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ARTICLE INFO ABSTRACT

Clouds and aerosols increase the fraction of global solar irradiance that is diffuse light. This phenomenon is
known to increase the photosynthetic light use efficiency (LUE) of closed-canopy vegetation by redistributing
photosynthetic photon flux density (400-700 nm) from saturated, sunlit leaves at the top of the canopy, to
shaded leaves deeper in the canopy. We combined a process-based carbon cycle model with 10 years of eddy
covariance carbon flux measurements and other ancillary data sets to assess 1) how this LUE enhancement
influences interannual variation in carbon uptake, and 2) how errors in modeling diffuse fraction affect pre-
dictions of carbon uptake. Modeled annual gross primary productivity (GPP) increased by =0.94% when ob-
served levels of diffuse fraction were increased by 0.01 (holding total irradiance constant). The sensitivity of GPP
to increases in diffuse fraction was highest when the diffuse fraction was low to begin with, and lowest when the
diffuse fraction was already high. Diffuse fraction also explained significantly more of the interannual variability
of modeled net ecosystem exchange (NEE), than did total irradiance. Two tested radiation partitioning models
yielded over- and underestimates of diffuse fraction at our site, which propagated to over- and underestimates of
annual NEE, respectively. Our findings highlight the importance of incorporating LUE enhancement under
diffuse light into models of global primary production, and improving models of diffuse fraction.
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1. Introduction

A key uncertainty of forest ecosystem carbon uptake in a changing
climate is its differential responses to diffuse and direct beam solar
radiation (Bonan, 2008; Heimann and Reichstein, 2008; Settele et al.,
2014). Cloud cover and aerosols (Cheng et al., 2016; Niyogi et al.,
2004) account for most of the variability in the ratio of diffuse to global
irradiance (hereafter referred to as diffuse fraction), and projections of
how these will change in the future are highly uncertain (Boucher et al.,
2013; Wild, 2009). There is also uncertainty associated with the path-
ways through which diffuse fraction influences the carbon budget.
Diffuse fraction affects the photosynthetic photon flux density (PPFD)
distribution within the forest canopy, which has potentially important
implications for canopy photosynthesis. Under clear sky conditions,

sunlit leaves are often light saturated while shaded leaves receive little
light and thus lie on the linear part of the light response curve (Roderick
et al., 2001). Under diffuse light conditions, sunlit leaves receive less
direct beam PPFD but shaded leaves receive more diffuse PPFD, which
comes from all directions of the sky and penetrates the canopy to a
fuller extent. Because leaves in deep shade benefit more from an in-
crease in PPFD than leaves in full sun suffer from an equivalent de-
crease, a more even vertical distribution of PPFD should enhance the
photosynthetic light use efficiency (LUE) of the canopy as a whole
(Farquhar and Roderick, 2003). Direct measurements of forest CO,
uptake have shown that canopy LUE is indeed enhanced under cloudy
conditions, though estimates of enhancement vary (Alton, 2008; Alton
et al., 2007; Baldocchi, 1997; Gu et al., 2002; Hollinger et al., 1994;
Jenkins et al., 2007; Urban et al., 2007; Zhang et al., 2010). A number
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of studies have also found that aerosol loading events, such as the
eruption of Mount Pinatubo (Farquhar and Roderick, 2003; Gu et al.,
2003; Mercado et al., 2009), have enhanced the terrestrial carbon sink.
However, aside from these studies of dramatic increases in diffuse
fraction, there has been relatively little research on the extent to which
interannual variation in diffuse fraction — typically stemming from
fluctuations in cloudiness — mediates the interannual variation in
carbon budget. Min and Wang (2008) find that the transmittance index,
compared to temperature and precipitation, is more highly correlated
(R? > 0.65) with mean midsummer net ecosystem production at a
northern hardwood forest, which suggests LUE changes with cloudiness
may accumulate over the growing season in annually distinct ways and
have meaningful influence on forest productivity in a given year.

Diffuse fraction also covaries with other environmental factors that
impact the carbon budget. The presence of clouds and aerosols often
reduces the solar radiation reaching Earth’s surface, and is associated
with lower air and leaf temperature and vapor pressure deficit (Gu
et al., 2002; Oliphant et al., 2011; Wohlfahrt et al., 2008; Zhang et al.,
2011). Less incident PPFD reduces photosynthesis, while the thermal
effects can enhance photosynthesis when ambient temperature is above
the optimum (Baldocchi and Harley, 1995; Steiner and Chameides,
2005) and reduce ecosystem respiration (Alton, 2008; Gu et al., 1999;
Urban et al., 2007). Lower vapor pressure deficit (VPD) associated with
reduced irradiance can increase stomatal conductance, enhancing leaf
photosynthesis (Gu et al., 1999). Recent studies suggest the decrease in
total irradiance has a greater effect on the net ecosystem exchange
(NEE) than associated changes in temperature and humidity (Alton
et al., 2007; Knohl and Baldocchi, 2008; Oliphant et al., 2011), though
quantifying these separately remains difficult (Kanniah et al., 2012).

In this paper, we investigated the impacts of diffuse radiation on
forest gross primary productivity (GPP) by combining long-term data
sets (half-hourly measurements over 10 years) of eddy covariance
fluxes and direct and diffuse PPFD with a process-oriented model. Many
studies have estimated diffuse fraction using radiation partitioning
models (Alton, 2008; Alton et al., 2007; Choudhury, 2001; Gu et al.,
2002; Rocha et al., 2004). The performance of these radiation parti-
tioning models can vary with site (Boland et al., 2001; Schurgers et al.,
2015) due to differences in geographic or climatic factors like cloud
cover and type, sunshine duration, and particulate matter in the air
(Cruse et al., 2015). Studies using observed diffuse fraction have typi-
cally relied on records of a few years or less (Gu et al., 2002; Hollinger
et al., 1994; Jenkins et al., 2007; Niyogi et al., 2004; but see Cheng
et al., 2015), which may not adequately capture the variability of NEE
responses to diffuse fraction and other meteorological drivers. Our
analysis also allowed us to account for additional factors that affect
ecosystem productivity, including temperature, VPD, and total irra-
diance. These variables interact with GPP through multiple pathways
(e.g., air temperature influences photosynthetic rates as well as the
growing period length) and lagged effects (e.g., changes in leaf pho-
tosynthesis affect GPP, which, in turn, can affect carbon allocation to
foliage), which are difficult to quantify using a purely empirical model.
The parameters of our forest carbon cycle model were optimized
against multiple observational data constraints, allowing us to explicitly
isolate the impact of diffuse fraction on the distribution of light in the
canopy (and hence on GPP).

Next, we examined the extent to which interannual variability of
diffuse fraction mediates the interannual variability of modeled NEE.
Studies have often asked whether and when increasing diffuse fraction
poses a productivity trade-off between total irradiance and LUE; a
common finding is that diffuse fraction above a certain threshold causes
net decrease in NEE because the accompanying reductions in incident
PPFD outweigh improvements in LUE (Alton, 2008; Knohl and
Baldocchi, 2008; Mercado et al., 2009; Oliveira et al., 2007; Still et al.,
2009). We asked a related but different question: how much does
variability of diffuse fraction influence the modeled NEE of a given
year, compared to variability of total PPFD? Answering this question
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provides insights into the relative importance of diffuse fraction for
accurately modeling carbon budgets at longer time scales.

Finally, we tested the accuracy of two standard partitioning models
used to predict diffuse fraction, and analyzed the impact of their errors
on predictions of NEE and other carbon cycle components. While stu-
dies have measured the goodness of fit between observations and pre-
dictions of NEE that were informed by modeled diffuse fraction (Gu
et al., 2002; Rocha et al., 2004; Schurgers et al., 2015), and Gu et al.
(2002) compare independently parameterized models utilizing ob-
served and modeled diffuse fraction, this is the first study to our
knowledge that has compared performances of model runs differing
only in the accuracy of their diffuse and direct PPFD drivers. Our
findings help gauge the importance of improving diffuse fraction
models to better replicate forest carbon dynamics.

To achieve these three objectives, we first optimized and validated a
process-based model using 10 years of half-hourly eddy covariance
fluxes, observations of direct and diffuse PPFD, and other ancillary
measurements at the Bartlett Experimental Forest, a deciduous site in
the northeastern United States. After optimizing model parameters
using the first half of our observational record, and validating the
model against the second half, we then prescribed various scenarios of
diffuse fraction to measure how model outputs and performance re-
spond.

2. Materials and methods
2.1. Site

The Bartlett Experimental Forest (BEF) (https://www.nrs.fs.fed.us/
ef/locations/nh/bartlett/) is a primarily deciduous forest located in the
northeastern United States (44.05° N, 71.29° W). Mean annual tem-
perature is approximately 6.6°C (summer: 20°C, winter: —8°C), and
mean annual precipitation is approximately 1300 mm, distributed
evenly throughout the year. The soils are Spodosols, developed on
glacial till derived from granite and gneiss. Soils are well drained,
acidic, and nutrient poor.

Forest stands around the tower are generally 90-130 y in age,
dominated by the deciduous species Acer rubrum (red maple) and Fagus
grandifolia (American beech), with lesser amounts of Acer saccharum
(sugar maple), Betula papyrifera (paper birch) and Betula alleghaniensis
(yellow birch). Conifers like Tsuga canadensis (eastern hemlock), Abies
balsamea (balsam fir), and Pinus strobus (Eastern white pine) are present
around the tower in smaller numbers compared to the deciduous spe-
cies.

2.2. Data

We combined ten years (2004-13) of half-hourly NEE flux mea-
surements with ancillary data sets—soil respiration, wood growth, fo-
liar and woody litterfall, leaf area index, turnover times of litter and soil
organic matter pools—to train and validate our model (Table 1). Data
from the first five years (2004-08) were used for training, data from the
last five years (2009-13) for validation. We prescribed meteorological
drivers in each period at half-hourly intervals in line with the model
structure (see Section 2.3.1).

NEE and meteorological measurements were obtained from the
Bartlett AmeriFlux tower (http://ameriflux.lbl.gov/sites/siteinfo/US-
Bar). NEE was measured with the eddy covariance technique (Foken
et al., 2012) using a model SAT-211/3 K three-axis sonic anemometer
(Applied Technologies Inc., Longmont, CO) and a model LI-6262 fast
response CO»/H,0 infrared gas analyzer (Li-Cor Inc., Lincoln, NE), with
data recorded at 5 Hz and fluxes (covariances) calculated every 30 min.
Instrument configuration, calibration protocol, QA/QC and data pro-
cessing procedures are identical to those used at the Howland Ameri-
Flux site in central Maine, and are documented by Hollinger et al.
(2004). We removed nighttime NEE values with friction velocity (u*)
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Table 1

Data used to constrain the model. The training period consists of years 2004-08, and the
validation period consists of years 2009-13. For litter and soil carbon turnover, the same
turnover time was used during training and validation periods.

Measurement Frequency Number of Data Points
Training Validation

Eddy-covariance Half-hourly 24,312 24,887
Soil respiration Daily 75 0
Wood growth Yearly 4 5
Foliar litterfall Yearly 5 2
Woody litterfall Yearly 2 0

Leaf area index Yearly 3 0
Litter turnover One 1

Soil carbon turnover (microbial) One 1

Soil carbon turnover (slow) One 1

Soil carbon turnover (passive) One 1

below 0.50, a threshold derived from the change-point model in Barr
et al. (2013). We trained the model on NEE measurements, and used
gap-filled NEE only to assess optimized model performance at annual
and monthly time scales. Meteorological measurements were recorded
every 5s and half-hourly means stored on data loggers (models CR10
and CR21x; Campbell Scientific, Logan UT). These included air tem-
perature and relative humidity above the canopy (HMP-35, Vaisala
Inc.), soil temperature at 5 cm (thermocouple), and direct and diffuse
PPFD (BF3 Sunshine Sensor, Delta-T Devices Ltd., Cambridge UK).
Measurements of direct and diffuse PPFD began on June 10 of 2004, the
first year of the training period. For days prior to June 10 of 2004,
direct and diffuse PPFD were estimated using the model in Spitters et al.
(1986) (see Section 2.3.3).

All ancillary data used to constrain the model, except turnover times
of litter and soil pools, were obtained from the Earth Systems Research
Center at the University of New Hampshire (Bradford et al., 2010).
These measurements were taken in 12 plots within the 1 km? footprint
of the Bartlett tower, each divided into four sub-plots, as described by
Hollinger (2008). Soil respiration was measured about every three
weeks during the snow-free portion of the year (3424 measurements
over 75 days during 2004-07) using a model LI-820 infrared gas ana-
lyzer (Li-Cor Inc., Lincoln, NE) and three 10 inch PVC collars per sub-
plot: collar concentrations of CO, were measured every 2 s over a 60 s
period, and the rate of change of concentration was converted to flux.
We constrained the model against mean soil respiration flux over the
course of the day. For wood growth, diameter at breast height was
measured to calculate basal area of trees, which was converted to
biomass using allometric equations by Hocker and Earley (1983),
Whittaker et al. (1974), and Young et al. (1980). To account for un-
certainties associated with diameter measurements, carbon concentra-
tion in the wood, and choice of allometric model, a Monte Carlo si-
mulation was used to estimate annual wood growth (gCm™2 yr™ 1),
similar to Yanai et al. (2010). Mean of 1000 iterations was calculated
for each plot and then averaged across plots to yield a single estimate of
wood growth per year. Foliar and woody litterfall were collected using
two baskets per sub-plot, three times in autumn and once in spring.
Annual litterfall was calculated by summing the weight of litter for the
year and dividing by area of the baskets, and then converted to biomass
(gCm™~2 yr~1) by assuming carbon concentration of 49% (Bernier
et al., 2008). Leaf area index (LAI) was measured annually in sub-plots
using the LAI-2000 Plant Canopy Analyzer (Li-Cor Inc, Lincoln NE).
Finally, we obtained turnover times of litter and the three soil organic
matter pools (microbial, slow, passive) from McFarlane et al. (2013).
We assumed that the microbial pool corresponds to the Oi soil layer, the
slow pool to the Oe and Oa soil layers, and the passive pool to the
0-30 cm mineral soil layer.

We estimated uncertainties for each data stream used to constrain
the model. Uncertainties of half-hourly NEE fluxes were calculated as
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shown in Richardson et al. (2006), where uncertainties follow a double-
exponential distribution, the standard deviation of which scales linearly
with the flux magnitude. For gap-filled NEE totals, we accounted for
measurement, gap-filling, and friction velocity (u*) uncertainties fol-
lowing the approach of Barr et al. (2013). Uncertainties for mean soil
respiration flux were estimated as standard deviations of the fluxes
averaged over the day. Uncertainties for annual wood growth were first
estimated for each plot using the 95% confidence intervals of 1000
Monte Carlo simulation iterations, and then propagated with spatial
variability. Uncertainties for foliar and woody litterfall were estimated
as sampling errors (standard errors of mean values across all plots). LAI
uncertainties were estimated as sums of standard errors and instrument
errors ( = 0.1). We obtained uncertainties for turnover times and initial
carbon stocks of soil pools from McFarlane et al. (2013).

2.3. Model structures

2.3.1. FOBAAR

We used a forest carbon cycle model called Forest Biomass,
Assimilation, Allocation, and Respiration (FGBAAR), developed by
Keenan et al. (2012), which runs on a half-hourly time step with 37 free
parameters (Table 2). FGBAAR uses Norman's (1982) canopy model to
calculate photosynthetic photon flux density (PPFD) for two leaf classes
(shaded and sunlit), based on direct and diffuse PPFD. Photosynthesis is
modeled as a function of PPFD, air temperature, VPD, and intercellular
concentration of CO, using a Farquhar-type approach (De Pury and
Farquhar, 1997; Farquhar et al., 1980). The net rate of leaf photo-
synthesis equals the gross rate of photosynthesis minus the leaf re-
spiration rate, where the gross rate is calculated as the minimum of
electron-transport limited photosynthesis and Rubisco-limited photo-
synthesis. Electron-transport limited photosynthesis is a function of the
electron transport rate per unit leaf area, intercellular concentration of
CO,, and CO, compensation point of photosynthesis. Rubisco-limited
photosynthesis depends on the maximum Rubisco rate, intercellular
concentrations of CO, and O,, temperature-dependent Michaelis-
Menten constants for CO, and O,, and the CO, compensation point (De
Pury and Farquhar, 1997). The intercellular concentration of O, is fixed
at 21%. The ratio of the maximum electron transport rate (Ji,ax) to the
maximum Rubisco rate (Vcy.y) is assumed to be fixed at 2.1 at 298 K
(Wullschleger, 1993), and the temperature dependencies of J., and
Vcmax are modeled with Arrhenius functions (De Pury and Farquhar,
1997). Arrhenius-type equations are also used to calculate the CO,
compensation point and mitochondrial respiration rate (Bernacchi
et al,, 2001). Stomatal conductance, calculated using the Ball-Berry
model (Ball et al., 1987), is coupled to the net rate of leaf photo-
synthesis through an analytical solution (Baldocchi, 1994). Rates of
photosynthesis for the two leaf classes are integrated over their re-
spective LAIs, and the sum of these two results is integrated over time to
calculate canopy productivity over a period.

A percentage of the assimilated carbon is respired daily, and the rest
is distributed among foliage, wood, and roots. Root respiration depends
on the allocated carbon and soil temperature. Budburst and senescence
are determined using growing degree day (GDD) formulas. Litterfall
decomposes and then is passed through three progressively more re-
calcitrant soil organic matter (SOM) pools: microbial, slow, and passive.
Heterotrophic respiration from the litter and SOM pools occurs as a
function of a base rate parameter and a temperature sensitivity para-
meter.

2.3.2. Canopy radiation model

The Norman (1982) sun-shade canopy model was used to translate
direct and diffuse PPFD into PPFD on shaded and sunlit leaves. The
PPFD on shaded leaves, Isyaqe, is the sum of diffuse PPFD and scattered
direct beam:

Lpade = Luire®5 D 4C

®
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Table 2
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FOBAAR model parameters and pools. “Min” and “Max” indicate the range of parameter values explored during optimization. “90% CI” gives the range of parameter values accepted after

posterior chi-squared tests at 90% confidence for the model run that was optimized to all data constraints with observed diffuse fraction.

1d Name Definition Min Max 90% CI
Initial carbon pools (g C m~2)

P1 Re Carbon in roots 30 500 369, 378

P2 W, Carbon in wood 10300 10508 10300, 10508

P3 Lit, Carbon in litter 10 1000 435, 484

P4 SOMy Carbon in microbial soil organic matter pool 183 193 183, 185

P5 SOMs Carbon in slow soil organic matter pool 3186 3356 3210, 3356

P6 SOM» Carbon in passive soil organic matter pool 8129 8564 8130, 8424

P7 Mob, Mobile carbon 50 500 345, 406
Allocation and transfer

P8 A¢ Fraction of GPP allocated to foliage 0.1 1 0.72, 0.80

P9 A, Fraction of NPP allocated to roots 0.1 1 0.80, 0.82

P10 Lf; Litterfall from foliage (Log10) -6 —-0.5 —1.20, —1.11

P11 Lf, Litterfall from wood (Logi0) -6 -1 —5.22, —4.95

P12 Lf, Litterfall from roots (Log;o) -6 -1 —5.49, —5.15

P13 Fe lf Fraction of foliage carbon not transferred to mobile carbon 0.1 1 0.81, 0.84

P14 LitSOMy Litter to microbial SOM transfer rate (Log1o) -8 -1 —6.91,-6.05

P15 SOM;SOM;g Microbial SOM to slow SOM rate 0.01 0.95 0.68, 0.92

P16 SOMgSOMp Slow SOM to passive SOM rate 0.01 0.95 0.44, 0.89
Canopy

P17 LMA Leaf mass per area (g Cm™?2) 25 30 29, 30

P18 VCmax Maximum Rubisco rate at 25°C (umol m ~2s~1) 50 175 62, 68

P19 gsDo Coefficient in Ball-Berry-Leuning model 0.95 4.5 3.92, 4.23

P20 01 Curvature of leaf response of electron transport to irradiance 0.3 0.9 0.34,0.36

P21 Rd Rate of dark respiration 0.01 0.9 0.02, 0.03

P22 Q10 Rd Temperature dependence of Rd 0.5 2.5 0.70, 0.71
Phenology

P23 GDD, Day of year for growing degree day start 50 150 80, 82

P24 GDD; Growing degree days for spring onset 100 500 221, 229

P25 Air Tg Leaf senescence onset mean air temperature 1 25 8.7,9.1

P26 GDD, Spring photosynthetic GDD maximum 30 1000 71.6, 93.1

P27 Fol, Duration of leaf growth 15 90 47, 49
Respiration

P28 RLit Litter respiration rate (Logo) -8 -1 —4.8, —4.5

P29 RLitTy4 Litter respiration temperature dependence 0.001 0.2 0.01, 0.02

P30 RSOMy, Microbial SOM respiration rate (Log1o) -8 -1 —5.6, —5.4

P31 RSOMg Slow SOM respiration rate (Log;o) -8 -1 —-6.7, —6.2

P32 RSOM; Passive SOM respiration rate (Log;o) -8 -1 -7.3, =7.0

P33 RMob Mobile stored carbon respiration rate (Logio) -6 -0.5 —-29, —2.8

P34 RSOMTy SOM respiration temperature dependence 0.001 0.2 0.07, 0.1

P35 Rroot Root respiration rate (Logo) -7 -1 —4.3, —4.1

P36 RootTy Root respiration temperature dependence 0.001 0.3 0.1, 0.2

P37 GPPF, Fraction of GPP respired for maintenance 0.1 0.5 0.3, 0.4

where I is the diffuse PPFD on a horizontal plane above the canopy, F
is the total LAI, and C is the direct beam scattered by the canopy. The
exponential term represents the extinction of the diffuse component.
Norman (1982) expresses the scattered direct beam, C as:

C = klg;; (1.1-0.1F)esin® )

where k is the scattering coefficient set at 0.07, Iy;, is the direct PPFD on
a horizontal plane above the canopy, and 6 is the solar elevation angle.
Scattered direct beam decreases as canopy depth or solar elevation
angle increases. The PPFD on sunlit leaves, Iy,,, is calculated as:

_ Iycos(a)

sun — sin (e) +lshade

3
where a is the mean leaf-sun angle. We assume a equals 60° for a
spherical leaf angle distribution (Goudriaan, 1988). Isyaqe and I, are
used to calculate photosynthesis per leaf area for shaded and sunlit
leaves, which are then multiplied by the shaded and sunlit LAIs, re-
spectively, to compute GPP from shaded and sunlit leaves. The sunlit
LAI is Fg, and the shaded LAI is Fg,a4e as follows:

—0.5F
Fun = (1 — esin (e))z sin(0)
()]

FEnade = F-Fun ()
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The sum of GPP from shaded and sunlit leaves gives the total GPP.

2.3.3. Diffuse fraction models

For our final experiment, we incorporated models for estimating
diffuse fraction of incoming PPFD from Weiss and Norman (1985) and
Spitters et al. (1986). Both models have been widely used for carbon
cycle modeling (Reed et al., 2014; Knorr and Kattge, 2005; Mercado
et al., 2006) and other applications (Bash et al., 2016; Cabrera-Bosquet
et al., 2016; Fleisher et al., 2015), though comparisons of their per-
formance against observations are relatively sparse (see Schurgers
et al., 2015 for assessment of the Spitters et al. model).

The Weiss and Norman model first calculates potential visible ra-
diation on the horizontal plane for direct (Rpy) and diffuse (Rgy)
components as follows:

Rpy = (600 e~0-185m(P/P0))sin (0) (6)

Rav = 0.4(600 — Rpy)sin(6) %)

where m is optical air mass, P/P, the ratio of actual to sea level pres-
sure, and O the solar elevation angle. We estimated P/P, to be =0.97
using the barometric formula. Air mass m is a function of 6:

m = (cos 0)~!

®
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Total potential visible radiation on the horizontal plane, Ry, is just the

sum of potential direct and diffuse components:
Ry = Rpy+Rav (C)]

Next, the Weiss and Norman model calculates potential direct (Rpy) and
diffuse (Rgy) components of near-infrared radiation (NIR):

Rpy = (720 e=006mP/Po) — wp)sin (8) (10)

Ryn = 0.6(720 — Rpy — w)sin(0) 1D

where w is the water absorption in the near-infrared for 10 mm of
precipitable water:

w= 1320*10[—141950+044459 loglom—0.0345(logmm)2] (12)

Total potential NIR on the horizontal plane, Ry, is again the sum of its
direct and diffuse components:
Ry = Rpn+Ran (13)

Fraction of incident visible radiation that is direct (fp) and diffuse (fy) is
then estimated as:

R TP/3
. Rov|. 0.9 — e
b= Ry, 0.7
a4
fa =14 (15)

where R is observed incoming solar radiation (visible and NIR).
Therefore, the higher the share of direct component in potential visible
radiation, the higher the predicted share of the direct component in
observed visible radiation. f, also increases with the ratio of observed
to potential radiation.

The Spitters et al. model (1986) estimates diffuse fraction (f;) as a
function of atmospheric transmissivity (S¢/S,):

1 Se/Sy < 0.22
1- 6.4(Sg/SD —0.22)? 022 < 54/S,<035
1.47 — 1.66(Sg/50) 0.35< S§,/S, <K
R K < S¢/S,

fa=

(16)

where S; and S, are global and extra-terrestrial irradiance respectively,
R = 0.847-1.61 sin(6) + 1.04 sin*(0), and K = (1.47-R)/1.66. Extra-
terrestrial irradiance at a plane parallel to Earth’s surface, S, is esti-
mated as:

S, = 1370{1+0.033 cos(360t,;/365)}sin(6) a7

where t; is day number of the year.
2.4. Model optimization

We used a Markov Chain Monte Carlo (MCMC) algorithm to opti-
mize the model against data constraints and to explore the posterior
distribution of optimized parameters. The algorithm utilizes the
Metropolis-Hastings method (Hastings, 1970; Metropolis et al., 1953)
with simulated annealing (Press et al., 2007). Simulated annealing is a
widely used technique that likens the search for minimum cost function
value to the cooling of liquid material into a state of minimum energy,
where temperatures start high to allow the algorithm to accept solu-
tions that are worse than the current best (to escape any local optima),
and gradually cool to focus the search on a global optimum. At each
iteration of the optimization, the model steps from one parameter set to
another, the size of the step being a randomly sampled fraction of the
prior parameter range and a function of the annealing temperature. The
step size also adjusts to yield an acceptance rate of ~20%, which we
have found leads to efficient posterior exploration and well-performing
parameter sets. We assume uniform prior distributions of parameters.

The first phase of optimization entails searching the parameter
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space for 120,000 iterations to achieve the minimum value for the
aggregate cost function, which calculates the model-data mismatch
across all data streams used to constrain the model. As in Keenan et al.
(2011), each data stream has a normalized root mean squared error
(NRMSE), or uncertainty-weighted square of the model error, averaged
across the number of observations:

NRMSE; = (% ( )2)/Ni

t=1
where N; is the number of observations for data stream i, O;(t) is the
observation at time t, M;(t) is the modeled value for the same time, and
8;(t) is the uncertainty of the observation. The aggregate cost function J
is then the mean of all NRMSEs:

Q
J= (Z NRMSE,—)/Q

i=1

O (£)-M; (1)

6 (1) 18)

(19)

where Q is the number of data constraints. By giving equal weight to
each data stream, the aggregate cost function favors balanced model
performance that accurately represents various ecosystem processes
(Barrett et al., 2005; Franks et al., 1999).

The second phase of optimization involves identifying parameter
sets consistent with the optimal set found in the first phase. A parameter
set is accepted only if the NRMSE for each data stream passes the chi-
square test at 90% confidence, where the critical values are determined
from the optimal parameter set. This way, model performance is com-
parable across data streams (Richardson et al., 2010). We used 1000
accepted parameter sets to generate the posterior distributions in
Table 2.

2.5. Experimental set-up

We first constructed a base scenario against which later model runs
with different diffuse fraction settings could be compared. In this base
scenario, we optimized the model to half-hourly, monthly, and yearly
NEE data and the full suite of ancillary measurements, feeding in ob-
served diffuse fraction alongside other meteorological drivers. Data
from the first five years (2004-08) were used for optimization, and the
latter five years (2009-13) for validation of optimized performance. We
examined how accurately FGBAAR predicted NEE in each period when
utilizing all available information at the study site.

We then conducted three experiments to assess how changes in
diffuse fraction impact FO6BAAR outputs and performance. In
Experiment (1), we ran the model using the optimal parameter set from
the base scenario but under five different scenarios of diffuse fraction
(fa): (1) all PPFD is direct (f; = 0) (2) all PPFD is diffuse (f; = 1) (3)
PPFD is equal parts direct and diffuse (f; = 0.5) (4) f; is 0.01 higher
than observed (5) f; is 0.01 lower than observed. Total PPFD was kept
at observed values across the scenarios. We compared how PPFD and
GPP change for shaded and sunlit leaves in Scenarios (1) — (3), given
the structure of Norman’s canopy model. We used Scenarios (4) and (5)
to assess GPP’s sensitivity to small changes in diffuse radiation ( = 1
percentage point change in percentage of diffuse radiation).

In Experiment (2), we again used the same parameter set as before
but prescribed two scenarios in which either f; or PPFD deviates from
observations: (1) every half-hour of the year is assigned observed PPFD
but mean time-varying f; (mean observed f, for that half-hour across all
years, see Table 3 for an example) (2) every half-hour is assigned ob-
served f; but mean time-varying PPFD. We compared the annual NEE of
these two model runs with that from the base scenario to understand
the relative impact of interannual variation in f; on the modeled in-
terannual carbon budgets.

For Experiment (3), we again used the same parameter set as before
but combined FGBAAR with one of two models for predicting diffuse
fraction: (1) Weiss and Norman (1985) (2) Spitters et al. (1986). We
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Summary of experiments and scenarios, with illustration of how a hypothetical base scenario would be altered under each experiment and scenario. For all but Experiment 2, Scenario 2,
the photosynthetic photon flux density (PPFD) remains constant at observed values while diffuse fraction (f,) is changed from observed values. Note that only one half-hour of three years
is shown here for simplicity, but all half-hours of all ten years (2004-13) are affected in each experiment and scenario.

Experiments and Scenarios

Hypothetical Example: 10:00-10:30 am of June 11

2004 2005 2006
PPFD f, PPFD  f; PPFD fy
Base Scenario (Observed values) 1000 0.5 1500 0.3 500 0.7
Experiment 1, Scenario 1 (f3 = 0) 1000 O 1500 O 500 0
Experiment 1, Scenario 2 (fg = 1) 1000 1 1500 1 500 1
Experiment 1, Scenario 3 (f3 = 0.5) 1000 0.5 1500 0.5 500 0.5
Experiment 1, Scenario 4 (f; = fq + 0.01) 1000 0.51 1500 0.31 500 0.71
Experiment 1, Scenario 5 (f; = fg — 0.01) 1000 0.49 1500 0.29 500 0.69
Experiment 2, Scenario 1 (observed PPFD, mean time-varying f;) 1000 0.5 1500 0.5 500 0.5
Experiment 2, Scenario 2 (observed f;, mean time-varying PPFD) 1000 0.5 1000 0.3 1000 0.7
Experiment 3, Scenario 1 (Weiss and Norman model) 1000 Weiss and Norman model 1500 Weiss and Norman model 500 Weiss and Norman model
Experiment 3, Scenario 2 (Spitters et al. model) 1000  Spitters et al. model 1500  Spitters et al. model 500 Spitters et al. model

assessed how accurately these models predict diffuse fraction, when
errors occur, and how these errors propagate to errors in modeling of
NEE and other ecosystem variables.

3. Results
3.1. Model performance with observed diffuse fraction

To establish a benchmark against which we could compare model
runs using manipulated diffuse fraction, we first optimized the model to
all data constraints using observed diffuse fraction (base scenario).

At the annual time step, modeled NEE was consistent with gap-filled
NEE for the majority of the years in both training and validation periods
(Fig. 1a). During training, the mean absolute error was ~48 g Cm >
yr~1, slightly above the mean annual uncertainty of = + 32gCm™?>
yr~'. F6BAAR captured the interannual patterns of NEE increase and
decrease, but overestimated net uptake in 2006 by ~72gCm™ % yr~!
and underestimated net uptake the following year by =75gCm™2
yr~ 1. Surprisingly, the mean absolute error dropped to =42 gCm™ 2
yr ! during validation period, on par with the mean annual uncertainty
of = +42gCm™2 yr~?, although the interannual trend of NEE was
less closely replicated compared to the training period. Overall, model
estimates and their 90% confidence intervals were within the un-
certainty bounds of data for six of the ten years (excluding 2006 and
2007 during the training period, 2010 and 2013 during the validation
period) with no systematic under- or overestimation of fluxes.

While it is possible for models to replicate annual flux sums without

replicating the seasonal cycle, our results indicated fairly accurate
modeling of fluxes at the monthly time step. During training period, the
mean absolute error for monthly NEE was ~22gCm~2 month™!
during the peak productivity season of June, July, and August, and
~12gCm™ 2 month ™! for rest of the year. These errors remained the
same during the validation period, indicating no major shift in model
performance. One persistent bias that emerged was the overestimation
of net uptake in June; model estimates overshot gap-filled sums by an
average of =34gCm~2 month™! during validation, compared to
mean uncertainty of = + 26 g Cm™2 month ™! for June (Fig. 1b).

The model generally yielded a good fit to observations across the
various data constraints (Table 4). Errors were low for foliar litterfall
and turnover rates of soil pools during both training and validation
periods, and also for soil respiration, woody litterfall, and LAI, which
had measurements only during training period. Daytime fluxes were not
modeled quite as accurately as nighttime fluxes, and annual wood
growth not as accurately as annual NEE, but the average NRMSE across
all data constraints was below one for both training and validation
periods, indicating that key ecosystem processes were represented
reasonably well given uncertainties in the data.

3.2. Model sensitivity to diffuse fraction

To assess how modeled GPP responds to changes in diffuse fraction
(fa), we compared FOBAAR runs using the same optimized parameter
set but different scenarios of f; as per Experiment (1).

We observed that modeled GPP was significantly higher when f;

501 100 r Fig. 1. Modeled (red) and gap-filled (gray) NEE sums
at annual (a) and monthly (b) time scales. Points in
of (a) (b) (b) represent average NEE for the given month
50 during validation period (2009-13). Red shaded bar
50 | indicates 90% confidence interval generated using
- the posterior chi-squared test. Error bars indicate
i % or uncertainties of gap-filled sums, which include
N>"100 [ g measurement, gap-filling, and u* uncertainties fol-
'E - lowing the approach of Barr et al. (2013). (For in-
o -150 £ -50r terpretation of the references to colour in this figure
& S) legend, the reader is referred to the web version of
HJJ -200 2 this article.)
z & 100
4
-250
300 -150
350 L L L . . 200 I T S S T N R
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NRMSE:s for each of the data constraints, by diffuse fraction model and time period. These are uncertainty-weighted root mean squared errors calculated using Eq. (18) in Materials and
Methods. All model runs shown here used the same optimal parameter set from the base scenario, and differed only in the way in which the direct and diffuse PPFD was prescribed.

Training Period

Validation Period

Weiss and Norman Spitters et al. Observed Weiss and Norman Spitters et al. Observed
Nighttime NEE 0.78 0.56 0.63 0.69 0.47 0.55
Daytime NEE 3.05 2.21 2.29 3.58 2.27 2.45
Monthly NEE 0.47 0.34 0.33 0.47 0.27 0.28
Annual NEE 4.45 3.91 1.66 1.33 1.95 0.32
LAI 4.95 0.12 0.48 - - -
Foliar litterfall 1.80 2.69 1.41 2.46 0.14 0.21
Woody litterfall 0.01 0.01 0.01 - - -
Annual wood growth 7.49 4.82 3.57 5.74 9.12 3.93
Multi-year wood growth 2.85 1.10 0.04 2.67 5.41 0.98
Soil respiration 0.91 0.42 0.50 - - -
Litter turnover 0.03 0.02 0.03 0.02 0.02 0.02
SOM 1 turnover (microbial) 0.06 0.06 0.06 0.13 0.13 0.13
SOM 2 turnover (slow) 0.28 0.28 0.28 0.20 0.20 0.20
SOM 3 turnover (passive) 0.09 0.09 0.09 0.07 0.07 0.07
Average NRMSE 1.94 1.19 0.81 1.58 1.82 0.83
0.7r1 071 1500
f =0,Sunlit f =0
1d=0.5 Sunlit fd=0.5 1400
06} g (a) 06 d (b) (c)
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Fig. 2. Mean modeled GPP when diffuse fraction is set at zero (yellow), one-half (green), one (blue), and observed levels (black). GPP is shown for (a) sunlit (solid line) and shaded
(dotted line) leaves at half-hourly time step (b) sum of sunlit and shaded leaves at half-hourly time step (c) sum of sunlit and shaded leaves at annual time step. Dashed black line in (c)
indicates scenario of + 0.01 change in observed levels of diffuse fraction. Observed levels of diffuse fraction range from 0.10 to 0.99 in (b) and 0.40-0.47 in (c). Only daylight periods in
June, July, and August are shown in (a) and (b). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

increased from 0 to 1 (Fig. 2b,c) — under the admittedly unrealistic
assumption that total PPFD is constant — because the enhanced pro-
ductivity of shaded leaves far outweighed the reduced productivity of
sunlit leaves, due to the saturating relationship between PPFD and
photosynthesis. The PPFD on shaded leaves reached a maximum when
all light was diffuse, as per Eq. (1) (see Section 2.3.2). Even though
PPED on shaded leaves was above zero when all light was direct be-
cause of scattered direct beam, this component was relatively small,
and the GPP of shaded leaves was eight to ninefold higher under
maximum fy (Fig. 2a). The GPP of sunlit leaves decreased when f;
changed from 0 to 1 due to the absence of the direct light contribution
to PPFD, but this was partially offset by the larger diffuse PPFD.
Therefore, the drop in GPP of sunlit leaves was smaller compared to the
increase in GPP of shaded leaves, and the overall GPP from both leaf
classes more than doubled when f; increased from 0 to 1 at PPFD of
1100 p mol m~ 25! or more (Fig. 2b). However, because of saturation
in the photosynthetic light response function, canopy GPP did not scale
linearly with f4; prescribing f; of 0.5 in Scenario (3) resulted in GPP that
was greater than the average of GPP under entirely direct and entirely
diffuse light (Fig. 2b). For the same reason, the enhancement of canopy
GPP with increasing f; (holding total PPFD constant) was largest when
fa is small.

Accumulated over the course of the growing period, f;-mediated
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changes in productivity produced substantial differences in annual GPP.
The GPP in Scenario (2) (f; = 1) was higher than GPP in Scenario (1)
(f1=0) by =760 gCm™?year™?, a =~130% increase (Fig. 2c). The
GPP in Scenario (3) (f; = 0.5) exceeded that in Scenario (1) by an
average of ~470 gCm™2year !, which is =62% of the GPP differ-
ence between Scenarios (1) and (2). When observed levels of f; —
which ranged from 0.40 to 0.47 annually — were increased and de-
creased by 0.01 in Scenarios (4) and (5) to assess GPP’s sensitivity to
small changes in diffuse fraction, the annual GPP increased and de-
creased by =9.2 g Cm~2year ™!, respectively (Fig. 2¢). Therefore, a 1
percentage point change in observed percentage of radiation that is
diffuse, holding total PPFD constant, produced a =0.94% change in
annual GPP.

To evaluate how much interannual variability of f; potentially ex-
plains the interannual variability of carbon budgets at our site, we
conducted Experiment (2) which examined two additional scenarios:
(1) every half-hour of the year is assigned observed PPFD but mean
time-varying f; (2) every half-hour is assigned observed f; but mean
time-varying PPFD.

On average, prescribing observed PPFD and mean time-varying fz
caused much larger deviations in modeled annual NEE compared to
prescribing observed f; and mean time-varying PPFD. Use of mean
time-varying f; produced a mean deviation of =48 gCm™2year !
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Fig. 3. Annual NEE modeled using observed diffuse fraction and observed photosynthetic
photon flux density (PPFD) (black cross); observed diffuse fraction and mean time-
varying PPFD (green circle); mean time-varying diffuse fraction and observed PPFD
(yellow circle). The three model runs used the same optimal parameter set from the base
scenario, and differed only in the way that diffuse fraction and PPFD were prescribed.
(For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

from the annual NEE of the base scenario (Fig. 3). The magnitude of
deviation varied substantially across the years, ranging from
=0.7gCm %year ! in 2006 to ~148 g Cm~?year™! in 2004. It is
possible that the large deviation in 2004 resulted partly from the use of
modeled f; during May and early June in 2004 (see Section 2.2); the
modeled values could be underestimates. However, there were also
three other years (2007, 2010, 2012) with deviations greater than
50 g Cm™2year ™. Use of mean time-varying PPFD, on the other hand,
changed modeled annual NEE by an average of only
~0.4gCm 2year™! (Fig. 3). This discrepancy indicates that varia-
bility of f; mediates modeled interannual NEE trends more strongly
than does variability of total irradiance. The model run using mean
time-varying f; also differed from the run using mean time-varying
PPED in that the former’s predicted carbon uptake consistently ex-
ceeded estimates under the base scenario. Therefore, while aggregate
levels of f; may be higher in one year than another (annual f; ranged
from =0.40-0.47) each year has periods of relatively low f4, and in-
creasing f,; in these periods enhances annual GPP by more than the loss
associated with decreasing f; in any relatively high f; periods.

3.3. Modeling diffuse fraction

In Experiment (3), we assessed the performance of two partitioning
models that estimate f;, and analyzed how differences between mod-
eled and measured f; translate to differences in overall model perfor-
mance.

The Weiss and Norman (1985) model generally overestimated, and
the Spitters et al. (1986) model generally underestimated observed f4
(Fig. 4). The two models, however, displayed similar biases with respect
to the solar elevation angle, PPFD, and observed f;. Overestimation was
more pronounced at lower sun angles for the Weiss and Norman model,
with the mean f; error (modeled — observed f;) peaking at =0.26
between 20° and 40° (Fig. 4a), and underestimation increased at higher
sun angles for the Spitters et al. model, reaching = —0.6 between 60°
and 80° (Fig. 4b). Both models tended to underestimate f; at higher
PPFD. For example, for observed values of f; between 0.6 and 0.8, the
mean fy error for the Weiss and Norman model changed signs from
~0.09 at 500umolm 257! to~ —0.19 at 1500 umolm™?s~*
(Fig. 4c), while underestimation of the Spitters et al. model increased by
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=~0.17 over the same PPFD range (Fig. 4d). But a difference between
the two models was that underestimation of f; peaked at medium PPFD
(=850 pu mol m~2s™ 1) for the Spitters et al. model, while it continued
increasing with PPFD for the Weiss and Norman model. Finally, both
models tended to overestimate f; when f; is low, and underestimate f;
when f; is high (Fig. 4c, d). On average, the Weiss and Norman model
predicted f; more accurately; its RMSE was =0.19, compared to =0.26
for the Spitters et al. model.

The biases in estimating f; propagated to predictions of GPP and
therefore, net carbon uptake. Use of the Weiss and Norman model,
which generally overestimated f;, caused overestimation of net carbon
uptake (Fig. 5a), while the opposite was true for the Spitters et al.
model (Fig. 5b), which generally underestimated f;. The relationship
between f; and NEE errors could be confirmed by their matching de-
pendencies on observed f;. For instance, just as the partitioning models’
overestimation of f; was most severe when observed f; was below 0.2
(Fig. 4c,d), the same pattern emerged for overestimation of NEE
(Fig. 5a,b). The Weiss and Norman model’s underestimation of f; at
higher PPFD manifested in less negative NEE errors (i.e. less over-
estimation of net carbon wuptake) starting at PPFD of
~1250 pmolm~2s~! (Fig. 5a).

Overall, FGBAAR’s ability to predict NEE declined with the use of
modeled f3, though the decline was more significant with the Weiss and
Norman model and at annual scales. At the half-hourly time step, the
Weiss and Norman model’s tendency to overestimate net carbon up-
take, especially during periods of low observed f; (Fig. 5a) and morning
hours (Fig. 6a), increased the NRMSE for daytime NEE by =1.13, or
=~46%, during the validation period (Table 4). The Spitters et al.
model’s underestimations of uptake, however, reduced the NRMSE
slightly because FOBAAR had tended to overpredict mid-day uptake
when using observed f; (Fig. 6a). A similar story unfolded at the
monthly time step: the Spitters et al. model’s lower estimates of net
uptake during the growing period had negligible effects on the error
because FGBAAR had previously overestimated uptake in those months.
However, the Weiss and Norman model’s upward bias in June, July,
and August raised the mean absolute error for these months by
~13 g Cm~2 month™! during validation (Fig. 6b). In addition, mean
absolute error in winter and spring (Oct — Mar) increased by
~4.5¢gCm 2 month™! with the Weiss and Norman model because
FOBAAR links more productivity with more litterfall and heterotrophic
respiration, resulting in underestimation of net carbon uptake outside
the growing season. It was at the annual time step that use of either
partitioning model caused the most noticeable declines in FGBAAR’s
performance. During the validation period, modeled net uptake was on
average =~26gCm~2?year ! greater with the Weiss and Norman
model, and =23 g Cm~ 2 year™! lower with the Spitters et al. model,
compared to using observed f; (Fig. 6¢). As a result, mean absolute error
increased by =19 g Cm~ % year ' with the Weiss and Norman model,
and ~7.8 gCm~2year™ ! with the Spitters et al. model.

Biased estimates of GPP caused by f; modeling errors also increased
model-data mismatch on annual ancillary constraints (Table 4). Annual
wood growth, LAI, and foliar litterfall increased with the Weiss and
Norman model because enhanced productivity results in more wood
and foliage. Litterfall increase, in turn, stimulated litter decomposition
and soil respiration. The opposite cascade of effects occurred when the
Spitters et al. model underestimated GPP. The average NRMSE during
validation period increased significantly with use of either model
(columns 5 and 6, last row of Table 4), mainly due to biased predictions
of wood growth.

4. Discussion

By optimizing a forest carbon cycle model to multiple data con-
straints and prescribing different scenarios of diffuse fraction, we have
assessed how the modeling of enhanced photosynthesis under diffuse
light affects annual GPP and other ecosystem carbon fluxes.
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Fig. 5. Half-hourly NEE error (modeled minus measured NEE) averaged by observed diffuse fraction and PPFD for FGBAAR runs using (a) Weiss and Norman model (b) Spitters et al.
model (c) observed diffuse fraction. Negative errors represent model overestimation of net carbon uptake (i.e. modeled NEE is more negative than observed NEE), and positive errors
represent model underestimation of net carbon uptake. Only daylight periods in June, July, and August during the validation period are shown for each graph.

4.1. Advantages of diffuse light

In the Norman sun-shade canopy model, the distribution of PPFD
between leaf layers is more balanced under diffuse light because diffuse
PPFD equally contributes to PPFD on shaded and sunlit leaves (in ab-
solute terms), whereas direct PPFD predominantly strikes sunlit leaves.
Since leaf photosynthesis becomes saturated at higher light intensities,
increasing diffuse fraction, which effectively reallocates PPFD on sunlit
leaves bearing the higher radiation load to shaded leaves, enhances
overall canopy productivity. We observed in Experiment (1) that when

diffuse fraction increases from zero to one, the net gain in annual GPP
across both leaf layers is =130% (Fig. 2¢). Such dramatic variation in
diffuse fraction without corresponding changes in PPFD is of course
unrealistic, but GPP responses to a 0.01 change in observed values of
diffuse fraction, holding total PPFD constant, were
~9.2gCm 2year ! (Fig. 2¢).

We found that the sensitivity of GPP to changes in diffuse fraction
depends on both total irradiance and diffuse fraction. The increase in
GPP associated with a given increase in diffuse fraction grew with total
irradiance (Fig. 2b) because more severe photosynthetic saturation at
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higher PPFD was averted. A marginal increase in diffuse fraction also
produced greater GPP gains when the diffuse fraction is relatively low,
due to photosynthetic saturation. At lower diffuse fraction, the drop in
GPP of sunlit leaves associated with an increase in diffuse fraction is
smaller because PPFD on sunlit leaves is already abundant, while the
concurrent increase in GPP of shaded leaves is larger since PPFD on
shaded leaves is minimal. As a result, an increase in diffuse fraction
from 0 to 0.5 accounted for =62%, rather than 50%, of the GPP gained
when diffuse fraction increased from 0 to 1. This non-linear relationship
between GPP and diffuse fraction suggests that the moderately high
diffuse fraction at which GPP often peaks in forest ecosystems (Alton
et al., 2007; Knohl and Baldocchi, 2008; Oliphant et al., 2011; Zhang
et al., 2010) likely represents the point where LUE gains have dimin-
ished to the extent that they are outweighed by the effect of irradiance
reductions with any further increases in diffuse fraction.

Our estimates of GPP changes with diffuse fraction depend to an
extent on the parameter values and structure of the canopy model.
Knohl and Baldocchi (2008) show, for instance, that while the choice of
leaf inclination angle has modest impact on the diffuse light effect,
higher scattering coefficients reduce the diffuse light effect because the
canopy produces more diffuse radiation of its own and is thus less
sensitive to incident diffuse radiation above the canopy. Our estimate of
the diffuse light effect is also conservative in that the canopy model
does not account for potential changes in leaf temperature and VPD that
may accompany changes in PPFD distribution. For example, allowing
sunlit leaves to be cooler under higher diffuse fraction would likely
enhance diffuse light’s contribution to net carbon uptake by increasing
the sunlit leaves’ photosynthesis when air temperature exceeds the
optimum (Steiner and Chameides, 2005), reducing their respiration,
and/or increasing their stomatal conductance by reducing VPD.

4.2. Modeling diffuse fraction

Given that the ratio of diffuse to direct light is correlated with ob-
servable environmental factors, including the solar elevation angle,
cloud cover, and global irradiance, information about these variables
should aid in modeling diffuse fraction. However, our evaluation of
radiation partitioning models from Weiss and Norman (1985) and
Spitters et al. (1986) is consistent with previous studies that find non-
trivial errors in a range of diffuse fraction models (Badescu et al., 2013;
Batlles et al., 2000; Dervishi and Mahdavi, 2012; Noorian et al., 2008).
We also observed that the model estimates of diffuse fraction are con-
sistently biased, and this bias is correlated with input variables.
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In Experiment (3), the Weiss and Norman model predominantly
overestimated diffuse fraction at our site, while the Spitters et al. model
predominantly underestimated it. Spatial variability of the relationship
between diffuse fraction and predictor variables has been well-docu-
mented (Boland et al., 2001; Oliveira et al., 2002; Soler, 1990) so site-
specific factors could explain some of this baseline bias. However, the
biases of both models were correlated with solar elevation angle, total
PPFD, and observed diffuse fraction in similar ways, suggesting that
flawed model inferences of cloudiness play a role. The likelihood of
underestimating diffuse fraction increased with solar elevation angle,
PPFD, and observed diffuse fraction, which correspond to hazy mid-day
periods with medium to high irradiance (Fig. 4). This bias pattern is
consistent with limitations of the model structures, which at high sun
angles, infer overcast conditions from less global radiation and clear
conditions from more global radiation. Observations at our study site
indicate that diffuse fraction can be highly variable even when other
environmental factors are similiar; for example, one standard deviation
of observed diffuse fraction when PPFD ranges from 1200 to
1300 ymol m?s™1, and sun angle from 60—70° is =0.15. In such
conditions, both partitioning models often predicted in the lower range
of distributed diffuse fraction values.

Improving the accuracy of the two partitioning models would likely
entail reducing both parameter and model structure errors. At study
sites where measurements of diffuse fraction are available, a systematic
approach to reducing parameter errors would be model-data fusion; the
parameters could be optimized to achieve the best fit to observed dif-
fuse fraction. The optimization could account for spatially varying en-
vironmental controls on diffuse fraction. However, model-data fusion
alone has been found to produce only modest improvements in various
partitioning models (Dervishi and Mahdavi, 2012), and additional
specification of cloud amount and type, and how these influence diffuse
fraction in different ways is likely necessary in the model structure.
Incorporating additional predictor variables such as sunshine fraction
(Elminir, 2007; Ulgen and Hepbasli, 2009) and using artificial neural
network models (Jiang, 2008; Khatib et al., 2012) have also shown
some promise. Greater availability of direct and diffuse PPFD mea-
surements across different ecosystems and latitudes will help validate
these emerging model structures.

4.3. Impact of diffuse fraction errors

Previous studies have demonstrated, through examining the em-
pirical relationship between diffuse fraction and ecosystem
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productivity, that distinction of photosynthesis under direct and diffuse
light matters for modeling of the terrestrial carbon balance (Gu et al.,
2003; Knohl and Baldocchi, 2008; Mercado et al., 2009; Niyogi et al.,
2004). By prescribing various scenarios of diffuse fraction and mea-
suring changes in model outputs and performance, we assessed the
extent to which errors in diffuse fraction can propagate to errors in
modeling NEE and other carbon cycle components.

In Experiment (2), prescribing mean time-varying diffuse fraction
and observed PPFD caused larger and more directional deviations in
modeled annual NEE, compared to prescribing mean time-varying
PPFD and observed diffuse fraction. The difference in magnitude of NEE
shifts was significant: mean time-varying diffuse fraction produced a
mean shift of =48 gCm 2year ! — about two-thirds the standard
deviation of annual gap-filled NEE (=74 gCm 2year ') — while
mean time-varying PPFD produced a mean shift of only
~0.4gCm 2year™! (Fig. 3). Therefore, the direct and diffuse com-
position of irradiance in a given year relative to other years has stronger
influence on carbon uptake during that year, compared to relative le-
vels of total irradiance. Furthermore, the model run using mean time-
varying diffuse fraction predicted higher carbon uptake relative to the
base scenario, even in years with higher than average diffuse fraction,
because periods of relatively low diffuse fraction in each year experi-
enced LUE gains. This result points to the carbon cycling importance of
interannual variation in not only the aggregate ratio of diffuse to global
PPFD, but also the within-year distribution of diffuse PPFD.

When diffuse fraction partitioned using models was prescribed to
FOBAAR in Experiment (3), it became apparent that errors in diffuse
fraction cause errors in NEE by affecting estimates of both GPP and RE.
At the half-hourly time step, the pattern of biases in modeled daytime
NEE mirrored that for modeled diffuse fraction: use of the Weiss and
Norman model, for instance, led to severe overestimation of net uptake
during early morning (Fig. 6a) and periods of low observed diffuse
fraction (Fig. 5b), the same conditions under which diffuse fraction is
overestimated (Fig. 4a,c). Accumulated over the year, these over-
estimations on average led to a =12% increase in annual GPP relative
to the base scenario. Annual RE, on average, also increased = 11% with
the Weiss and Norman model because GPP gains resulted in larger
carbon allocations to root and foliage, and therefore increases in root
respiration and litter decomposition. For the Spitters et al. model,
which underestimated diffuse fraction, the opposite effects occurred:
photosynthesis decreased, reducing carbon allocations to root and fo-
liage and therefore respiration.

Only the Weiss and Norman model was associated with noticeable
declines in FOBAAR’s performance at sub-annual scales, but errors for
annual NEE increased with use of either partitioning model. The dis-
crepancy in sub-annual performance of the two partitioning models
arose because the Weiss and Norman model’s upward bias on diffuse
fraction estimates amplified FOBAAR'’s slight tendency to overestimate
productivity during the growing period, while the Spitters et al. model’s
downward bias mitigated that tendency. But at the annual scale, high-
frequency biases of both models accumulated to produce significant
directional changes, which inevitably translated into larger errors be-
cause FOBAAR had not persistently over- or underestimated annual
NEE. On average, modeled net uptake during the validation period was
=26 g Cm~ *year ! greater with the Weiss and Norman model, and
~23gCm ™ 2year~! lower with the Spitters et al. model — major
shifts ~ considering the mean  annual gap-filled NEE
of =~-136gCm %year '  and associated  uncertainty

of = £37gCm 2year ..

its

5. Conclusions

We investigated the contribution of light use efficiency enhance-
ment under diffuse light to forest carbon uptake, as well as the impact
of diffuse fraction modeling errors on predictions of the carbon cycle at
a temperate deciduous forest. To do so, we combined 10 years of eddy
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covariance carbon fluxes and direct and diffuse PPFD measurements
with a process-based model using a rigorous model-data fusion ap-
proach. Our analysis disentangles changes in canopy PPFD distribution
from other pathways through which diffuse light conditions influence
the carbon budget, and we find that more even PPFD distribution under
diffuse light meaningfully enhances primary productivity and also helps
explain the interannual variability of net carbon uptake. Furthermore,
systematic errors in estimating diffuse fraction—which we show are
possible with standard radiation partitioning models—accumulate to
bias annual predictions of the forest carbon cycle.

Since modeling of interannual forest carbon budgets requires ac-
curate, high-frequency information about diffuse fraction, the same is
likely to be true for predicting decadal or longer trajectories of terres-
trial carbon budgets, especially as prevalence and properties of clouds
and aerosols show signs of temporally coherent change (Eastman et al.,
2011; Norris et al., 2016; Settele et al., 2014). Through impacts on solar
radiation, temperature, and precipitation, these atmospheric changes
will directly and indirectly influence photosynthetic light use efficiency
of terrestrial vegetation. Developing more accurate models of diffuse
fraction will contribute to reducing the uncertainty of terrestrial carbon
cycle responses to global climate change.
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