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Abstract—Feature selection is the process of selecting a subset
of relevant features from the larger set of collected features. As
the amount of available data grows with technology, feature selec-
tion becomes a more important part of the system-design process.
In real-world applications, there are several costs associated with
the collection, processing, and storage of data. Given that these
costs can vary between data streams, it is important to consider
the cost of features when performing feature selection. A majority
of the feature selection algorithms select a relevant feature subset
solely based on the merit and do not consider cost. In this study,
we evaluate a previously proposed cost-based feature selection
framework. We expand on the previously conducted experiments
by testing a wider range of feature selection methods paired with
the cost-based framework, testing a variety of classifiers, and
sequentially adding features to the relevant subset based on the
results of the cost-based framework. We find that the selection
of the weight parameter that balances the effect of feature merit
versus cost is tied to the choice of feature selection technique. The
weight must be appropriately scaled with the value of the merit.
Further, we confirm the previously tested results and offer insight
into future research directions on the topic of feature selection
and cost.

Index Terms—feature selection, cost, classification

I. INTRODUCTION

In many applications, there are a number of different data

sources that could be collected. However, it is unlikely that

all of the available data sources and extracted features are

useful for prediction. It is quite possible that extracted features

that are nothing more than noise can degrade the predictive

ability of a machine learning algorithm. Large feature sets

can suffer from other problems such as increased compu-

tation time, increased storage requirements, and increased

complexity. These properties are collectively known as the

curse of dimensionality [10]. In order to build a parsimonious

model, features that contribute little information or degrade the

performance of a model should be selectively removed from

the feature set.

In real-world applications, data sources are not free and

have some associated collection cost. Generally, cost in a data

mining context refers to misclassification cost, where there

are different penalties for incorrectly labeling observations.

However, there are many notions of cost beyond misclassi-

fication cost. For example, cost could refer to the upfront

cost of purchasing the sensor for collecting the data or it

could refer to the cost of storing the data on hardware while

waiting to be processed. For another example, ordering a test

for medical diagnosis might provide useful information but

with an associated cost. As the number of data sources and

extracted features grow, these costs can add up, i.e. larger

feature sets can be more costly to utilize with a machine

learning algorithm. In some applications, the cost of each

data source or feature could vary significantly. For example,

force sensors can cost up to tens of thousands of dollars while

vibration sensors are on the order of thousands of dollars.
Feature selection is the process of selecting a subset of

relevant features from the larger set of collected features [3],

[7], [8]. One possible method is to exhaustively test every pos-

sible combination of feature subsets, but this approach quickly

becomes impractical as the number of features grows. Nu-

merous general feature selection methods have been explored,

however existing models that take cost into consideration when

selecting features are limited.
A general cost-based feature selection framework was re-

cently developed [4]. This framework establishes a tradeoff

between the merit of a feature with the cost of that feature. A

weighting parameter controls the relative impact of these two

competing measures and can be set by the practioner. In this

paper, we evaluate this general framework for feature selection

with cost and expand on the experiments performed in [4] in

three facets:

1) We expand on the number of feature selection algorithms

used to produce the merit of each feature subset.

2) We use multiple types of classifiers in order to assess

the interaction between the feature selection technique

and the predictive model.

3) We sequentially add features to the tested feature subset

based on the results of the cost-based feature selection

algorithm and evaluate the cost and performance of each

of the subsets.

The objective of this study is to confirm the previously pub-

lished results for the general cost-based feature methodology

and expand on the experiments by adding more degrees of

freedom in terms of type of classifier and dimensionality of

the feature subset.
This paper is organized in the following fashion. Section II

gives background on feature selection literature and literature

that combines feature selection and cost. Section III describes

the general cost-based feature selection framework and gives
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details on the feature selection methods tested in this study.

Section IV describes the numerical experiments performed on

the data sets and their results. In section V, we discuss the

results of the numerical experiments and offer our conclusions.

II. BACKGROUND

Feature selection techniques can be roughly divided into

three categories: filters, wrappers, and embedded techniques.

Filters [2], [22] are independent of the model used for predic-

tion and are considered a pre-processing step. Wrappers [12],

on the other hand, evaluate a feature based on its predictive

ability given a model. When using filters, a feature set is

selected before the model is trained while wrappers require an

iterative process of selecting a candidate feature set, training

a model, and then evaluating the predictive ability of the

candidate feature set. The third feature selection technique,

referred to as embedded methods [6], simultaneously select

a feature set and train a predictive model. The cost-based

framework evaluated in this paper was designed for filtering

feature selection techniques.

When the financial cost of data streams varies significantly,

this information should be included in the feature selection

process. Cost can refer to many aspects of the data including

financial cost, storage cost, and collection cost. These types

of costs are generally referred to as “test cost” [14], [16],

[21]. Learning algorithms that incorporate cost are referred

to as “cost-sensitive learning algorithms”. However, these

algorithms take a different approach to the problem than

that taken by classical feature selection techniques. Cost-

sensitive learning algorithms assume that each measurement

of an observation is associated with a cost. The classifier

must decide whether the measurement or feature is needed

in each instance given its cost. The classic example is medical

diagnosis. When a patient presents with symptoms, which test

should the doctor order to achieve the best diagnosis, given that

the tests have varying cost? Can the doctor make a diagnosis

once the information from the first test is received or are more

tests required?

There are several methods for incorporating feature cost

into the feature selection process. Min and Zhu [17] propose

a wrapper that backtracks through the feature space but the

acquisition cost for each feature is delayed. Min, Hu, and

Zhu [15] developed a backtracking algorithm which puts a

constraint on the total cost of the selected feature set. Grouped

features with cost are considered in [18] where it is assumed

that if a single feature from a group is included in the feature

set the remaining features in that group can be acquired for

free. These methods suffer from the same limitation that all

wrappers face, namely that they do not scale well to large

feature sets.

Embedded techniques do not suffer from scaling issues but

the choice of a predictive model is restricted. Cost can be

incorporated into decision tree construction by adding cost to

the splitting criterion [14]. Cost can be added to the random

forest algorithm by making the probability that a feature is

randomly chosen for a tree in the forest inversely proportional

to the cost [23]. Cost can be incorporated into the selection

of features for latent variable models, such as hidden Markov

models, through the use of prior distributions [1].

In general, filters offer the ability to scale to large feature

sets and can also be paired with any type of predictive model.

The general cost-based framework proposed in [4] was origi-

nally tested with two types of filtering techniques: correlation-

based feature selection and minimum-redundancy-maximal-

relevance (mRMR). Because this method is independent of

the predictive model, it can be paired with numerous types

of classification and regression techniques. Support vector

machines were originally used as the classification model.

In this paper, we evaluate the cost-based feature selection

framework with three new filtering techniques and three new

types of classifiers.

Iswandy and Koenig [9] propose a cost-based feature se-

lection method that balances the evaluation of the feature set

with acquisition cost of the features. This method differs from

the general framework proposed in [4] by utilizing a specific

type of filter and combining the filter results with the cost for

use as the evaluation function of a genetic algorithm.

III. FRAMEWORK

In this section, we first outline the general cost-based feature

selection framework we implement. Then, we describe the

four feature selection algorithms we pair with the framework.

These methods are feature selection via concave minimiza-

tion (fsvFS), infinite feature selection (infFS), mRMR, and

ReleifF. The infFS method has a supervised and unsupervised

formulation. The supervised version, referred to as SinfFS, is

restricted to binary classification problems, while the unsuper-

vised version, referred to as infFS, can be applied to a problem

with any number of classes because the class labels are not

required.

A. General Cost-Based Feature Selection

The general cost-based feature selection framework pro-

posed in [4] balances the merit of a feature set with the

cost of that feature set. Let MS represent the merit of a

candidate feature set S with dimensionality k. The merit

of S is calculated using an evaluation function f(·) so that

MS = f(S). Let CS be the average cost of the features in S.

The evaluation function for the cost-based framework is

MCS = MS − λ ∗ CS , (1)

where λ is the parameter that controls the influence of the cost

on the feature selection process. When the feature selection

method ranks each feature, the dimensionality of the proposed

feature set is reduced to 1, and the cost of feature set S
becomes the cost of the proposed feature set instead of the

average values of the features in S.

B. fsvFS

Feature selection via concave minimization [5] is a wrapper

for feature selection in a binary classification problem. In this

method, a separating hyperplane is found that maximizes the
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separation between the two classes. The optimization problem

is constrained to minimize the dimensions in the hyperplane

and thus performs feature selection. This method is considered

a wrapper because it iteratively solves the optimization prob-

lem. Let A and B represent two classes where the matrices

A ∈ Rm×n and B ∈ Rk×n contain the data for these two

classes. Let P = {x|x ∈ Rn, xTw = γ} be a separating

hyperplane between A and B. The objective is to find w and

γ so that the plane adequately separates the two classes. This

leads to the constraints Aw ≥ eγ + e and Bw ≤ eγ − e
after normalization where e is vector of ones with an arbitrary

length. This yields the following linear programming problem

minimize
w,γ,y,z

eT y

m
+

eT z

k

subject to −Aw + eγ + e ≤ y

Bw − eγ − e ≤ z

y ≥ 0, z ≥ 0.

(2)

Feature selection is incorporated by suppressing the com-

ponents of w that do not help separate A and B. This is

incorporated into (2) by adding eT |w|∗ to the objective where

the components of |w|∗ are equal to 1 if the corresponding

component of w is non-zero and 0 otherwise. A weight

parameter θ is added to the objective function to control the

tradeoff between eT |w|∗ and the original objective function.

This procedure is further refined by mapping to the training

of a support vector machine, which strives to maximize the

distance between the two parallel planes that separate the

classes. The ∞-norm replaces eT |w|∗ and the optimization

problem becomes

minimize
w,γ,y,z,s

(1− θ)

(
eT y

m
+

eT z

k

)
+

θ

2
eT s

subject to −Aw + eγ + e ≤ y

Bw − eγ − e ≤ z

−s ≤ w ≤ s

y ≥ 0, z ≥ 0.

(3)

In practice, this procedure forces the components of w to

0 for irrelevant features. All features can be ranked using

the absolute value of the estimated w. When paired with

the general cost-based framework, the merit/cost metric for

a single feature is MCS = |w| − λCS .

C. infFS

Infinite feature selection [20] is a filtering feature selection

technique that evaluates the relevance of each feature while

considering all possible feature sets. The score produced by

this algorithm considers the interaction with other features.

This method maps the feature set to a graph and then models

a feature subset as a particular path through that graph.

Let G = (V,E) be a graph, where V represents the set

vertices in the graph and E represents the set of edges. Each

vertex corresponds to a feature. The graph can be compactly

represented as an adjacency graph A, where the elements of

A represent a pairwise energy term. The energies are a linear

combination of pairwise measures linking feature i to feature

j

aij = ασij + (1− α)cij , (4)

where α is a weight in [0, 1], σij = max(σi, σj), σi is the

standard deviation of the ith feature, and cij is 1 minus the

absolute value of the Spearman’s rank correlation coefficient.

The elements of A are calculated for i, j = 1...N where N
is the number of features. Let γ = {v0 = i, v1, ..., vl = j}
denote a particular path of length l through G. The energy of

path γ is calculated by

ξγ =

l−1∏
k=0

avk,vk+1
. (5)

The energy of all paths of length l between i and j can be

calculated by using the adjacency matrix and the matrix power

law

Rl(i, j) = Al(i, j). (6)

Using this, a single feature’s energy can be calculated by

sl(i) =
∑
j∈V

Al(i, j). (7)

If the path length is extended to infinity, the energy for a single

feature is calculated by

s(i) =
∞∑
l=1

⎛
⎝∑

j∈V

Rl(i, j)

⎞
⎠

=

[( ∞∑
l=1

Al

)
e

]

= [Se]i,

(8)

where e is an array of ones. The convergence property of

the geometric powers series allows for the computation of

Š = (I − rA)−1 − I, which encodes all the information

about the features. The score for each feature is calculated by

š(i) = [Še]i. Features are ranked in descending order of the

score. This method is unsupervised but a supervised method

for binary classification can be implemented. The binary labels

are used in calculating the correlation between features.

For ranking individual features using the cost-based frame-

work, let S = š(i). Then, the merit/cost metric becomes

MCS = š(i)− λCS .

D. mRMR

Minimal-redundancy-maximum-relevance feature selection

[19] is a filter that utilizes information theory to select a

relevant feature set with only a small number of redundant

features. This method combines two measures, each represent-

ing one of these concepts. The relevance of the feature set S
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Fig. 1. Results from hepatitis data set experiments.

is assessed by calculating the average mutual information of

all features in S with the class label c

D(S, c) =
1

|S|
∑
xi∈S

I(xi; c), (9)

where xi is the ith feature, and I(xi; c) is the mutual infor-

mation. The mutual information can be calculated using

I(x; y) =

∫ ∫
p(x, y) log

p(x, y)

p(x)p(y)
dxdy. (10)

The redundancy is assessed by calculating the mutual infor-

mation between each feature in S

R(S) =
1

|S|2
∑

xi,xj∈S

I(xi;xj). (11)

The relevance and redundancy are combined to form the

feature selection metric

Φ(D,R) = D(S, c)−R(S). (12)

This principle can be transformed into an iterative feature

selection method that adds the feature to the relevant feature

set that maximizes the following condition:

max
xj∈X−Sm−1

⎡
⎣I(xj ; c)− 1

m− 1

∑
xi∈Sm−1

I(xj ;xi)

⎤
⎦ , (13)

where Sm−1 is the current set of relevant features.

When using the cost-based framework, the cost metric can

be directly incorporated into the ranking process. Equation 13

becomes

max
xj∈X−Sm−1

⎡
⎣I(xj ; c)− 1

m− 1

∑
xi∈Sm−1

I(xj ;xi)− λCj

⎤
⎦ .

(14)

E. Relief and ReliefF

Relief was first introduced in [11] and was later generalized

to ReliefF [13]. The Relief feature selection algorithm attempts

to find features that are statistically relevant to the class. The

original algorithm was restricted to a binary classification

problem. At each iteration of the algorithm, an observation

is chosen at random from the data set. This observation is

compared to its nearest neighbor in the other class. The

nearest neighbor is determined based on some type of distance

measure. The nearest neighbor from the same class as the

drawn observation is called a near hit, and the nearest neighbor

from the other class is called a near miss. The weight wl for

the lth feature is updated by

wl = wl − (xl − xh
l ) + (xl − xm

l ), (15)

where xl is the lth feature value from the randomly chosen

sample, xh
l represents the feature value from the near hit, and

xm
l represents the feature value from the near miss. ReliefF

[13] is an extension of the original Relief algorithm that can

be used on multi-class problems.

The extension of ReliefF to the cost-based framework

is achieved by directly substituting wl for MS when S is

composed solely of the lth feature. The merit/cost metric under

these circumstances becomes MCS = wS − λCS .
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Fig. 2. Results from liver data set experiments.

Algorithm 1 Feature Evaluation Algorithm

1: Select a feature selection algorithm and classifier.

2: Select a cost weight parameter λ.

3: Rank the L features using the cost-based feature selection

method and the selected feature selection algorithm.

4: for m = 1 : L do
5: Put the top m features into the relevant feature set S.

6: Calculate the cost of the feature set CS

7: Perform 10-fold cross validation using the selected

classifier.

8: Calculate the average error ES over the 10-folds.

9: end for

IV. NUMERICAL EXPERIMENTS

In this section, we describe the numerical experiments

performed on the data sets using the various feature selection

methods. We divided the experiments into those performed

on a binary classification problem and those performed on a

multiclass problem. We separate these experiments into two

groups because some of the feature selection methods are

specific to a binary problem. Specifically, the fsvFS method

and the supervised form of the infFS method are limited to a

binary problem.

The experiments are performed on 10 publicly available

data sets from the UCI machine learning repository. Table I

contains the binary classification data sets and includes the

number of features and the number of samples in each data

set. Table II contains the data sets for the multiclass problem

and includes the number of features, number of samples, and

number of classes. Only four of the data sets have costs

associated with the features. For the remaining six data sets,

we randomly generated feature costs between 0 and 1. The

TABLE I
BINARY DATA SETS. STARRED DATA SET HAS SYNTHETIC COSTS.

Data set # Features # Samples

Hepatitis 19 155
Liver 6 345

Magic* 10 19,020
Pima 8 768

TABLE II
MULTICLASS DATA SETS. STARRED DATA SETS HAVE SYNTHETIC COSTS.

Data set # Features # Samples # Classes

Letter* 16 20,000 26
Optdigits* 64 3823 10
Pendigits* 16 7494 10

Segmentation* 19 2310 7
Thyroid 21 3772 3
Yeast* 8 1484 10

data sets with synthetically generated costs are starred in

Tables I and II. This selection of data sets gives a wide range

in the number of features, samples, and classes.

On each data set, the general cost-based feature selection

method is combined with one of the feature selection methods

and used to rank all features. In order to see the effect of the

weight parameter, we use λ = [0, 0.5, 0.75, 1, 2, 5, 10]. Note

that λ = 0 represents a feature selection method that does not

consider cost. Features are sequentially added to the relevant

feature set based on the feature selection ranking. For each

feature subset, we then perform a 10-fold cross validation to

assess the error. Three standard classifiers are tested: K-nearest

neighbor, random forest, and classification trees. Algorithm

1 displays the steps used to evaluate each feature selection

method.
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A. Binary Classification

In this section, we perform the numerical experiments on

the binary classification data sets in Table I. We combine the

general cost-based feature selection method with five feature

selection methods: fsvFS, infFS, SinfFS, mRMR, and ReliefF.

The cost and error calculated using Algorithm 1 for each data

set are displayed in Figures 1 to 4.

The results from the numerical experiments demonstrate

that the cost-based framework successfully selects feature

subsets with less cost than a general feature selection algorithm

(λ = 0). In a few of the experiments, the general feature

selection algorithm selects feature subsets that outperform the

cost-based methods in terms of error. However, this is only a

small proportion of the test scenarios and generally all values

of λ yield a similar error rate. This indicates that selecting

cost effective features does not necessarily degrade predictive

performance.

We found that error rate is independent of the classifier, i.e.

all classifiers generally produced the same error rate given the

same feature subset. Further, error rate decreased as the feature

set grew in size, which is to be expected because classifiers

generally perform better with more features.

On the binary problem, when there was a lot of weight on

penalizing costly features, all the feature selection algorithms

selected feature sets that minimize cost. These experiments

indicate that the choice of λ is greatly influenced by the feature

selection algorithm. The infinite feature selection technique

produces weights with larger values than the other feature

selection algorithms, e.g. the merit of the feature set MS for

infinite feature selection for any arbitrary feature set is larger

than the MS for the other tested feature selection algorithms.

This means that larger values of λ must be chosen to minimize

cost. Other than this fact, there was little difference between

the feature selection algorithms. However, it is interesting to

note that the unsupervised version of the infinite feature se-

lection algorithm usually outperformed the supervised version

in terms of minimizing cost.

B. Multiclass Classification

In this section, we perform the numerical experiments on the

multiclass data sets in Table II. We combine the general cost-

based feature selection method with three feature selection

methods that can handle multiclass problems: infFS, mRMR,

and ReliefF. The cost and error calculated using Algorithm 1

for each data set are displayed in Figures 5 to 10.

The results for the multiclass problem tend to reflect those

from the binary problem. Generally, the type of classifier

did not influence the overall error rate and error rate tended

to decrease with larger feature sets. The cost-based feature

selection method chose relevant feature subsets with less total

cost than the methods that did not consider the cost of features.

These experiments confirm that more care must be taken when

selecting a value for λ when using the infinite feature selection

technique because of the larger value of MS .

V. DISCUSSION AND CONCLUSIONS

In this study, we confirm the results reported in [4] for the

general cost-based feature selection framework. This frame-

work can incorporate the cost of individual features into

the feature selection process. We expand on the experiments

performed in [4] by testing more feature selection methods

to be used in the cost-based framework, test multiple types

of classifiers, and perform experiments that sequentially add

features to the relevant feature subset and then evaluate their

performance. Specifically, we find that the three classifiers

tested in this study general result in the same error rate given

the same feature subset. This is to be expected because all

feature selection methods used in this study are filters and

therefore independent of the classifier.

Further, we find that the type of feature selection technique

used in the cost-based feature selection framework does not

affect the cost of the relevant subset or the performance in

terms of accuracy as long as an appropriate value for λ is

chosen. We tested seven values for λ. When λ = 0, the

cost-based framework reduces to the normal feature selection

problem which only tries to optimize for feature relevance.

The selected value for the weight parameter is important to

the type of feature selection algorithm calculating the merit of

the feature set MS because different algorithms have different

scales for MS . This is evident when comparing the results of

fsvFS and infFS in Figure 1. Therefore, as long as the value

for λ is scaled accordingly with MS there does not appear to

be much difference in the cost of the selected feature subset.

When λ is set to a large value, the cost is minimized and all

feature selection algorithms select the same feature subset.

This study is limited to a filtering feature selection approach.

In future work, we would like to extend the analysis of incor-

porating cost into the feature selection process to wrappers and

embedded feature selection techniques. While the numerical

experiments in this study build on those presented in [4], they

are far from exhaustive. Future work could continue to expand

on the types of classifiers, types of feature selection methods

paired with the cost-based framework, and the domain. The

data sets tested in this study were all taken from the UCI

machine learning repository and have been thoroughly inves-

tigated. Real-world applications of the cost-based framework

are needed.
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