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Climate of the northern hardwood forests of North America will become significantly warmer in the
coming decades. Associated increases in soil temperature, decreases in water availability and changes in
winter snow pack and soil frost are likely to affect soil carbon (C) and nitrogen (N) cycling. Most studies
of the effects of climate change on soil function have focused on the upper-organic part of the soil profile
(e.g., forest floor), and little is known about effects on deeper mineral soil horizons. We exploited an
elevation/orientation gradient at the Hubbard Brook Experimental Forest (New Hampshire, USA) to
evaluate how variation in climate, similar to that projected to occur over the next 50—100 years, affects
soil C and N pools and transformation rates in different soil horizons of northern hardwood forests.
Lower elevation, south-facing plots with higher soil temperature, less soil moisture and snow, and
increased frequency of soil freeze/thaw events had less soil inorganic N content and lower potential net N
mineralization rates compared to higher elevation, north facing plots. These differences in N pools and
fluxes were consistent for all soil horizons, but sensitivity to climate variation increased with soil depth,
confirming that assessments of climate change effects that do not consider variation throughout the soil
profile are likely to be incomplete and potentially inaccurate. Nitrogen cycling processes were more
sensitive to climate variation than C cycling processes, suggesting a decoupling of C and N cycles in
coming decades, with important implications for ecosystem function. Soil processes showed greater
sensitivity to climate variation in summer than in spring, and in the warmer and less snowy year of
sampling, suggesting that the effects of climate change might become more pronounced as temperatures
increase and snow fall and water availability decrease in the coming decades.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

Global climate is projected to become significantly warmer in
the coming decades (Intergovernmental Panel on Climate Change,
2013). In northeastern North America, air temperatures are pro-
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jected to increase 2.1-5.3 °C by 2100, with substantial and statis-
tically significant reductions in the depth and duration of the
winter snow pack (Hayhoe et al., 2007). These changes are expected
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to be accompanied by colder soils and an increased frequency of
soil freeze-thaw events in the winter, due to reductions in the
insulating effect of snow, and by warmer and drier soils during the
growing season (Brown and DeGaetano, 2011; Campbell et al,
2010; Duran et al., 2014). However, despite the importance of
abiotic conditions (e.g. temperature or moisture) as drivers of soil
function, we still have an incomplete understanding of the re-
sponses of terrestrial ecosystems to climate-driven changes in soils
(Rustad et al., 2001; Schlesinger and Bernhardt, 2012; Sternberg
et al., 2011).

Temperate forest biomes provide a myriad of ecosystem ser-
vices, such as the regulation of water regimes and climate, the
preservation of soil quality, and the maintenance of nutrient cycling
and biodiversity (Jacobs et al., 2013). Also, temperate forests
contain approximately 10% of global soil carbon (C) stocks, and are
responsible for most of the terrestrial C sequestration at mid-
latitudes in the Northern Hemisphere (Monson et al., 2006;
Rasmussen et al., 2006). Nitrogen (N) frequently constrain pri-
mary production of temperate forests (LeBauer and Treseder, 2008;
Vitousek and Howarth, 1991), whose capacity to sequester C de-
pends on soil N availability (Fernandez-Martinez et al., 2014). On
the other hand, excess N contributes to many environmental
problems (e.g. acidification, NOx emissions, eutrophication;
Galloway et al., 2008; Porter et al., 2013).

Experimental and observational studies carried out in forests in
northeastern North America have shown that changes in soil cli-
matic conditions can significantly influence plant and microbial
functions that alter soil C and N pools and cycling rates during both
the winter and the growing season (Brooks et al., 2011; Duran et al.,
2014; Groffman et al., 2012; Joseph and Henry, 2008; Morillas et al.,
2015). Previous research has shown that higher air temperatures
and reductions in soil moisture and in snow depth and duration
lead to lower microbial biomass and activity, protease and oxidative
enzyme production, microbial respiration and nitrification rates in
surface organic horizons of northern hardwood forests (Duran
et al,, 2014, 2016; Sorensen et al., 2016). However, most of this
knowledge comes from studies of the upper-organic portion of the
soil profile, where many biogeochemical processes relevant to
ecosystem functions are concentrated, and few studies have
compared responses across soil horizons, including mineral soil
layers (Harrison et al., 2003, 2011; Jandl et al., 2014; Rodriguez et al.,
2014). Although biogeochemical processes are greater on a per unit
soil mass basis in the organic-rich surface horizons, the much larger
mass of soil is associated with deeper soil horizons. As a result, a
substantial part of the total soil profile biological activity occurs in
lower mineral horizons, which increases their potential role in soil
responses to climate change (Buchholz et al., 2014; Jobbdgy and
Jackson, 2000; Lawrence et al., 2013; Mobley et al., 2015; Morse
et al, 2014). Thus, the lack of studies that explicitly include
deeper soil layers has likely resulted in an incomplete under-
standing of how forest soils function and respond to environmental
change (Harrison et al., 2003).

In addition to changes in the concentration of organic matter
and biological activity, environmental controls over biogeochem-
ical process rates also likely vary with depth. Plant nutrient
acquisition in northern forests occurs mostly in the upper layers of
soil where the majority of fine roots occur (Tierney et al., 2003).
Thus, while the response of surface horizons to climate change is
strongly affected by plants, the response of deeper horizons is likely
to be less tightly coupled to plant activity and responses and more
dominated by abiotic conditions (Dungait et al., 2012). Further,
whereas higher rates of biological processes in surface horizons are
driven in part by the higher proportion of labile carbon at shallow
depths, recent evidence suggests that more recalcitrant soil organic
matter pools, which dominate at depth, may be more sensitive to

changing soil climate than labile pools (Bauer et al., 2008; Dungait
et al.,, 2012). On the other hand, daily, seasonal and annual fluctu-
ations in soil temperature and moisture are greater for surface than
deeper horizons.

In this study, we aimed to evaluate, under natural conditions,
how projected increases in temperature and decreases in snow
accumulation affect soil C and N pools and transformation rates in
different soil horizons of northern hardwood forests. To do so, we
exploited a natural elevation/orientation gradient at the Hubbard
Brook Experimental Forest (HBEF, New Hampshire, USA), which
encompasses relatively uniform soil and forest vegetation and
produces a difference in mean annual temperature very similar to
that projected over the next 50—100 years (Hayhoe et al., 2007) for
the northeast U.S. Our study builds on previous analyses of re-
lationships among soil temperature and moisture, snow depth, soil
freezing, and N and C cycling at the HBEF based on both experi-
mental snow pack manipulations and observational studies along
the elevation gradient (Campbell et al., 2014; Cleavitt et al., 2008;
Duran et al., 2014; Fitzhugh et al., 2001; Groffman et al., 2011;
Morse et al., 2015; Sorensen et al., 2016; Tierney et al., 2001). We
hypothesized that, throughout the soil profile, warmer soil tem-
peratures and shallower winter snow pack in lower elevation,
south-facing plots would be linked to smaller C and N pools and
lower net mineralization rates compared to higher elevation,
north-facing plots. We also hypothesized that deeper soil horizons,
with less organic matter but likely more recalcitrant C, and lower
biotic control over biogeochemical processes would be more sen-
sitive to climate change than shallower, more organic soil layers.

2. Methods

We conducted this study at the HBEF, in the White Mountain
National Forest, New Hampshire, USA (43.56° N, 71.45° W). Eleva-
tion within the 3162 ha HBEF ranges from 225 m to 1100 m. The
climate is cool, humid, and continental with average maximum air
temperature = 19 °C, average minimum air temperature = —9 °C;
mean annual temperature has increased by approximately
0.3 °C decade™! over the last 50 years (Hamburg et al., 2013).
Average annual precipitation is 1400 mm. The snow pack usually
persists from late December until mid-April.

In October 2010, we established 20 independent (separated
by > 300 m) 10 m diameter sites within the HBEF; 12 were higher
elevation, north-facing plots, and 8 were lower elevation, south-
facing plots. This experimental design allowed to use the natural
elevation/orientation gradient of HBEF as a surrogate/analog for
climate change. For this study, we used data from only the highest 8
north-facing plots, along with all 8 south-facing, low elevation plots
to produce an elevation gradient that spanned 375—775 m asl. This
plot selection allowed us to maximize the differences in climatic
conditions while keeping a balanced design to facilitate statistical
analysis. The design produced a range in mean annual air temper-
ature of ~2.5 °C, which is similar to the change that is projected to
occur over the next 50—100 years in northeastern North America
(Hayhoe et al., 2007). All the plots have similar soils: well to
moderately well-drained acidic (pH 3.9) Typic Haplorthods with
loamy sand texture and an organic layer consisting of leaf-litter (Oj),
a dense root-mat and decomposing organic material (Oe), and a
nutrient rich humus layer (O,A) overlying a soil mineral layer
(Bohlen et al., 2001). Vegetation is also similar among the plots and
is dominated by sugar maple (Acer saccharum; Schwarz et al.,
2003).

We measured soil temperature and volumetric water content
(WC) at 5 cm depth continuously with Decagon 5TM® combination
probes coupled to Decagon EM50® dataloggers. We used a Federal
snow sampling tube (Rickly Hydrological Company, Columbus,
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Ohio, USA) to measure snow depth and water equivalent, and
methylene blue dye-filled frost tubes (Hardy et al., 2001; Ricard
et al., 1976) to measure frost depth, at three locations at each site
at bi-weekly intervals through the winters of 2010/2011 and 2011/
2012. We integrated seasonal time series measurements of snow
depth, soil frost depth, and snow water equivalent by converting
them to a single continuous variable (area under the curve = AUC)
following the procedure of Duran et al. (2014). As a measure of
winter soil temperature variability, and as an indicator of the likely
occurrence of freeze/thaw events, we calculated the SDL co-
efficients of variation (standard deviation of log-transformed ob-
servations (McArdle and Gaston, 1995); of daily soil winter
temperatures (hereafter referred as to ‘frzthaw’; Duran et al., 2013).

Ten cylindrical (5 cm diameter, 20 cm depth) soil samples were
collected from each plot in May of 2011 and 2012 (‘Spring 2011’ and
‘Spring 2012’, respectively) and in August of 2011 and 2012
(‘Summer 2011’ and ‘Summer 2012’, respectively). Soil samples,
after discarding undecomposed plant litter, were separated into
three layers: the surface organic layer consisting of dense root-mat
and decomposing organic material (O.), a nutrient rich humus layer
(0,), and the first 10 cm of the underlying mineral layer (B). Sam-
ples were then transported in coolers to the laboratory, hand-
sorted to remove roots and rocks and homogenized, and stored at
4 °C until analysis (less than 1 week). To express results on a dry
mass basis, soil moisture (SM) was determined by drying at 60 °C
until constant mass of soils was obtained (McInnes and Weaver,
1994). Soil organic matter content was determined by loss on
ignition at 450 °C for 4 h (Nelson and Summers, 1996). We extracted
soil total inorganic N [TIN = ammonium (NHZ) + nitrate (NO3)] by
mixing 7.5 g of soil with 30 ml of 2 M KCl; measured potential
microbial respiration (PMR), net N mineralization (PM) and net
nitrification (PN) rates in 10 day laboratory incubations; and
measured soil microbial biomass N (MBN) and C (MBC) using the
chloroform fumigation-incubation method (Jenkinson and
Powlson, 1976), as described by Duran et al. (2014).

To test the effect of elevation/orientation on response variables
for each soil layer, a distance-based permutational repeated mea-
sures ANOVA was fitted with elevation as the main categorical fixed
factor, taking into account time dependencies between samplings
(PERMANOVA; Anderson et al., 2008). Relationships between soil
biogeochemical measurements and elevation were investigated
using an a posteriori pairwise comparison with the PERMANOVA t-
statistic. The same analyses were carried out to test the effect of soil
horizon on response variables and to investigate differences among
soil horizons (Oe, O,, B). To account for spatial dependencies among
horizons, the PERMANOVA was fitted with horizon as a categorical
random factor. A maximum of 9999 permutations were used to
obtain pseudo-F and P-values in each data set.

To estimate the sensitivity of the different soil layers and the
different variables to elevation-driven variation in climatic condi-
tions, we calculated the percent change of all analyzed variables
using the following equation:

Vlow — Vhigh
~ Vhigh x 100

where: Vlow is the average value for all low elevation, south-facing
plots and Vhigh is the average value for all high elevation, north-
facing plots. We also developed and calculated a ‘multisensitivity*
index averaging the percent change of a subset of independent
variables (MBC, PMR, TIN, MBN, PM and SM). This index allowed us
to aggregate information on variation in the sensitivity (estimated
through normalized percent changes) of multiple key ecosystem
function variables in different soil layers in different sampling
seasons.

All statistical analyses were carried out using Primer 6 and
Permanova + (PRIMER-E Ltd, Plymouth, UK) statistical package.

3. Results

On average, low elevation, south-facing plots consistently had
higher soil temperature, lower soil moisture and snow-AUC, but
greater frequency of soil freeze/thaw events (‘Frzthaw’) than high
elevation, north-facing plots (Fig. 1) during the two years of sam-
pling. No significant differences between high elevation, north-
facing and low elevation, south-facing plots were found for soil
frost-AUC or snow water equivalent-AUC.

There were statistically significant differences (P < 0.05) among
soil horizons for all studied response variables, with the highest
values found in the O, horizon and the lowest in the mineral ho-
rizon, with intermediate values in the O,A horizon, for all sampling
dates and annual averages (Table 1; Fig. S1). There were significant
differences in soil NO3-N content, total inorganic N content and
potential nitrification rates between elevations, with consistently
higher values in the high elevation, north-facing plots (Table 1;
Fig. S1). No significant differences were found between elevations
for the remainder of the studied variables.

The percent change analyses revealed that, on average, the
mineral soil was the most sensitive soil horizon to the effects of the
elevation on all variables (Fig. 2). Although the sensitivity of the
different horizons for the different variables varied among sam-
pling dates (Fig. 3), the percent change between low elevation,
south-facing plots and high elevation, north-facing plots tended to
be higher in the second year and during summer compared to the
first year and spring (Fig. 2). Our multisensitivity index confirmed
that the mineral horizon was the most sensitive soil horizon, fol-
lowed by the O,A and the O horizons (Fig. 2), and that sensitivity to
the effects of elevation was higher in Summer than in Spring, and in
2012 compared to 2011 (Fig. 3).

4. Discussion

The elevation/orientation gradient across the HBEF is an effec-
tive platform for investigation of climate variation on ecosystem
properties and processes (Duran et al., 2016; Morse et al., 2015;
Sorensen et al.,, 2016). The subset of plots used for this study pro-
vided a range of soil temperature, snow and frost conditions
comparable to that expected with climate change in coming de-
cades. Low elevation, south-facing plots, consistently had higher
surface soil temperature and lower soil moisture than high eleva-
tion, north-facing plots. These changes are associated with signif-
icantly less snow and an increase in the number of soil freeze/thaw
cycles on the low elevation plots, but not with significant increases
in soil frost depth (Campbell et al., 2010; Duran et al.,, 2014;
Groffman et al., 2011).

Our previous work has shown that climate variation along the
HBEF gradient affects a wide range of soil biogeochemical proper-
ties, leading to lower amounts of soil inorganic N and lower po-
tential N transformation rates, at least in the upper, more organic
layers of the soil (Duran et al., 2014, 2016; Sorensen et al., 2016).
Here we show that these effects are also evident in deeper soil
horizons, supporting the idea that projected climate warming may
result in lower N availability in northern hardwood forests during
the next century (Groffman et al., 2009). Several complementary,
climate-related mechanistic explanations have been proposed to
explain these effects. First, reduced winter snow pack and more
freeze/thaw events in warmer low elevation plots could stress and/
or kill microbial populations, while the microbial communities and
belowground biological processes remain intact under the insu-
lating snow pack in colder, high elevation, north-facing plots
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Fig. 1. Soil temperature and moisture, snow, frost and snow water equivalent ‘area under the curve’ (AUC), and the variability of soil winter temperature (Frzthaw) measured in low
elevation-south facing (black bars) and high elevation-north facing (grey bars) plots. Values are mean with standard error of spring and summer sample dates in 2011 and 2012.
Asterisks refer to statistically significant (P < 0.05; PERMANOVA) differences between low elevation-south facing and high elevation-north facing plots.

(Brooks et al., 1998; Stuanes et al., 2008). These effects on soil mi-
crobial populations also likely decrease rates of microbial decom-
position and mineralization activity during the following growing
season (Duran et al., 2014). Second, increased tree root mortality
due to reductions in snow pack during winter could be followed by
high compensatory root production and N uptake during the
growing season that could reduce microbial N processing (Sorensen
et al., 2016; but see Campbell et al., 2014). Finally, reductions in
water availability during the growing season may also decrease
nitrification rates and soil NO3N pools in the low elevation
compared to the high elevation plots (Stark and Firestone, 1995).
As is true for all natural gradient studies, this study has limita-
tions based on concerns that factors other than climatic conditions,
such as differences in pH, plant productivity or in the quality of
organic matter (OM) inputs, might covary with climatic conditions
and influence the observed elevation/orientation effects. However,
soils and vegetation are quite similar along the gradient (we
focused on maple dominated plots) and past studies have not found
significant variation in C and N stocks with elevation or orientation
within the hardwood vegetation zones at the HBEF (Bohlen et al.,
2001; Johnson et al., 2000). Nevertheless, we acknowledge that a

more detailed analysis of the multiple factors that vary with
elevation and orientation, as well as more specific measurements of
plant, microbial and enzymatic activities, would improve our ability
to understand and predict the effects of climate change on
ecosystem functioning.

Analyses of percent change and the multisensitivity index
clearly show that the sensitivity of these forest soils to climate
variation increases with soil depth. This differential sensitivity
could be explained by several mechanisms. First, recalcitrant SOM,
whose proportion increases with soil depth, is known to be more
sensitive to change in soil climatic conditions than labile SOM
(Bauer et al., 2008; Dungait et al., 2012). We have not carried out
any specific analysis of the recalcitrance of different soil horizons.
However, the ratios between the rates of microbial activity and the
amount of microbial biomass, consistently higher in surface than in
deeper horizons, seem to support the idea that the organic matter
in the deep horizons could be indeed more recalcitrant (Fig. S2).
Second, deeper soil layers with less organic matter have lower
water holding capacity and are therefore more susceptible to
temperature-driven moisture losses (Johnson et al., 1991; Morse
et al, 2014). Certainly, only the mineral soil samples showed



J. Duran et al. / Soil Biology & Biochemistry 107 (2017) 77—84 81

Table 1

Soil microbial biomass N (MB-N), microbial biomass-C (MB-C), total inorganic N (TIN), nitrate (NO3 -N), ammonium (NH4"-N), potential mineralization (PM), potential
nitrification (PM) and potential microbial respiration (PMR) in low elevation-south facing (Low) and high elevation-north facing (High) plots in the O, O,A and Mineral soil
horizons in the spring and summer of 2011 and 2012, together with the horizon and sampling averages. Lowercase letters show statistical differences between elevations,
whereas capital letters show significant differences among soil horizons (P < 0.05; PERMANOVA).

Spring 2011 Summer 2011 Spring 2012 Summer 2012 Average
Low High Low High Low High Low High Low High
MBN (ug N g soil 1) 0Oe 686.114  688.96"  761.56"  755.65%  648.17°  658.7" 583.2° 501.314 669.76"  651.15%
0.A 296.59° 257.488 340538  363.86°  312.058 288.118 282.748 365.28 307.97®8  318.66°
Mineral 93.03¢ 88.12¢ 79.36¢ 10091¢  67.09¢ 96.6¢ 68.17*¢ 112448 76.91°¢ 99.52¢
Average  358.56 344.85 393.82 406.81 342.44 347.80 311.37 326.32 351.55 356.44
MBC (pg C g soil ') 0Oe 7180.6% 543824  7894.7% 76358  7626.1%  100384"  6189.9" 4106.6" 7222.8%  6804.8"%
0.A 2867.4% 2476.08 301358 3022.9%  3627.1° 282858 2795.88 2642.5A 307598 274258
Mineral 1031.8°  902.9¢ 698.4¢ 827.3¢ 781.4¢ 1116.9¢ 496.55%C  859.6>F 752.0¢ 926.7¢
Average  3693.3 2939.0 3868.9 3828.6 4011.6 4661.3 3160.7 2536.2 3683.6 3491.3
TIN (ug N g soil 1) 0Oe 109.48*  12001*  101.5% 11525  96.89" 96.18% 32,077 40.78 84.99" 93.04"
0.A 27.238 28.54° 25.178 35.028 19.928 22.668 16.25B 304" 22.148 29.168
Mineral 7.25¢ 8.25¢ 7.05%€ 10.14°¢  556€ 8.33¢ 4.18%C 8.22"8 6.01>€ 8.73P¢
Average  47.99 52.26 4457 53.47 40.79 4239 17.5% 26.44° 37.712 43.64°
NO3-N (ug N g soil ) O 12.24% 21,537 7.75% 19.06* 6.348 11.214 5.7°8 94748 8.00** 15.3204
0.A 11.10% 14.39% 10.184 20.18% 7.7% 134 8.78" 14.39% 9447 15.49°7
Mineral 3.388 3.76% 2438 5.368 1.28%8 3.81P8 1.09%8 43558 2.05%8 43208
Average 891 13.23 6.79 14.87 5.11 9.34 5.19 9.40 6.5% 11.71°
NH4-N (ug N g soil ™) Oe 97.24" 98.484 93.75% 96.19% 90.55" 84974 26.377 31.228 76.98" 77.724
0.A 16.138 14.15° 14.998 14.848 12.228 9.668 7.468 16.024 12.708 13.67°
Mineral 3.87¢ 4.488 4.61¢ 4.788 4.27¢ 4.528 3.08¢ 3.878 3.96¢ 441¢
Average  39.08 39.04 37.79 38.60 35.68 33.05 12.31 17.04 31.21 31.93
PM (ug N g soil ! day™1) 0Oe 97.24" 98.48* 93.75% 96.19% 90.55" 84.97° 26.377 31.224 13.58% 14.70%
0.A 16.138 14.158 14.998 14.84° 12.228 9.66° 7.468 16.02% 3.98B% 4717
Mineral 3.87¢ 448 4.61°¢ 4.78¢ 4.27¢ 4.52¢ 3.08%¢ 3.87°8 0.67¢ 1.02¢
Average  39.08 39.04 37.79 38.60 35.68 33.05 12.31a 17.04b 6.08 6.81
PN (pg N g soil ="' day ") 0Oe 1.77%8 3.89% 0.94%A 3.41PA 1.5348 2.597 1.712 2.47° 1.49a,A 3.09b,A
0.A 154 2237 1.728 2.95% 1.78% 3.028 2.04" 3.28" 1.76a,A 2.87b,A
Mineral 0.48% 0.578 0.378 0.828 0.19%8 0.53>8 0.26%B 0.75>8 0.33%B 0.67"8
Average  1.25 223 1.01 239 1.17 2.05 1.34 2.17 1.19a 2.21b
PMR (pg C g soil 'day!) O 197.23%  194.47" 174.21%  186.83% 24254  34891" 168.24 148.55% 19554  219.69"
0.A 54,948 46,198 44,058 44518 65.548 64.148 34,038 54.558 49,648 52.358
Mineral 16.21¢ 16.19¢ 9.26¢ 11.76¢ 16.92¢ 15.98¢ 8.49¢ 11.55¢ 12.72¢ 13.87C
Average  89.46 85.62 75.84 81.04 108.33 143.01 70.24 71.55 85.97 95.30
SM (v/v) [oR 0.75" 0.72% 0.67% 0.67% 0.73% 0.76" 0.71% 0.68% 0.728 0.71A
0.A 0.628 0.58° 0.528 0.558 0.628 0.62° 0.578 0.614 0.588 0.598
Mineral 0.39¢ 0.42¢ 0.24*¢ 0.345¢ 0.332¢ 0.44°¢ 0.29*¢ 0.41>B 0.31%¢ 0.4>¢
Average  0.59 0.57 0.47 0.52 0.56 0.61 0.52 0.57 0.54 0.57
> (a) mOe 2% 1 (b)
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Fig. 2. (a) Percent change between low elevation-south facing and high elevation-north facing plots in soil microbial biomass C (MB-C), potential microbial respiration (PMR),
nitrate (NO3~-N), ammonium (NH4*-N), total inorganic N, microbial biomass-N (MB-N), potential mineralization (PM), potential nitrification (PN) and moisture (SM) in the O,
(black bars), 0,A (grey gars) and Mineral (white bars) soil horizons. (b) Multisensitivity index estimated for the O, O,A and Mineral soil horizons. For both plots, values are means
and standard errors of spring and summer sample dates in 2011 and 2012 (n = 4).
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Fig. 3. Percent change between low elevation-south facing and high elevation-north facing plots estimated in soil microbial biomass C (MB-C), potential microbial respiration
(PMR), nitrate (NO3~-N), ammonium (NH4*-N), total inorganic N, microbial biomass-N (MB-N), potential mineralization (PM), potential nitrification (PN) and moisture (SM), and

multisensitivity index in spring (SP) and summer (SU) sample dates in 2011 and 2012.

significant differences in gravimetric water content between low
and high elevation plots (Table 1). Third, the strong control of
nutrient cycling typically exerted by plants and microbes in the
surface organic soil horizons might have dampened the effects of
changing conditions on soil function, whereas in deeper layers the
controls over activity might have been more dominated, and
therefore more affected, by physical conditions (Dungait et al.,
2012). Finally, surface soil layers with a greater organic compo-
nent have significantly more microbial biomass (Fig. 2) and likely
higher diversity than deeper soil horizons (Delgado-Baquerizo
et al., 2016). Recent studies clearly show that decreasing organic
matter, aeration and/or fertility as soil depth increases results in
significant decreases in microbial biomass and taxonomic and
functional diversity (e.g. Baldrian et al., 2012; Delgado-Baquerizo
et al., 2016; Eilers et al., 2012; Zhang et al., 2015). Thus, the larger,
more diverse microbial communities in the shallower organic ho-
rizons may be less sensitive to climate variation due to the presence
of functionally redundant microbial species (Nielsen et al., 2011).

Much of the research studying the effect of climate change on
forest soils has focused on the surface and organic rich soil horizon,
which likely leads to limited understanding of how deeper soil
horizons function and how they will be affected by ongoing climate
change (Buchholz et al., 2014; Harrison et al., 2003, 2011). Here we
show that the O,A and mineral soil horizons, which can account for
up to 90% of total soil profile depth in northern hardwood forests
(Johnson et al., 1991), are particularly sensitive to climate change in
terms of N cycling and pools. These results indicate that failure to
consider deeper horizons in forest climate change research can
result in an incomplete perspective and overly conservative
assessment of the effects of climate change on forest soil
functioning.

In all soil layers, N-cycle related variables were found to be more
sensitive to elevation-induced climate variation than C-cycle
related variables. This greater sensitivity of N- compared to C-cycle

variables has been observed in recent studies of the effect of dis-
turbances on biogeochemical cycles (Duran et al., 2013; Evans and
Burke, 2012; Morillas et al., 2015; Nave et al., 2011; Rodriguez et al.,
2016), but the causes of these differences are not clear. A differential
sensitivity to winter freezing and summer drought of components
of the microbial community intimately related to N trans-
formations, and other components of the microbial community
more related to C transformations, could be contributing to the
greater sensitivity of N- comparted to C-related variables associated
with climate variation (Asner et al., 1997; Isobe and Ohte, 2014).
While our results do not shed light on these potential mechanisms,
they do suggest that climate change could lead to a decoupling
between the C and N cycles in northern hardwood forests (Li et al.,
2007; Schimel and Bennett, 2004), with important but difficult to
anticipate effects on plant and microbial activity and diversity,
organic matter decomposition and primary productivity (Delgado-
Baquerizo et al.,, 2013; Finzi et al.,, 2011; Penuelas et al., 2012;
Schimel, 2010; Schimel and Bennett, 2004).

The results of this two-year observational study along a natural
gradient should be taken with caution. However, the fact that we
observed consistent differences in sensitivity to climate in two very
different years provides strong support for our interpretation of the
results. Interestingly, both the percent change and the multi-
sensitivity index suggest that there is also seasonal and annual
variation in the response of these forest soils to climate change. We
observed greater variability in the second than in the first year, and
in summer than in spring. These differences in vulnerability, again
more evident in the mineral than in the shallower soil horizons,
were likely driven by differences in key climatic conditions. Lower
snowfall and cover in 2012 compared to 2011 (Durdn et al., 2014),
together with higher temperatures and lower water availability in
summer than in spring and in 2012 than in 2011 (Table 1; Duran
et al,, 2014) likely exacerbated the differences between low and
high elevation plots and their respective climatic differences. These
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results suggest that the effects of climate change on soil processes
could become more marked as temperatures increase, and snow
fall and water availability decreases in coming decades.

5. Conclusions

Our results confirm that projected changes in climate will affect
a wide range of soil biogeochemical properties in organic and
mineral soil horizons of northern hardwood forests, leading to
lower amounts of soil inorganic N, lower N transformation rates,
and likely lower N availability. However, we demonstrated that
sensitivity of these forest soils to climate change increases with soil
depth. We propose that a shift form primarily biotic to physical
controls with depth alters climatic responses, likely exacerbating
the climate change-driven decoupling of C and N cycles. This dif-
ferential sensitivity indicates that failure to consider deeper soil
horizons in forest climate change research can result in an
incomplete perspective and overly conservative assessment of the
effects of climate change on forest soil and ecosystem functioning.
Finally, we show that there is also seasonal and annual variation in
the response of these forest soils to climate variation, and anticipate
effects of climate change on soil processes could become more
marked as temperatures increase, and snow fall and water avail-
ability decreases in coming decades.
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