

Journal of Geophysical Research: Biogeosciences

RESEARCH ARTICLE

10.1002/2016JG003671

Key Points:

- Arctic tundra ecosystem is an annual net source of CO₂
- Winter CO₂ release offsets growing season CO₂ gain
- Active layer thickness is a significant driver of NEE, GPP, and R_{eco}

Supporting Information:

- Supporting Information S1

Correspondence to:

G. Celis,
gerardo.celis@nau.edu

Citation:

Celis, G., M. Mauritz, R. Bracho, V. G. Salmon, E. E. Webb, J. Hutchings, S. M. Natali, C. Schädel, K. G. Crummer, and E. A. G. Schuur (2017), Tundra is a consistent source of CO₂ at a site with progressive permafrost thaw during 6 years of chamber and eddy covariance measurements, *J. Geophys. Res. Biogeosci.*, 122, 1471–1485, doi:10.1002/2016JG003671.

Received 16 OCT 2016

Accepted 21 MAY 2017

Accepted article online 30 MAY 2017

Published online 28 JUN 2017

Tundra is a consistent source of CO₂ at a site with progressive permafrost thaw during 6 years of chamber and eddy covariance measurements

Gerardo Celis^{1,2} , Marguerite Mauritz¹, Rosvel Bracho³, Verity G. Salmon⁴ , Elizabeth E. Webb² , Jack Hutchings² , Susan M. Natali⁵ , Christina Schädel¹ , Kathryn G. Crummer⁶, and Edward A. G. Schuur^{1,2}

¹Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA, ²Biology Department, Bartram Hall, University of Florida, Gainesville, Florida, USA, ³School of Forest Resources and Conservation, University of Florida, Gainesville, Florida, USA, ⁴Environmental Sciences Division, Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA, ⁵Woods Hole Research Center, Falmouth, Massachusetts, USA, ⁶Institute for Sustainable Food Systems, University of Florida, Gainesville, Florida, USA

Abstract Current and future warming of high-latitude ecosystems will play an important role in climate change through feedbacks to the global carbon cycle. This study compares 6 years of CO₂ flux measurements in moist acidic tundra using autochambers and eddy covariance (Tower) approaches. We found that the tundra was an annual source of CO₂ to the atmosphere as indicated by net ecosystem exchange using both methods with a combined mean of $105 \pm 17 \text{ g CO}_2 \text{ C m}^{-2} \text{ y}^{-1}$ across methods and years (Tower 87 ± 17 and Autochamber 123 ± 14). The difference between methods was largest early in the observation period, with Autochambers indicated a greater CO₂ source to the atmosphere. This discrepancy diminished through time, and in the final year the Autochambers measured a greater sink strength than tower. Active layer thickness was a significant driver of net ecosystem carbon exchange, gross ecosystem primary productivity, and R_{eco} and could account for differences between Autochamber and Tower. The stronger source initially attributed lower summer season gross primary production (GPP) during the first 3 years, coupled with lower ecosystem respiration (R_{eco}) during the first year. The combined suppression of GPP and R_{eco} in the first year of Autochamber measurements could be the result of the experimental setup. Root damage associated with Autochamber soil collar installation may have lowered the plant community's capacity to fix C, but recovered within 3 years. While this ecosystem was a consistent CO₂ sink during the summer, CO₂ emissions during the nonsummer months offset summer CO₂ uptake each year.

1. Introduction

High-latitude ecosystems are among the global ecosystems that will experience greatest increases in air temperature by the end of the century due to climate amplification [International Panel on Climate Change (IPCC), 2014]. These ecosystems store large stocks of carbon (C) in soils, in particular in perennially frozen soils (permafrost), which currently contain approximately 1330–1580 PgC in the form of frozen soil organic matter [Tarnocai *et al.*, 2009; Hugelius *et al.*, 2014; Schuur *et al.*, 2015]. Current warming in high-latitude regions is associated with soil warming and permafrost thaw [Romanovsky *et al.*, 2011; IPCC, 2014], which has the potential to release large amounts of stored C to the atmosphere. An estimated 130 to 160 PgC will be released by 2100 under a high warming scenario (i.e., Representative Concentration Pathway scenario 8.5) [Schuur *et al.*, 2015], and these C emissions are expected to accelerate the rate of global climate change [Koven *et al.*, 2011]. The net contribution of CO₂ from high latitudes to the atmosphere will depend on the balance between two major processes: (a) decomposition and/or physical release of soil C reserves [Xue *et al.*, 2016] and (b) the capacity of vegetation to fix atmospheric CO₂ during the growing season [Schimel, 1995; Lucht *et al.*, 2002; Walker *et al.*, 2012]. The drivers that will influence CO₂ fluxes can be physical and/or biological [McGuire *et al.*, 2009]. Physical drivers that have the potential to alter CO₂ fluxes are longer snow-free periods [Groendahl *et al.*, 2007; Euskirchen *et al.*, 2009; Lund *et al.*, 2012], increased temperature [Rustad *et al.*, 2000; Davidson and Janssens, 2006], reduced soil moisture [Oberbauer *et al.*, 2007; Sharp *et al.*, 2013; Natali *et al.*, 2015], and increased nutrient availability [DeMarco *et al.*, 2014; Salmon *et al.*, 2016]. Biological drivers potentially tied to fluxes are improved species performance [Chapin and Shaver, 1985; Oberbauer *et al.*, 2013], shift

in plant communities [Walker *et al.*, 2006; Schuur *et al.*, 2007; Myers-Smith *et al.*, 2011; Hollister *et al.*, 2015], and herbivory [Welker *et al.*, 2004; Kelsey *et al.*, 2016]. The warming of soils and thawing of permafrost stimulate soil organic matter decomposition [Mackelprang *et al.*, 2011; Schädel *et al.*, 2014; Xue *et al.*, 2016] and increase heterotrophic respiration from soils result in a positive feedback to the atmospheric CO₂ concentration but will depend on snow accumulation [Nowinski *et al.*, 2010; Blanc-Betes *et al.*, 2016] and changes in soil community abundance and composition [Mohan *et al.*, 2014; Morgado *et al.*, 2015; Parker *et al.*, 2015; Semenova *et al.*, 2015; Geml *et al.*, 2016; Morgado *et al.*, 2016]. Increased CO₂ loss may, however, be counteracted by increases in net primary production (NPP) as plant productivity increases [Epstein *et al.*, 2012] and the plant community shifts from graminoid to shrub dominance [Sturm *et al.*, 2005; Walker *et al.*, 2006; Myers-Smith *et al.*, 2011; Pearson *et al.*, 2013; Hollister *et al.*, 2015]. There is considerable variability among observational studies and modeling approaches [Koven *et al.*, 2011], with some reviews showing annual CO₂ emissions exceed CO₂ uptake [Belshe *et al.*, 2013], while others indicate that the tundra is a net CO₂ sink [McGuire *et al.*, 2012, and references therein]. There is growing evidence that winter is an important driver of annual estimates since cold season losses which can offset summer season gains [Fahnestock *et al.*, 1999; Welker *et al.*, 2000; Euskirchen *et al.*, 2012; Grogan, 2012; Oechel *et al.*, 2014]. Yet winter remains one of the most uncertain periods of the Arctic CO₂ balance. In the past it has been difficult to constrain Arctic CO₂ fluxes due to spatially and temporally sparse measurements, and differences in measurement techniques. Better estimates of both the magnitude and direction of CO₂ fluxes (i.e., net source or sink) is critical for understanding the strength of the Arctic carbon-climate feedback.

Studies related to CO₂ fluxes measurements are often collected at different spatial scales. Small-scale (<1 m²) measurements are used to understand the dynamics of manipulative experiments (e.g., the International Tundra Experiment, ITEX [Henry and Molau, 1997]) and local processes that affect CO₂ cycling. Small-scale measurements provide important mechanistic insights for CO₂ fluxes but can be difficult to scale and be biased by site selection [Fox *et al.*, 2008]. Eddy covariance towers are used at larger scales (>10,000 m²) to observe landscape dynamics and can incorporate a wide range of microsite conditions and vegetation types, which affect the CO₂ balance [Belshe *et al.*, 2012] but may not capture mechanistic processes. The process of data comparison for landscape-level analysis is further complicated by the fact that many studies only utilize one method to measure CO₂ fluxes at a given site. It is well documented that measured CO₂ flux estimates vary depending on the method employed [Björkman *et al.*, 2010; Riederer *et al.*, 2014; Webb *et al.*, 2016] and colocated measurements of CO₂ fluxes using different methods can differ due to the small scale changes in the local plant community, time of day, and time of year [Oechel *et al.*, 1998; Smith *et al.*, 2003; Myklebust *et al.*, 2008]. Accurate quantification of the Arctic CO₂ balance relies on the ability to combine and compare chamber and tower based data, but there is a scarcity of research on how these two methods differ from one another. The present study provides an opportunity to compare these two measurement techniques and determine both the magnitude and direction of CO₂ fluxes (i.e., net source or sink) in a rapidly thawing tundra ecosystem.

This study examined the dynamics of ecosystem CO₂ exchange using two complementary methods of measuring CO₂ fluxes: (a) plot-scale experiment (<1 m² scale using autochambers) and (b) landscape observation (>10,000 m² using eddy covariance) measurements. We addressed the following questions: (1) Is tundra a net annual CO₂ source or sink at a site with permafrost thaw? (2) What are seasonal and interannual changes in CO₂ magnitude, and what environmental variables drive these changes? (3) Do measurements at different scales (eddy covariance tower and autochambers) show the same magnitude and variability?

2. Methods

2.1. Site Descriptions and Setup

Carbon dioxide flux measurements were measured within a discontinuous permafrost zone at the Eight Mile Lake (EML) research site near Healy, Alaska, USA [Schuur *et al.*, 2007, 2009; Vogel *et al.*, 2009; Lee *et al.*, 2010, 2011; Natali *et al.*, 2011; Belshe *et al.*, 2012; Natali *et al.*, 2012; Trucco *et al.*, 2012; Hicks Pries *et al.*, 2013a, 2013b; Natali *et al.*, 2014, 2015; Salmon *et al.*, 2016; Webb *et al.*, 2016; Mauritz *et al.*, 2017]. The site contains a permafrost borehole which has documented rising permafrost temperatures since 1985 [Osterkamp and Romanovsky, 1999], and within the past three decades the site has experienced varying levels of disturbance associated with permafrost thaw [Schuur *et al.*, 2007]. The site vegetation community depends on permafrost

degradation. Low and intermediate thaw stages are dominated by the graminoid *Eriophorum vaginatum*, a tussock-forming sedge, whereas in the transition to extensively thawed permafrost shrubs (evergreen—*Rhododendron subarcticum* and deciduous—*Vaccinium uliginosum*) become dominant [Schuur *et al.*, 2007]. Landscape-scale CO₂ fluxes have been monitored since June 2008 using the eddy covariance approach (hereafter called Tower; 63°52'42"N, 149°13'12"W). Small-scale CO₂ fluxes were measured at the plot level (0.36 m²) from the Carbon in Permafrost Experimental Heating Research project (hereafter called Autochamber; 63°52'59"N, 149°13'32"W), which was initiated in September 2008 and was designed to simulate anticipated increases in soil and air temperatures [Natali *et al.*, 2011]. Because the goal of this analysis was to evaluate how permafrost thaw impacts CO₂ fluxes under ambient climate forcing, only control plots, which did not receive any warming treatment, were used in this analysis. Control plots were selected from within the blocked split-plot warming experiment which used snow fences and open top chambers (OTCs, 50 cm tall constructed of 0.6 cm thick clear polycarbonate) to simulate warming; there were two control plots (60 × 60 cm) at each of the six snow fences, so we used a total of 12 replicate plots for this study. Further description of the field site and warming experiment can be found in [Natali *et al.*, 2011, 2012]. Autochamber plots are located just outside the tower fetch, and soil classification, climatic conditions, topography, and vegetation community were similar between Autochamber and Tower [Schuur *et al.*, 2007; Natali *et al.*, 2011, 2012]. A high-resolution active layer thickness (ALT) survey ($n = 310$) in 2008 and 2009 at the Tower showed that ALT ranges at Tower and Autochamber plots encompassed similar ranges throughout the study period [Belshe *et al.*, 2012]. The Tower included few areas with more extensive permafrost thaw than was documented at Autochamber. Based on 2009 plot-level census (Tower $n = 225$ and Autochamber $n = 12$), vegetation is dominated by moist acidic tussock tundra comprising an average mixture of ~11–29% sedges (*Eriophorum vaginatum*), ~23–25% deciduous and ~25–29% evergreen shrubs (*Vaccinium uliginosum*, *Rubus chamaemorus*, *Betula nana*, and *Rhododendron subarcticum*), and ~20–39% nonvascular plants (*Sphagnum* spp., *Dicranum* spp., feathermoss, and lichens) [Salmon *et al.*, 2016].

2.2. Environmental Monitoring

An Onset HOBO (Bourne, MA) weather station measured environmental parameters including air temperature, rainfall, and photosynthetically active radiation (PAR) at Autochamber. The Tower data were collected at an adjacent station, which included PAR (Li-190SA, LI-COR Biosciences), incident radiation (Li-200SA, LI-COR Biosciences), net radiation (REBS Q*7.1, REBS Inc., Seattle, Washington), relative humidity and air temperature (Vaisala HMP45c, Campbell Scientific), and wind speed and direction (RM Young 3001, Campbell Scientific). Soil temperatures (10 cm depth) were measured continuously in each plot at Autochamber and in two locations at Tower using constantan-copper thermocouples. Active layer thickness (ALT; end of summer season maximum thickness of thawed ground) was measured in each plot at Autochamber and at nine locations within the Tower footprint using a metal depth probe. Water table depth (WTD) was measured from 12 water wells at Autochamber and 9 wells at Tower. Thaw and water table depth measurements were colocated with reported observations of the plant community, and so these measurements capture the range of environmental conditions experienced by the plant communities at this site, and the range of microsites integrated by the tower.

2.3. Carbon Flux Measurements

Net ecosystem carbon exchange (NEE) was measured using two different approaches: (1) landscape dynamics using an eddy covariance tower and (2) localized plot measurements using autochambers. During the summer season both methods were simultaneously deployed; during the nonsummer season CO₂ fluxes were estimated by a combination of manual chamber flux measurement and models parameterized with Tower measurements and method-specific soil temperatures. Negative NEE indicate CO₂ uptake by the ecosystem.

Autochamber NEE (μmol CO₂ C m⁻² s⁻¹) and ecosystem respiration (R_{eco} μmol CO₂ C m⁻² s⁻¹) were measured using automated CO₂ flux systems during the summer (May–September) of 2009–2014. Automated flux chamber (0.36 m² × 0.25 m) measurements were made continuously (every 1.5 h) at 12 plot locations and averaged per fence ($n = 6$). Automated chamber measurements were supplemented with weekly manual chamber measurements from October to November, in order to capture fall-season dynamics and before snow cover impeded further measurements. For both automated and manual measurements air was circulated within the chamber and CO₂ concentrations were sampled in 2 s intervals at 1 L min⁻¹, for 1.5 min,

using an infrared gas analyzer (LI-820, LICOR Corp., Lincoln, Nebraska), and recorded on a data logger (Campbell Scientific CR1000 in the summer and Arduino unit in the fall). NEE flux rates were calculated using linear regression and converted from volumetric ($\text{ppm CO}_2 \text{ m}^2 \text{ s}^{-1}$) to mass ($\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$) using plot-specific chamber volumes and air temperatures. Flux data were quality controlled for outlying and erratic fluxes based on equipment failure and environmental conditions known to produce erratic fluxes (i.e., wind speeds exceeding 7 m s^{-1}). After screening, at least 80% of total flux measurements were retained. A more detailed description of the setup and data processing can be found in [Natali *et al.*, 2011, 2014; Mauritz *et al.*, 2017].

Tower NEE was measured using eddy covariance (EC) starting May 2008 to September 2014. The system consisted of a sonic anemometer (CSAT3, Campbell Scientific, Logan, Utah), and an open path infrared gas analyzer (Li-7500, LI-COR Biosciences, Lincoln, Nebraska) mounted on a 2 m tower from 2008 to May 2011 after which sensors were raised to 3.5 m and a Li-7500A CO₂ analyzer was installed. High-frequency data for CO₂, water vapor, orthogonal wind components (u , v , and w), and air temperature were recorded at 10 Hz using a CR500 data logger (Campbell Scientific). Calibration was performed at least twice a year using a zero CO₂ air source, an atmospheric CO₂ standard ($\pm 1\%$), and a dew point generator (Li-610, LI-COR Biosciences) for water vapor. The internal sensor head temperature for Li-7500A was changed when mean ambient temperature reached 5°C. Fluxes were estimated from 30 min averaged covariance of CO₂ and vertical wind speed using EdiRe software (University of Edinburgh). Fluxes were corrected for frequency loss, sensor separation, and misalignment of wind sensors with respect to the local streamline [Foken and Wichura, 1996; Aubinet *et al.*, 2000], and air density [Webb *et al.*, 1980; Burba *et al.*, 2008]. Postprocessing screening eliminated data when (1) half-hour data was incomplete, (2) frictional speed (U^*) was $< 0.12 \text{ m s}^{-1}$ [Goulden *et al.*, 1996], and (3) variation of the half-hourly orthogonal wind components exceeded one standard deviation distance from the mean. Further detailed description (quality control and filtering) is available in Belshe *et al.* [2012] and percentages of measured data can be found in Table S1 in the supporting information. The Tower footprint from the tower estimate ranged from 200 m to 350 m [Kormann and Meixner, 2001] and covered a similar vegetation and permafrost thaw gradient at both height footprints. The influence of these more extensive permafrost thaw areas on Tower CO₂ fluxes was analyzed with a spatially explicit model that accounts for microtopography caused by permafrost degradation and it was compared to a nonlinear model presented in this manuscript that did not substantially differ in aggregated CO₂ predictions throughout 2008 and 2009 [Belshe *et al.*, 2012].

2.4. Gap Filling and Budget Calculations

Fluxes were divided into nonsummer season (1 October through 30 April the following year) and the following summer season (1 May to 30 September) and gap filled using season-specific models.

2.4.1. Summer Gap Filling

Gaps in summertime NEE due to filtering and missing values were filled using a weekly hyperbolic light-response equation during high light conditions [Thornley and Johnson, 1990] (Text S1 and equation (S1); $\text{PAR} \geq 10 \mu\text{mol m}^{-2} \text{ s}^{-1}$ Tower and $\text{PAR} \geq 5 \mu\text{mol m}^{-2} \text{ s}^{-1}$ Autochamber). For Autochambers, hyperbolic light response curves were fit for each plot on a monthly basis and gap filling occurred at the plot level. Gaps in nighttime NEE (R_{eco} , $\text{PAR} < 10 \mu\text{mol m}^{-2} \text{ s}^{-1}$ Tower and $\text{PAR} < 5 \mu\text{mol m}^{-2} \text{ s}^{-1}$ Autochamber) were filled using a summer season exponential temperature response with 10 cm soil temperature at Autochamber and air temperature at Tower (Text S1 and equation (S2)). The parameters obtained from the low PAR R_{eco} model for each summer season were used to model daytime R_{eco} . Gross ecosystem primary productivity (GPP) was estimated by subtracting R_{eco} from NEE.

2.4.2. Nonsummer Gap Filling

Nonsummer season gap filling and cumulative CO₂ flux estimates were made separately for each shoulder season (fall and spring) and winter in order to account for small but detectable amounts of GPP in the autumn and spring. This method allows greater sensitivity to variation in growing season length and photosynthetic capacity (mosses and evergreens), rather than assuming the entire nonsummer season only consists of R_{eco} [Webb *et al.*, 2016]. Tower measurements continued throughout the nonsummer season, and manual chamber measurements extended the data at Autochamber from October to November.

In the fall shoulder season, NEE and R_{eco} at Autochamber were modeled using light and temperature response curves parameterized with weekly manual chamber measurements (equations (S1) and (S2)). In

the spring shoulder season Autochamber GPP was estimated based on measured May GPP using Tower's ratio of early spring GPP to May GPP (equation (S4) and Text S1). R_{eco} in spring was estimated using the winter model (equation (S3) and Text S1) for both Autochambers and Tower, because soils were typically still frozen and the area snow covered. NEE for spring was calculated as the sum of GPP and R_{eco} (Text S1 and *Webb et al. [2016]*). At Tower, fall and spring were estimated weekly until GPP could no longer be detected.

Winter R_{eco} fluxes were gap filled using an exponential relationship between Tower NEE, soil temperature (10 cm depth), and day of season (starting 1 October of each year) (equation (S3) and Text S1). Winter season R_{eco} from 2008 to 2013 was modeled with a single parameter set from *Webb et al. [2016]*, due to insufficient data coverage during individual years. In 2014, data coverage was greater and new model parameters were derived using soil temperature and day of season. Winter R_{eco} for Autochamber was gap filled using the Tower parameters, but with plot-specific soil temperatures. Winter methods were evaluated in *Webb et al. [2016]*.

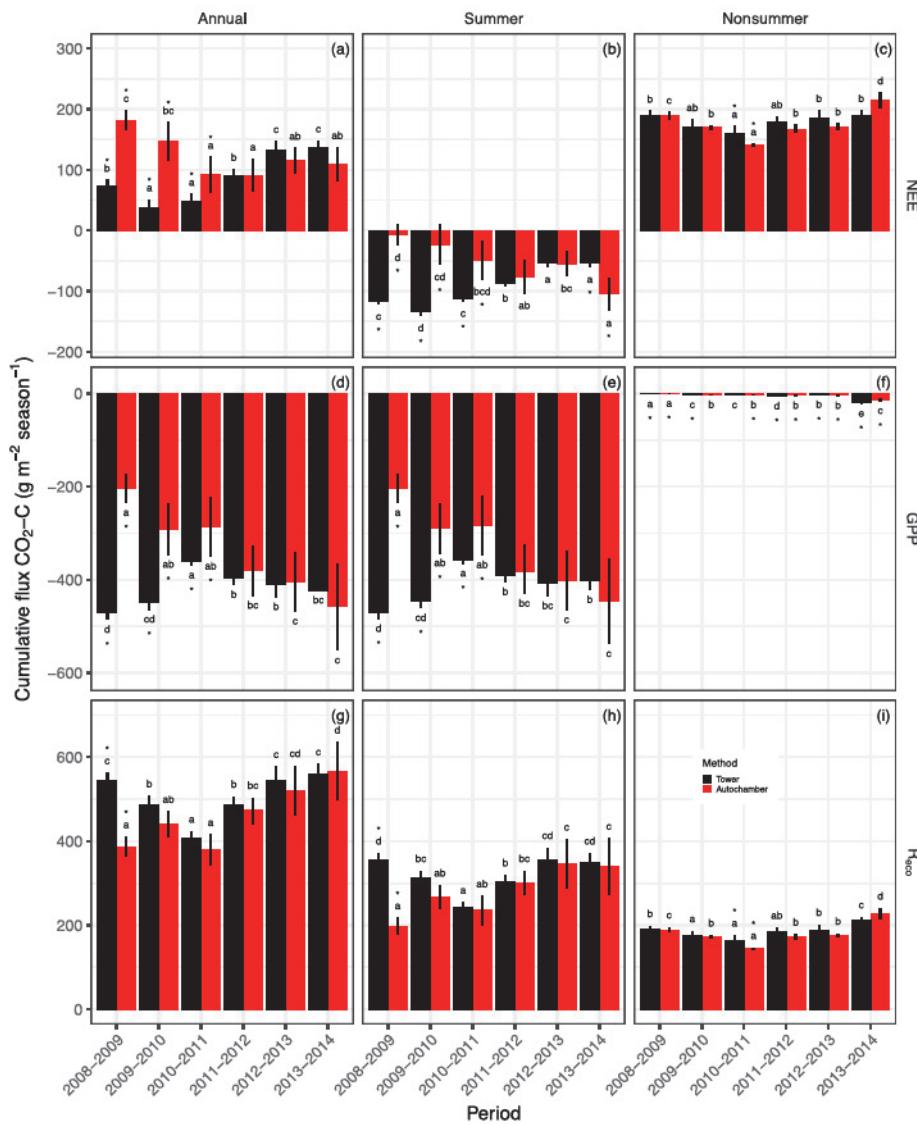
All measured and gap filled 30 min CO_2 fluxes were aggregated to daily, seasonal, and yearly periods.

2.4.3. Uncertainty Estimates

Uncertainties for Tower NEE were assessed using bootstrapping [*Liu et al., 2009*]. Light response and temperature models were fit to measured data using seasonal resolution (summer and nonsummer) described above, and residuals were binned based on PAR (5 bins) for light response models and soil temperature (10 bins) for temperature models. In each bin category artificial data sets (1000) were created by adding predicted model values to randomly drawn and replaced residuals, and models were refit in order to gap fill data. The 95% confidence interval were obtained from 1000 complete flux time series for seasonal cumulative fluxes (see Text S2 for more details). Autochamber uncertainties were based on standard errors of replicate plot measurements ($n = 12$).

2.5. Data Analysis

Annual (October through September of the following year) NEE, GPP, and R_{eco} were compared within a given year between the Tower and Autochamber methods using 95% confidence intervals generated from uncertainties. Differences were considered significant if the 95% confidence interval of the estimated aggregate fluxes did not overlap. Interannual differences in Autochamber fluxes were compared using an analysis of variance (ANOVA) and a post hoc Tukey test. Tower interannual differences were based on 95% confidence intervals generated from uncertainty analysis. The relationship of daily growing season NEE, GPP, and R_{eco} were compared between Tower and mean Autochamber estimates for each year using linear regressions.


In order to determine whether ALT and WTD, two major physical drivers for this ecosystem, could explain variation in fluxes, we analyzed the relationship of summer season NEE, GPP, and R_{eco} cumulative fluxes with ALT and WTD using a linear mixed effects model [*Bates et al., 2015*]. Water table depth and ALT were fixed effects and method a random effect. We used a backward stepwise model selection to eliminate variables that resulted in less than five Akaike information criterion change (only WTD eliminated). All data processing and analyses were performed using the *R* platform [*R Development Core Team, 2015*] and a significance level of alpha = 0.05.

3. Results

3.1. Fluxes

3.1.1. Net Ecosystem Exchange

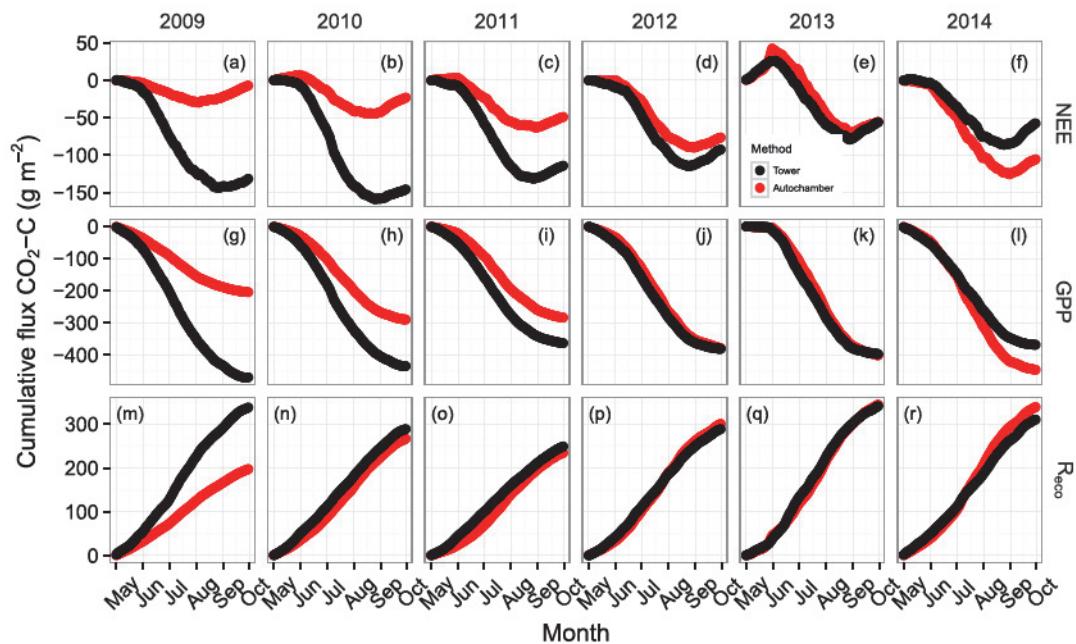
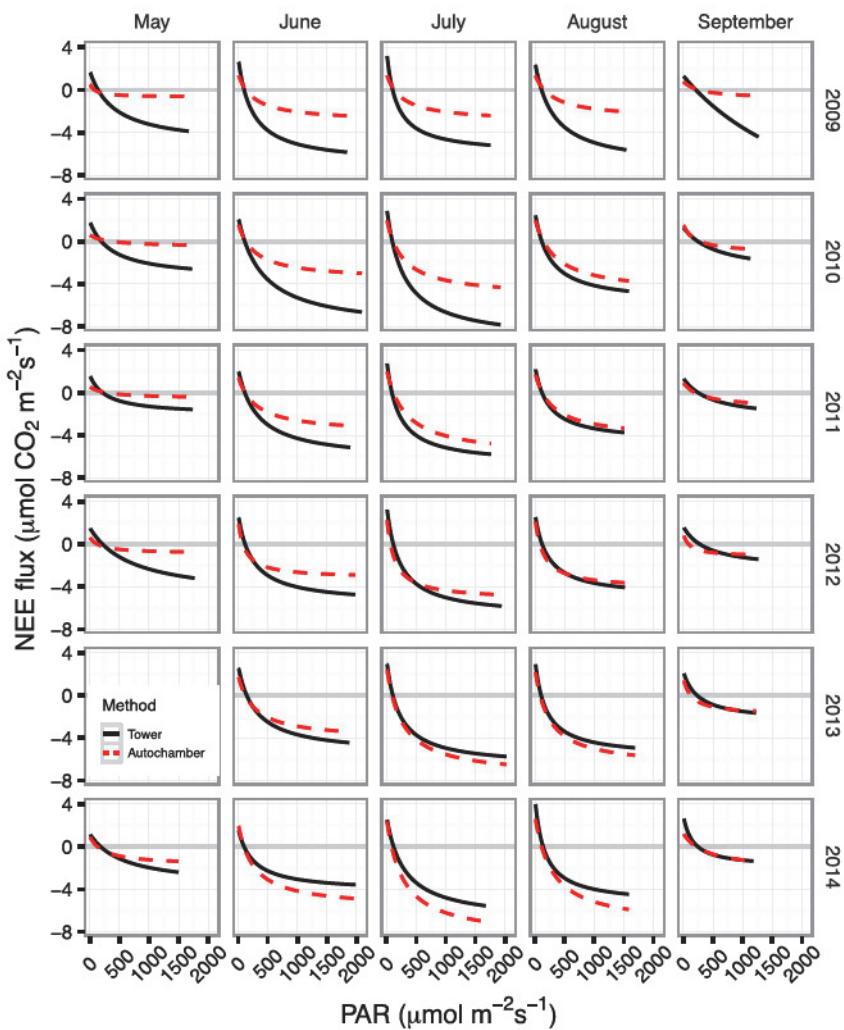

On an annual basis, fluxes from both methods were a net CO_2 source during the 6 years with an average of $87 \pm 17 \text{ g CO}_2 \text{ C m}^{-2} \text{ y}^{-1}$ measured with Tower and $123 \pm 14 \text{ g CO}_2 \text{ C m}^{-2} \text{ y}^{-1}$ measured with Autochamber with a combined mean of $105 \pm 17 \text{ g CO}_2 \text{ C m}^{-2} \text{ y}^{-1}$. For the first 3 years Autochamber released significantly more CO_2 than Tower (Figure 1a and Table S2). Annual differences were driven by both summer and nonsummer season differences. During the nonsummer season, fluxes differed between methods in two of the 6 years with Autochamber having lower fluxes in the third year and higher NEE fluxes in the sixth year (Figure 1c). Over 6 years, the summer season sink strength increased significantly at Autochamber from almost neutral, -7 ± 7 , to a sink of $-105 \pm 11 \text{ g CO}_2 \text{ C m}^{-2}$ (Figures 2 and 1b and Table S2), reaching

Figure 1. Annual, seasonal cumulative fluxes for the two methods (Tower black and Autochamber red) for each sampling period. (a–c) Net ecosystem exchange (NEE), (d–f) gross primary production (GPP), and (g–i) ecosystem respiration (R_{eco}). Note the difference in y axis scales for each flux and negative fluxes indicate carbon uptake. Means and 95% confidence intervals (Autochamber $n = 6$ and Tower $n = 1000$). Star (*) indicate significant differences within a period between methods. Different superscript letters indicate significant differences between periods ($p < 0.05$) within a method; Tower black bar and Autochamber red bars for each sampling period.

similar levels to those of the Tower. Tower NEE fluxes decreased over time, where net uptake decreased over time ranging from -134 g to $-53 \text{ CO}_2 \text{ C m}^{-2}$, with lowest net uptake during years five and six (Figures 2 and 1 and Table S2). Summer season NEE light response curves also indicated a progressive increase in C fixation at Autochamber, reaching similar parameters to Tower in the later years and surpassing it in the final year (Figures 3 and S2 and Table S3).

Daily NEE fluxes (measured and gap filled data) during the summer season were significantly correlated between Tower and Autochamber in all 6 years (each year at least $p < 0.01$, $r^2 \geq 0.71$; Figures 4a to 4f). As the years progressed, the fluxes became more similar to each other in magnitude (Figures 4a and 4f) and the slope approached 1 (2009 slope = 0.35 and 2014 slope = 0.99). Comparing methods using only measured data, when both were sampled in the same half-hourly period, found that the direction of NEE (i.e., CO_2 source or sink) was similar 79–86% of the time, and methods became more similar over time. When considering the transition point from sink to source, the date when cumulative NEE became positive was similar for

Figure 2. Summer season (1 May to 30 September, except 2013 started 1 June) mean daily cumulative fluxes for the two methods (Tower black symbols and Autochamber red symbols). (a–f) Net ecosystem exchange (NEE), (g–l) gross primary production (GPP), and (m–r) ecosystem respiration (R_{eco}). Note the difference in y axis scales for each flux; negative fluxes indicate C uptake.


Tower and Autochamber and occurred between 25 August and 30 August, only a 6 day range across five of the 6 years. The transition between sink and source was consistent despite interannual variation in spring snowmelt, which varied on average 12 days over the 6 years (Table 1). The first year of observation, 2009, was an exception; Autochamber NEE changed from a net CO_2 sink to a source on 4 August was 22 days earlier than the other years (Table 2). In contrast the Tower switched on 27 August 2009, consistent with all other years.

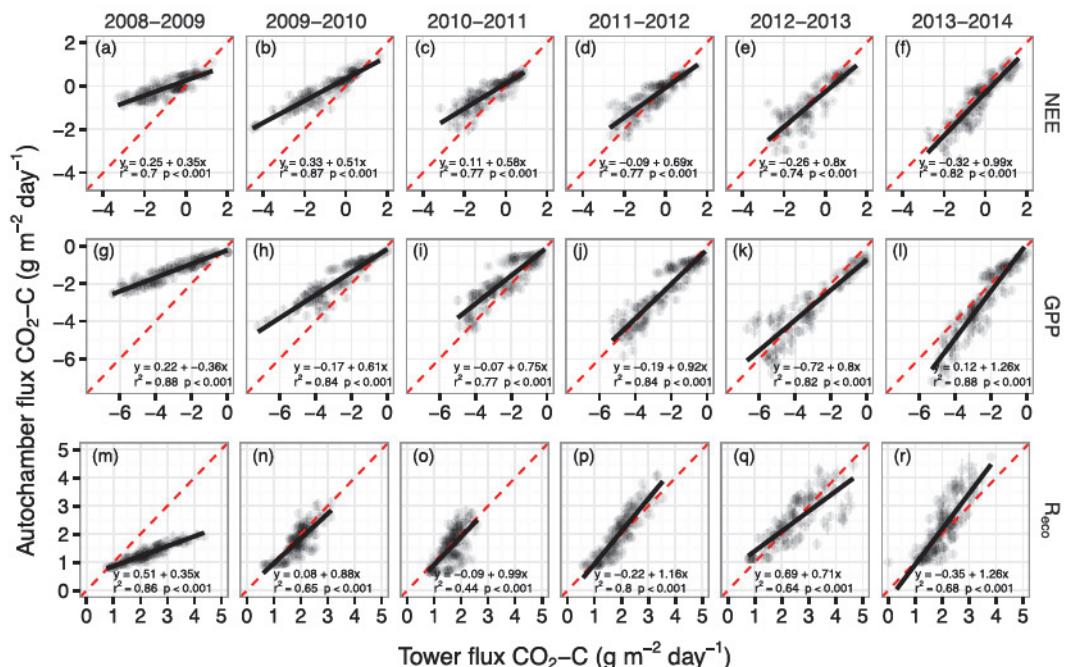
3.1.2. Gross Primary Production

Daily GPP was significantly correlated between methods during all 5 years (each year at least $p < 0.01$, $r^2 \geq 0.77$; Figures 4g to 4i). Annual GPP was lower during the first 3 years at Autochamber than at Tower, with the magnitude of the difference dropping by almost half in each subsequent year (Figure 1d Table S2). Tower GPP uptake was greatest in the first year of measurement ($-471 \text{ g CO}_2 \text{ C m}^{-2}$) and then decreased to a relatively consistent level by the third year (-396 to $-423 \text{ g CO}_2 \text{ C m}^{-2}$). In contrast, Autochamber showed a progressive increase over time (Figure 1d), such that GPP was small during the first year ($-205 \text{ g CO}_2 \text{ C m}^{-2}$) but increased by $\sim 100 \text{ g CO}_2 \text{ C m}^{-2}$ in the second year, held that increase in the third year, and then increased again in years four ($\sim 180 \text{ g CO}_2 \text{ C m}^{-2}$ more than the first year), five ($\sim 200 \text{ g CO}_2 \text{ C m}^{-2}$ more than the first year), and six ($\sim 250 \text{ g CO}_2 \text{ C m}^{-2}$ more than the first year; Figures 2 and 1d and Table S2). The Autochamber increase over time was driven by increased GPP in June, July, and August of each year (Figure S2 and Table S3). Summer season GPP had similar trends to annual GPP (Figures 2 and 1e and Table S2). Nonsummer season contributed relatively little to annual GPP (-0.4 to $-21 \text{ g CO}_2 \text{ C m}^{-2}$ both methods) and showed an increase with both methods over time (Figure 1f and Table S2). Autochamber had a significantly lower uptake in four of the 6 years compared to Tower (Table S2) for nonsummer season.

3.1.3. Ecosystem Respiration

Daily R_{eco} was significantly correlated between methods during all 6 years (each year at least $p < 0.01$, $r^2 \geq 0.44$; Figures 4m to 4r). Annual R_{eco} was significantly lower in Autochamber during the first year (Autochamber: $387 \text{ g CO}_2 \text{ C m}^{-2}$; Tower: $545 \text{ g CO}_2 \text{ C m}^{-2}$; Figure 1g and Table S2). After 2009 Autochamber R_{eco} and Tower were well correlated with no observable trend over time. Summer season R_{eco} trends were similar to annual fluxes. Tower R_{eco} ranged from 302 to $355 \text{ g CO}_2 \text{ C m}^{-2}$ and Autochamber R_{eco} 198 to $347 \text{ g CO}_2 \text{ C m}^{-2}$ (Figures 2 and 1h and Table S2). During the summer season R_{eco} and GPP were tightly coupled in both methods, with

Figure 3. Summer season monthly modeled light response curves for Tower (black solid lines) and Autochamber methods (red dashed lines). May 2013 contains no data for Autochamber and Tower was excluded. For more model information see equation (1) in supporting information Text S1 and model parameters estimates Table S3.


high seasonal cumulative GPP occurring during periods with high seasonal cumulative R_{eco} . The ratio of $R_{\text{eco}}/\text{GPP}$ for the summer season was consistent between years, where Tower was on average 0.77 and Autochamber 0.84 (Table S6). Nonsummer season R_{eco} with Tower was 163 to 211 g CO₂ C m⁻² and 144 to 228 g CO₂ C m⁻² with Autochamber, which accounts for 37% and 39% of annual respiration fluxes, respectively (Figures 1g and 1i and Table S2).

3.2. Fluxes and Environmental Factors

Summer season active layer thickness was significantly shallower with Autochamber for the first 2 years than with Tower ($p < 0.001$; Figure S1). There was a significant relationship ($p < 0.01$, Figure 5 and Table S7) between summer season fluxes (NEE, GPP, and R_{eco}) and active layer thickness (ALT). GPP had a stronger relationship with ALT ($r^2 = 0.84$, Figure 5b; higher CO₂ uptake increased with greater ALT) than R_{eco} ($r^2 = 0.59$; Figure 5c and Table S7), followed by NEE (Figure 5a and Table S7). There was no relationship between fluxes and WTD (Table S7).

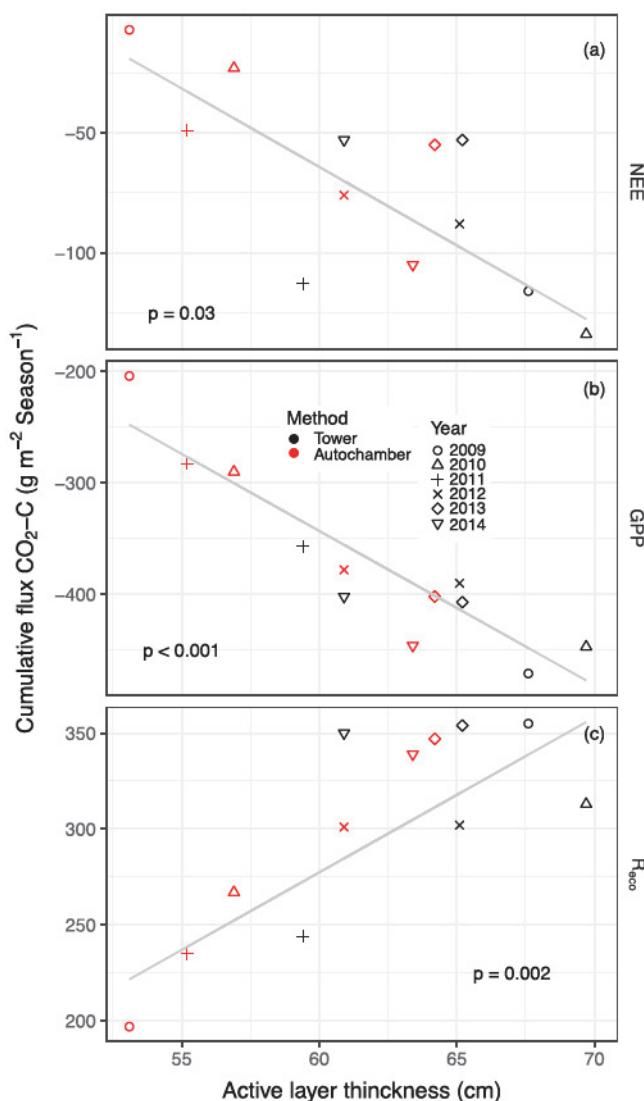
4. Discussion

Annual CO₂ fluxes were consistent in demonstrating that the tundra ecosystem was a net annual source of CO₂ to the atmosphere (mean 105 ± 17 g CO₂ C m⁻² y⁻¹ across methods and years) during our study

Figure 4. (a–f) Daily fluxes of net ecosystem exchange (NEE), (g–l) gross primary production (GPP), and (m–r) ecosystem respiration (R_{eco}) for each summer season (1 May to 30 September, except 2013 started 1 June) for the two methods (Tower and Autochamber). Autochamber means and standard errors are based on fence replicates ($n = 6$). The black line represents linear regression and the red dashed line the one-to-one line. Negative fluxes indicate C uptake.

period. Our Tower measurements ($87 \pm 17 \text{ g CO}_2 \text{ C m}^{-2} \text{ y}^{-1}$) were higher than other eddy covariance studies, which have reported annual tundra CO_2 fluxes that vary from -6.4 to $68.7 \text{ g CO}_2 \text{ C m}^{-2} \text{ y}^{-1}$ [Euskirchen *et al.*, 2012; Belshe *et al.*, 2013; Lüders *et al.*, 2014; Oechel *et al.*, 2014; Zona *et al.*, 2014]. Autochamber measurements ($123 \pm 14 \text{ g CO}_2 \text{ C m}^{-2} \text{ y}^{-1}$) were within the range of other studies, which have reported annual fluxes from the tundra between -109 and $194 \text{ g CO}_2 \text{ C m}^{-2} \text{ y}^{-1}$ —chamber measurements [Grogan and Iii, 1999; Trucco *et al.*, 2012; Kim *et al.*, 2016].

Active layer thickness was identified as a key driver of cumulative GPP, NEE, and R_{eco} throughout the summer season and explained differences between Tower and Autochambers in the first 2 years. Increased GPP and R_{eco} were related to deeper thaw, which is similar to other studies at EML [Vogel *et al.*, 2009; Trucco *et al.*, 2012]. Increased plant productivity as a result of active layer deepening is associated with increased nutrient availability as permafrost thaws [Finger *et al.*, 2016; Salmon *et al.*, 2016], although autotrophic respiration also increases [Hicks Pries *et al.*, 2015]. Active layer thickness incorporates several characteristics of the soil environment including soil moisture, soil structure, and soil temperature [Trucco *et al.*, 2012].


Table 1. Mean Air Temperatures, Total Annual Precipitation (Rainfall), Cumulative Photosynthetic Active Radiation (PAR), Soil Active Layer Thickness, Water Table Depths, and Snowmelt Date at Eight Mile Lake, Healy Alaska, USA^a

Season (Year of Study)	Temperature (°C)			Summer Season Cumulative PAR (Mole/m ²)	Active Layer Thickness (cm)		Water Table Depth (cm)		Snowmelt (Date)	
	Annual	Summer Season	Nonsummer Season		Tower	Autochamber	Tower	Autochamber		
2008–2009 (1)	−3.4	9.7	−12.8	178.2	4991.7	67.6 (2.5)	55.4 (0.8)	18.5 (2.0)	27.6 (0.7)	NA
2009–2010 (2)	−1.2	9.8	−9.2	249.8	4794.9	69.9 (1.9)	58.3 (0.7)	14.8 (2.3)	20.3 (0.3)	2010-04-27
2010–2011 (3)	−3.2	8.3	−11.5	164.4	5193.2	60.0 (1.6)	56.4 (0.9)	15.1 (2.3)	23.8 (0.3)	2011-04-27
2011–2012 (4)	−3.3	9.1	−12.1	223.4	4855.3	65.3 (1.2)	60.9 (0.7)	17.3 (2.0)	22.1 (0.3)	2012-05-04
2012–2013 (5)	−4.1	9.3	−13.7	167.2	5502.3	66.3 (1.9)	62.8 (1.2)	23.6 (1.6)	23.8 (0.4)	2013-05-27
2013–2014 (6)	−0.9	9.1	−8.2	312.2	4553.4	61.1 (1.9)	65.3 (1.6)	10.4 (1.9)	14.5 (0.7)	2014-04-21
Mean (SE)	−2.7 (0.5)	9.2 (0.2)	−11.3 (0.9)	215.9 (23.8)	4981.8 (135.4)	65.0 (1.6)	59.9 (1.6)	16.6 (1.8)	22.0 (1.8)	

^aSummer season data represents the period from 1 May to 30 September and nonsummer season 1 October to 30 April of the following year.

Table 2. The Date of First Change From Observed Summer Season Ecosystem CO₂ Net Uptake to a Net Source of CO₂^a

Tower	Autochamber
27-AUG-2009	04-AUG-2009
26-AUG-2010	26-AUG-2010
27-AUG-2011	30-AUG-2011
25-AUG-2012	29-AUG-2012
28-AUG-2013	28-AUG-2013
24-AUG-2014	31-AUG-2014

^aDate (dd-AUG-yyyy).**Figure 5.** The relationship of summer season (1 May to 30 September) cumulative fluxes with active layer thickness (ALT) for the two methods (Tower black symbols and Autochamber red symbols). P values denote significant slope parameters (Tables S7). (a) NEE is net ecosystem exchange, (b) GPP is gross primary production, and (c) Reco is Ecosystem respiration. Negative fluxes indicate CO₂ uptake. Note the difference in y axis scales for each flux.

Increased ALT was also related to increases in R_{eco} by stimulating heterotrophic respiration as a result of increased organic matter decomposition under higher temperatures and increased moisture [Hicks Pries *et al.*, 2013b], and the availability of deep soil C [Schuur *et al.*, 2009; Hicks Pries *et al.*, 2013a; Koven *et al.*, 2015].

Summer season daily fluxes of NEE, GPP, and R_{eco} were correlated between Autochamber and Tower, with R_{eco} showing less correlation and more variability between methods, consistent with other tundra sites that compared these two types of measurement methods [Zamolodchikov *et al.*, 2003; Kade *et al.*, 2012]. Even though daily GPP and NEE fluxes were highly correlated between methods, they differed in magnitude for the first 3 years; Autochamber measurements had lower uptake for the first 3 years. This is contrary to what has been observed by other studies comparing chambers and eddy covariance, which have shown higher net CO₂ uptake from chamber measurements [Fox *et al.*, 2008; Kade *et al.*, 2012]. The discrepancy between Tower and Autochamber in magnitude of NEE, GPP, and R_{eco} and light sensitivity model parameters (Table S3) in the initial years may have derived from the unintended effects of experimental setup of the Autochamber system. Chamber bases for autochamber measurements were installed to a depth of 5–8 cm, which may have severed rooting systems and reduced fine root respiration [Wang *et al.*, 2005; Heinemeyer *et al.*, 2011]. In Arctic plant communities, belowground biomass is concentrated near the surface [Sullivan and Welker, 2005; Sullivan *et al.*, 2007; Iversen *et al.*, 2015], and stored root C and respiration can contribute substantially to C flux dynamics [Hopkins *et al.*, 2013; Cahoon *et al.*, 2016]. Fine root production also coincides with whole plant belowground allocation of C resources and reserves [Olsrud and Christensen, 2004]. Any alteration to belowground resources can therefore

affect plant seasonal responses aboveground and belowground. Autochamber was dominated by the tussock-forming sedge *Eriophorum*, which has a quick fine root turnover rate of ~1 year [Shaver and Billings, 1975] and has a late summer season growth pulse of fine roots [Kummerow and Russell, 1980; Shaver *et al.*, 1986; Cahoon *et al.*, 2016]. We observed a reduction in R_{eco} during the first year only at Autochamber when compared to Tower fluxes. The severing of *Eriophorum* roots and/or root disturbance during installation in the autumn prior to measurements could have delayed production of fine roots in the following season (year one of this study), which would have altered fine root litter inputs during that year and might explain the low R_{eco} during that year. Fine root decomposition accounts for a large proportion of respiration inputs to tundra soil [Loya *et al.*, 2004]. Not only was R_{eco} lower during the first year for Autochamber, but GPP was also lower and the ecosystem became a net source of CO₂ earlier in the summer season than any other year (Table S2). The use of reserves for root growth and/or repair or access to spring nutrients could compromise summer plant performance for the first 3 years. Although summer season NEE was significantly different in the sixth year, GPP and R_{eco} were similar between methods.

Interannual NEE variability can be influenced by environmental factors that determine the start and end of the summer season. The timing of snowmelt plays an important role for determining the annual CO₂ balance for the Arctic [Aurela *et al.*, 2004; Lund *et al.*, 2012], and late snowmelt can delay phenology [Ernakovich *et al.*, 2014] resulting in lower annual NEE but can vary depending on vegetation type [Humphreys and Lafleur, 2011]. Mbufong *et al.* [2014] found that tundra peak productivity in July was unrelated to the start of the summer season and in fact R_{eco} was a stronger driver of interannual NEE flux variability than the timing of growing season start. In our study, snowmelt in the fifth year (2013) of monitoring at Tower and Autochamber was exceptionally late in comparison with other years (Table 1), yet that year did not have the lowest summer season NEE uptake. The low GPP during the month of May in 2013 was compensated for by increased carbon fixation in the following months. This indicates that tundra plants are capable of reaching high productivity by upregulating photosynthesis [Bosiö *et al.*, 2014] in a short period of time (Table S3 and Figure 3). Other environmental drivers of respiration such as temperature and moisture play an important role in the net CO₂ balance of the season [Euskirchen *et al.*, 2012] such as increased temperatures can offset ecosystem uptake by increased respiration late in the summer season, but respiration can also be inhibited by increases in precipitation as decomposition is slowed down under wet conditions.

Autochamber and Tower methods were remarkably consistent in capturing biological down regulation of ecosystem productivity and becoming a net source of CO₂ within a small window in August, regardless of the start of the summer season. This down regulation was likely due to the onset of senescence, which is thought to be regulated mostly by photoperiod in tundra plants [Shaver and Kummerow, 1992].

Nonsummer season fluxes accounted for approximately 30% of the CO₂ released annually, which is within the upper range of annual budgets in other studies (10–30%) [Fahnestock *et al.*, 1998; Grogan and Iii, 1999; Elberling, 2007; Kim *et al.*, 2016]; like in other studies that estimate annual Arctic CO₂ flux, nonsummer losses offset the summer season gains [Fahnestock *et al.*, 1998; Vogel *et al.*, 2009; Euskirchen *et al.*, 2012; Lüers *et al.*, 2014; Oechel *et al.*, 2014]. Nonsummer C flux estimates have many challenges and large uncertainty: direct measurements are difficult to obtain [Goodrich *et al.*, 2016] and the differences between nonsummer measurement methods can be greater than the estimates of interannual variation in CO₂ fluxes [Björkman *et al.*, 2010; Webb *et al.*, 2016]. In our study, nonsummer season fluxes were calculated from values that were 11% measured and 89% modeled (Table S1) for the whole study period (both Tower and Autochamber used the same data set), which meant model parameterization was limited to a small quantity of data. Goodrich *et al.* [2016] reported similar coverage during the winter using same type of CO₂ analyzer. Despite our small and sporadic data set, our nonsummer measurements span the entire nonsummer season and our model builds on extensive examination of winter fluxes done by Webb *et al.* [2016]. Our results represent further evidence of the influence of nonsummer season CO₂ fluxes to annual C budgets from a subarctic site, which is in line with other studies throughout the Arctic [Oechel *et al.*, 1997; Fahnestock *et al.*, 1999; Jones *et al.*, 1999; Welker *et al.*, 2000; Schimel *et al.*, 2006; Sullivan *et al.*, 2008; Grogan, 2012; Cooper, 2014]. As we improve our data collection during winter, we will be able to evaluate more precisely the mechanisms driving ecosystem CO₂ loss during this time of the year to better estimate our annual budgets of carbon.

5. Conclusion

Our CO₂ flux measurements show that during 6 years of measurement the tundra ecosystem was a consistent annual net source of CO₂ to the atmosphere ($105 \pm 17 \text{ g CO}_2 \text{ C m}^{-2}$). While this ecosystem was a CO₂ sink during the summer, CO₂ emissions during the nonsummer months offset summer CO₂ uptake in every year. Active layer thickness was a significant driver of GPP, likely as a result of increased nutrient availability with deeper thaw and also increased R_{eco} at both landscape and plot scales. Differences between fluxes at Tower and Autochamber in the first year could be related to the impact of experimental setup, and the severing of roots. This highlights the need for long-term experiments in order to make generalizations about CO₂ flux dynamics and sensitivity to environmental drivers. Further research evaluating the coupling of below-ground and aboveground dynamics, and the relationship between summer and nonsummer processes is needed to further our understanding of tundra C cycle dynamics and potential implications in the face of climate change.

Acknowledgments

This work was made possible by assistance from researchers and technicians of Bonanza Creek LTER and from the Schuur lab (Meghan Taylor, Elaine Pegoraro, Chris Ebert, César Plaza, Justin Ledman, Catherine Johnson, Peter Ganzlin, Camilo Mojica, and John Krapek). This work was funded by NSF CAREER Program, NSF Bonanza Creek LTER Program, Department of Energy NICCR Program (E.A.G.S.), TES (E.A.G.S.), the U.S. National Parks and Inventory Monitoring Program (E.A.G.S.), and NSF OPP (S.M.N.). Data presented in this paper are archived at Bonanza Creek LTER Data Catalog and can be accessed through their database tool: <http://www.lter.uaf.edu/data/data-catalog>.

References

Aubinet, M., et al. (2000), Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology, *Adv. Ecol. Res.*, 30(30), 113–175.

Aurela, M., T. Laurila, and J. P. Tuovinen (2004), The timing of snow melt controls the annual CO₂ balance in a subarctic fen, *Geophys. Res. Lett.*, 31, L16119, doi:10.1029/2004GL020315.

Bates, D., M. Mächler, B. Bolker, and S. Walker (2015), Fitting linear mixed-effects models using lme4, *J. Stat. Softw.*, 67(1), 1–48, doi:10.18637/jss.v067.i01.

Belshe, E. F., E. A. G. Schuur, and B. M. Bolker (2012), Incorporating spatial heterogeneity created by permafrost thaw into a landscape carbon estimate, *J. Geophys. Res.*, 117, G01026, doi:10.1029/2011JG001836.

Belshe, E. F., E. A. G. Schuur, and B. M. Bolker (2013), Tundra ecosystems observed to be CO₂ sources due to differential amplification of the carbon cycle, *Ecol. Lett.*, 16(10), 1307–1315, doi:10.1111/ele.12164.

Björkman, M. P., E. Morgner, and E. J. Cooper (2010), Winter carbon dioxide effluxes from Arctic ecosystems: An overview and comparison of methodologies, *Global Biogeochem. Cycles*, 24, GB3010, doi:10.1029/2009GB003667.

Blanc-Betes, E., J. M. Welker, N. C. Sturchio, J. P. Chanton, and M. A. Gonzalez-Meler (2016), Winter precipitation and snow accumulation drive the methane sink or source strength of Arctic tussock tundra, *Global Change Biol.*, 22(8), 2818–2833, doi:10.1111/gcb.13242.

Bosiö, J., C. Stieglar, M. Johansson, and H. N. Mbufong (2014), Increased photosynthesis compensates for shorter growing season in subarctic tundra—8 years of snow accumulation manipulations, *Clim. Change*, 127, 321–334, doi:10.1007/s10584-014-1247-4.

Burba, G. G., D. K. McDermitt, A. Grelle, D. J. Anderson, and L. Xu (2008), Addressing the influence of instrument surface heat exchange on the measurements of CO₂ flux from open-path gas analyzers, *Global Change Biol.*, 14(8), 1854–1876, doi:10.1111/j.1365-2486.2008.01606.x.

Cahoon, S., P. F. Sullivan, C. Gamm, J. M. Welker, D. Eissenstat, and E. Post (2016), Limited variation in proportional contributions of auto- and heterotrophic soil respiration, despite large differences in vegetation structure and function in the Low Arctic, *Biogeochemistry*, 129, 339–351, doi:10.1007/s10533-016-0184-x.

Chapin, F. S., and G. R. Shaver (1985), Individualistic growth-response of tundra plant-species to environmental manipulations in the field, *Ecology*, 66(2), 564–576.

Cooper, E. J. (2014), Warmer shorter winters disrupt Arctic terrestrial ecosystems, *Annu. Rev. Ecol. Evol. Syst.*, 45, 271–295, doi:10.1146/annurev-ecolsys-120213-091620.

Davidson, E. A., and I. A. Janssens (2006), Temperature sensitivity of soil carbon decomposition and feedbacks to climate change, *Nature*, 440(7081), 165–173, doi:10.1038/nature04514.

DeMarco, J., M. C. Mack, M. S. Bret-Harte, M. Burton, and G. R. Shaver (2014), Long-term experimental warming and nutrient additions increase productivity in tall deciduous shrub tundra, *Ecosphere*, 5(6), 72, doi:10.1890/ES13-00281.1.

Elberling, B. (2007), Annual soil CO₂ effluxes in the High Arctic: The role of snow thickness and vegetation type, *Soil Biol. Biochem.*, 39(2), 646–654, doi:10.1016/j.soilbio.2006.09.017.

Epstein, H. E., M. K. Reynolds, and D. A. Walker (2012), Dynamics of aboveground phytomass of the circumpolar Arctic tundra during the past three decades, *Environ. Res. Lett.*, 7, 12, doi:10.1088/1748-9326/7/1/015506.

Ernakovich, J. G., K. A. Hopping, A. B. Berdanier, R. T. Simpson, E. J. Kachergis, H. Steltzer, and M. D. Wallenstein (2014), Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change, *Global Change Biol.*, 20(10), 3256–3269, doi:10.1111/gcb.12568.

Euskirchen, E. S., A. D. McGuire, and T. S. Rupp (2009), Projected changes in atmospheric heating due to changes in fire disturbance and the snow season in the western Arctic, 2003–2100, *J. Geophys. Res.*, 114, G04022, doi:10.1029/2009G001095.

Euskirchen, E. S., M. S. Bret-Harte, G. J. Scott, C. Edgar, and G. R. Shaver (2012), Seasonal patterns of carbon dioxide and water fluxes in three representative tundra ecosystems in northern Alaska, *Ecosphere*, 3(1), 4, doi:10.1890/ES11-00202.1.

Fahnestock, J. T., M. H. Jones, and J. M. Welker (1999), Wintertime CO₂ efflux from arctic soils: Implications for annual carbon budgets, *Global Biogeochem. Cycles*, 13(3), 775–779.

Fahnestock, J. T., M. H. Jones, P. D. Brooks, D. A. Walker, and J. M. Welker (1998), Winter and early spring CO₂ efflux from tundra communities of northern Alaska, *J. Geophys. Res.*, 103(D22), 29023–29027.

Finger, R. A., M. R. Turetsky, K. Kielland, R. W. Ruess, M. C. Mack, and E. S. Euskirchen (2016), Effects of permafrost thaw on nitrogen availability and plant-soil interactions in a boreal Alaskan lowland, edited by N. Wurzburger, *J. Ecol.*, 104(6), 1542–1554, doi:10.1111/1365-2745.12639.

Foken, T., and B. Wicheru (1996), Tools for quality assessment of surface-based flux measurements, *Agric. For. Meteorol.*, 78(1–2), 83–105.

Fox, A. M., B. Huntley, C. R. Lloyd, M. Williams, and R. Baxter (2008), Net ecosystem exchange over heterogeneous Arctic tundra: Scaling between chamber and eddy covariance measurements, *Global Biogeochem. Cycles*, 22, GB2027, doi:10.1029/2007GB003027.

Geml, J., T. A. Semenova, L. N. Morgado, and J. M. Welker (2016), Changes in composition and abundance of functional groups of arctic fungi in response to long-term summer warming, *Biol. Lett.*, 12(11), 20160503, doi:10.1098/rsbl.2016.0503.

Goodrich, J. P., W. C. Oechel, B. Gioli, V. Moreaux, P. C. Murphy, G. Burba, and D. Zona (2016), Impact of different eddy covariance sensors, site set-up, and maintenance on the annual balance of CO_2 and CH_4 in the harsh Arctic environment, *Agric. For. Meteorol.*, 228, 239–251, doi:10.1016/j.agrmet.2016.07.008.

Goulden, M., J. Munger, S. Fan, B. Daube, and S. Wofsy (1996), Measurements of carbon sequestration by long-term eddy covariance: Methods and a critical evaluation of accuracy, *Global Change Biol.*, 2, 169–182, doi:10.1111/j.1365-2486.1996.tb00070.x.

Groendahl, L., T. Friborg, and H. Soegaard (2007), Temperature and snow-melt controls on interannual variability in carbon exchange in the high Arctic, *Theor. Appl. Climatol.*, 88(1–2), 111–125, doi:10.1007/s00704-005-0228-y.

Grogan, P. (2012), Cold season respiration across a low Arctic landscape: The influence of vegetation type, snow depth, and interannual climatic variation, *Arct. Antarct. Alp. Res.*, 44, 446–456, doi:10.1657/1938-4246-44.4.446.

Grogan, P., and F. C. Iii (1999), Arctic soil respiration: Effects of climate and vegetation depend on season, *Ecosystems*, 2, 451–459.

Heinemeyer, A., C. Di Bene, A. R. Lloyd, D. Tortorella, R. Baxter, B. Huntley, A. Gelsomino, and P. Ineson (2011), Soil respiration: Implications of the plant-soil continuum and respiration chamber collar-insertion depth on measurement and modelling of soil CO_2 efflux rates in three ecosystems, *Eur. J. Soil Sci.*, 62(1), 82–94, doi:10.1111/j.1365-2389.2010.01331.x.

Henry, G., and U. Molau (1997), Tundra plants and climate change: The International Tundra Experiment (ITEX), *Global Change Biol.*, 3, 1–9.

Hicks Pries, C. E., E. A. G. Schuur, and K. G. Crummer (2013a), Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using $\delta^{13}\text{C}$ and $\Delta^{14}\text{C}$, *Global Change Biol.*, 19, 649–661, doi:10.1111/gcb.12058.

Hicks Pries, C. E., E. A. G. Schuur, J. G. Vogel, and S. M. Natali (2013b), Moisture drives surface decomposition in thawing tundra, *J. Geophys. Res. Biogeosci.*, 118, 1133–1143, doi:10.1002/jgrg.20089.

Hicks Pries, C. E., R. S. P. van Logtestijn, E. A. G. Schuur, S. M. Natali, J. H. C. Cornelissen, R. Aerts, and E. Dorrepaal (2015), Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems, *Global Change Biol.*, 21, 4508–4519, doi:10.1111/gcb.13032.

Hollister, R. D., J. L. May, K. S. Kremers, C. E. Tweedie, S. F. Oberbauer, J. A. Liebig, T. F. Botting, R. T. Barrett, and J. L. Gregory (2015), Warming experiments elucidate the drivers of observed directional changes in tundra vegetation, *Ecol. Evol.*, 5(9), 1881–1895, doi:10.1002/ece3.1499.

Hopkins, F., M. A. Gonzalez-Meler, C. E. Flower, D. J. Lynch, C. Czimczik, J. Tang, and J.-A. Subke (2013), Ecosystem-level controls on root-rhizosphere respiration, *New Phytol.*, 199(2), 339–351, doi:10.1111/nph.12271.

Hugelius, G., et al. (2014), Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, *Biogeosciences*, 11(23), 6573–6593, doi:10.5194/bg-11-6573-2014-supplement.

Humphreys, E. R., and P. M. Lafleur (2011), Does earlier snowmelt lead to greater CO_2 sequestration in two low Arctic tundra ecosystems?, *Geophys. Res. Lett.*, 38, doi:10.1029/2011GL047339.

International Panel on Climate Change (IPCC) (2014), *Climate Change 2013—The Physical Science Basis*, pp. 467–553; 1219–1256, Cambridge Univ. Press, New York.

Iversen, C. M., V. L. Sloan, P. F. Sullivan, E. S. Euskirchen, A. D. McGuire, R. J. Norby, A. P. Walker, J. M. Warren, and S. D. Wullschleger (2015), The unseen iceberg: Plant roots in Arctic tundra, *New Phytol.*, 205(1), 34–58, doi:10.1111/nph.13003.

Jones, M. H., J. T. Fahnestock, and J. M. Welker (1999), Early and late winter CO_2 efflux from arctic tundra in the Kuparuk River watershed, Alaska, USA, *Arct. Antarct. Alp. Res.*, 31(2), 187–190.

Kade, A., M. S. Bret-Harte, E. S. Euskirchen, C. Edgar, and R. A. Fulweber (2012), Upscaling of CO_2 fluxes from heterogeneous tundra plant communities in Arctic Alaska, *J. Geophys. Res.*, 117, G04007, doi:10.1029/2012JG002065.

Kelsey, K. C., A. J. Leffler, and K. H. Beard (2016), Interactions among vegetation, climate, and herbivory control greenhouse gas fluxes in a subarctic coastal wetland, *J. Geophys. Res. Biogeosci.*, 121, 2960–2975, doi:10.1002/2016JG003546.

Kim, Y., S.-J. Park, B.-Y. Lee, and D. Risk (2016), Continuous measurement of soil carbon efflux with Forced Diffusion (FD) chambers in a tundra ecosystem of Alaska, *Sci. Total Environ.*, 566–567, 175–184, doi:10.1016/j.scitotenv.2016.05.052.

Kormann, R., and F. X. Meixner (2001), An analytical footprint model for non-neutral stratification, *Boundary Layer Meteorol.*, 99, 207–224.

Koven, C. D., B. Ringeval, P. Friedlingstein, P. Ciais, P. Cadule, D. Khorostyanov, G. Krinner, and C. Tarnocai (2011), Permafrost carbon-climate feedbacks accelerate global warming, *Proc. Natl. Acad. Sci. U.S.A.*, 108(36), 14769–14774, doi:10.1073/pnas.1103910108.

Koven, C. D., D. M. Lawrence, and W. J. Riley (2015), Permafrost carbon-climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics, *Proc. Natl. Acad. Sci. U.S.A.*, 112(12), 3752–3757, doi:10.1073/pnas.1415123112.

Kummerow, J., and M. Russell (1980), Seasonal root growth in the Arctic tussock tundra, *Oecologia*, 47(2), 196–199.

Lee, H., E. A. G. Schuur, and J. G. Vogel (2010), Soil CO_2 production in upland tundra where permafrost is thawing, *J. Geophys. Res.*, 115, G01009, doi:10.1029/2008JG000906.

Lee, H., E. A. G. Schuur, J. G. Vogel, and M. Lavoie (2011), A spatially explicit analysis to extrapolate carbon fluxes in upland tundra where permafrost is thawing, *Global Change Biol.*, 17, 1379–1393, doi:10.1111/j.1365-2486.2010.02287.x.

Liu, M., H. L. He, G. R. Yu, Y. Q. Luo, and X. M. Sun (2009), Uncertainty analysis of CO_2 flux components in subtropical evergreen coniferous plantation, *Sci. China Ser. D Earth Sci.*, 52, 257, doi:10.1007/s11430-009-0010-6.

Loya, W. M., L. C. Johnson, and K. J. Nadelhoffer (2004), Seasonal dynamics of leaf-and root-derived C in arctic tundra mesocosms, *Soil Biol. Biochem.*, 36, 655–666, doi:10.1016/j.soilbio.2003.11.009.

Lucht, W., I. C. Prentice, R. B. Myneni, and S. Sitch (2002), Climatic control of the high-latitude vegetation greening trend and Pinatubo effect, *Science*, 296, 1687–1689.

Lund, M., J. M. Falk, T. Friborg, H. N. Mbufong, C. Sigsgaard, H. Soegaard, and M. P. Tamstorf (2012), Trends in CO_2 exchange in a high Arctic tundra heath, 2000–2010, *J. Geophys. Res.*, 117, G02001, doi:10.1029/2011JG001901.

Lüders, J., S. Westermann, K. Piel, and J. Boike (2014), Annual CO_2 budget and seasonal CO_2 exchange signals at a high Arctic permafrost site on Spitsbergen, Svalbard archipelago, *Biogeosciences*, 11, 6307–6322, doi:10.1594/PANGAEA.809507.

Mackelprang, R., M. P. Waldrop, K. M. DeAngelis, M. M. David, K. L. Chavarria, S. J. Blazewicz, E. M. Rubin, and J. K. Jansson (2011), Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw, *Nature*, 480(7377), 368–371, doi:10.1038/nature10576.

Mauritz, M., R. Bracho, G. Celis, J. Hutchings, S. M. Natali, E. Pegoraro, V. G. Salmon, C. Schädel, E. E. Webb, and E. A. G. Schuur (2017), Nonlinear CO_2 flux response to 7 years of experimentally induced permafrost thaw, *Global Change Biol.*, 11(1), 034014, doi:10.1111/gcb.13661.

Mbufong, H. N., et al. (2014), Assessing the spatial variability in peak season CO_2 exchange characteristics across the Arctic tundra using a light response curve parameterization, *Biogeosciences*, 11(17), 4897–4912, doi:10.5194/bg-11-4897-2014.

McGuire, A. D., et al. (2012), An assessment of the carbon balance of Arctic tundra: Comparisons among observations, process models, and atmospheric inversions, *Biogeosciences*, 9(8), 3185–3204, doi:10.5194/bg-9-3185-2012.

McGuire, A. D., L. G. Anderson, T. R. Christensen, S. Dallimore, L. Guo, D. J. Hayes, M. Heimann, T. D. Lorenson, R. W. Macdonald, and N. Roulet (2009), Sensitivity of the carbon cycle in the Arctic to climate change, *Ecol. Monogr.*, 79(4), 523–555.

Mohan, J. E., et al. (2014), Mycorrhizal fungi mediation of terrestrial ecosystem responses to global change: Mini-review, *Fungal Ecol.*, 10, 3–19, doi:10.1016/j.funeco.2014.01.005.

Morgado, L. N., T. A. Semenova, J. M. Welker, M. D. Walker, E. Smets, and J. Geml (2016), Long-term increase in snow depth leads to compositional changes in arctic ectomycorrhizal fungal communities, *Global Change Biol.*, 22, 3080–3096, doi:10.1111/gcb.13294.

Morgado, L. N., T. A. Semenova, J. M. Welker, M. D. Walker, E. Smets, and J. Geml (2015), Summer temperature increase has distinct effects on the ectomycorrhizal fungal communities of moist tussock and dry tundra in Arctic Alaska, *Global Change Biol.*, 21(2), 959–972, doi:10.1111/gcb.12716.

Myers-Smith, I. H., B. C. Forbes, and M. Wilming (2011), Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities, *Environ. Res. Lett.*, 6, 15, doi:10.1088/1748-9326/6/4/045509.

Myldebut, M. C., L. E. Hippis, and R. J. Ryel (2008), Comparison of eddy covariance, chamber, and gradient methods of measuring soil CO₂ efflux in an annual semi-arid grass, *Bromus tectorum*, *Agric. For. Meteorol.*, 148(11), 1894–1907, doi:10.1016/j.agrformet.2008.06.016.

Natali, S. M., et al. (2015), Permafrost thaw and soil moisture driving CO₂ and CH₄ release from upland tundra, *J. Geophys. Res. Biogeosci.*, 120, 525–537, doi:10.1002/2014JG002872.

Natali, S. M., E. A. G. Schuur, and C. Trucco (2011), Effects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundra, *Global Change Biol.*, 17, 1394–1407, doi:10.1111/j.1365-2486.2010.02303.x.

Natali, S. M., E. A. G. Schuur, and R. L. Rubin (2012), Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost, *J. Ecol.*, 100(2), 488–498, doi:10.1111/j.1365-2745.2011.01925.x.

Natali, S. M., E. A. G. Schuur, E. E. Webb, C. E. H. Pries, and K. G. Crummer (2014), Permafrost degradation stimulates carbon loss from experimentally warmed tundra, *Ecology*, 95(3), 602–608, doi:10.1890/13-0602.1.

Nowinski, N. S., L. Taneva, S. E. Trumbore, and J. M. Welker (2010), Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment, *Oecologia*, 163(3), 785–792, doi:10.1007/s00442-009-1556-x.

Oberbauer, S. F., et al. (2013), Phenological response of tundra plants to background climate variation tested using the International Tundra Experiment, *Philos. Trans. R. Soc. B*, 368(1624), 1–13, doi:10.1098/rstb.2012.0481.

Oberbauer, S. F., C. E. Tweedie, and J. M. Welker (2007), Tundra CO₂ fluxes in response to experimental warming across latitudinal and moisture gradients, *Ecol. Monogr.*, 77, 221–238.

Oechel, W. C., C. A. Laskowski, and G. Burba (2014), Annual patterns and budget of CO₂ flux in an Arctic tussock tundra ecosystem, *J. Geophys. Res. Biogeosci.*, 119, 323–339, doi:10.1002/2013JG002431.

Oechel, W. C., G. L. Vourlitis, S. Brooks, T. L. Crawford, and E. Dumas (1998), Intercomparison among chamber, tower, and aircraft net CO₂ and energy fluxes measured during the Arctic System Science Land-Atmosphere-Ice Interactions (ARCSS-LAII) Flux Study, *J. Geophys. Res.*, 103(D22), 28,993–29,003, doi:10.1029/1998JD200015.

Oechel, W. C., G. Vourlitis, and S. J. Hastings (1997), Cold season CO₂ emission from arctic soils, *Global Biogeochem. Cycles*, 11(2), 163–172.

Olsrud, M., and T. R. Christensen (2004), Carbon cycling in subarctic tundra; seasonal variation in ecosystem partitioning based on in situ ¹⁴C pulse-labelling, *Soil Biol. Biochem.*, 36(2), 245–253, doi:10.1016/j.soilbio.2003.08.026.

Osterkamp, T. E., and V. E. Romanovsky (1999), Evidence for warming and thawing of discontinuous permafrost in Alaska, *Permafrost Periglacial Process.*, 10, 17–37, doi:10.1002/(SICI)1099-1530(199901/03)10:1<17::AID-PPP303>3.0.CO;2-4.

Parker, T. C., J.-A. Subke, and P. A. Wookey (2015), Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline, *Global Change Biol.*, 21(5), 2070–2081, doi:10.1111/gcb.12793.

Pearson, R. G., S. J. Phillips, M. M. Loranty, P. S. A. Beck, T. Damoulas, S. J. Knight, and S. J. Goetz (2013), Shifts in Arctic vegetation and associated feedbacks under climate change, *Nat. Clim. Change*, 3(4), 1–5, doi:10.1038/nclimate1858.

R Development Core Team (2015), *R: A Language and Environment for Statistical Computing*, R Foundation for Statistical Computing, Vienna.

Riederer, M., A. Serafimovich, and T. Foken (2014), Net ecosystem CO₂ exchange measurements by the closed chamber method and the eddy covariance technique and their dependence on atmospheric conditions, *Atmos. Meas. Tech.*, 7(4), 1057–1064, doi:10.5194/amt-7-1057-2014.

Romanovsky, V. E., S. L. Smith, H. H. Christiansen, N. I. Shiklomanov, D. S. Drozdov, N. G. Oberman, A. L. Kholodov, and S. S. Marchenko (2011), Permafrost, in Arctic Report Card 2011.

Rustad, L. E., T. G. Huntington, and R. D. Boone (2000), Controls on soil respiration: Implications for climate change, *Biogeochemistry*, 48, 1–6.

Salmon, V. G., P. Soucy, M. Mauritz, G. Celis, S. M. Natali, M. C. Mack, and E. A. G. Schuur (2016), Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw, *Global Change Biol.*, 22(5), 1927–1941, doi:10.1111/gcb.13204.

Schädel, C., E. A. G. Schuur, R. Bracho, B. Elberling, C. Knoblauch, H. Lee, Y. Luo, G. R. Shaver, and M. R. Turetsky (2014), Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data, *Global Change Biol.*, 20(2), 641–652, doi:10.1111/gcb.12417.

Schimel, D. S. (1995), Terrestrial ecosystems and the carbon cycle, *Global Change Biol.*, 1(1), 77–91, doi:10.1111/j.1365-2486.1995.tb00008.x.

Schimel, J. P., J. Fahnestock, G. Michaelson, C. Mikan, C. L. Ping, V. E. Romanovsky, and J. Welker (2006), Cold-season production of CO₂ in arctic soils: Can laboratory and field estimates be reconciled through a simple modeling approach?, *Arct. Antarct. Alp. Res.*, 38(2), 249–256, doi:10.1657/1938-4246-44.4.446.

Schuur, E. A. G., K. G. Crummer, J. G. Vogel, and M. C. Mack (2007), Plant species composition and productivity following permafrost thaw and thermokarst in Alaskan tundra, *Ecosystems*, 10(2), 280–292, doi:10.1007/s10021-007-9024-0.

Schuur, E. A. G., J. G. Vogel, K. G. Crummer, H. Lee, J. O. Sickman, and T. E. Osterkamp (2009), The effect of permafrost thaw on old carbon release and net carbon exchange from tundra, *Nature*, 459(7246), 556–559, doi:10.1038/nature08031.

Schuur, E. A. G., et al. (2015), Climate change and the permafrost carbon feedback, *Nature*, 520(7546), 171–179, doi:10.1038/nature14338.

Semenova, T. A., L. N. Morgado, and J. M. Welker (2015), Long-term experimental warming alters community composition of ascomycetes in Alaskan moist and dry arctic tundra, *Mol. Ecol.*, 24, 424–437, doi:10.1111/mec.13045.

Sharp, E. D., P. F. Sullivan, H. Steltzer, A. Z. Csank, and J. M. Welker (2013), Complex carbon cycle responses to multi-level warming and supplemental summer rain in the high Arctic, *Global Change Biol.*, 19(6), 1780–1792, doi:10.1111/gcb.12149.

Shaver, G. R., and J. Kummerow (1992), Phenology, resource allocation, and growth of arctic vascular plants, in *Arctic Ecosystems in a Changing Climate: An Ecophysiological Perspective*, edited by F. S. Chapin et al., pp. 193–211, Academic Press, San Diego, Calif.

Shaver, G. R., and W. D. Billings (1975), Root production and root turnover in a wet tundra ecosystem, barrow, Alaska, *Ecology*, 56(2), 401–409.

Shaver, G. R., F. Chapin III, and B. L. Gartner (1986), Factors limiting seasonal growth and peak biomass accumulation in *Eriophorum vaginatum* in Alaskan tussock tundra, *J. Ecol.*, 74(1), 257–278.

Smith, W. K., R. D. Kelly, J. M. Welker, J. T. Fahnestock, W. A. Reiners, and R. Hunt (2003), Leaf-to-aircraft measurements of net CO₂ exchange in a sagebrush steppe ecosystem, *J. Geophys. Res.*, 108(D3), 4122, doi:10.1029/2002JD002512.

Sturm, M., T. Douglas, C. Racine, and G. E. Liston (2005), Changing snow and shrub conditions affect albedo with global implications, *J. Geophys. Res.*, 110, G01004, doi:10.1029/2005JG000013.

Sullivan, P. F., and J. M. Welker (2005), Warming chambers stimulate early season growth of an arctic sedge: Results of a minirhizotron field study, *Oecologia*, 142(4), 616–626, doi:10.1007/s00442-004-1764-3.

Sullivan, P. F., J. M. Welker, S. J. T. Arens, and B. Sveinbjörnsson (2008), Continuous estimates of CO₂ efflux from arctic and boreal soils during the snow-covered season in Alaska, *J. Geophys. Res.*, 113, G04009, doi:10.1029/2008JG000715.

Sullivan, P. F., M. Sommerkorn, H. M. Rueth, K. J. Nadelhoffer, G. R. Shaver, and J. M. Welker (2007), Climate and species affect fine root production with long-term fertilization in acidic tussock tundra near Toolik Lake, Alaska, *Oecologia*, 153(3), 643–652, doi:10.1007/s00442-007-0753-8.

Tarnocai, C., J. G. Canadell, E. A. G. Schuur, P. Kuhry, G. Mazhitova, and S. Zimov (2009), Soil organic carbon pools in the northern circumpolar permafrost region, *Global Biogeochem. Cycles*, 23, GB2023, doi:10.1029/2008GB003327.

Thornley, J. H. M., and I. R. Johnson (1990), *Plant and Crop Modelling: A Mathematical Approach to Plant and Crop Physiology*, pp. 1–669, Clarendon Press, Oxford, U. K.

Trucco, C., E. A. G. Schuur, S. M. Natali, E. F. Belshe, R. Bracho, and J. Vogel (2012), Seven-year trends of CO₂ exchange in a tundra ecosystem affected by long-term permafrost thaw, *J. Geophys. Res.*, 117, G02031, doi:10.1029/2011JG001907.

Vogel, J., E. A. G. Schuur, C. Trucco, and H. Lee (2009), Response of CO₂ exchange in a tussock tundra ecosystem to permafrost thaw and thermokarst development, *J. Geophys. Res.*, 114, G04018, doi:10.1029/2008JG000901.

Walker, D. A., et al. (2012), Environment, vegetation and greenness (NDVI) along the North America and Eurasia Arctic transects, *Environ. Res. Lett.*, 7(1), 015504, doi:10.1088/1748-9326/7/1/015504.

Walker, M. D., et al. (2006), Plant community responses to experimental warming across the tundra biome, *Proc. Natl. Acad. Sci. U.S.A.*, 103(5), 1342–1346, doi:10.1073/pnas.0503198103.

Wang, W. J., Y. G. Zu, H. M. Wang, T. Hirano, and K. Takagi (2005), Effect of collar insertion on soil respiration in a larch forest measured with a LI-6400 soil CO₂ flux system, *J. For. Res.*, 15, 901–913, doi:10.1111/j.1365-2486.2008.01757.x.

Webb, E. E., et al. (2016), Increased wintertime CO₂ loss as a result of sustained tundra warming, *J. Geophys. Res. Biogeosci.*, 121, 249–265, doi:10.1002/2014JG002795.

Webb, E. K., G. I. Pearman, and R. Leuning (1980), Correction of flux measurements for density effects due to heat and water-vapor transfer, *Q. J. R. Meteorol. Soc.*, 106(447), 85–100.

Welker, J. M., J. T. Fahnestock, and K. L. Povirk (2004), Alpine grassland CO₂ exchange and nitrogen cycling: Grazing history effects, medicine bow range, Wyoming, USA, *Arctic*, 36, 11–20, doi:10.1657/1523-0430(2004)036%5B0011:AGCEAN%5D2.0.CO;2.

Welker, J. M., J. T. Fahnestock, and M. H. Jones (2000), Annual CO₂ flux in dry and moist arctic tundra: Field responses to increases in summer temperatures and winter snow depth, *Clim. Change*, 44(1–2), 139–150.

Xue, K., et al. (2016), Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming, *Nat. Clim. Change*, 6, 595–600, doi:10.1038/nclimate2940.

Zamolodchikov, D. G., D. V. Karelina, A. I. Ivaschenko, W. C. Oechel, and S. J. Hastings (2003), CO₂ flux measurements in Russian Far East tundra using eddy covariance and closed chamber techniques, *Tellus B Chem. Phys. Meteorol.*, 55(4), 879–892.

Zona, D., D. A. Lipson, J. H. Richards, G. K. Phoenix, A. K. Liljedahl, M. Ueyama, C. S. Sturtevant, and W. C. Oechel (2014), Delayed responses of an Arctic ecosystem to an extreme summer: Impacts on net ecosystem exchange and vegetation functioning, *Biogeosciences*, 11(20), 5877–5888, doi:10.5194/bg-11-5877-2014-supplement.