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ARTICLE INFO ABSTRACT

Keywords: Time series of vegetation indices (e.g. normalized difference vegetation index [NDVI]) and color indices (e.g.

Camera NDVI green chromatic coordinate [G¢c]) based on radiometric measurements are now available at different spatial and

Color indices temporal scales ranging from weekly satellite observations to sub-hourly in situ measurements by means of near-

Near-surface remote sensing surface remote sensing (e.g. spectral sensors or digital cameras). In situ measurements are essential for providing

gzzzzﬁ:;yn validation data for satellite-derived vegetation indices. In this study we used a recently developed method to

Phenopix calculate NDVI from near-infrared (NIR) enabled digital cameras (NDVI¢) at 17 sites (for a total of 74 year-sites)
encompassing six plant functional types (PFT) from the PhenoCam network.

The seasonality of NDVI; was comparable to both NDVI measured by ground spectral sensors and by the
moderate resolution imaging spectroradiometer (MODIS). We calculated site- and PFT-specific scaling factors to
correct NDVI values and recommend the use of site-specific NDVI from MODIS in order to scale NDVI.. We also
compared Gcc extracted from red-green-blue images to NDVI¢ and found PFT-dependent systematic differences
in their seasonalities. During senescence, NDVI lags behind G¢c in deciduous broad-leaf forests and grasslands,
suggesting that G is more sensitive to changes in leaf color and NDVI is more sensitive to changes in leaf area.
In evergreen forests, NDVI; peaks later than G¢c in spring, probably tracking the processes of shoot elongation
and new needle formation. Both G¢c and NDVI. can be used as validation tools for the MODIS Land Cover
Dynamics Product (MCD12Q2) for deciduous broad-leaf spring phenology, whereas NDVI. is more comparable
than Ggc with autumn phenology derived from MODIS. For evergreen forests, we found a poor relationship
between MCD12Q2 and camera-derived phenology, highlighting the need for more work to better characterize
the seasonality of both canopy structure and leaf biochemistry in those ecosystems.

Our results demonstrate that NDVI¢ is in excellent agreement with NDVI obtained from spectral measure-
ments, and that NDVI¢; and G¢c can complement each other in describing ecosystem phenology. Additionally,
NDVI, allows the detection of structural changes in the canopy that cannot be detected by visible-wavelength
imagery.

1. Introduction time-series based on radiometric measurements are now available, covering
different spatial and temporal scales ranging from weekly satellite ob-

Vegetation phenology (the study of the timing of recurrent biological servations to sub-hourly in situ measurements by means of, e.g. spectral
events) is highly sensitive to climate variability and change (Rosenzweig sensors or digital repeat photography. Regarding satellite-based data, the
et al., 2007; Migliavacca et al., 2012; Richardson et al., 2013). Phenological trade-off between spatial and temporal resolution represents a critical
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Study site locations along with PhenoCam and Fluxnet site IDs, plant functional types (PFT) and years of data analyzed. PFT are as follows: CRO, croplands; DBF, deciduous broad-leaf
forests; ENF, evergreen needle-leaf forests; GRA, grasslands; SHB, shrublands. Note that PFT are defined according to the vegetation that characterizes the chosen regions-of-interest. They
do not necessarily match the PFT classification for the whole site. Asterisks denote sites where light-emitting diode (LED) sensors were also available.

PhenoCam ID Fluxnet ID Coords (lat, long) Years PFT Reference

southerngreatplains US-ARM 36.7, —97.5 2012-2015 CRO Fischer et al. (2007)

bartlett* US-Bar 441, —71.3 2010-2015 DBF Richardson et al. (2007)
harvardbarn2* US-Hal 42,5, —72.2 2012-2015 DBF/ENF Magill et al. (2004)

willowcreek US-WCr 45.8, —90.1 2012-2015 DBF Cook et al. (2004)

freemanwood US-FR3 29.9, —98.0 2012-2013 DBF Heinsch et al. (2004)
alligatoriver US-NC4 35.8, —75.9 2013-2015 DBF www.fws.gov/refuge/Alligator River/
turkeypointenf39 CA-TP4 42.7, —80.4 2012-2015 ENF Arain and Restrepo-Coupe (2005)
oregonMP 44,5, —121.6 2012-2015 ENF Thomas et al. (2009)

vaira*® US-Var 38.4, —121.0 2011-2015 GRA Baldocchi et al. (2004)
lethbridge CA-Let 49.7, —112.9 2011-2015 GRA Flanagan et al. (2002)

tonzi* US-Ton 38.4, —121.0 2011-2015 DBF/GRA Baldocchi et al. (2004)

ibp 32.6, —106.8 2014-2015 GRA Havstad et al. (2000)

canadaOBS CA-Obs 54.0, —105.1 2011-2015 MF Gower et al. (1997)

merbleue* CA-Mer 45.4, —75.5 2012-2015 SHB Sonnentag et al. (2007)
luckyhills US-Whs 31.7, —110.1 2014-2015 SHB Emmerich (2003)

jernort 32.6, —106.8 2014-2015 SHB Emmerich (2003)
burnssagebrush US-Bsg 43.5, —119.7 2012-2015 SHB oregonstate.edu/dept/eoarc/

limitation especially in heterogeneous, fragmented ecosystems. To over-
come this limitation, and in the attempt to fill the gap between point and
landscape-level observations, the use of near-surface remote sensing has
been notably growing in the last 20 years (Brown et al., 2016). In this
context, digital repeat photography (e.g. Richardson et al., 2007, 2009;
Sonnentag et al., 2012) is an attractive option because images can be ana-
lyzed either qualitatively or quantitatively (Kosmala et al., 2016), and
analyses can focus on individual organisms or integrate across the field-of-
view to obtain community- or canopy- or ecosystem-level phenological in-
formation.

The Normalized Difference Vegetation Index (NDVI, Tucker, 1979)
has been widely used to monitor the timing and magnitude of the
seasonal development of the vegetation and link them to environmental
factors such as temperature, precipitation and photoperiod (Jolly et al.,
2005). The majority of studies focused on satellite data to retrieve
phenological signals at regional to global scales (Zhang et al., 2003), or
on ground spectral sensors to link NDVI and other vegetation indices to
in situ biotic and abiotic measurements (Soudani et al., 2014). The co-
herence in space and time between different NDVI sources (satellite vs
near-surface remote sensing) has been explored in boreal and temperate
deciduous broad-leaf forests (Liu et al., 2015; Hwang et al., 2014),
evergreen forests (Jin and Eklundh, 2014), arid grasslands/savannas
(Fensholt et al., 2006). Similarly, satellite vegetation indices have been
also compared to camera-based color indices (Klosterman et al., 2014;
Hufkens et al., 2012). The cross-scale comparisons between near- and
far-remote sensing showed in general better coherence over deciduous
than evergreen vegetation (Jin and Eklundh, 2014), and in greenup
rather than senescence (Klosterman et al., 2014; Hufkens et al., 2012).

Few studies attempted the in situ comparison between NDVI and
camera-based G¢c (but see Nasahara and Nagai, 2015). For example,
Nagai et al. (2012) examined the relationship between NDVI or the
enhanced vegetation index (EVI) and color indices in an evergreen
forest in Japan demonstrating the ability of the latter to capture sea-
sonal vegetation cycles. This comparison is often complicated by the
different geometry (view angle and field-of-view dimension) of spectral
sensors and digital cameras, especially in canopies with complex or
multi-layered structures (Ryu et al., 2014; Migliavacca et al., 2011).

Recent developments in camera technology led to inexpensive, near-
infrared (NIR) enabled security cameras, allowing the sequential capture of
images covering visible-only and of combined visible and NIR images to
calculate camera-based NDVI (NDVI, Petach et al., 2014). Results showed
that the seasonal cycle of NDVI; is almost identical to that of NDVI mea-
sured using narrow-band spectral instruments, or retrieved from the mod-
erate resolution imaging spectroradiometer (MODIS), demonstrating the

potential of NIR-enabled cameras. The PhenoCam Network (http://
phenocam.sr.unh.edu/webcam/) consists now of 340 sites equipped with
networked digital cameras, of which two hundred are NIR-enabled cameras
such as the ones used in Petach et al. (2014), thereby allowing to extend the
analysis across multiple years and different plant functional types.

In the present paper, we analyzed a large dataset of visible plus NIR
images across 17 North American sites encompassing six plant func-
tional types (PFT) for a total of 74 year-sites of data from the PhenoCam
image archive. Our objectives are:

(a) to compare NDVI; and G¢c seasonal trajectories across different
PFT and identify potential differences in their phenology;

(b) to compare NDVI; and spectral measurements at different scales,
including NDVI from MODIS and measured by ground light-emit-
ting diodes (LED) sensors (Ryu et al., 2010);

(c) to examine the consistency between camera-derived phenological
transition dates and the MODIS Land Cover Dynamics Product
(MCD12Q2) with different methods for deciduous broad-leaf and
evergreen needle-leaf forests.

2. Materials and methods

The seventeen sites included in this study belong to the PhenoCam
network (http://phenocam.sr.unh.edu/webcam/) and are located in
mid-latitude US and Canada (Table 1). The majority of them also belong
to other observational networks such as Fluxnet (https://fluxnet.ornl.
gov/). Each site is equipped with a NetCam SC IR security camera
(StarDot Technologies, Buena Park, CA), featuring a Micron %" CMOS
active-pixel digital imaging sensor and configured for 1.3 megapixel
(1296 x 976) output. Camera channels are centered at 600, 530,
450 nm for red, green and blue, respectively (unpublished data). The
camera was set at manual (fixed) white balance and automatic ex-
posure. Five sites were also equipped with LED sensors. Peak sensitiv-
ities (and full width half maximum, FWHM) of LED sensors were at 646
(56) and 843 (72) nm, for red and NIR, respectively. These self-man-
ufactured spectral sensors were first tested by Ryu et al. (2010) and
have proven to be comparable to traditional radiometers.

Extraction of color and vegetation indices. Digital images were pro-
cessed using the R package phenopix (Filippa et al., 2016). For each
site one or more region-of-interest (ROI) was chosen, which restricts all
subsequent analyses on that subset of pixels. ROIs can be viewed on the
PhenoCam web page for each site (http://phenocam.sr.unh.edu/
webcam/). RGB images were processed to obtain seasonal trajectories
of green chromatic coordinates (G¢c, Gillespie et al., 1987). Camera
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NDVI (NDVI¢) was computed based on simultaneous processing of se-
quentially-captured RGB and NIR + RGB images according to Petach
et al. (2014). Briefly, NDVI; is calculated by extracting the red digital
numbers (DN) from a RGB-image and the NIR DN from a NIR + RGB-
image acquired few seconds apart. Both values are corrected for the
exposure of the respective image prior to NDVI calculation.

Gcc time series were filtered with a combination of three filtering
algorithms: (a) a threshold filter based on sun position excluding from
the processing images acquired with a sun angle lower than 5° above
the horizon; (b) a spline filter (Migliavacca et al., 2011) based on re-
cursive spline smoothing and residual computation followed by re-
moval of outliers falling outside an envelope of 5 times the standard
deviation of the residuals; (c) a max filter following the method of
Sonnentag et al. (2012), based on the identification of the goth per-
centile values in a three-day moving window. NDVI time series were
subjected to similar filtering procedures, except that (b) was used with
an envelope of 1.8 times the standard deviation of the residuals, an
empirically-defined threshold based on residual distribution. We com-
pared the spline filter to a more sophisticated method that finds the
optimal span of a smoothing function (local polynomial regression,
Cleveland, 1979) fitted through the data, based on Bayesian Informa-
tion Criterion minimization (LOESS-BIC). In section SI1 we show that
our empirical spline method results in phenological information com-
parable to the LOESS-BIC method. The empirical model is less com-
putationally intense and therefore preferable for dealing with large
databases.

Additionally, we took advantage of an existing snow classification
for the PhenoCam image archive flagging each image with snow on
canopy or ground (Richardson et al., in review). NDVI; appears parti-
cularly sensitive to the presence of snow cover, therefore data points
with snow in the image were removed and replaced with a winter
baseline value (SI2).

Scaling factors. Petach et al. (2014) showed that NDVI; raw values
must be scaled in order to compare them to NDVI measurements ob-
tained from spectral sensors (either in situ or remotely sensed). This step
is needed because the spectral response of the CMOS sensor in the R, G,
B and NIR of the Stardot camera is different compared to spectral
measurements. We scaled NDVI; to the MODIS MCD43A2 product
(NDVI,,). We extracted seasonal NDVI,, trajectories on 3 X 3 pixel
windows centered on each study site. The 9 pixels trajectories were first
filtered with the MCD43A2 Bidirectional Reflectance Distribution
Function (BRDF) Albedo Quality product. Scaling factors were com-
puted by linear regression between the seasonal course of NDVI; and
NDVI,, following the formula:

NDVI¢ = NDVIyb + ¢ @

where b and c are the scaling factors. Because MCD43A2 is a 8-day
product compositing 16 days of images, we used a data-driven ap-
proach (SI3) to establish the best matching between NDVI; and NDVI,,
data, i.e. a 10-day left-aligned moving average of NDVIc.

Comparison of NDVI; with ground NDVI measurements. NDVI; was
compared to NDVI measured by LED sensors (NDVI;gp, Ryu et al., 2010,
2014) at 5 sites: bartlett, vaira, tonzi, harvardbarn2 and merbleue. LED
sensors are pointed nadir and have a field-of-view of 180°. NDVI;gp, is
typically recorded every half hour. For this analysis we used daily-ag-
gregated data, obtained by averaging values recorded in a two-hour
interval around solar noon. For the five sites equipped with LED sen-
sors, we also used NDVI;zp to compute scaling factors.

Extraction of phenological dates from Gcc, NDVIc and comparison with
MODIS Land Cover Dynamics Product (MCD12Q2). A double logistic
function (Klosterman et al., 2014) was fitted to the seasonal trajectories
of NDVI; and Ggc. Four different methods were then used to extract
phenological transition dates on the fitted curves (namely trs, deriva-
tives, klosterman and gu methods), described in detail in Filippa et al.
(2016) and illustrated in Fig. SI4. All methods provide an estimation of
uncertainty of the transition dates based on the resampling of the time
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series and extraction of the dates at each iteration (n = 500) as de-
scribed in Filippa et al. (2016). From the uncertainty ensemble we
calculated the median transition date and its mean absolute deviation
(MAD).

The MCD12Q2 Land Cover Dynamics Product (spatial resolution
250 m) was obtained on 3 x 3 pixel windows centered on the study
sites. For each scene and year four transition dates corresponding to
Greenup, Maturity, Senescence and Dormancy were obtained, com-
puted with a method similar to Klosterman et al. (2014). From the nine
pixel values we calculated the median and the MAD. The relationship
between MCD12Q2-derived and NDVI.-derived dates was evaluated by
means of linear regressions in a statistical framework that accounts also
for uncertainty. Briefly, each regression analysis was replicated 500
times with observation points sampled (i) from the transition dates
uncertainty ensemble, for NDVIc-derived dates, and (ii) from a nor-
mally distributed population generated with the 9-pixel median and
MAD values for NDVI,-derived dates. This procedure generally results
in poorer relationship scores compared to traditional linear regression,
but allows for a more robust assessment of the uncertainty of the esti-
mated transition dates. The coefficient of determination (%), root mean
square error (RMSE) and model bias (BIAS) were computed for each of
the 500 regressions and averaged.

3. Results

Seasonal trajectories of NDVIc and Ggc across different PFTs.
Representative time series of Goc and NDVI for each PFT are show in
Fig. 1 for 2013 and 2014. Deciduous broad-leaf forests are character-
ized by synchronous NDVI; and G trajectories until the seasonal
maximum of canopy development is reached. During the greendown
period (Elmore et al., 2012), a small but consistent departure between
Gcc and NDVI occurs and gets amplified in autumn, when the decrease
in NDVI¢ lags behind G¢¢ by several days.

Evergreen needle-leaf forests are characterized by an overall smaller
seasonal amplitude in both G¢c and NDVI; compared to DBFs. The G¢¢
seasonal trajectory is roughly sinusoidal with a short baseline in winter.
In contrast, NDVI; shows an abrupt increase around the beginning of
July for both years. This lag in NDVI¢ with respect to G¢¢ is consistent
across ENFs. We observed an earlier drop in NDVI; in autumn (begin-
ning of October) as compared to G¢c, which also shows a decrease at
that time, but smaller.

The seasonal trajectories of NDVI; and G¢c for burnssagebrush, a
dry shrubland, show comparable seasonal dynamics, but differences in
the year-to-year variability. In particular, G¢¢ peak is similar for 2013
and 2014, whereas NDVI; peak is remarkably lower in 2013 than in
2014. More generally, shrubland sites included in this study range from
peatlands (merbleue) and dry (burnssagebrush) sites, to water limited
sites (jernort and luckyhills), therefore patterns are not all consistent.
However, the seasonality of NDVI; in SHBs is in general very similar to
that of G¢c. The same is also true for the only cropland site included, i.e.
southerngreatplains, even though in this PFT, inter-year variability in
the behavior of G¢c and NDVI¢ is probably associated to different crops.
Similar to DBFs, Lethbridge grassland site shows a lag in autumn phe-
nology, with NDVI¢ reaching the autumn baseline about two weeks
later than Ggc.

To evaluate the relationship between NDVI. and G¢ across all PFTs
in terms of seasonal transition dates, we used the gu method on both
indices. For this analysis, sites showing multiple seasonal peaks (i.e.
croplands or water limited ecosystems, for which the double-logistic
fitting offered poor results) were excluded. Results are shown in Fig. 2
for DBFs and GRAs, and Fig. 3 for ENFs. For DBFs and GRAs, upturn
date (UD) occurs between day of year (DOY) 100 and 150 except for
ibp, a dry grassland with a short seasonal cycle beginning slightly be-
fore DOY 200. Stabilization date (SD) and downturn date (DD) occur
over a longer time frame (DOY 110-220 and 200-300, respectively).
Recession date (RD) across DBFs and GRAs spans roughly 50 days (DOY
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alligatoriver NDVI Fig. 1. Two-year of daily NDVI¢ and G¢c from a selection of
0.2 4 DBF ﬂ o Goo ¢ - 045 sites included in this study. DBF: deciduous broad-leaf forest;
0.1 L 0.40 ENF: evergreen needle-leaf forest; SHB: shrubland; CRO:
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250-300) for G¢c and 100 days (DOY 250-350) for NDVIc. The
greening dates (UD and SD) extracted from G¢c and NDVI¢ are highly
correlated and close to the 1:1 line, with an RMSE of about 4-6 days
and a bias of about one week. DD is the transition date showing the
largest error in the single dates and lower r* in the relationship. The
regression statistics of RD demonstrate a poorer relationship than for
spring, but interestingly show a 19-day positive bias (i.e. NDVI¢ tran-
sition dates occurring later than G¢c), thereby allowing to generalize
the autumn lag between G¢c and NDVI decrease across GRA and DBF
functional types.

Unlike DBFs and GRAs, the methods based on derivatives (i.e. all
except trs method) did not give satisfactory results for ENFs. The much

lower signal-to-noise ratio in the time series of both NDVI; and G¢¢
resulted in poor performance of the double-logistic fittings and higher
uncertainty in the estimated dates. Instead, the method chosen for ENFs
was based on reaching 40% of the amplitude of the seasonal trajectory.
Compared to DBFs and GRAs, transition dates for ENFs (Fig. 3) are less
consistent between NDVI and G¢c. A positive bias (29 days) in the start
of season (sos) was found, indicating that for all ENF sites NDVI starts
increasing later by about 1 month compared to G¢c. The DOY of peak
production (pop) occurs on average 13 days later for NDVI¢ than for
Gcc, whereas the opposite is true in autumn, with a negative bias (22
days) in end of season (eos).

Comparison of NDVI; with MODIS seasonal trajectories and scaling

NDVI-based phases (DOY)
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Fig. 2. Relationship between transition dates extracted from G¢c (x-axis) and NDVI (y-axis) time series for deciduous broad-leaf forests (DBF) and grasslands (GRA). Each data point is a
site-year median date. Error bars represent the MAD. The red dashed line is the 1:1, whereas black lines represent the linear fit (solid) and its uncertainty (dashed). Site abbreviations: bar:
bartlett; har: harvardbarn2; let: lethbridge; ibp: ibp; wil: willowcreek; all: alligatorriver. Abbreviations: UD: upturn date; SD: stabilization date; DD: downturn date; RD: recession date.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Relationship between transition dates extracted from G (x-axis) and NDVI; (y-axis) for ENFs. The extraction method used here is a fixed 40% threshold (trs). Each point is a site-
year median transition date. Error bars represent the MAD. The red dashed line is the 1:1. Site abbreviations: har: harvardbarn2; tur: turkeypointenf39; can: canadaOBS; ore: oregonMP.
Abbreviations: trs.sos: threshold-based start of season; trs.pop: doy of peak of production; trs.eos: threshold-based end of season. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

Table 2

Site-specific and PFT-specific scaling factors computed as regression coefficients of the
linear relationship between NDVI,,; and NDVI,. for each site included in this study. PFT-
specific scaling factors are computed regressing all site data of a given PFT together. Lines
in italics report scaling factors computed between NDVI;z, and NDVI¢. n = number of
observations for each regression. All regressions are statistically significant (p < 0.01),
except for oregonMP.

Site-specific PFT Slope (b) Intercept (c) r? n
southerngreatplains ~CRO 0.3 = 0.33 0.42 + 0.01 0.12 102
alligatoriver DBF  0.47 = 0.070 0.7 *= 0.00 0.88 109
bartlett DBF  0.55 *= 0.06 0.71 = 0.00 0.86 191
bartlett (LED) 0.83 = 0.02 0.60 = 0.00 0.79 662
freemanwood DBF 0.49 *= 0.44 0.54 *= 0.07 0.40 35
harvardbarn2 DBF  0.61 = 0.09 0.76 = 0.01 0.84 141
harvardbarn2 (LED) 0.56 * 0.01 0.75 = 0.00 0.82 1208
willowcreek DBF 0.78 = 0.1 0.66 = 0.00 0.90 100
oregonMP ENF 4529 + -38.07 -9.38 + -8.46 0.00 152
turkeypointenf39 ENF  5.94 = 3.12 -0.47 = 0.6 0.41 96
ibp GRA 1.25 = 0.38 0.54 = 0.1 0.72 69
lethbridge GRA 0.80 = 0.14 0.44 *= 0.02 079 127
tonzi GRA 0.60 = 0.19 0.63 = 0.06 0.52 148
tonzi (LED) 0.97 = 0.02 0.58 = 0.00 082 375
vaira GRA 0.66 = 0.17 0.62 = 0.05 0.63 137
vaira (LED) 1.06 *= 0.01 0.63 = 0.00 088 1274
canadaOBS MF 2.48 = 1.07 0.56 = 0.00 0.44 116
burnssagebrush SHB 1.66 = 0.90 0.64 + 0.25 0.35 108
jernort SHB  0.19 = 0.09 0.22 *= 0.02 0.57 63
luckyhills SHB  0.44 = 0.64 0.36 = 0.22 0.22 33
merbleue SHB 1.88 + 0.54 0.67 + 0.00 0.72 80
merbleue (LED) 1.38 = 0.01 0.65 = 0.00 0.92 965
PFT-specific DBF  0.57 %= 0.06 0.70 = 0.00 0.72 576
ENF  1.70 = 0.56 0.47 = 0.05 0.41 212
GRA 0.59 = 0.21 0.52 + 0.05 0.20 481
SHB  1.83 = 0.17 0.67 *= 0.03 0.88 251
Petach et al. (2014) DBF 0.53 = 0.02 0.84 + 0.01 0.89

factors. NDVI; was compared with NDVI,, seasonal trajectories in order
to define appropriate scaling factors for NDVI¢ (Petach et al., 2014).
First, for each site NDVI,; was regressed against 10-day left-aligned
running medians of NDVI; values (SI3). DBFs and GRAs show con-
sistently tight relationships, whereas ENFs, SHBs, and CROs do not
(Table 2). Therefore, for the estimation of PFT-specific scaling factors,
we included only sites where the site-specific relationship was higher
than 0.3, i.e. 14 out of 17 sites. On this subset we calculated the PFT-
specific scaling factors. These PFT-specific scaling factors are then

applied to the raw NDVI; data (Fig. 4). For DBFs, there is an excellent
agreement between scaled NDVI; and NDVI,,, independently on whe-
ther NDVI is scaled according to PFT-specific (grey triangles) or site-
specific (black triangles) factors. For ENFs, the relationship between
NDVI,, and NDVI¢ is in general poor with tighter relationships for
NDVI, scaled according to the site-specific scaling factor compared to
the PFT-specific ones. In burnssagebrush, PFT-specific and site-specific
scaled NDVI. are very close to each other. In contrast NDVI,,; shows a
lower seasonal amplitude and temporal mismatch with NDVI.;, with
earlier seasonal peaks in all three years included in the comparison. In
lethbridge the site-scaled NDVI¢ is in good agreement with NDVI,,,
whereas the PFT-scaling reduces the seasonal amplitude of NDVIc.
Spatial heterogeneity may be responsible for the temporal mismatch
between NDVI; and NDVI,, in southerngreatplains seasonal trajec-
tories, however the PFT-specific scaling factor (extended from GRA)
seems to better reproduce the amplitude of NDVIy, signal compared to
the site-specific factors. Scaling factors computed against data from LED
sensors are different compared to those obtained from NDVI,, at the
same site, except for harvardbarn2 and merbleue (Table 2).

Comparison of in situ measurements: NDVI g, and NDVI. Fig. 5 shows
a three-year time series comparing NDVI;zp and NDVI¢. Overall, the
seasonalities of NDVI; and NDVI, g are in excellent agreement. In DBF,
the two sensors provide consistent seasonal NDVI trajectories both in
terms of timing and magnitude. At bartlett, NDVI;gp appears to be more
affected by the presence of snow compared to NDVI.. At vaira, the
magnitude of NDVI; is lower than that of NDVI;gp, but the timing is
similar across the three years. At tonzi and merbleue, both the magni-
tude and seasonality of NDVI; g, and NDVI; are consistent.

MODIS Land Cover Dynamics Product (MCD12Q2) and NDVI.. To
compare our NDVI; measurements to satellite products, we regressed
transition dates extracted from both G¢c and NDVI, time series against
the corresponding estimates obtained from the MODIS Land Cover
Dynamics Product (MCD12Q2). In order to exclude sites displaying
multiple peaks during the season (e.g. southerngreatplains), and sites
with very high spatial heterogeneity within the MODIS pixel (e.g. tonzi
and vaira), the analysis was limited to DBFs and ENFs, and to spring
(UD, Greenup, sos) and fall (RD, Dormancy, eos) transition dates. This
analysis also tested four different methods of transition date extraction
available in the phenopix R package (Fig. 6).

For DBFs, spring dates shows RMSEs of about 7 days with no sub-
stantial difference across methods and between G¢¢- and NDVI-derived
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Fig. 4. A four-year (2012-2015) comparison between daily
NDVI; and 8-day NDVI,, for a selection of sites (Table 1.
NDVI. absolute values are scaled according to the scaling
factors reported in Table 2 (black triangles). Grey triangles
are for NDVI¢ scaled with the PFT-specific scaling factors. For
southerngreatplains we used the scaling factors calculated for
GRAs. Error bars on NDVI,, data represent the MAD on the
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transition dates. Consistently negative BIAS scores suggest earlier
MODIS dates compared to either G¢c and NDVI, but with considerably
lower values when dates are extracted with gu and klosterman methods.
The r? of the relationships indicate an explained variance higher than
65% for greenup, being lower for the derivatives method compared to
others. For autumn dormancy of DBFs, the best relationship is provided
by the gu method applied to NDVI time series, with RMSE = 10 days,
bias = 4 days and r* > 0.7.

Compared to DBFs, the relationship between MODIS- and pheno-
camera-derived transition dates at ENF sites was generally worse. For
spring, the best result is achieved by the klosterman method applied to
NDVI (2 = 0.23, RMSE = 13, bias = —26). Noteworthy is the fact
that we found opposite signs for BIAS for NDVI¢ and G¢c, with NDVI¢
resulting in later greenup compared to MODIS and the opposite for G¢c.
For dormancy, the derivatives approach applied to G¢c time series
provides the best scores ( = 0.26, RMSE = 28, BIAS = —6).

4. Discussion
4.1. Robustness of NDVI; measurements

This study provides the first analysis of a large dataset (74 site-
years) of visible and visible + NIR images for the computation of
paired G¢c and NDVI¢ using an image archive acquired by NIR-enabled
digital cameras. After the pioneering work of Petach et al. (2014),
several questions remained open. Does the relationship between NDVI¢
and spectral measurements verified on a single year above a deciduous
canopy hold across multiple sites and PFTs? Can the proposed scaling
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factors — calculated for a deciduous canopy — be generalized across sites
and, potentially, PFTs?

As for the first question, Fig. 5 demonstrates excellent agreement
between NDVI;zp and NDVI;. across five different sites and four PFTs.
These results indicate that the seasonal trajectory of NDVI¢ mirrors that
of NDVI measurements obtained from spectral sensors across a range of
ecosystems, even those characterized by a different canopy cover
fraction (as for example at tonzi, a savanna with mixed grassland and
deciduous trees). At Bartlett, the NDVI;gp, signal seems to deteriorate in
winter likely because of snow on the ground, a less relevant problem for
NDVI; because the analyzed ROI is specifically tailored on the tree
crowns, therefore avoiding the integration of bare soil, whereas the
nadir view of the LED sensors is more affected by background spec-
troscopic properties. This advantage of digital images over spectral
measurements could be fully exploited in evergreen forests, where the
presence of snow on trees often causes very noisy NDVI signals. Un-
fortunately the lack of radiometric NDVI measurements with a similar
view angle compared to digital image acquisition prevents us from
further exploring this hypothesis and future work should be oriented in
this direction.

As for the second question, our data demonstrate that scaling factors
may have great variation across sites (Table 2). This may be due to
several reasons: (a) the different view angle of phenocameras and sa-
tellite data, (b) the different bands used for NDVI calculation in NDVI,,
and NDVI; (Hufkens et al., 2012), (c) a spatial mismatch between
MODIS and phenocameras especially in fragmented landscapes, be-
cause the ROI of the cameras is specifically tailored on the canopies. In
fact at two sites with low fractional cover (tonzi and vaira) scaling
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1.0 Fig. 5. Time series of NDVI,zp, NDVI,, and scaled NDVI¢. The
0.8 coefficients of determination of the relationship between
NDVI; and NDVI;z, are 0.79, 0.82, 0.88, 0.82 and 0.92 for
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factors computed against ground LED sensors show better relationship
than with MODIS, whereas at merbleue, where the vegetation cover is
homogeneous and LED, cameras and satellite likely observe similar
targets, scaling factors are more similar. This supports the hypothesis
that spatial mismatch plays a role in the variability of scaling factors.
Overall, scaling factors for DBFs are the most consistent, and they ap-
proach the values reported by Petach et al. (2014) (see Table 2).

We recommend the use of site-specific NDVI,,; data to scale NDVI;
values. In the case that the MODIS pixel is not representative of the
vegetation targeted by the cameras (which can be checked by visually

comparing the seasonal trajectories), NDVI; should be scaled with
ground spectral NDVI data, if available. Otherwise, PFT-specific scaling
factors reported in Table 2 can be used for DBFs. For other PFTs, scaling
factors computed in this study should be used with caution.

4.2. The seasonality of NDVI¢ and G¢c
The seasonal trajectory of NDVI; and G¢c shows remarkable dif-

ferences (Fig. 1) which result in different transition dates (Figs. 2 and
3), and these differences are PFT-specific. Autumn decrease occurs
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Fig. 7. Seasonal course of 20-days-moving-average G¢c and
NDVI; values at TurkeyPointenf39 in 2013, along with se-
lected photographs. Vertical lines in the time series corre-
spond to the dates when the above pictures were taken.
Phenological information (in blue) is obtained from ag-
gregated phenological data collected in 2013 for about 300
Eastern White Pine individuals located in the Eastern US
areas (data not shown, National Phenology Network, 2017).
(For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this ar-
ticle.).
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somewhat slower for NDVI than for G¢¢ in DBFs and GRAs, resulting in
a later start of dormancy of NDVI¢ compared to G¢c. This suggests that
Gcc is more sensitive to slight changes in leaf colors in summer and
pronounced leaf color change during senescence compared to NDVI,
which in turn is more indicative of the leaf abscission and shedding
processes during the senescence period. These findings agree with
Keenan et al. (2014), who reported that declines in autumn leaf area
index lagged declines in autumn G¢c, reflecting changing leaf color
before actual leaf abscission in a temperate DBF.

The autumn lag is apparent also for temperate grasslands. A study
combining phenocams and radiative transfer modelling in a
Mediterranean grassland suggests that the lag between NDVI¢ and G¢c
in the senescence period (dry-down in summer) is the result of different
sensitivity of G¢c to the amount of senescent material in the canopy
(ratio of dry/green biomass) and leaf area index compared to NDVI..
Gcc is shown to be more sensitive to the dry/green biomass than NDVI,
while NDVI; responds more to variation of LAI in the range between 1
and 3 m?/m? (Luo et al., in review). In terms of transition dates, dif-
ferent temporal dynamics of NDVI¢ and G¢ result in a 20-day lag in the
end of season (recession date, RD in Fig. 2) for DBFs and GRAs. This
might have important implications when these data streams are used to
constrain or to develop phenology models.

ENFs are characterized by a lower seasonal amplitude in both
NDVI; and Ggc, and a lower signal-to-noise ratio, preventing us from
using derivative-based extraction methods. Our results suggest that in
such ecosystems, the most robust method for transition date computa-
tion is threshold-based (Fig. 3). With the trs method we were able to
identify a generalized later spring increase in NDVI; compared to G¢c
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quantified at 29 days across all ENFs (Fig. 3).

An hypothesis for the asynchronous spring ramp in G¢c and NDVI¢
is the increase in foliar biomass associated with shoot elongation
(Wingate et al., 2015) and the formation of new needles (Ryu et al.,
2014), with no substantial change in the canopy greenness. In Fig. 7 we
show the smoothed time course of Gcc and NDVI., along with re-
presentative photographs at turkeypointenf39 in 2013. The evergreen
canopy (eastern white pine, Pinus strobus) turns from brownish in early
April to green in May. This transition is characterized by a sharp in-
crease in G¢c, while NDVI¢ remains low and rather constant. The fol-
lowing period is characterized by only slight increase in G¢¢ and a sharp
NDVI; ramp. This period corresponds to the new needle formation; in
Pinus strobus new needles emerge in the third decade of May and young
needles tend to be completely formed at the end of June (National
Phenology Network, 2017). Our data suggests therefore that while the
level of green is already close to the maximum in spring, NDVI¢ tracks
foliar biomass increase associated to new needle formation. The de-
crease in NDVI; in September corresponds to the ripening period of
seed cones which turn from green to red, and are fully developed in
early October (National Phenology Network, 2017). The significant
presence of red cones may cause the observed decline in NDVIc.
Afterwards, cones begin dropping, resulting in green canopy dom-
inating again the region-of-interest and producing a slight increase in
NDVI; in November, before the onset of winter. This comparison with
ground phenology suggests that in boreal and temperate ENFs, NDVI.
allows the detection of structural changes in the canopy that cannot be
detected by Gec.
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Fig. 8. Comparison of transition dates extracted from NDVI. using the gu method with the MODIS Land Cover Dynamics product (MCD12Q2) for deciduous broad-leaf forests (n = 15

site-years).

4.3. Comparison of camera-derived metrics and the MODIS Land Cover
Dynamics Product (MCD12Q2)

Phenocamera networks provide invaluable ground data for the va-
lidation of phenology satellite products. Our analysis suggests that both
G¢c and NDVI¢ can be used as validation tools for MCD12Q2 for DBF
spring phenology, provided that transition dates are extracted with the
gu or klosterman methods. Spring greenup is detected earlier by MODIS
by about one week compared to both NDVI; and G¢c. This is likely
because the oblique view of the camera solely tracks tree phenology
whereas the nadir satellite view is more affected by the earlier greenup
of the understory (Ryu et al., 2014). For autumn phenology, NDVIc-
dates extracted with the gu method perform better than other methods,
and better than G¢c. A previous study comparing G¢c transition dates
and MCD12Q2 across North American DBF showed a consistent bias for
dormancy, with dates predicted from G¢¢ occurring 12 days earlier than
those predicted from MCD12Q2 (Klosterman et al., 2014). In our study,
the positive BIAS between Ggc-derived and MODIS-derived dates is
even higher (17 days), whereas by using NDVI.-derived dates not only
we obtain a better relationship than for G¢c, but also an opposite and
reduced BIAS (-4 days, Fig. 8).

Our study confirms better coherence in spring rather than in autumn
DBF phenology. Hufkens et al. (2012) argued that more uncertain se-
nescence dates are due to the fact that the rate of change in any
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vegetation index is more gradual in autumn. Furthermore, while
greenup tends to be more homogeneous in space, higher heterogeneity
in the canopy exists during senescence (Klosterman et al., 2014). This is
likely the cause of higher uncertainty in MODIS-derived than in camera-
derived dates (Fig. 8, right column). The discrepancy between camera-
and satellite-derived senescence dates can also be associated to dif-
ferent degrees of deciduous or mixed canopy cover, with lower bias
with increasing degree of deciduous species over evergreens
(Klosterman et al., 2014).

For ENFs, the poor relationship between MCD12Q2 and camera-
derived transition dates suggest the we are not yet able to properly
describe the phenology of such ecosystems by means of currently
available vegetation and color indices (Jonsson et al., 2010). One of the
main problems in detecting evergreen phenology at high latitude from
satellite is the small amplitude in the greenness signal combined with
the presence of snow cover (Delbart et al., 2005). This was the case for
all evergreen sites included in this study. Encouraging is the fact that
the phenocamera approach can overcome the problem of background
by properly choosing the region-of-interest of the analysis. Ad-
ditionally, a growing body of research is currently addressing new ve-
getation indices including the clorophyill/carotenoid index (CCI,
Gamon et al., 2016), the green/red vegetation index (GRVI, Nasahara
and Nagai, 2015), particularly suitable for describing evergreen phe-
nology, representing promising candidates for comparison with
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vegetation indices such as NDVIc.
5. Conclusion

In this work we demonstrate that NDVI; measurements derived
from NIR-enabled digital cameras are robust and comparable to NDVI
measured by ground spectral sensors (NDVIgp) or satellite (MODIS)
NDVI measurements. We show that scaling factors have to be applied to
NDVI¢ in order to scale it to spectral NDVI measurements. Moreover,
we demonstrate that simultaneous NDVI; and G time series provide
complementary phenological information by tracking different canopy-
level processes, with potentially important implications for phenology
models. We furthermore illustrate to what extent and how NDVI. and
Gcc can be used as ground validation for the MODIS Land Cover
Dynamics Product.

In the future, satellite imagery (eg. with the recently launched
Sentinel suite) will provide 5-days, 10 m resolution remotely sensed
data less prone to spatial and temporal mismatch, likely improving the
relationship between near- and far-remote sensing, especially in eco-
systems, such as evergreen forests, where this relationship is currently
poor.
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