the models for the

flat context setting. The large performance drop

we saw from switching to flat context did not war-

rant performing a separate parameter search.

We also wanted to check whether a comprehen-

sive annotation of TLINKs in the training data can

improve model performance on the QA task. We

therefore trained our model on TimeBank-Dense

data and evaluated it with QA (see the TEA-Dense

line in Table 5). Interestingly, the performance

is nearly as good as our top model, although

TimeBank-Dense only uses five major classes of

relations. For one thing, it shows that our sys-

tem may perform equally after being trained on

sparsely labeled data and on densely labeled data,

judged from the QA evaluation tool. If this is true,

excessively annotated data may not be necessary

in some tasks.

doc words quest yes no dist- dist+

news 10 6920 99 93 6 40 59

wiki 10 14842 130 117 13 58 72

blogs 8 2053 65 65 0 30 35

total 28 23815 294 275 19 128 166

Table 6: Test data statistics. Adapted from Table 1 in Llorens
et al. (2015a).

9.2 QA-TempEval Experiments

We use the QA toolkit provided by the QA-

TempEval organizers to evaluate our system on the

test data. The documents in test data are not an-

notated at all, so the event tags, TIMEX tags, and

TLINKs are all created by our system.

Table 6 shows the the statistics of test data. As

we can see, the vast majority of the questions in

the test set should be answered with yes. Gener-

ally speaking, it is much more difficult to validate

a specific relation (answer yes) than to reject it

(answer no) when we have as many as 12 types of

relations in addition to the vague NO-LINK class.

dist- means questions involving entities that are

in the same sentence or in consecutive sentences.

dist+ means the entities are farther away.

The QA-TempEval task organizers used two

evaluation methods. The first method is exactly

the same as the one we used on validation data.

The second method used a so-called Time Expres-

sion Reasoner (TREFL) to add relations between

TIMEXes, and evaluated the augmented results.

The goal of such an extra run is to “analyze how

a general time expression reasoner could improve

results”. Our model already includes a component

to handle TIMEX relations, so we will compare our

results with other systems’ in both methods.

News Genre (99 questions)

system prec rec f1 % answd # correct

hlt-fbk-ev1-trel1 0.59 0.17 0.27 29 17

hlt-fbk-ev1-trel2 0.43 0.23 0.30 55 23

hlt-fbk-ev2-trel1 0.56 0.20 0.30 36 20

hlt-fbk-ev2-trel2 0.43 0.29 0.35 69 29

ClearTK 0.60 0.06 0.11 10 6

CAEVO 0.59 0.17 0.27 29 17

TIPSemB 0.50 0.16 0.24 32 16

TIPSem 0.52 0.11 0.18 21 11

TEA 0.61 0.44 0.51 73 44

Wikipedia Genre (130 questions)

system prec rec f1 % answd # correct

hlt-fbk-ev1-trel1 0.55 0.16 0.25 29 21

hlt-fbk-ev1-trel2 0.52 0.22 0.35 50 34

hlt-fbk-ev2-trel1 0.58 0.17 0.26 29 22

hlt-fbk-ev2-trel2 0.62 0.36 0.46 58 47

ClearTK 0.60 0.05 0.09 8 6

CAEVO 0.59 0.17 0.26 28 22

TIPSemB 0.52 0.13 0.21 25 17

TIPSem 0.74 0.19 0.30 26 25

TEA 0.62 0.44 0.51 71 57

Blog Genre (65 questions)

system prec rec f1 % answd # correct

hlt-fbk-ev1-trel1 0.57 0.18 0.28 32 12

hlt-fbk-ev1-trel2 0.43 0.18 0.26 43 12

hlt-fbk-ev2-trel1 0.47 0.14 0.21 29 9

hlt-fbk-ev2-trel2 0.34 0.20 0.25 58 13

ClearTK 0.56 0.08 0.14 14 5

CAEVO 0.48 0.18 0.27 38 12

TIPSemB 0.31 0.08 0.12 25 5

TIPSem 0.45 0.14 0.21 31 9

TEA 0.43 0.20 0.27 46 13

Table 7: QA evaluation on test data without TREFL

The results are shown in Table 7. We give the

results for the hlt-fbk systems that were submitted

by the top team. Among them, hlt-fbk-ev2-trel2

was the overall winner of TempEval task in 2015.

ClearTK, CAEVO, TIPSEMB and TIPSem were

some off-the-shelf systems provided by the task

organizers for reference. These systems were not

optimized for the task (Llorens et al., 2015a).

For news and Wikipedia genres, our system out-

performs all other systems by a large margin. For

blogs genre, however, the advantage of our sys-

tem is unclear. Recall that our training set con-

tains news articles only. While the trained model

works well on Wikipedia dataset too, blog dataset

is fundamentally different in the following ways:

(1) each blog article is very short, (2) the style of

writing in blogs is much more informal, with non-

standard spelling and punctuation, and (3) blogs
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All Genres (294 questions)

system prec rec f1 % awd # corr

hlt-fbk-ev2-trel2 0.49 0.30 0.37 62 89

hlt-fbk-ev2-trel2-TREFL 0.51 0.34 0.40 67 99

TEA 0.59 0.39 0.47 66 114

TEA-TREFL 0.58 0.38 0.46 66 111

Table 8: Test results over all genres.

are written in first person, and the content is usu-

ally personal stories and feelings.

Interestingly, the comparison between differ-

ent hlt-fbk submissions suggests that resolving

event coreference (implemented by hlt-fbk-ev2-

trel2) substantially improves system performance

for the news and Wikipedia genres. However,

although our system does not attempt to handle

event coreference explicitly, it easily outperforms

the hlt-fbk-ev2-trel2 system in the genres where

coreference seems to matter the most.

Evaluation with TREFL The extra evaluation

with TREFL has a post-processing step that adds

TLINKs between TIMEX entities. Our model

already employs such a strategy, so this post-

processing does not help. In fact, it drags down

the scores a little. Table 8 summarizes the results

over all genres before and after applying TREFL.

For comparison, we include the top 2015 system,

hlt-fbk-ev2-trel2. As we can see, TEA generally

shows substantially higher scores.

9.3 TimeBank-Dense Experiments

We trained and evaluated the same system on

TimeBank-Dense to see how it performs on a sim-

ilar task with a different set of labels and another

method of evaluation. In this experiment, we used

the event and TIMEX tags from test data, as Mirza

and Tonelli (2016).

Since all the NO-LINK (vague) relations are la-

beled, downsampling was not necessary. We did

use double-checking in the final conflict resolu-

tion, but without giving positive cases the veto

power over NO-LINK. Because NO-LINK relations

dominate, especially for cross-sentence pairs, we

set class weights to be inversely proportional to the

class frequencies during training. We also reduced

input batch size to counteract class imbalance.

We ran two sets of experiments. One used

the uniform configurations for all the neural net-

work models, similar to our experiments with QA-

TempEval. The other tuned the hyperparameters

for each component model (number of neurons,

dropout rates, and early stop) separately.

system ClearTK NavyT CAEVO CATENA TEA-Dense

uniform tuned

F1 0.447 0.453 0.507 0.511 0.505 0.519

Table 9: TEA results on TimeBank-Dense. ClearTK, NavyT,
and CAEVO are systems from Chambers et al. (2014).
CATENA is from Mirza and Tonelli (2016)

The results from TimeBank-Dense are shown

in Talble 9. Even though TimeBank-Dense has

a very different methodology for both annotation

and evaluation, our “out-of-the-box” model which

uses uniform configurations across different com-

ponents obtains F1 0.505, compared to the best F1

of 0.511 in previous work. Our best result of 0.519

is obtained by tuning hyperparameters on intra-

sentence, cross-sentence, and DCT models inde-

pendently.

For the QA-TempEval task, we intentionally

tagged a lot of events, and let the pruning algo-

rithm resolve potential conflicts. In the TimeBank-

Dense experiment, however, we only used the pro-

vided event tags, which are sparser than what we

have in QA-TempEval. The system may have lost

some leverage that way.

10 Conclusion

We have proposed a new method for extraction of

temporal relations which takes a relatively sim-

ple LSTM-based architecture, using shortest de-

pendency paths as input, and re-deploys it in a

set of subtasks needed for extraction of temporal

relations from text. We also introduce two tech-

niques that leverage confidence scores produced

by different system components to substantially

improve the results of TLINK classification: (1) a

“double-checking” technique which reverses pairs

in classification, thus boosting the recall of posi-

tives and reducing misclassifications among oppo-

site classes and (2) an efficient pruning algorithm

to resolve TLINK conflicts. In a QA-based evalu-

ation, our proposed method outperforms state-of-

the-art methods by a large margin. We also obtain

state-of-the art results in an intrinsic evaluation on

a very different TimeBank-Dense dataset, proving

generalizability of the proposed model.
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