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Melting snow provides an essential source of water inmany regions of theworld and can also contribute to dev-
astating, wide-scale flooding. Global datasets of recorded passive microwave emissions provide non-destructive,
daily information on snow processes including the presence of liquid water in the snow, which can be an indica-
tor of snowmelt. The objective of this research is to test the sensitivity of the emission signal as it relates to the
spatial distribution of liquid water content in the snowpack. This signal response was evaluated over an area ap-
proximately the size of amicrowave pixel to assesswhether a relationship exists between the aerial extent ofwet
snow and the magnitude of the TB response. A sensitivity analysis was performed using a high-resolution, phys-
ically based snow-emission model to simulate microwave emissions. The signal response to wet snowwas eval-
uated given a range of spatially distributed snowpack conditions. Daily snow states were simulated for a 9-year
period using a high-resolution (50 m) energy balance snow model over a 34 × 34 km domain. These data were
fed into a microwave emission model to simulate brightness temperatures. A near-linear relationship was found
between the TB signal response over a spatially heterogeneous snowpack and the percent area with liquid water
content (LWC) present. The results were confirmed by evaluating actual wet snow events over a 9-year period.
The model output was also compared to AMSR-E passive microwave satellite data and discharge data at a basin
outletwithin the study area. The results are used to help understand the impact of spatially distributed snowmelt
as detected by passive microwave data.
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1. Introduction

In snow-dominated basins, efficientwater resourcemanagement re-
quires accurate, timely estimates of both snowwater equivalent (SWE)
and snow melt onset. Melting snow provides a reliable water supply
and can also produce wide-scale flooding, particularly when combined
with rainfall. For hydrological purposes, an accurate estimate of the
melt distribution is essential for correctly predicting the runoff response
(Lundquist and Dettinger, 2005), and will also provide insight into im-
portant ecological and biogeochemical processes (Bales et al., 2006).
However, snow characteristics can be highly variable across a land-
scape, and techniques for accurately characterizing the spatial distribu-
tion of snow properties remains elusive (Elder et al., 1998; Dozier et al.,
2016).

The presence of liquid water in an existing snowpack, which can be
an indicator of snowmelt, is particularly difficult to measure or detect
over large areas (Kang et al., 2014). Increasingly over the past
30 years, satellite remote sensing techniques have been investigated
for mapping wet snow (Tedesco, 2015). Optical and infrared imagery
M. Vuyovich).
have been used to estimate snowmelt based on albedo and surface tem-
perature observations (Green et al., 2002). These data have the benefit
of high spatial and temporal resolution, but are unable to observe the
snow cover through cloud cover or at night. Microwave measurements
are highly sensitive to the snowpack electromagnetic properties as the
snow transitions from dry to wet (Mätzler et al., 1980). These data are
minimally impacted by atmospheric conditions and do not require day-
light to make observations. Synthetic Aperature Radar (SAR) C-band
and X-band instruments have been used to accurately resolve wet
snow on a hillslope scale at a high resolution (Nagler and Rott, 2000).
However, because of the small swath size, SAR data are currently not
suitable for monitoring snow melt over large regions. For basin-scale
observations, passive and active microwave sensors have been used to
estimate the timing of melt onset and detect wet snow. Active micro-
wave sensors measure a reduced backscatter signal when liquid water
is present in snow, caused by a significant change in the imaginary
part of the snow effective permittivity. Scatterometer sensors have
been used to map areas of active snow melt and the data have been
shown to correlate to basin discharge events (Nghiem and Tsai, 2001;
Rawlins et al., 2005).

Passivemicrowave observations are also sensitive to the presence of
liquid water in the snow and have the benefit of a long historical record
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(since 1979). Microwave emissions are measured in units of brightness
temperature (TB), which in the microwave spectrum is equal to the
thermometric temperature of the emitting material times the emissivi-
ty. Satellite measurements of TB include primarily emissions from the
Earth as well as reflected radiation from the sky. Ground emission sig-
nals can be affected as they pass through snow, vegetation and the at-
mosphere. The presence of snow causes signal scattering at certain
frequencies. As a result, themeasured TB decreases due to signal extinc-
tion through the snowpack. Empirical SWE formulations relate snow
depth to the difference between two microwave frequencies: one that
scatters as it passes through snow and one that does not, approximately
36 and 18 GHz, respectively (Chang et al., 1982).

Microwave emissions are highly responsive to liquid water content
(LWC), the volume of liquid water per unit volume of snow, due to
the sensitivity of the radiance to changes in the dielectric constant
(Stiles and Ulaby, 1980). The presence of water within a snowpack in-
creases the emissivity resulting in a sharp TB increase (Davis et al.,
1987; Mätzler, 1987; Walker and Goodison, 1993). Passive microwave
emissions cannot be used to estimate SWEduringwet snow periods be-
cause of the reduced signal scattering. However, the signal response
provides a clear indication of increased liquid water content, which
overwhelms the impact of other snowpack properties on the micro-
wave signal (Wang et al., 2001). TB increases occur with as little as 1–
2% liquid water content in the snowpack (Cagnati et al., 2004; Stiles
and Ulaby, 1980; Tedesco et al., 2006). While 1% LWC is not enough to
cause runoff, the satellite response to a wide-spread wet snow event
likely indicates a significant melting or rain-on-snow event and greater
than 1% LWC. Several studies have linked the microwave response at a
coarse resolution to basin runoff and shown potential for hydrologic ap-
plications (Ramage and Semmens, 2012; Vuyovich and Jacobs, 2011;
Yan et al., 2009).

For over three decades, studies have investigated using this response
to predict melt onset (Kunzi et al., 1982; Drobot and Anderson, 2001;
Ramage et al., 2006), or to identify rain-on-snow (ROS) events
(Grenfell and Putkonen, 2008). Two approaches have been developed
to detect the timing of snowmelt using microwave signal response to
wet snow. The Diurnal Amplitude Variation (DAV) approach identifies
the onset of melt using the large differences in TB between the morning
and afternoon overpasses at the 37 GHz frequency (Kopczynski et al.,
2008; Ramage et al., 2006; Tedesco et al., 2009). A DAV increase indi-
cates the onset of the daytime melt/night-time refreeze cycle and the
beginning of spring snowmelt. The high-DAV period that follows the
onset of melt, referred to as the transition period, ends when the snow-
pack is continuously melting during day and night periods and the
brightness temperature difference decreases. Another method uses
the gradient and polarization ratios (GR and PR, respectively) to isolate
the bulk emissivity of the snowpack and identify significant rain-on-
snow events. In the Canadian Arctic, Grenfell and Putkonen (2008)
demonstrated that the GR and PR can be used to identify the occurrence
as well as the intensity of rain-on-snow events. Using a combination of
these two approaches, Semmens et al. (2013) developed an algorithm
for detecting early seasonmelt events with AMSR-E passive microwave
data, and were able to successfully identify melt events caused by both
rain-on-snow and snowmelt alone.

These methods have successfully demonstrated an ability to detect
the timing of snowmelt, which has implications for runoff; however,
they do not provide information on the volume of runoff. The discharge
magnitude during a snowmelt event is a function of the snowpack prop-
erties as well as the spatial extent over which snowmelt is occurring. An
improved understanding of the satellite retrievals' response to the spa-
tially distributed snowmelt is needed. Kang et al. (2014) and Pan et al.
(2014) conducted the foundationwork needed to characterize footprint
scale emissions. They used the Microwave Emission Model for Layered
Snowpacks (MEMLS) and the Helsinki University of Technology (HUT)
snowmicrowave radiative transfer models, respectively, to successfully
capture the emission signatures in wet snowpacks and compare the
results to point observations. Both studies report a sharp increase in
the TB response immediately after wetting (the signal response used
in detecting the onset of melt) despite differences in snowpack charac-
teristics and wetness profiles.

The goal of this study is to understand the TB response to spatially
distributed wet snow within a satellite pixel and to begin to evaluate
the relationship between the aggregated TB response and river dis-
charge. In this study, we investigate the sensitivity of TB to spatially dis-
tributed wet snow using loosely coupled, physically-based snow and
emission models. A long-term ecological research area in the northeast
U.S. was selected as the study location because of its long record of me-
teorological, hydrological and snow observations (described in Section
2). The methods used to develop a relationship between the change in
TB and the fractional area affected by wet snow are described in
Section 3. These include a sensitivity analysis to assess the impacts of ar-
tificially distributed LWC on the emission signal, and evaluation of the
simulated and observed TB duringwet snow events over a nine year pe-
riod. Results of the analysis are provided in Section 4 and include a com-
parison of the TB response and increases in observed streamflow during
wet snow events. In Section 5 we discuss the implications of these re-
sults with potential future directions.

2. Study area and data

The study domain is a 34 km by 34 km area in theWhite Mountains
of NewHampshire, USAwhich includes the Hubbard Brook Experimen-
tal Forest (HBEF), a Long Term Ecological Research (LTER) watershed
(Fig. 1). The HBEF watershed has an area of 31.6 km2, which covers ap-
proximately 3% of the total study domain and is representative of the
larger area. HBEF has more than 50 years of meteorological and hydro-
logical observations, which have enabled decades of ecologic and hy-
drologic research. Approximately one-third of the annual precipitation
falls as snow, with a mean annual maximum SWE for the period of re-
cord atHBEF of approximately 189mm, and a snow cover that generally
persists from mid-December to mid-April (Campbell et al., 2007).

The study domain is a mountainous region, characteristic of the
northeastern United States Appalachian Mountains with elevations
ranging from 120 to 1470 m. Land cover is Eastern Deciduous Forest,
with evergreen forest and tundra at the highest elevations. Agricultural
and developed areas are primarily limited to the lowest elevations and
along rivers. Elevation data for the domain were developed from 30 m
resolution National Elevation Data (NED) (USGS, 2009). Land cover
data were obtained from the National Land Cover Database (NLCD)
(Homer et al., 2015). Both the elevation and land cover data were
clipped and resampled to a 50 m resolution. Stream channels in this re-
gion are generally steep with coarse-grained bed material. A shallow
soil layer, with underlying bedrock approximately 1–2mbelow the sur-
face, meansminimal loss to deep groundwater and relatively quick run-
off response (Campbell et al., 2011). Discharge records demonstrate a
seasonal snowmelt signal with the highest runoff volumes occurring
in March–May.

Meteorological and snow course data from 1 October 2002 to 30
September 2011 at theHubbard Brook LTER (Bailey et al., 2003) andNa-
tional Weather Service stations were used in this study (Table 1). Daily
temperature and precipitation observations were available from ap-
proximately 10 locations each year. The Hubbard Brook LTER data pro-
vided precipitation measurements over a representative elevation
range. Relative humidity, wind speed and direction were available at
three of the 10 observation stations. Only two stations lacked complete
data coverage for the entire period of interest. Snow water equivalent
wasmeasured at five Hubbard Brook snow course locations on aweekly
basis. HBEF also maintains an NRCS Soil Climate Analysis Network
(SCAN) site; an automated station with a snow pillow to measure
SWE, aswell asmeasurements of snowdepth, soil moisture andnumer-
ous meteorological variables. The station has been collecting hourly
data since 2002.



Fig. 1. Study region, located in the White Mountains of New Hampshire, US.
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Within the HBEF research area, nine instrumented watersheds have
recorded continuous discharge measurements since 1956 (Bailey et al.,
2003). Additionally, the Baker River watershed is an unregulated basin,
with an area of approximately 370 km2, which is entirely contained
within the study domain but outside of HBEF. Streamflowdatawere ob-
tained for the Baker River at Rumney, NH from the U.S. Geological Sur-
vey (USGS, 2001).

Passive microwave brightness temperature data from the Advanced
Microwave Scanning Radiometer-Earth Observing System (AMSR-E)
were obtained from the National Snow and Ice Data Center (NSIDC)
(Cavalieri et al., 2014). AMSR-E was launched on NASA's Aqua satellite
in 2002 and data are available through 2011 in Equal-Area Scalable
Earth (EASE)-grid projection as 25-km grids. Horizontally and vertically
polarized TB measured at frequencies 18.7 and 36.5 GHz were used in
this analysis to match the frequencies primarily used in empirical for-
mulations to estimate snow mass. AMSR-E data are available twice
daily: ascending passes that occur in the afternoon and descending
passes that occur in the early morning. This study used the descending
passes only to focus on wide-spread, continuous melt events rather
than diurnal melt signals that do not contribute as much to discharge.
The analysis was only looked at melt events prior to when snowmelt
was actively occurring over the entire domain, though some earlier
melt events may have resulted in melt-refreeze cycles which can
cause increased scattering and low TB estimates (Clifford, 2010). For
each descending overpass during the nine-year period of record, an
area-weighted average TB was computed over the study domain, at



Table 1
List of meteorological stations and snow survey sites used.

Station name (ID) Lat. Long. Elev. (m) Observationsa Water years used

Hubbard Brook HQ (STA HQ) 43.94 −71.70 255 T, RH, WS, WD, PCP, SWE 2003–2011
Hubbard Brook 1A (STA 1A) 43.95 −71.73 490 T, PCP 2003–2011
Hubbard Brook Station 2 (STA 2) 43.95 −71.73 561 SWE 2003–2011
Hubbard Brook Station 6 (STA 6) 43.96 −71.74 740 T, PCP 2003–2011
Hubbard Brook Station 9 (STA 9) 43.96 −71.74 762 SWE 2003–2011
Hubbard Brook Station 14 (STA 14) 43.92 −71.77 740 T, PCP 2003–2011
Hubbard Brook Station 17 (STA 17) 43.92 −71.76 740 T, PCP, SWE 2003–2011
Hubbard Brook Station 19 (STA 19) 43.92 −71.76 792 SWE 2003–2011
Hubbard Brook Station 23 (STA 23) 43.93 −71.76 669 T, PCP 2003–2011
Hubbard Brook Station 24 (STA 24) 43.92 −71.75 796 T, PCP 2003–2011
NRCS SCAN Site 43.93 −71.72 460 T, PCP, WS, WD, RH, SWE 2003–2011
Plymouth Mun. Airport 43.78 −71.75 157 T, RH, WS, WD, PCP 2006–2011
Plymouth COOP Station 43.78 −71.65 303 T, PCP 2003–2008
Wentworth COOP Station 43.95 −71.92 282 PCP 2003–2011
Mt. Wash Regl. Airprt.b 44.37 −71.54 327 T, RH, WS, WD, PCP 2003–2011

a T= temperature (°C); RH= relative humidity (%);WS=wind speed (m/s);WD=wind direction (degrees); PCP= precipitation (mm/day); SWE= snowwater equivalent (mm).
b Located outside of the domain.
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both frequencies and polarizations, as:

TB f ;Pð Þ; j ¼ ∑
n

i¼1
TB;i; jAi ð1Þ

where TB(f,P),j is the area-weighted average TB at frequency, f, and polar-
ization, P, over the domain for overpass, j; n is the number of pixelswith
some portion in the domain; TB,i,j is the TB for pixel, i, during overpass, j;
and Ai is the fractional area of pixel, i, located within the domain. A gap
in the satellite swath coverage over the region of interest occurs every 3
to 4 days. Values were only computed for images when no data were
missing within the study domain. Earlier work by Vuyovich et al.
(2014) found that vegetation in this region of the U.S. impacts of accu-
racy of empirically-based passive microwave SWE estimates, causing
an underestimation of SWE and introducing scatter to the signal. This
agrees with numerous other studies evaluating the effects of vegetation
on passivemicrowave SWE estimates (Derksen et al., 2003; Foster et al.,
2005). In this study no corrections were made to the satellite observa-
tions to adjust for vegetation. The satellite TB was compared to model
results to evaluate the signal response to wet snow even with vegeta-
tion impacts.

3. Methods

For this analysis, a physically-based snow model was loosely
coupled with a microwave emission model to simulate the snowpack
radiance over a 9-year period, 2003–2011. Loosely coupled refers to
modules run independently to each other with minimal interdepen-
dence. In this context, results from the snow model were fed into the
microwave emission model with no knowledge or dependence of the
underlying processes. A single layer snow model was used to focus the
analysis on the impacts of LWC. The models were run at a 50 m resolu-
tion over the study domain with a daily time step. Fig. 2 provides a dia-
gram of the process.
Fig. 2. Diagram of the coupled modeling pro
3.1. Snow and microwave emission models

SnowModel was used to simulate the snow evolution in the study
domain and estimate spatially distributed snow characteristics includ-
ing snow depth, temperature and, density, SWE, albedo and snowmelt.
SnowModel combines an energy balance snowmodel, and awind redis-
tribution model to simulate spatially distributed snow cover evolution
under a variety of landscapes and conditions (Liston and Elder,
2006a). MicroMet, a high-resolution atmospheric model (Liston and
Elder, 2006b) was used to distribute and downscale the required mete-
orological forcing data. SnowAssim (Liston and Hiemstra, 2008) was
used to assimilate SWE field observations. SnowAssim uses an optimal
interpolation approach (Gandin, 1965) developed from differences be-
tween an initial condition simulation SWE and observed coincident
SWE to yield spatially-distributed precipitation correction fields used
for a subsequent simulation (Liston and Hiemstra, 2008). The HBEF
snow course data were assimilated into the model at approximately
bi-weekly intervals over the simulation period to better match the
snow observations. SWE measurements from the SCAN site, which
were not assimilated, were then used to validate model results.

The Microwave Emission Model of Multilayered Snowpack
(MEMLS) was used to estimate the microwave emissions over the
study domain, with snow characteristics provided from SnowModel
output. MEMLS is a semi-empirical radiative transfer model that simu-
lates the scattering effect of snow on microwave emissions at frequen-
cies ranging from 5 to 100 GHz using multiple scattering radiative
theory (Mätzler and Wiesmann, 1999; Wiesmann and Mätzler, 1999).
MEMLS estimates internal scattering based on six-flux theory, which
is simplified for upwelling and downwelling radiation. Scattering coeffi-
cients are determined based on characteristics of the snow.

MEMLSwas used to estimate vertically and horizontally polarized TB
through the snow at 18.7 and 36.5 GHz to match the AMSR-E frequen-
cies used to estimate SWE. The 36.5 GHz frequency is of particular inter-
est and the focus of this paper because of its sensitivity to snow
cess over the 34 km × 34 km domain.
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parameters (Tedesco and Kim, 2006). Snow characteristics including
snow depth, density, temperature, liquid water content (LWC), and
the exponential correlation length (pex) are required as input to
MEMLS. Snow temperature, depth and density were used directly
from SnowModel output. The pex is a metric for grain size used in
MEMLS to estimate the scattering coefficient. The original approach as-
sumed pex values ranging from 0.05–0.3 mm (Wiesmann and Mätzler,
1999), which was later extended to handle coarse grains up to 0.6 mm
(Mätzler and Wiesmann, 1999). SnowModel does not simulate grain
size. To focus the investigation on the effects of LWC, a constant pex

was used for all grid cells.

3.2. Sensitivity analysis

The first sensitivity analysis was conducted to develop a relationship
between the TB response and the percent LWC in the snow, uniformly
distributed across the study domain. A single date was selected when
the study domain was 100% snow covered and no LWC was present in
the snow based on SnowModel results. This provided a realistic spatial
distribution of snow characteristics with which to test the effects of
LWC. In the first series of simulations, LWC was applied across the do-
main as a constant percentage of the SWE in each grid cell. The LWC
was uniformly applied to each grid cell in 0.1% increments increasing
from 0 to 5%. In the next series of simulations, the same adjustment to
LWC performed in the first test was repeated while individually
adjusting the other snow characteristics. The snow depth, density, tem-
perature and exponential correlation length were varied between a se-
lected maximum and minimum average value over the study domain.
To adjust the snow depth, density and temperature, the individual
grid cell values were scaled by the ratio of the new domain average
value to the original average. The exponential correlation length was
uniformly adjusted across the domain to represent a range of expected
grain sizes from fine to coarse.

In the second sensitivity analysis, LWC was applied to increasing
areas of the study domain using SnowModel results on the same date
as in the previous analysis. The area assigned LWC was increased from
0% to 100% by 10% increments. The goal of this analysis was to develop
a relationship between the percent area impacted by wet snow and the
change in TB over the entire domain. Two different spatial distributions
were used to assign LWC to the grid cells: random and by elevation. The
randomdistribution assigned LWC to grid cells at random. The elevation
distribution assigned LWC to grid cells beginningwith the lowest eleva-
tions first, and increasing the percent area within the domain as a func-
tion of elevation. The elevation distributionwas used to replicate amore
realistic melt pattern, which is often strongly correlated with elevation,
though it is not the only factor (Lundquist et al., 2004). Table 2 provides
a matrix of the tests performed in the sensitivity analysis.

3.3. Wet snow events

For the period 2003–2011, the snow emission model was run over
each winter season and wet snow events were identified using a
Table 2
Sensitivity analysis test matrix, using SnowModel results on 11 March 2003.

LWC analysis Snow deptha (cm) Snow temp.a (K)

Tests 1–5: Uniform application of varying LWC across domain, 51 simulations increasing L
Test 1: baseline 49 cm 266.8 K
Test 2: adjusting snow depth 2 Tests: 25 cm and 80 cm 266.8 K
Test 3: adjusting snow temperature 49 cm 3 Tests: 250, 260
Test 4: adjusting snow density 49 cm 266.8 K
Test 5: adjusting pex 49 cm 266.8 K

Tests 6–7: Spatial distribution of constant LWC across domain, 11 simulations, LWC = 1%
Test 6: LWC assigned randomly 49 cm 266.8 K
Test 7: LWC assigned by elevation 49 cm 266.8 K

a Average over domain.
threshold change in TB greater than 5 K from the previous day. The
threshold was used to filter out small increases in TB that could be due
tominormelt events, andwas selected as a value greater than one stan-
dard deviation of the one-day change in TB over the nine winter sea-
sons. To ensure that the domain was mostly snow covered, the events
were limited to the December to March time period when the average
SWE over the domain was at least 10 mm. SnowModel output includes
snowmelt but not LWC, a snow property required by MEMLS. In grid
cells where SnowModel estimated snow melt runoff greater than zero,
LWC was assumed to be present in the snowpack. For each event iden-
tified, the change in the observed TB was compared with the results of
the sensitivity analysis. For significant melt events to occur the snow-
pack temperature must be at the melt temperature, 273.15 K. For each
wet snow event, the change in brightness temperature from one day,
TB,1, to the next, TB,2, was normalized by the difference between the pre-
vious day's TB and 273.15 K, which represents the largest change in TB
that could occur. The normalized brightness temperature, TB,n, is defined
as,

TB;n ¼ TB;2−TB;1
� �

273:15 K−TB;1
� � ð2Þ

The AMSR-E 36.5 GHz TB was compared to the modeled TB over the
period, 2003–2011when the satellite data are available. The normalized
change in AMSR-E TB during thewet snow eventswas also compared to
the results of the sensitivity analysis.

For each wet snow event identified, discharge changes in the Baker
River at Rumney, NH were quantified. While not all wet snow packs
will result in runoff, liquid water detected in the snowpack is a neces-
sary precursor to winter discharge increase. The absolute change in dis-
charge for up to 4 days following a wet snow event identified in the
microwave signal was compared to the change in TB estimated from
MEMLS and AMSR-E. Four days was selected based on a review of his-
torical discharge records at the Baker River station to allow sufficient
time for the snow melt runoff to drain from the basin and reach a
peak discharge, but not somuch that the hydrograph included multiple
events or had begun to recede.

4. Results

4.1. High-resolution simulation of snow characteristics over study domain

SnowModel results were validated using observed SWE at an NRCS
SCAN site located within the Hubbard Brook watershed which was not
assimilated into themodel. Over the 9 years when both snowpillow ob-
servations and SnowModel results were available, the correlation (R2)
between the daily SWE data was 0.82 indicating a closematch between
the modeled and observed at that location. The study area is usually
completely snow covered during the winter months, beginning on 10
December and ending on 8 May on average. The average peak SWE
date occurs on 10 March, and the estimated average peak SWE over
the study domain during the 9-year time period is 172 mm. The
Snow densitya (kg/m3) Exponential correlation length, pex

WC from 0–5% by 0.1% increments
301.7 kg/m3 0.11
301.7 kg/m3 0.11

and 270 K 301.7 kg/m3 0.11
2 Tests: 200 and 400 kg/m3 0.11
301.7 kg/m3 2 Tests: pex = 0.3 and 0.65

, assigned to 0–100% of the area by 10% increments
301.7 kg/m3 0.11
301.7 kg/m3 0.11
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maximumpeak SWEwas 311mm in 2008 and aminimumpeak SWEof
78mmwas estimated in 2006. Simulated snowdepths showed variabil-
ity with topography, which agrees with observed snowmeasurements.
SWEmeasured at HBEF are consistently deeper at high-elevations than
in the valley floors throughout the snow accumulation and ablation sea-
son. In addition, melt rates, calculated as the average positive decrease
in snow depth on each day of the year, are greater at the lower eleva-
tions earlier in the season and at the higher elevations later in the sea-
son (Fig. 3). This supports the use of elevation as a realistic index for
snowmelt patterns.

4.2. Simulation of snow microwave emissions over study domain

The MEMLS model was run for each 50 × 50 m grid cell over the
9 year study period, using snow characteristics from SnowModel as
input. The results were averaged to provide a single TB for the whole
study domain, which were then compared to the vertically polarized
36.5 GHz TB from the AMSR-E satellite sensor. Though no atmospheric
or vegetation corrections were made to the AMSR-E data for this
study, both measured and modeled TB show a similar decrease during
the winter months when snow is impacting the signal (Fig. 4). The R2

and RMSE between the modeled and observed data are 0.53 and 8.3 K,
respectively. TB estimates range from approximately 273 K during the
snow-free periods to 220–240 K at the peak snowpack. In 2005 and
2006 there are larger differences between the data than other years.
Both years experienced a shallow snowpack compared to other years,
particularly in the beginning of the season, which may have impacted
the satellite results. Dissimilarities between the data could also be due
to atmospheric or vegetation effects on the AMSR-E data or model
assumptions.

4.3. Sensitivity of microwave emissions to LWC in snow

The sensitivity analysis provided the foundation to examine the ef-
fect of LWC on microwave emissions over the study domain. On the
date selected for the sensitivity analysis, 11March 2003, SnowModel re-
sults estimated 100% snow cover over the domain and no LWC (Fig. 5).
The average snow depth on this date was 49.1 cm, ranging from amax-
imum of 145.2 cm to a minimum of 13.7 cm across the study domain.
The average snow density and temperature were 301.7 kg/m3

and −6.32 °C (266.8 K), respectively. A constant pex of 0.11 was used
for all grid cells based on observed values for a similar snowpack
depth (Proksch et al., 2015;Wiesmann et al., 1998). The 36.5 GHz TB, es-
timated by MEMLS on this date, was 248.6 and 237.6 K for the vertical
and horizontal polarizations, respectively. The computed 18.7 GHz TB
on this date was 266.1 K for the vertical polarization and 253.3 K for
the horizontal polarizations. For comparison, the AMSR-E TB observed
on this date were 229.7 and 226.4 K for the vertical and horizontal po-
larizations of the 36.5 GHz frequency, respectively. The TB observations
Fig. 3. Average daily melt rates at 5 Hubbard Brook snow survey sites (with elevation)
during the spring season, based on HBEF data from 1993 to 2015.
at 18.7 GHz were 239.1 K in the vertical polarization and 232.0 K hori-
zontal. Differences between the 36.5 GHz vertical TB on this date are
larger than the calculated RMSE over the nine year period. Previous to
this date awarming event occurred thatmay have resulted in amelt-re-
freeze layer in the snow causing increased scattering in the satellite
data.

4.3.1. Homogenous distribution of LWC percentage
For the first sensitivity analysis, the same LWC was applied to each

MEMLS grid cell as a percentage of the SWE in that cell, increasing by
0.1% increments from 0 to 5% LWC. With the initial application of 0.1%
LWC, the average TB across the domain increased by approximately
14.5 and 12.7 K for the vertical and horizontal polarizations, respectively
(Fig. 6). The vertically polarized 36.5 GHz brightness temperatures con-
tinued to rise with increasing LWC until leveling off around 1% LWC. In
contrast, the horizontally polarized 36.5 GHz channel decreased after
the initial rise even with increasing amounts of liquid water in the
snow. This is caused by further increases in the surface reflectivity
(Kang et al., 2014). Both the horizontally and vertically polarized
18.7 GHz TB changed to a smaller degree initially than the 36.5 GHz
channel and then closely followed the corresponding polarization
from the 36.5 GHz data as additional LWC was introduced to the snow
pack. The remainder of this study focuses on the vertically polarized
36.5 GHz signal that has a strong response to liquid water and then re-
mains constant.

4.3.2. Impact of snow properties
The LWC sensitivity analysis, using a homogenous LWC percentage

across the domain, was repeated while adjusting the other snow char-
acteristics to assess the impact on the 36.5 GHz vertical signal. The aver-
age snowpack depth over the domain was scaled from 25 to 80 cm by
multiplying each pixel by the ratio of the new depth to the original
depth. For dry conditions, the TB values differ by 15.3 K with the lowest
TB estimated for the 80 cm snowpack (Fig. 7a). The initial application of
0.1% liquidwater equalizes the TB to the average snowpack temperature
(266.8 K). Next, the domain average snow density was varied between
200 and 400 kg/m3 by similarly scaling the individual model cells. The
initial TB ranged between 237.4 and 258.4 K for the low- and high-den-
sity tests, respectively (Fig. 7b). Similar to snow depth, the TB equalizes
to the snowpack temperature with the addition of 0.1% LWC.

Adjusting the correlation lengths had a larger effect on the initial TB
with values for dry snow ranging from 91 to 250 K for pex values of 0.65
and 0.11 mm, respectively (Fig. 7c). These values were selected based
on observed correlation lengths of fine and coarse snow grains
(Mätzler and Wiesmann, 1999). With additional amounts of LWC, the
TB values converge on the snowpack temperature, though more LWC
is required for TB to reach the maximum temperature with larger
snow grains. Finally, the grid cell snowpack temperatures were scaled
to obtain domain-average temperature of 270 K, which is closer to
what would realistically be expected during a melt event, when the
snow temperature must be at themelting point. The snow temperature
determines the maximum TB value of the wet snowpack. In almost all
cases, with the exception of the largest correlation length, the TB
reached a maximum TB at approximately 1% LWC.

4.3.3. Effects of spatially distributed LWC to aggregated TB signal
The next analysis considered themicrowave response for a region in

which part of the snowpack was wet and part was dry. A 1% LWC was
assigned to a portion of the grid cells in the domain, increasing in area
by 10% for each simulation, from 0 to 100%. TB was modeled using
MEMLS for each grid cell, then a single, average TB valueswas calculated
for the domain. The 1% LWC value was selected based on the results of
the previous analysis when the maximum TB value was typically
reached despite variations in snow properties. Pixels were assigned
LWC using two different spatial distributions. The first method assigned
LWC randomly to grid cells. The second method assigned LWC by grid



Fig. 4. Daily average TB over study domain for water years 2003–2011, from model results and satellite retrievals.
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cell elevation startingwith the lowest elevations. Fig. 8 shows examples
of the resulting TB distributionwhen 1% LWC is assigned randomly (top
row) and from low to high elevation (bottom row) over 20, 50 and 80%
of the total area. In the randomly distributed examples, the spatial var-
iation in TB clearly decreases as a greater percentage of the area is wet,
while the lowTB values at higher elevations persistwhen LWC is distrib-
uted by elevation. There is relationship between the portion of the area
affected bywet snow and the change in TB, with themaximum possible
change in TB occurring when 100% of the domain is affected (Fig. 9).
When 1% LWC is randomly distributed over the domain the relationship
follows a linear trend. When the LWC was distributed by elevation, the
results nearlymatch the linear relationship of the randomly distribution
though values are slightly depressed in the middle. The greatest differ-
ence in TB when LWC is distributed randomly and by elevation is 1 K
when 50% of thedomain is affected. This reduced TBwhen approximate-
ly half of the area is impacted is likely due to the deeper dry snow re-
maining at the higher elevations impacting the microwave emissions.

4.4. Wet snow events

4.4.1. Comparison of modeled wet snow events to sensitivity results
Over the 9-year period, 44 wet snow events were detected using a

threshold change in TB greater than 5 K from the previous day and lim-
iting the analysis to the December to March time period when the
Fig. 5. SnowModel SWE on 11 Mar 2003 when do
average SWE over the domain was at least 10 mm. Fig. 10 shows the
wet snow events plotted along with the sensitivity analysis results
when the LWC was distributed by elevation. There is good agreement
between the modeled wet snow events and the sensitivity analysis re-
sults, indicating that despite variability in snow properties there is a re-
lationship between areal extent of wet snow and the TB response.

4.4.2. Comparison of modeled emission results to satellite retrievals
For each of the 44 wet snow events, the AMSR-E vertically polarized

36.5 GHz TB was obtained for the study domain. In every case, during
wet snow events identified in the modeled emission results, the
AMSR-E TB also increased. There is a positive relationship between the
satellite observations and model TB changes during each of the events;
however there is also considerable scatter (Fig. 11) and the correla-
tion is low, R2 = 0.13. Despite the heavy mixed-forest tree canopy,
the magnitude of the AMSR-E TB changes is as large as the modeled
changes. While, the presence of vegetation affects SWE estimation
using passive microwave, the ability to detect wet snow events
using the relative change in TB signal still shows potential.

4.4.3. Evaluation of discharge response
Wet snow events indicate snowmelt and, in some cases, will be

followed by streamflow increases. For the 370 km2 Baker River water-
shed, the change in discharge, ΔQ, from the date of the TB response to
main was 100% snow covered with no LWC.



Fig. 6. Vertically and horizontally polarized 36.5 GHz TB for increasing percent LWC,
averaged over the study domain.
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the peak flow, up to four days following the wet snow event, was eval-
uated. Fig. 12 shows the relationship between the increasing discharge
and the increasing TB from themodel results and AMSR-E observations.
In all cases, an increase in discharge followed the increase in TB, though
there is not a strong relationship between the magnitude of the TB in-
crease and discharge (correlation less than 0.1 for MEMLS and 0.22 for
AMSR-E). In approximately 20% of the events the increase in discharge
was small (less than 10% of the average peak annual flow, 29 cm),
though the change in TB was large. After reviewing temperature data
in the region,many of these events represent early-seasonwarming pe-
riods where the signal response is likely due to surface melt and which
did not sufficiently warm the snowpack to cause runoff; therefore they
did not result in significant increases in discharge. The comparison im-
proves if we evaluate the events by month, though there is still a signif-
icant amount of scatter in the microwave response.

5. Discussion

The TB response to the presence of liquid water in the snow domi-
nates the emission signal. This signal has been identified in previous re-
search as a potential indicator of melt onset. The results of this study
agree with earlier research, which shows a sharp increase in the
Fig. 7. Vertically polarized 36.5 GHz TB for increasing percent LWC, averaged over the domai
temperature.
measured 36.5 GHz TB value with relatively low LWC values. Similarly,
we found constant values for the vertically polarized TB and decreases
in horizontally polarized TB with additional LWC above 1% (Kang et al.,
2014). Snow depth, density and grain size have a strong impact on the
measured TB for dry snow, but the change in TB with wet snow is clearly
evident over a range of initial snow characteristics. In contrast to Kang et
al. (2014), this study found that different grain sizes can yield a signifi-
cant difference in the initial TB response, though the resulting TB once
LWC is present is similar despite differences in snow properties.

Based on the sensitivity analysis performed in this study, there is a
near linear relationship between the percent area where wet snow is
present and the change in the aggregated TB signal over that area.
There is only a small difference in the relationship when the LWC is dis-
tributed randomly versus by elevation in this region. An accurate distri-
bution is important to correctly estimate the discharge response;
therefore additional information can be used to spatially distribute the
disaggregated wet snow signal. During the ablation period, snowmelt
is driven by energy fluxes that are influenced by topography, vegetation
and solar radiation (Melloh et al., 2008). Several studies have observed
repeated patterns in spatial distribution of melt using various tech-
niques, such as digital imagery, terrestrial laser scans and remote sens-
ing (Egli et al., 2012; Ide and Oguma, 2013), which could be used to
describe the melt distribution.

The results of the sensitivity analysis were compared to actual wet
snow events as detected by the combined snow-emissionmodel results
over a 9-year period. There is strong agreement between the percent
area affected by wet snow and the change in TB across a range of
snow conditions and time periods. The comparison of modeled results
to the AMSR-E TB response during wet snow events yielded a moderate
positive linear relationship. While all of the detected melt events saw a
corresponding positive increase in AMSR-E TB measured at 36.5 GHz,
the correlation between the magnitudes of TB changes was weak. This
may be due to regional effects of vegetation on the satellite signal, or
the area overwhich the area-weighted averagewas computed. Previous
research has shown regional differences in the satellite sensor perfor-
mance in estimating SWE as compared to modeled data (Vuyovich et
al., 2014). Thus, the signal response should be investigated in different
regions and domains.
n as a function of a. snow depth, b. snow density, c. correlation length, and d. snowpack



Fig. 8. TB, 36.5 V resulting from 1% LWC distributed randomly (top row) and by elevation (bottom row) over 20% (a, d), 50% (b, e) and 80% (c, f) of the area.
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The comparison of the wet snow signal response and the discharge
at a station within the domain showed a positive relationship between
increased TB and increased discharge. It is encouraging to see a response
at such a small scale, particularly given the temporal resolution of the
model. Yan et al. (2009) used themelt signal fromDAV and a conceptu-
ally-based hydrologic model to predict spring snowmelt over a large
Alaskan basin. While their hydrograph timing results were accurate in
most years, they acknowledge limitations of running at such a coarse
resolution (to match EASE-grid pixel size), and the need for better
snowpack characterization. This study provides the potential basis for
disaggregating melting snow within the microwave pixel based on the
TB response.
Fig. 9. Change in average TB over the domain as a function of percent areawith 1% LWC assigned
line) and distributed by elevation (gray line).
6. Conclusion

Satellite-based, passivemicrowave data have been investigated over
multiple decades for their ability to provide global snow information.
Over much of that time the signal response to liquid water in the snow-
pack has been examined for its potential to predict snowmelt onset
timing. This study expanded earlier work by Kang et al. (2014) and
Pan et al. (2014), investigating the sensitivity of microwave emission
at a point, by evaluating the emission response to spatially distributed
LWC. A sensitivity analysis was conducted using synthetic distributions
of LWC over a realistically distributed snowpack. An increasing, near-
linear relationship was found between the TB signal response and the
to pixels inMEMLS sensitivity analysis; assignment was randomly distributed (black dash



Fig. 10. Normalized change in TB (Eq. (1)) for wet snow events and results of the
sensitivity analysis when LWC was distributed by elevation.

Fig. 12.Modeled and observed temperature brightness changes versus discharge increase
at the Baker River gage following wet snow events.
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percent area with LWC present, suggesting that the microwave re-
sponse provides the potential basis for disaggregating melting snow
within amicrowave pixel. The results were confirmed by evaluating ac-
tualwet snow events over a 9-year period. These results have important
implications on the potential use of microwave data to inform not only
themelt timing but also themagnitude of runoff. Operational snow hy-
drology models require estimates of initial snowpack characteristics to
accurately estimate melt timing and magnitude. Future work should
evaluate the utility of microwave data to initialize model snow state
based on the wet snow response.

Wet snow events identified in themicrowave signal were compared
to discharge data for a basin within the domain. An increase in TB was
followed by a subsequent increase in discharge in all cases; however
the magnitude of the change did not correspond. Next steps should in-
clude evaluating the spatial distribution of wet snow in larger basins to
understand the hydrological impact of large-scale snowmelt events as
detected by passive microwave data. The microwave signal should be
evaluated across different regions where the satellite-based wet snow
signal may provide useful information. Future work should also investi-
gate whether the relationship holds in other snow regimes, such as a
homogenous plains snowpack or deep mountain snowpack with high
spatial variability.
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