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Abstract—Feature selection is the process of selecting a subset
of relevant features from the larger set of collected features. As
the amount of available data grows with technology, feature selec-
tion becomes a more important part of the system-design process.
In real-world applications, there are several costs associated with
the collection, processing, and storage of data. Given that these
costs can vary between data streams, it is important to consider
the cost of features when performing feature selection. A majority
of the feature selection algorithms select a relevant feature subset
solely based on the merit and do not consider cost. In this study,
we evaluate a previously proposed cost-based feature selection
framework. We expand on the previously conducted experiments
by testing a wider range of feature selection methods paired with
the cost-based framework, testing a variety of classifiers, and
sequentially adding features to the relevant subset based on the
results of the cost-based framework. We find that the selection
of the weight parameter that balances the effect of feature merit
versus cost is tied to the choice of feature selection technique. The
weight must be appropriately scaled with the value of the merit.
Further, we confirm the previously tested results and offer insight
into future research directions on the topic of feature selection
and cost.

Index Terms—feature selection, cost, classification

I. INTRODUCTION

In many applications, there are a number of different data
sources that could be collected. However, it is unlikely that
all of the available data sources and extracted features are
useful for prediction. It is quite possible that extracted features
that are nothing more than noise can degrade the predictive
ability of a machine learning algorithm. Large feature sets
can suffer from other problems such as increased compu-
tation time, increased storage requirements, and increased
complexity. These properties are collectively known as the
curse of dimensionality [10]. In order to build a parsimonious
model, features that contribute little information or degrade the
performance of a model should be selectively removed from
the feature set.

In real-world applications, data sources are not free and
have some associated collection cost. Generally, cost in a data
mining context refers to misclassification cost, where there
are different penalties for incorrectly labeling observations.
However, there are many notions of cost beyond misclassi-
fication cost. For example, cost could refer to the upfront
cost of purchasing the sensor for collecting the data or it
could refer to the cost of storing the data on hardware while
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waiting to be processed. For another example, ordering a test
for medical diagnosis might provide useful information but
with an associated cost. As the number of data sources and
extracted features grow, these costs can add up, i.e. larger
feature sets can be more costly to utilize with a machine
learning algorithm. In some applications, the cost of each
data source or feature could vary significantly. For example,
force sensors can cost up to tens of thousands of dollars while
vibration sensors are on the order of thousands of dollars.

Feature selection is the process of selecting a subset of
relevant features from the larger set of collected features [3],
[7], [8]. One possible method is to exhaustively test every pos-
sible combination of feature subsets, but this approach quickly
becomes impractical as the number of features grows. Nu-
merous general feature selection methods have been explored,
however existing models that take cost into consideration when
selecting features are limited.

A general cost-based feature selection framework was re-
cently developed [4]. This framework establishes a tradeoff
between the merit of a feature with the cost of that feature. A
weighting parameter controls the relative impact of these two
competing measures and can be set by the practioner. In this
paper, we evaluate this general framework for feature selection
with cost and expand on the experiments performed in [4] in
three facets:

1) We expand on the number of feature selection algorithms
used to produce the merit of each feature subset.

We use multiple types of classifiers in order to assess
the interaction between the feature selection technique
and the predictive model.

We sequentially add features to the tested feature subset
based on the results of the cost-based feature selection
algorithm and evaluate the cost and performance of each
of the subsets.

The objective of this study is to confirm the previously pub-
lished results for the general cost-based feature methodology
and expand on the experiments by adding more degrees of
freedom in terms of type of classifier and dimensionality of
the feature subset.

This paper is organized in the following fashion. Section II
gives background on feature selection literature and literature
that combines feature selection and cost. Section III describes
the general cost-based feature selection framework and gives

2)

3)
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details on the feature selection methods tested in this study.
Section IV describes the numerical experiments performed on
the data sets and their results. In section V, we discuss the
results of the numerical experiments and offer our conclusions.

II. BACKGROUND

Feature selection techniques can be roughly divided into
three categories: filters, wrappers, and embedded techniques.
Filters [2], [22] are independent of the model used for predic-
tion and are considered a pre-processing step. Wrappers [12],
on the other hand, evaluate a feature based on its predictive
ability given a model. When using filters, a feature set is
selected before the model is trained while wrappers require an
iterative process of selecting a candidate feature set, training
a model, and then evaluating the predictive ability of the
candidate feature set. The third feature selection technique,
referred to as embedded methods [6], simultaneously select
a feature set and train a predictive model. The cost-based
framework evaluated in this paper was designed for filtering
feature selection techniques.

When the financial cost of data streams varies significantly,
this information should be included in the feature selection
process. Cost can refer to many aspects of the data including
financial cost, storage cost, and collection cost. These types
of costs are generally referred to as “test cost” [14], [16],
[21]. Learning algorithms that incorporate cost are referred
to as “cost-sensitive learning algorithms”. However, these
algorithms take a different approach to the problem than
that taken by classical feature selection techniques. Cost-
sensitive learning algorithms assume that each measurement
of an observation is associated with a cost. The classifier
must decide whether the measurement or feature is needed
in each instance given its cost. The classic example is medical
diagnosis. When a patient presents with symptoms, which test
should the doctor order to achieve the best diagnosis, given that
the tests have varying cost? Can the doctor make a diagnosis
once the information from the first test is received or are more
tests required?

There are several methods for incorporating feature cost
into the feature selection process. Min and Zhu [17] propose
a wrapper that backtracks through the feature space but the
acquisition cost for each feature is delayed. Min, Hu, and
Zhu [15] developed a backtracking algorithm which puts a
constraint on the total cost of the selected feature set. Grouped
features with cost are considered in [18] where it is assumed
that if a single feature from a group is included in the feature
set the remaining features in that group can be acquired for
free. These methods suffer from the same limitation that all
wrappers face, namely that they do not scale well to large
feature sets.

Embedded techniques do not suffer from scaling issues but
the choice of a predictive model is restricted. Cost can be
incorporated into decision tree construction by adding cost to
the splitting criterion [14]. Cost can be added to the random
forest algorithm by making the probability that a feature is
randomly chosen for a tree in the forest inversely proportional
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to the cost [23]. Cost can be incorporated into the selection
of features for latent variable models, such as hidden Markov
models, through the use of prior distributions [1].

In general, filters offer the ability to scale to large feature
sets and can also be paired with any type of predictive model.
The general cost-based framework proposed in [4] was origi-
nally tested with two types of filtering techniques: correlation-
based feature selection and minimum-redundancy-maximal-
relevance (mRMR). Because this method is independent of
the predictive model, it can be paired with numerous types
of classification and regression techniques. Support vector
machines were originally used as the classification model.
In this paper, we evaluate the cost-based feature selection
framework with three new filtering techniques and three new
types of classifiers.

Iswandy and Koenig [9] propose a cost-based feature se-
lection method that balances the evaluation of the feature set
with acquisition cost of the features. This method differs from
the general framework proposed in [4] by utilizing a specific
type of filter and combining the filter results with the cost for
use as the evaluation function of a genetic algorithm.

III. FRAMEWORK

In this section, we first outline the general cost-based feature
selection framework we implement. Then, we describe the
four feature selection algorithms we pair with the framework.
These methods are feature selection via concave minimiza-
tion (fsvFS), infinite feature selection (infFS), mRMR, and
ReleifF. The infFS method has a supervised and unsupervised
formulation. The supervised version, referred to as SinfFS, is
restricted to binary classification problems, while the unsuper-
vised version, referred to as infFS, can be applied to a problem
with any number of classes because the class labels are not
required.

A. General Cost-Based Feature Selection

The general cost-based feature selection framework pro-
posed in [4] balances the merit of a feature set with the
cost of that feature set. Let Mg represent the merit of a
candidate feature set S with dimensionality k. The merit
of S is calculated using an evaluation function f(-) so that
Mg = f(S). Let C's be the average cost of the features in S.
The evaluation function for the cost-based framework is

MCs= Mg —X+Cs, ey

where ) is the parameter that controls the influence of the cost
on the feature selection process. When the feature selection
method ranks each feature, the dimensionality of the proposed
feature set is reduced to 1, and the cost of feature set S
becomes the cost of the proposed feature set instead of the
average values of the features in S.

B. fsvFS

Feature selection via concave minimization [5] is a wrapper
for feature selection in a binary classification problem. In this
method, a separating hyperplane is found that maximizes the



separation between the two classes. The optimization problem
is constrained to minimize the dimensions in the hyperplane
and thus performs feature selection. This method is considered
a wrapper because it iteratively solves the optimization prob-
lem. Let A and B represent two classes where the matrices
A € R™™ and B € R**™ contain the data for these two
classes. Let P = {z|]z € R", 27w = ~} be a separating
hyperplane between A and 5. The objective is to find w and
v so that the plane adequately separates the two classes. This
leads to the constraints Aw > ey + e and Bw < ey — e
after normalization where e is vector of ones with an arbitrary
length. This yields the following linear programming problem

. eTy €Tz
minimize — + —
w,Y,Y,% m k
subject to —Aw+ey+e<y 2)

Bw—-ey—e<z
y>0,22>0.

Feature selection is incorporated by suppressing the com-
ponents of w that do not help separate A and B. This is
incorporated into (2) by adding e¢”|w|, to the objective where
the components of |w|, are equal to 1 if the corresponding
component of w is non-zero and O otherwise. A weight
parameter 6 is added to the objective function to control the
tradeoff between e|w|, and the original objective function.
This procedure is further refined by mapping to the training
of a support vector machine, which strives to maximize the
distance between the two parallel planes that separate the
classes. The oo-norm replaces e’ |w|, and the optimization
problem becomes

L eTy eTz 9
mnize (1) (S + ) + 5
subject to —Aw+ey+e<y
Bw—ey—e<z 3)
—s<w<s
y>0,2>0.

In practice, this procedure forces the components of w to
0 for irrelevant features. All features can be ranked using
the absolute value of the estimated w. When paired with
the general cost-based framework, the merit/cost metric for
a single feature is MCs = |w| — ACsg.

C. infFS

Infinite feature selection [20] is a filtering feature selection
technique that evaluates the relevance of each feature while
considering all possible feature sets. The score produced by
this algorithm considers the interaction with other features.
This method maps the feature set to a graph and then models
a feature subset as a particular path through that graph.
Let G = (V,E) be a graph, where V represents the set
vertices in the graph and E represents the set of edges. Each
vertex corresponds to a feature. The graph can be compactly
represented as an adjacency graph A, where the elements of
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A represent a pairwise energy term. The energies are a linear
combination of pairwise measures linking feature ¢ to feature

J

“

where « is a weight in [0, 1], 0;; = maxz(o;,0;), 0; is the
standard deviation of the *" feature, and cij is 1 minus the
absolute value of the Spearman’s rank correlation coefficient.
The elements of A are calculated for 7,5 = 1...N where N
is the number of features. Let v = {vg = ¢,v1,...,u; = j}
denote a particular path of length [ through G. The energy of
path ~y is calculated by

aij = aoy; + (1 — a)cgy,

-1
& = 11 aornir- )
k=0
The energy of all paths of length [ between ¢ and j can be
calculated by using the adjacency matrix and the matrix power
law

Ri(i, j) = A'(i, 5). ©)
Using this, a single feature’s energy can be calculated by
sii) =Y A, j). @)

JEV
If the path length is extended to infinity, the energy for a single
feature is calculated by

S(Z) = ZRZ(’ij)
=1 \jeVv
oo 3)
-|(z#)-
=1
= [Se]i,

where e is an array of ones. The convergence property of
the geometric powers series allows for the computation of
S = (I —rA)~' — I, which encodes all the information
about the features. The score for each feature is calculated by
5(i) = [Se];. Features are ranked in descending order of the
score. This method is unsupervised but a supervised method
for binary classification can be implemented. The binary labels
are used in calculating the correlation between features.

For ranking individual features using the cost-based frame-
work, let S = 3(i). Then, the merit/cost metric becomes
MCg = §(Z) — ACs.

D. mRMR

Minimal-redundancy-maximum-relevance feature selection
[19] is a filter that utilizes information theory to select a
relevant feature set with only a small number of redundant
features. This method combines two measures, each represent-
ing one of these concepts. The relevance of the feature set S
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is assessed by calculating the average mutual information of
all features in .S with the class label ¢

E (wi5c

z; €S

D(S,¢) = ©)

ISI

where ; is the it" feature, and I(z;;c) is the mutual infor-
mation. The mutual information can be calculated using

I(x;y) // (z,y)log (() ())dmdy

The redundancy is assessed by calculating the mutual infor-
mation between each feature in S

Z Iz xj).

ml,xJES

(10)

R(S) (1)

The relevance and redundancy are combined to form the
feature selection metric
®(D,R) =

D(S,¢) — R(S).

This principle can be transformed into an iterative feature
selection method that adds the feature to the relevant feature
set that maximizes the following condition:

(12)

1
max I(x;;¢) — —— I(xz;;z; 13
2;€X—Sm_1 (w5:0) m—1 Z (@jiza) |, (3
T;€8m—1
where S,,,_1 is the current set of relevant features.

When using the cost-based framework, the cost metric can
be directly incorporated into the ranking process. Equation 13
becomes

10
Features
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E. Relief and ReliefF

Relief was first introduced in [11] and was later generalized
to ReliefF [13]. The Relief feature selection algorithm attempts
to find features that are statistically relevant to the class. The
original algorithm was restricted to a binary classification
problem. At each iteration of the algorithm, an observation
is chosen at random from the data set. This observation is
compared to its nearest neighbor in the other class. The
nearest neighbor is determined based on some type of distance
measure. The nearest neighbor from the same class as the
drawn observation is called a near hit, and the nearest neighbor
from the other class is called a near miss. The weight w; for
the [*" feature is updated by

w = w; — (z — 2) + (2 — "), (15)
where x; is the I*" feature value from the randomly chosen
sample, x? represents the feature value from the near hit, and
x;" represents the feature value from the near miss. ReliefF
[13] is an extension of the original Relief algorithm that can
be used on multi-class problems.

The extension of ReliefF to the cost-based framework
is achieved by directly substituting w; for Mg when S is
composed solely of the I*" feature. The merit/cost metric under
these circumstances becomes MCs = wg — A\C's.
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Algorithm 1 Feature Evaluation Algorithm

1: Select a feature selection algorithm and classifier.

2: Select a cost weight parameter A.

3: Rank the L features using the cost-based feature selection
method and the selected feature selection algorithm.

4: for m=1:L do

5:  Put the top m features into the relevant feature set S.

6:  Calculate the cost of the feature set Cg

7. Perform 10-fold cross validation using the selected
classifier.

8:  Calculate the average error Eg over the 10-folds.

9: end for

IV. NUMERICAL EXPERIMENTS

In this section, we describe the numerical experiments
performed on the data sets using the various feature selection
methods. We divided the experiments into those performed
on a binary classification problem and those performed on a
multiclass problem. We separate these experiments into two
groups because some of the feature selection methods are
specific to a binary problem. Specifically, the fsvFS method
and the supervised form of the infFS method are limited to a
binary problem.

The experiments are performed on 10 publicly available
data sets from the UCI machine learning repository. Table I
contains the binary classification data sets and includes the
number of features and the number of samples in each data
set. Table II contains the data sets for the multiclass problem
and includes the number of features, number of samples, and
number of classes. Only four of the data sets have costs
associated with the features. For the remaining six data sets,
we randomly generated feature costs between 0 and 1. The

Features
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TABLE 1
BINARY DATA SETS. STARRED DATA SET HAS SYNTHETIC COSTS.

Data set | # Features | # Samples

Hepatitis 19 155
Liver 6 345
Magic* 10 19,020
Pima 8 768

TABLE I

MULTICLASS DATA SETS. STARRED DATA SETS HAVE SYNTHETIC COSTS.

Data set | # Features | # Samples | # Classes
Letter* 16 20,000 26
Optdigits* 64 3823 10
Pendigits* 16 7494 10
Segmentation* 19 2310 7
Thyroid 21 3772 3
Yeast* 8 1484 10

data sets with synthetically generated costs are starred in
Tables I and II. This selection of data sets gives a wide range
in the number of features, samples, and classes.

On each data set, the general cost-based feature selection
method is combined with one of the feature selection methods
and used to rank all features. In order to see the effect of the
weight parameter, we use A = [0,0.5,0.75,1,2,5,10]. Note
that A = 0 represents a feature selection method that does not
consider cost. Features are sequentially added to the relevant
feature set based on the feature selection ranking. For each
feature subset, we then perform a 10-fold cross validation to
assess the error. Three standard classifiers are tested: K-nearest
neighbor, random forest, and classification trees. Algorithm
1 displays the steps used to evaluate each feature selection
method.



A. Binary Classification

In this section, we perform the numerical experiments on
the binary classification data sets in Table I. We combine the
general cost-based feature selection method with five feature
selection methods: fsvFS, infFS, SinfFS, mRMR, and ReliefF.
The cost and error calculated using Algorithm 1 for each data
set are displayed in Figures 1 to 4.

The results from the numerical experiments demonstrate
that the cost-based framework successfully selects feature
subsets with less cost than a general feature selection algorithm
(A = 0). In a few of the experiments, the general feature
selection algorithm selects feature subsets that outperform the
cost-based methods in terms of error. However, this is only a
small proportion of the test scenarios and generally all values
of A yield a similar error rate. This indicates that selecting
cost effective features does not necessarily degrade predictive
performance.

We found that error rate is independent of the classifier, i.e.
all classifiers generally produced the same error rate given the
same feature subset. Further, error rate decreased as the feature
set grew in size, which is to be expected because classifiers
generally perform better with more features.

On the binary problem, when there was a lot of weight on
penalizing costly features, all the feature selection algorithms
selected feature sets that minimize cost. These experiments
indicate that the choice of A is greatly influenced by the feature
selection algorithm. The infinite feature selection technique
produces weights with larger values than the other feature
selection algorithms, e.g. the merit of the feature set Mg for
infinite feature selection for any arbitrary feature set is larger
than the Mg for the other tested feature selection algorithms.
This means that larger values of A\ must be chosen to minimize
cost. Other than this fact, there was little difference between
the feature selection algorithms. However, it is interesting to
note that the unsupervised version of the infinite feature se-
lection algorithm usually outperformed the supervised version
in terms of minimizing cost.

B. Multiclass Classification

In this section, we perform the numerical experiments on the
multiclass data sets in Table II. We combine the general cost-
based feature selection method with three feature selection
methods that can handle multiclass problems: infFS, mRMR,
and ReliefF. The cost and error calculated using Algorithm 1
for each data set are displayed in Figures 5 to 10.

The results for the multiclass problem tend to reflect those
from the binary problem. Generally, the type of classifier
did not influence the overall error rate and error rate tended
to decrease with larger feature sets. The cost-based feature
selection method chose relevant feature subsets with less total
cost than the methods that did not consider the cost of features.
These experiments confirm that more care must be taken when
selecting a value for A\ when using the infinite feature selection
technique because of the larger value of Mg.
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V. DISCUSSION AND CONCLUSIONS

In this study, we confirm the results reported in [4] for the
general cost-based feature selection framework. This frame-
work can incorporate the cost of individual features into
the feature selection process. We expand on the experiments
performed in [4] by testing more feature selection methods
to be used in the cost-based framework, test multiple types
of classifiers, and perform experiments that sequentially add
features to the relevant feature subset and then evaluate their
performance. Specifically, we find that the three classifiers
tested in this study general result in the same error rate given
the same feature subset. This is to be expected because all
feature selection methods used in this study are filters and
therefore independent of the classifier.

Further, we find that the type of feature selection technique
used in the cost-based feature selection framework does not
affect the cost of the relevant subset or the performance in
terms of accuracy as long as an appropriate value for A is
chosen. We tested seven values for A\. When A = 0, the
cost-based framework reduces to the normal feature selection
problem which only tries to optimize for feature relevance.
The selected value for the weight parameter is important to
the type of feature selection algorithm calculating the merit of
the feature set Mg because different algorithms have different
scales for Mg. This is evident when comparing the results of
fsvFS and infFS in Figure 1. Therefore, as long as the value
for )\ is scaled accordingly with Mg there does not appear to
be much difference in the cost of the selected feature subset.
When A is set to a large value, the cost is minimized and all
feature selection algorithms select the same feature subset.

This study is limited to a filtering feature selection approach.
In future work, we would like to extend the analysis of incor-
porating cost into the feature selection process to wrappers and
embedded feature selection techniques. While the numerical
experiments in this study build on those presented in [4], they
are far from exhaustive. Future work could continue to expand
on the types of classifiers, types of feature selection methods
paired with the cost-based framework, and the domain. The
data sets tested in this study were all taken from the UCI
machine learning repository and have been thoroughly inves-
tigated. Real-world applications of the cost-based framework
are needed.
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