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Abstract. We present a multi-sensor Bayesian passive mi-
crowave retrieval algorithm for flood inundation mapping at
high spatial and temporal resolutions. The algorithm takes
advantage of observations from multiple sensors in optical,
short-infrared, and microwave bands, thereby allowing for
detection and mapping of the sub-pixel fraction of inundated
areas under almost all-sky conditions. The method relies on
a nearest-neighbor search and a modern sparsity-promoting
inversion method that make use of an a priori dataset in
the form of two joint dictionaries. These dictionaries con-
tain almost overlapping observations by the Special Sensor
Microwave Imager and Sounder (SSMIS) on board the De-
fense Meteorological Satellite Program (DMSP) F17 satel-
lite and the Moderate Resolution Imaging Spectroradiometer
(MODIS) on board the Aqua and Terra satellites. Evaluation
of the retrieval algorithm over the Mekong Delta shows that
it is capable of capturing to a good degree the inundation di-
urnal variability due to localized convective precipitation. At
longer timescales, the results demonstrate consistency with
the ground-based water level observations, denoting that the
method is properly capturing inundation seasonal patterns
in response to regional monsoonal rain. The calculated Eu-
clidean distance, rank-correlation, and also copula quantile
analysis demonstrate a good agreement between the outputs
of the algorithm and the observed water levels at monthly
and daily timescales. The current inundation products are at
a resolution of 12.5 km and taken twice per day, but a higher
resolution (order of 5km and every 3h) can be achieved
using the same algorithm with the dictionary populated by
the Global Precipitation Mission (GPM) Microwave Imager
(GMI) products.

1 Introduction

Capturing the diurnal spatiotemporal dynamics of inundation
over coastal regions, deltaic surfaces, and river floodplains
requires high-resolution observations in both time and space,
which are not available from the typical sparse ground-based
sensors. Satellite observations from the visible to the mi-
crowave bands of the electromagnetic spectrum have been
widely used for mapping floods, estimating surface water
storages, river discharge values, and water levels (Smith,
1997). In the visible bands ( ~ 0.4—0.8 um), natural water
reflects a fraction of incident light depending on the wa-
ter depth and concentration of the optically active compo-
nents such as suspended and dissolved particulate matter.
However, water reflectivity sharply declines and approaches
zero in the near-infrared bands (~ 0.8-2.5 um). Threshold-
ing of this sharp gradient is often used to discriminate wa-
ter bodies from their nearby dry soils and vegetated surfaces
(Rango and Anderson, 1974; Smith, 1997, 2001, and refer-
ences therein; Frazier and Page, 2000; Jain et al., 2005). In
the microwave region of the spectrum, the dielectric constant
of water (~ 80) is much higher than the dry soil (~4) and
thus the inundated areas are substantially less emissive and
radiometrically colder than the surrounding soils and vegeta-
tion covers. Moreover, emission from smooth water surfaces
is more polarized than that from rough soils and vegetated
surfaces (Ulaby et al., 1982; Papa et al., 2006; Prigent et al.,
2007). This polarization signal has also been used through
empirical thresholding approaches to distinguish water sur-
faces from other land surface types (Allison et al., 1979; Sip-
pel et al., 1994, 1998; Brakenridge et al., 2005, 2007).
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Flood mapping from space was first accomplished using
visible to near-infrared (VNIR) observations (0.4—1.1 um),
by the multispectral scanner system (MSS) sensors on
board Landsat-1 (Rango and Anderson, 1974; Rango and
Salmonson, 1974; McGinnis and Rango, 1975). In these
pioneering works, flooded areas were mapped where the
near-infrared surface reflectance was below a certain thresh-
old as water absorption is strong in this region. More re-
cently, Brakenridge and Anderson (2006) showed that the
visible red band 1 (0.62-0.67 um) and near-infrared (NIR)
band 2 (0.84-0.87 pm) from the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) aboard the Terra and Aqua
satellites can be used to detect water over land surfaces. They
mapped several hundreds of flood events at different sites
all over the world by classification of water via threshold-
ing over the NIR band and the normalized difference veg-
etation index, NDVI = (NIR — red) /(NIR + red) introduced
by Rouse et al. (1974). To better discriminate the vegetation
from inundated areas in threshold-based methods, Ticehurst
et al. (2013) and Guerschman et al. (2011) used a new in-
dex — called the normalized difference water index, NDWI =
(red — MIR)/(red + MIR) introduced by Gao (1996) and
later modified to MNDWI = (green — MIR)/(green + MIR)
by Xu (2006). This index exploits the mid-infrared (MIR;
1.23-1.25 um) part of the spectrum to improve the map-
ping. In all thresholding methods, the shadows of terrains and
clouds are usually miss-classified as inundated areas. There-
fore, Kuenzer et al. (2015) used the topography and cloud
information data as ancillary variables to obtain improved
estimates of the interannual dynamics of areas covered with
water over five deltaic regions with high annual cloud cover.

The use of passive microwaves (PMW) to map flooded
areas was pioneered by Allison et al. (1979), Giddings
and Choudhury (1989), and Choudhury (1991). Allison et
al. (1979) used horizontal polarization of brightness temper-
atures (Tb) at 19.3 GHz, from the electrically scanning mi-
crowave radiometer (ESMR) on board the Nimbus-5 satel-
lite, to delineate flooded regions in Australia. Giddings and
Choudhury (1989) reported the 37 GHz vertical and hori-
zontal polarization differences (i.e., Tb37y, — Tb37y), from the
Scanning Multi-frequency Microwave Radiometer (SMMR)
on board the Nimbus-7 satellite, as the most responsive chan-
nel to identify the seasonal changes in the extent of flood-
plains over South America. Temimi et al. (2005) used the
empirical basin wetness index (BWI) defined by Basist et
al. (1998), to obtain real-time water surface fraction (WSF)
in the Mackenzie River basin, using multi-frequency infor-
mation at 19, 37, and 85 GHz. To minimize the contamina-
tion effects of atmospheric emission and variations of surface
temperatures, Brakenridge et al. (2007) exploited the ratio of
Tb values over inundated and dry surfaces at 36 GHz and
presented promising results over several river sites all over
the globe, using the PMW observations by the Advanced
Microwave Scanning Radiometer — Earth Observing System
(AMSR-E). De Groeve (2010) also used the same method
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and instrument to map floods for several hundreds of loca-
tions for the Global Disaster Alert and Coordination System.

While visible and shortwave-infrared bands often provide
sub-kilometer resolution for inundation mapping, their capa-
bility is very limited in a cloudy sky. This limitation is usu-
ally very restrictive over prone-to-flooding watersheds and
deltas in tropical regions with a high-frequency of heavy pre-
cipitation events. For instance, a long-term analysis of Land-
sat data revealed that due to cloud contamination, only 30 %
of overpasses are useful for inundation mapping (Melack et
al., 1994). Because of this limitation, most of the related
satellite products, including the MODIS inundation prod-
ucts, are available mostly in monthly, seasonal, and/or an-
nual timescales (Ordoyne and Friedl, 2008). However, mi-
crowaves can penetrate clouds — and to some extent hy-
drometeors in frequencies < 37 GHz — to provide water in-
undation mapping in almost all weather conditions. Unfortu-
nately, due to the coarse resolution of microwave data, e.g.,
(47 x 74) km? at 19 GHz to (13 x 16) km? at 183 GHz for the
SSMIS), only large water bodies can be detected and sub-
pixel inundated areas cannot be directly identified (Smith,
1997). Presently, there exist several sensors on board dif-
ferent satellites that overlap in the spatial and time domains
that sample land—atmosphere signals at different wavelengths
of the electromagnetic spectrum. Therefore, it is impera-
tive to integrate these multi-sensor observations to overcome
their individual shortcomings and improve retrievals of land—
atmosphere parameters and the extent of flooded areas (Pri-
gent et al., 2001, 2007; Crétaux et al., 2011; Temimi et al.,
2011; Schroeder et al., 2010).

In this paper, we develop a method to retrieve sub-pixel
inundation fraction (“inundation” referring to regions where
water covers the land surface, excluding permanent water
bodies) only from passive microwave observations based on
a set of paired VNIR and passive microwave training sam-
ples. In particular, as training samples, we use global ob-
servations of VNIR data from the MODIS on board Terra
(launched in 2000) and Aqua satellites (launched in 2002)
and passive microwave data from the Special Sensor Mi-
crowave Imager and Sounder (SSMIS) on board Defense
Meteorological Satellite Program (DMSP) satellites F16—
F18. Several years of observations (2000—present) by these
two sensors allow us to collect adequate overlapping data
to link coarse-scale SSMIS passive microwave data to high-
resolution MODIS VNIR data in the form of an organized
dataset. Obviously, this collection of almost coincident ob-
servations does not contain direct information about sur-
face inundation in a cloudy sky, as the radiative signals in
VNIR wavelengths cannot penetrate clouds. However, over
land, it is well understood (see Ferraro et al., 1986; Grody,
1991; Wilheit et al., 1994) that hydrometeors and the atmo-
spheric profile do not significantly affect the low-frequency
< 60 GHz brightness temperatures. Therefore, the informa-
tion content of the dataset over low-frequency channels is
independent of the atmospheric profile and can be used to a
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good degree of accuracy to recover inundated surfaces un-
der cloudy conditions as well. It should be acknowledged
that there is an uncertainty for the inundation retrieval under
heavy rainy/cloudy skies when only the information in the
clear-sky dataset is used. However, we expect that this uncer-
tainty will be small since the information of the underlying
surfaces in low-frequency channels of the collected dataset
remains almost the same over different atmospheric condi-
tions.

The collected dataset has a large number of linked pairs
of inundation fraction data from MODIS data SSMIS multi-
frequency brightness temperatures. For algorithmic devel-
opment, the dataset is organized into two fat matrices: the
brightness temperature and inundation dictionaries. For an
observed pixel-level brightness temperature, the proposed
passive retrieval algorithm uses the nearest-neighbor search
to isolate a few vectors in the dictionary of brightness temper-
atures and their corresponding inundation fraction and then
use them to estimate the unknown inundation fraction. The
proposed retrieval algorithm is applied to estimate daily in-
undation fraction at spatial resolution of 12.5km over the
Mekong in 2015. The main motivation for selecting this
delta as a case study is that approximately 90 % of the
Mekong region is covered by clouds during the rainy season
(Leinenkugel et al., 2013), which severely hampers the use of
inundation mapping in the VNIR bands. We retrieve the in-
undation fraction twice per day using the proposed algorithm
over the Mekong Delta and compare the results with the flood
products of VNIR data during clear skies. We also evaluated
the results against the daily and monthly water level data ob-
tained from 11 gauges over the Mekong Delta (Fig. 1) to ex-
amine consistency of the retrievals with the regional inunda-
tion patterns.

This paper is organized as follows. Section 2 explains the a
priori dataset and the formation of the dictionaries and Sect. 3
provides detailed information about the retrieval algorithm.
Implementation of the method and validation are explained
in Sect. 4. Section 5 presents concluding remarks and direc-
tions for future research.

2 Study area and dataset

The 60000km?> Mekong Delta is in South Vietnam (see
Fig. 1) with a tropical monsoon climate system. The delta
with its agricultural industry is one of the most important
sources of food supply to Southeast Asia. This critical region
is home to nearly 20 million people, approximately 22 % of
the population of Vietnam, and is one of the most densely
populated regions in the world. The area has been exposed
to exacerbated erosion due to human activities and increased
sea level rise and lowland flood events in the recent decades
(e.g., Syvitski et al., 2005; Ericson et al., 2006; Nicholls and
Cazenave, 2010; Tessler et al., 2015). Improved quantifica-
tion of (near) real-time inundation of the Mekong Delta can
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Figure 1. Map and digital elevation of the Mekong River basin
(area =795 000 km?) and its delta. The study area is delineated by
a pink rectangle. The 11 stations (from Mekong River Commission)
that monitor the water level are also marked by pink stars.

help (1) to improve flood forecasting by identifying the in-
undated and thus soil saturated zones and (2) to identify ero-
sional and depositional hotspots that can improve geomor-
phologic and ecosystem modeling. The proposed retrieval al-
gorithm is applied to estimate sub-daily inundation fraction
at resolution of 12.5km over some of the lower regions of
the Mekong Delta in calendar year 2015 (Fig. 1).

Two sources of information are used to build a dataset
that connects almost coincident VNIR water inundation data
and multi-frequency passive microwave data. The VNIR data
consist of the daily NASA standard MODIS near-real-time
(NRT) water product MWP-3D30ON; i.e., 3-Days imagery,
three observations, and no shadow masking) with approx-
imately 250 m spatial resolution (Nigro et al., 2014) from
both Terra and Aqua satellites. The Terra and Aqua satel-
lites both have a sun-synchronous orbit. They rotate around
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the earth in opposite directions: Terra has an ascending orbit
with the local equatorial crossing time of 10:30 LT and Aqua
has a descending orbit with the local equatorial crossing time
of 01:30 p.m. MWP products are binary information of in-
undation based on the Dartmouth Flood Observatory (DFO)
algorithm, which uses a thresholding scheme on MODIS ob-
servations at band 1 (0.62—0.67 um), band 2 (0.84-0.87 um),
and band 7 (2.10-2.15 um). To minimize the contamination
effects of cloud and terrain shadows, we focus on 3-day com-
posite MWP products (3D30ON). Clearly, the use of the 3-day
composite MODIS-MWP data can affect daily inundation re-
trievals; however, in the context of the presented algorithm
this is the best choice because, daily MODIS-MWP compos-
ites are very uncertain due to the terrain shadows and clouds
(Nigro et al., 2014). Typically, there are numerous missing
pixels in the daily products, which reduce the sample size
dramatically. These errors are significantly reduced in 3-day
composite products, as it is less likely that clouds (and their
shadows) stay at the same spot during a 3 day period (Nigro
etal., 2014).

The microwave data are obtained from the DMSP SSM/I-
SSMIS Pathfinder Daily Equal-Area Scalable Earth Grid
(EASE-Grid; see Armstrong and Brodzik, 1995) brightness
temperatures distributed by the National Snow and Ice Data
Center (NSIDC). These datasets are at four central frequen-
cies 19, 22, 37, and 91 GHz. All channels are vertically and
horizontally polarized except channel 22 GHz. The effec-
tive resolution of the highest frequency channel is ~ 12.5 km
while low-resolution channels are projected onto a grid size
of ~25km. DMSP SSM/I-SSMIS brightness temperature
data products are from observations by the SSM/I and SSMIS
radiometer on board the DMSP F8, 11, 13, or 17. Since De-
cember 2006, the F17 satellite has been the only operational
satellite from the DMSP series, which carries on board the
SSMIS instrument with equatorial crossing times of 05:30-
06:30 a.m. and 17:30-18:30 p.m. for the descending and as-
cending orbits, respectively. It is important to note that be-
cause these satellites revisit every point on Earth at the same
local time, repeatedly, the paired MODIS-MWP with DMSP
SSMIS data have a fixed diurnal time difference in the entire
dataset. Since the MODIS-MWP data are from the combina-
tion of Terra and Aqua observations, their time tag is advan-
tageous in the sense that it allows us to enrich the number of
samples for the diurnal cycle of inundation dynamics.

The first step for building the a priori dataset is to match
the different space—time resolutions of the multi-sensor infor-
mation. To unify the spatial resolution of the microwave data,
the brightness temperatures of the three lower-frequency
channels are mapped onto the latitude—longitude grids of
the high-frequency channel of 91 GHz with a resolution
~ 12.5km, using a nearest-neighbor interpolation. Then the
clear-sky MWP data are also upscaled from 250 m to 12.5 km
and projected onto the same grids. In the process of upscal-
ing the binary MWP data, we assigned to each upscaled pixel
a scalar inundation fraction number f that represents the ra-
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Figure 2. A schematic showing construction steps of the a priori
dataset for dictionaries. The top slab is the upscaled MODIS-MWP
and the other slabs are the brightness temperature data at seven fre-
quency bands. Each vector on the left is created by stacking a pixel-
level information of the multi-frequency brightness temperatures by
the SSMIS radiometer and their corresponding inundation fractions
from the MWP product at 12.5 km resolution. This process is re-
peated for each orbit to generate a large number of vectors and form
separate dictionaries for ascending and descending orbits using all
satellite overpasses in 5 years from 2010 to 2014. N =n x m is the
number of collected vectors for 1 day in a year. The same process is

conducted for each day in 5 years (2010-2014) to create the dictio-
5x365
naries with M = > N; vectors.
i=1

tio of the number of inundated sub-pixels to the total number
of sub-pixels within a pixel size of 12.5 km. For matching
the timescales of Tb and MWP values, the Tb values are av-
eraged over a 3-day time window to minimize the possible
effects of cloud contamination in the VNIR data. Figure 2
demonstrates schematically the process of producing the ex-
plained dataset.

3 The retrieval algorithm

The proposed retrieval algorithm uses the link between
two available coincidental datasets, passive microwave (SS-
MIS) and VNIR (MODIS-MWP), to retrieve inundation in
the cloudy days. First, the overlapped clear-sky pixels of
MODIS-MWP and SSMIS for 5 years (2010-2014) are col-
lected over the study area to create two coincidental dictio-
naries: the SSMIS dictionary and the MODIS-MWP dictio-
nary. The SSMIS dictionary consists of 8-dimensional vec-
tors of brightness temperature (Tb), where 8 is the number of
frequency channels, and the MODIS-MWP dictionary con-
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sists of scalar values of inundation fractions for each corre-
sponding pixel in Tb. In other words, the inundation frac-
tion for each Tb in the brightness temperature dictionary
is known. The algorithm uses the information embedded in
these two dictionaries to estimate the unknown inundation
fractions for each Tb observation vector. First, it searches the
brightness temperature dictionary to find the K most similar
vectors in the Euclidean sense to the Tb observation vector
through the K-nearest-neighbors algorithm. Then, for these
K -nearest-neighbors, the corresponding known scalar values
in the inundation fraction dictionary are picked. If the ratio
of the number of inundated vectors in K-nearest neighbors
is greater than a threshold (which will be explained later),
this pixel is called inundated and the algorithm goes to the
estimation step. In the estimation step, the coefficients that
can optimally estimate the Tb observation vector based on its
K -nearest neighbors are calculated through a least-squares
regularization approach. Those coefficients are then used to
linearly combine the K known inundation fractions that are
associated with the neighboring Tb vectors for calculating
the unknown inundation fraction. The above detection and
estimation steps are repeated for each orbit at a pixel level of
12.5 km over the study area. The algorithm is mathematically
described in what follows.

To organize the dataset in an algebraically tractable man-
ner, M vectors of microwave brightness temperatures b; =
(Tby;, Tby;, ..., Tbm~)T € R" at n frequency channels are col-
lected. These vectors form the column space of an n-by-
M matrix B = [b|by|...|by] € RM | called a brightness
temperature dictionary, where M >> n. Analogously, the cor-
responding inundation fraction values { f,-}f‘i | can be col-
lected in the column space of the inundation dictionary F =
[ A1l f2]...1 fu] € RP*M . For each vector b; in the dictionary
of brightness temperatures there is an inundation fraction f;
from MODIS-MWP. The collection of these pairs from his-
torical observations forms the two dictionaries B and F. The
algorithm follows two sequential steps: a detection and an
estimation step. In the detection step, for each observed vec-
tor of brightness temperature bgps, the algorithm first finds its
K -neighboring brightness temperatures in B in the Euclidean
sense and stores them in the column space of Bg € R"*X.
Then, knowing the column indices of the neighboring bright-
ness temperatures, it isolates their corresponding inundation
fraction values in Fg € RI*K In this step, if at leastp x K
number of nearby inundation fraction values in Fy are non-
zero, the algorithm assumes that bpg is over an inundated
pixel and attempts to estimate the fraction of inundation in
the estimation step. Here, p € (0 — 1) is the detection proba-
bility parameter. It should be also noted that the K-nearest-
neighbor algorithm in this paper does not directly constrain
its search to any specific time or location. In other words, for
every pixel-level vector of Tb, the K -nearest-neighbors algo-
rithm searches the entire dictionary regardless of any specific
time or spatial coherency.
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In the estimation step, the method assumes that byps can be
estimated by a linear combination of a few column vectors of
B, as follows:

bops =Bsc +e, (D

where the vector ¢ € R contains a set of representation
coefficients to be estimated and e € R” is the error vector.
Clearly, for an observed vector of brightness temperatures
bobs, the goal is to estimate its unknown inundation fraction
value f . We assume that the two paired dictionaries By and
F represent similar manifolds in a geometric sense that their
local structures can be approximated well with the same lin-
ear model. This allows us to assume that the representation
coefficients in vector ¢ from Eq. (1) can be used to estimate
the inundation fraction f as follows:

f=F. )

As a result, using a classic-weighted least-squares method,
the representation coefficients ¢ can be estimated as

¢ = argmin, {||W (bobs — Bsc||%)} , 3)

where W is a weight matrix (to be discussed later in this
section) that characterizes the importance of each channel in
the retrieval scheme. The number of K-nearest neighbors is
often larger than the number of frequency channels, k£ > n,
making By a rank-deficient matrix and the above problem ill-
posed. To make the optimization problem (Eq. 3) well-posed,
we use a mixed £1—¢»-norm regularization as follows:

¢ = Argmin, { W (boos — Bye) I3+ 21llell + A2 lel3]
subject to c0, 1Te = 1, 4)

which has been successfully used for passive microwave
precipitation retrievals (Ebtehaj et al., 2015a, b). The non-
negativity of the coefficients assures positivity of the bright-
ness temperatures and the sum-to-one constraint enforces
an unbiased estimation. The regularization involves both the
K K
£i-norm ||c||; = D |¢;| and the £2-norm ||¢|l, = (3 |c,'|2)%.
i=1 i=1
The parameters A1 and X, in Eq. (4) are regularization param-
eters that enforce a trade-off between the two regularizations
£1 and £;. In this mixed regularization, the £{-norm leverages
sparsity in the solution (i.e., forces some of the elements of
¢ to be zero) while the £>-norm increases the stability of the
solution as the neighboring brightness temperatures in By are
likely to be highly correlated (see Zou and Hastie, 2005). In
effect, due to the use of a mixed regularization, this regu-
larization promotes group sparsity (i.e., some blocks of the
representation coefficients are zero) while it keeps the solu-
tion sufficiently stable. In other words, it acknowledges the
fact that there are a few clusters of nearby brightness tem-
peratures that can properly explain the observation. By en-
forcing the ¢{-norm we select vectors that are parts of clus-
ters of brightness temperatures, while the £;-norm handles
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Figure 3. Flowchart of the inundation retrieval algorithm for N pix-
els in each orbit, where Knn stands for the K -nearest neighbor. See
text for definitions of the notations and detailed explanation.

the potential correlation between those clustered neighbors
and makes the problem sufficiently stable. The proposed al-
gorithm is summarized in a flowchart shown in Fig. 3.

As previously noted, in the current implementation of
the proposed retrieval algorithm, we focus on (almost) co-
incidental observations of the brightness temperatures and
inundation fractions by the SSMIS and MODIS instru-
ments, respectively. The dictionaries B and F are constructed
using 5 years of overlapping data (2010-2014) over the
Mekong Delta (latitude: 0-10° N and longitude: 100—110° E)
at 12.5 km grid resolution (Fig. 1).

To build the dictionary, only the clear-sky MODIS-MWP
products were considered. At resolution 12.5 km, we labeled
a pixel as clear-sky when less than 50 % of the VNIR data
at resolution 250 m is flagged as non-cloudy. Because the
MODIS sensor has a much higher resolution than the foot-
print of SSMIS and because the number of cloud-free sam-
ples over the Mekong are very limited, a threshold above zero
is deployed to keep a certain number of partially cloudy pix-
els and make sure that the dictionary will not be undersam-
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pled. For choosing the threshold, we conducted some sensi-
tivity analysis (not shown here) and found a 50 % threshold,
as a fair probability choice, results in a minimum of potential
biases.

Since the DMSP satellites have two different equatorial
crossing times, here, we use two sets of dictionaries for Tb
values in the ascending (day or morning) and descending
(night or evening) orbits. From all the available coincident
observations, we randomly chose 2 x 10° pairs of brightness
temperatures and inundation fractions in each ascending and
descending dictionary. The purpose of stratifying the dictio-
naries into ascending and descending orbits is to exclude the
effects of Tb modulations from the retrieval process caused
by the systematic diurnal variation of surface temperature. In
other words, the same inundation fraction has different PMW
spectral signature in a daytime versus a nighttime overpass
largely due to the diurnal variability of skin temperature, pre-
cipitation, and soil moisture (see Mears et al., 2002; Ramage
and Isacks, 2003; Norouzi et al., 2012). Figure 4a presents
the systematic difference between the Tbs of the ascending
versus descending tracks for various ranges of pixel-level
inundated fractions. In effect, in this figure, the Tbs in the
dictionaries are grouped into five intervals based on their
corresponding inundation fraction (from O to 1) in F. Then
for each interval, the average of Tb values is shown. The
plot clearly demonstrates that the daytime Tbs are thermally
warmer than their nighttime counterparts and this difference
begins to shrink when the inundation fraction increases. It
is worth noting that the difference between ascending and
descending brightness temperatures is larger over the low-
frequency channels (< 37 GHz) as they respond more to the
land surface structural variability than the higher-frequency
channels that capture atmospheric signatures. Figure 4b de-
picts |[Tby — Tbp| where Tba and Tbp stands for ascending
and descending overpasses, respectively. It can be observed
that high values of |[Tbs — Tbp| depict the coastlines, i.e.,
regions with the transient presence and/or absence of water
over land.

The probability of detection, p € (0 — 1), determines if a
pixel is inundated or not if the number of inundated vectors
in K-nearest neighbors is > p x K. We found that the in-
undation detection with K > 50 gives a reasonable rate for
the probability of hit and false alarms. In other words, the
probability of detection does not change significantly for a
larger number of nearest neighbors. In the estimation step, to
characterize the weight matrix W € R"*" we used the coef-
ficients of variation of each channel in response to changes
in the inundation fraction (see Fig. 5). In other words, we as-
sume that those channels that exhibit more variability with
respect to changes in inundation fraction contain more infor-
mation about inundation and shall be given more weight in
the estimation process. One might ask why it is important to
consider the high-frequency channels (e.g., 91 V, H GHz) de-
spite the fact that they show minimal sensitivity to the inun-
dation fraction (Fig. 5) and land surface emissivity compared
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Figure 4. (a) The systematic difference between passive microwave observations from the ascending (solid lines) and descending orbits
(broken lines) as a function of five different sub-pixel intervals of inundation fractions. (b) July to December daily average of absolute
differences between the ascending (Tbp ) and descending (Tbp) brightness temperatures at vertically polarized 19 GHz channel. The values
of |Tbp — Tbp| mainly capture the coastal regions with significant variability in their surface emissivity values due frequent diurnal tidal

effects.
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Figure 5. The normalized coefficients of variation (right panel) of the brightness temperatures (Tb) (left panel) averaged over the entire
dataset for different intervals of inundation fractions. Here, Tb denotes the average of brightness temperatures over the inundation fractions.
The coefficients of variation of each channel are used to determine the channel weights for the retrieval algorithm. Channels 19 H GHz and
37 V GHz are the most responsive channels to the variability of inundation fraction and are given higher weights.

to lower-frequency channels. The high-frequency channels
mainly capture the information content of the atmospheric
profile. Therefore, incorporating them in the proposed re-
trieval framework allows us to indirectly consider the effect
of atmospheric conditions by narrowing down the search for
K -nearest neighbors to those Tb candidates that best match
both the underlying land surface emissivity and the atmo-
spheric conditions.

For implementation of the algorithm, the regularization
parameters are set as A = A(1 —«) and Ao, = @), where o €
(0, 1). Here, through cross-validation studies, through cross-
validation we empirically found that A = 0.001 and o = 0.1
provide a reasonable balance between sparsity and stability
of the solution in Eq. (4). It should be noted that Eq. (4) is
converted to a constrained quadratic programming problem
and solved using an iterative Newton’s method with MAT-
LAB optimization Toolbox (see Coleman et al., 1999).
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4 Results, validation, and discussion

The inundation fractions were estimated during the wet pe-
riod of calendar year 2015 from July to December when the
water levels across the delta begin to rise and eventually re-
cede (see Fig. 6). The wet season of the region is largely
characterized by heavy precipitation as a result of the inter-
actions of two monsoons including the Indian monsoon and
the East Asia—western North Pacific summer monsoon (Del-
gado et al., 2012).

To study the performance of the detection step we com-
puted the probability of hit P(f > O]MWP > 0) and false
alarm P( f > O[MWP = 0) of the algorithm outputs. Our
analysis indicates that the probability of hit is around 0.92
for both the dry and wet season, demonstrating the capabil-
ity of the algorithm in detecting the inundated areas. How-
ever, the probability of false alarm is around 0.12 for the
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Figure 6. Inundated map of the Mekong Delta in the wet (July—December) and dry (January—June) seasons for the ascending orbits. The
results of the proposed retrieval algorithm are presented using the ascending dictionary (top row) against the upscaled MODIS near-real-time
(NRT) water product (MWP) data (bottom row). Overall, a good agreement is observed with some overestimation of inundated areas by the
proposed algorithm compared to MODIS-MWP data around the river banks.

dry season and reaches the value of 0.34 for the wet sea-
son, which might be due to the generalization of the algo-
rithm and MODIS missing data during the wet season. The
MODIS daily data, especially in the wet season, contain a
large number of missing values due to cloud blockages and
frequent heavy rains over the study area. In fact, while we
were collecting the overlapping data for constructing the dic-
tionaries, we observed that over 88 % of the MWP products
have some missing portion in the 12.5km resolution. As a
result, it is very likely that the MWP data underestimate the
actual inundation fraction of regions with prolonged precipi-
tation events.

Figure 6 shows that the algorithm is capable of identifying
hotspots of inundation when its outputs are compared with
the MODIS-MWP; however, the algorithm slightly overesti-
mates the inundation fractions for some pixels farther from
the coastlines, most of which are completely dry in MWP.
Here for brevity, we only show the results for ascending
overpasses, while similar spatial patterns are observed for
descending overpasses. Figure 6 also shows some overesti-
mation of inundation fractions near the riverbanks of ma-
jor rivers. This might be due to the high soil moisture con-
tent (> 0.8) during the wet season that increases the dielec-
tric constant of the soil up to 30-50 (Alharthi and Lange,
1987), which is close to the dielectric constant of the wa-
ter surfaces (75-80). Another reason is the cloud coverage.
Since the riverbanks are inundated less frequently than the
coastlines, it is possible that these few inundation events were
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missed by MODIS because of the cloud blockages. There is
also some underestimation in the inundation fractions from
the proposed algorithm over the hillslopes far away from the
riverbanks compared to the MODIS-MWP product. Those
sporadically inundated areas, which appear on the MODIS-
MWP map (Fig. 6b, ¢), can be due to the terrain shadows that
are misclassified as water. While we cannot directly prove the
above assertion within the scope of this paper, the elevation
map (Fig. 1) indicates that those hillslopes are very unlikely
to get inundated.

Comparison of inundation fractions from MODIS-MWP
and the proposed algorithm at daily scale is also challenging.
This is because daily MODIS data are often severely cor-
rupted by cloud coverage. On the other hand, under a clear
sky, the MODIS-MWP inundation fractions are more pre-
cise than the results of the retrieval algorithm. To better illus-
trate this issue, scatterplots of daily inundation fractions from
our retrieval algorithm against those from MODIS-MWP in
wet and dry season are displayed in Fig. 7. The scatterplots
further demonstrate larger inundation fractions from the re-
trieval algorithm in July to December (Fig. 7a). In the wet
season, there are also a lot of non-zero retrieved inundation
values on the y axis that have corresponding zero inundated
pixels in MODIS-MWP data. However, in January to June,
when there are fewer clouds, the inundation fractions from
the proposed algorithm are generally more correlated with
the MODIS-MWP data but slightly underestimated (Fig. 7b).
This underestimation probably also exists in wet months but
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Figure 7. Scatterplots of daily inundation fractions (f) from the retrieval algorithm against those from MODIS-MWP in wet (a) and dry
seasons (b) shown in Fig. 6. The scatterplots demonstrate larger inundation fractions from the retrieval algorithm in July to December (a)
compared to MODIS-MWP data. However, in January to June, when there are fewer clouds, the inundation fractions from the proposed
algorithm are more correlated with the MODIS-MWP data, with only a slight underestimation of their variability.

is masked because of the all-sky retrieval capability of the
proposed algorithm in the presence of the clouds and heavy
rains. The reason for this underestimation might stem from
the choice of 50 % threshold for selecting the clear-sky pix-
els. In other words, there are a set of brightness tempera-
tures for which the corresponding MODIS data are partially
cloudy and potentially underestimate the actual inundation
fraction. As a result, it is likely that those pairs will be iso-
lated, used in the retrievals, and eventually lead to some un-
derestimation in passive microwave retrievals.

As previously mentioned, the interannual climatology of
the Mekong Delta is highly affected by two tropical mon-
soons that characterize the seasonal patterns of precipitation,
river stages, and water levels (Delgado et al., 2012). To better
understand whether the results of our retrieval algorithm fol-
low the regional climatology, the monthly percentage of in-
undated area over the Mekong Delta is calculated and shown
against the monthly water level data in Fig. 8a. The monthly
water level data are obtained by averaging over all 11 stations
shown in Fig. 1. The specific goal is to compare the monthly
variability of the algorithm outputs with the MWP products
and investigate whether they are consistent with the regional
variations of the surface water level (river stage), which is
considered a surrogate for the extent of inundation. It should
be acknowledged that this approach is not a direct validation;
however, it can provide insight into the performance and cli-
matological consistency of the proposed model as the surface
water level data are positively correlated with the extent of
the inundated surfaces.

The seasonal variations in the monthly percentage of the
total inundated surfaces from the proposed model follow the
trend of monthly water level data better than the standard
MWP products (Fig. 8a). We can see that during the wet
months of June to November, the MWP data report much
less inundated area than the outputs of the proposed algo-
rithm, whereas this pattern is reversed during the dry months
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of January to March. As previously noted, we suspect that
the differences in the wet season are due to the large portion
of missing data in the MWP products because of the high
cloud coverage in the rainy season (Fig. 8b). For quantita-
tive comparison of the outputs of the algorithm with MWP, a
Euclidean distance between normalized version of the algo-
rithm outputs and water level data is calculated and compared
with its MWP counterpart. The Euclidean distance between
water level and the retrieved inundation from ascending and
descending orbits is 3.46 and 3.56, respectively, while this
distance for MWP and water level data is about 7.89, which is
more than twice the distances calculated from the microwave
retrieval results. This indicates the superior performance of
the proposed inundation fraction retrievals as compared to
the MWP products, chiefly because of its all-sky skills dur-
ing the rain dominant seasons.

When is compared to MODIS-MWP, the inundated area
obtained by the retrieval algorithm in the dry months
(Fig. 8a) shows some underestimation. One reason for this
underestimation is the general limitation of the empirical
Bayesian estimation method regarding the extreme events
(see Coles and Powell, 1996, and the references therein) and
we suspect that it is not just limited to the months of Jan-
uary to March but it affects the retrievals at other months to
a lesser extent, as well. This limitation arises by the sample
scarcity of large flooding scenarios during the warm months
of the year, which probably lead to the underestimation of in-
undation fractions related to those events by our retrieval al-
gorithm. We expect that by improving the representativeness
of the dataset — especially for extreme events in the summer
months — this shortcoming can be significantly improved.

A closer look at Fig. 8a also reveals slightly larger in-
undated surfaces in each month for the ascending (evening
overpasses) compared to the descending (morning over-
passes) tracks. This small difference between the ascending
and descending retrievals can be attributed to the expected
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Figure 8. The monthly inundated areas of the Mekong Delta calculated from the proposed retrieval algorithm and MODIS near-real-time
(NRT) water product (MWP) data in comparison with ground-based monthly water level data. (a) Comparison of the total inundated surface
of the Mekong Delta from MWP products and the retrieval algorithm from ascending and descending dictionaries. From visual inspection, it
is obvious that the retrieval algorithm can better follow variations of the water levels compared to MWP. More inundation over the dry season
is reported by MWP products than the wet season, which contradicts the causality between rivers’ stages and the extent of inundated areas.
(b) The total fraction of land surface areas that are labeled as missing in MWP product because of atmospheric contaminations. The larger
deviations of the MWP products from water level data during the wet months might be attributed to the larger percentage of missing values.

diurnal patterns of the precipitation over the Mekong Delta.
Indeed, it is well documented (Gupta 2005) that localized
convective precipitation events are more likely during the
evening, which can increase the extent of the inundated ar-
eas. To further assess the proposed algorithm performance
at a daily scale, we compare the dependence of the total
area of ascending daily inundation fractions of the algorith-
mic outputs with the average daily water level data, using
Spearman’s rank-correlation coefficient. The rationale is that
a stronger rank correlation of an inundation product with the
water level data implies an improved retrieval. The correla-
tion coefficient between the daily water level of the rivers and
the total inundated surfaces of the Mekong Delta is equal to
0.22, which drops to —0.38 for the MWP products. To go be-
yond a rank correlation, we also examined the dependence
structures across different ranges of inundation and water
level quantiles using an empirical copula (see Appendix Al).

Copulas provide an effective non-parametric way for sim-
ple representation of multivariate joint distributions of high-
dimensional random variables to describe their dependence
structure. When dependence of two random variables in-
creases, their bivariate “L-shaped” cumulative copulas tend
more to the origin. In Fig. 9, the axes show the marginal
quantiles of daily inundation fractions versus those of water
level elevations and the contours trace the cumulative copu-
las. To characterize the dependence of water level and inun-
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dation as a function of topography, we divided the study area
into two sub-regions covering the steeper upper parts (above
the Phnom Penh gauge in Fig. 1) and the flatter downstream
region. The copula analysis for each region was presented
separately in Fig. 9. As is evident, the empirical copula of
the total daily inundation fraction from the proposed algo-
rithm shows higher degree of dependence to the water level,
as compared to MWP, especially for the quantiles with less
than 0.8 cumulative probability for both upstream and the
downstream regions. However, comparing the downstream
(Fig. 9a) and the upstream (Fig. 9b) regions, we see an in-
creased dependency of the retrievals with the water levels in
the upstream region. This observation seems to be consis-
tent from a geomorphological point of view, because over
a steeper region of the basin the hill slopes are naturally
steeper and any small water variability can give rise to signif-
icant water extension of inundated areas. However, over fat
floodplains water levels and extent of inundations may not be
strongly correlated as small changes of water levels may give
rise a large extension of flooded surfaces.

5 Conclusions and future directions

In this paper, we introduced a methodology to retrieve in-
undation from space for almost all-sky conditions to reduce
the gaps that exist in using satellite data in visible to mi-
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Figure 9. The empirical copula (joint probability distribution of quantiles) of the average daily water level and total daily inundated areas
from the proposed retrieval algorithm (red curves) and MODIS-MWP data (black curves) for 2015. These plots indicate that our products
have stronger dependence to water levels than the MWP products (more L-shaped curves) for both the downstream (a) and upstream (b)
regions of the Mekong Delta. The shaded areas (which quantify the difference between the degree of dependence of our products and the
MWP products to the daily water levels) are larger in the upstream region, indicating an enhanced performance of the proposed algorithm to
retrieve inundation fraction where potential inundation areas are better defined due to topography, e.g., around major riverbanks.

crowave bands. The key idea of the proposed method was to
explore the links between overlapping daily high-resolution
observations in the visible and near-infrared bands from
the MODIS and the lower-resolution passive microwave ob-
servations from the Special Sensor Microwave Imager and
Sounder (SSMIS) sensor. The developed multi-frequency in-
undation retrieval algorithm uses the K-nearest matching
method in conjunction with a sparsity-promoting regulariza-
tion technique. The proposed method demonstrated promis-
ing results in resolving the spatial patterns of inundation,
compared with the MODIS-MWP data. Over the months
with high cloud coverage, the monthly results are consistent
with the seasonal dynamics of water level variation, which is
controlled by tropical monsoons in the Mekong Delta. Anal-
ysis also showed that, at a daily timescale, the outputs of the
algorithm exhibit stronger dependency with the water level
data than the MWP data.

There were three major sources of uncertainty in the pro-
posed retrieval model in this paper. The first one related to the
use of the 3-day composite MODIS-MWP data (daily prod-
ucts of MODIS-MWP were avoided due to missing values
and cloud blockages), which might have introduced some
bias in the daily retrievals due to mismatch of timescales.
This source of error can be significantly reduced if the
MODIS dictionary is populated with more accurate daily
products. The second source of error related to the lack of
adequate fully clear-sky samples in our dictionary and there-
fore the need to define a cloud coverage threshold in order
to increase the sample size. Using partially cloudy MODIS
data was the main reason for some observed underestimation
of inundation fractions, especially in the dry months (Figs. 7
and 8), which can be mitigated by increasing the sample size.
The last source of error was more related to the general lim-
itation of the Bayesian estimation method regarding the re-
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trieval of extreme events (see Coles and Powell, 1996, and
references therein). This limitation is due to scarcity of large
floods in the dictionary, which can be treated by adding more
scenarios of extreme events to the dataset from different ge-
ographic locations.

One of the limitations of the proposed algorithm (because
of the spatial resolution of microwave data used in this pa-
per) was its lack of information about the spatial patterns of
inundation within the 12.5km pixels. The spatial pattern of
the estimated inundation fractions can be further enhanced
by using the guidance of a high-resolution topographic data
(see Galantowicz, 2002). The database can also expand to in-
clude some high-resolution cloud-free imageries from newly
launched satellites, such as Sentinel-2, which can aid in cap-
turing the high-resolution inundation areas. Finally, expand-
ing the dictionary to include data from the passive microwave
channels of the new satellites, such as Global Precipitation
Mission (GPM) Microwave Imager (GMI), will increase the
spatial resolution of the retrievals to approximately 5 km. In
this paper, the seasonality and also different land surface
classes have not been directly taken into account in the re-
trieval algorithm. Future research should include the stratifi-
cation of the dictionary based on different land surface types
and time periods (e.g., seasons).

Code availability. MATLAB code available at ftp://ebtehaj.safl.
umn.edu/Codes/ShARP_Demo/. The dictionary of overlapped
MODIS-MWP and SSMIS and also the resulting database are pub-
licly available upon request (email to takbi001 @umn.edu). The data
that have been used to create the dictionary are available at https:
/floodmap.modaps.eosdis.nasa.gov/ (NASA Goddard’s Hydrology
Laboratory, 2016) and ftp://sidads.colorado.edu/pub/DATASETS/
nsidc0032_ease_grid_tbs/global/ for or MODIS-MWP and SSMIS
data, respectively.
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Appendix A: Copula

Let X; and X> denote two random variables with marginal
cumulative distributions Fj(x;) = P[X| < xi]and F,(xp) =
P[X> < x»] with the cumulative joint distribution function
F(x1,x2) = P[X1 <x1, X2 < x2]. According to the Sklar’s
theorem (Nelsen, 1999), the cumulative joint distribution
F(x1,x3) of X1 and X is equal to the cumulative joint dis-
tribution function C(u1, up) of the quantiles u; = Fy(x1) and
uy = F,(x2) by

F(x1,x) = P[X1 < x1,X3 < x7]
=P[X1 = F{ ). Xo = Fy )]

=C[Uy Zu1,Uz < uy

=C(ur,uz,) (AD)
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where C (u1,u3), is the cumulative copula with uniform
marginal random variables F;(x;) and F,(x») on the inter-
val [0, 1]. The multivariate density function f(x1,x»2), if it
exists, can be calculated by taking the derivative of C and F,
which results in the following:

fxr,x2) =c(uy,uz) - f(x1)- f(x2)

=c(F(X1), F(X2)- f(x1) - f(x2). (A2)

It shows the copula density function c(u1, u) separates the
joint distribution function f(x,x2) from its marginal prob-
ability distribution functions f(x1) and f(x2); therefore, it
can capture the probabilistic dependence between the two
random variables x; and x; by quantifying the strength of
the relationship between their corresponding quantiles.
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Appendix B

Table B1. Acronyms and abbreviations.

SSMIS Special Sensor Microwave Imager and Sounder
SSM/T Special Sensor Microwave Imager

DMSP Defense Meteorological Satellite Program
MSS Multispectral scanner system

VNIR Visible to near infrared

MODIS Moderate Resolution Imaging Spectroradiometer
NIR Near infrared

MIR Mid-infrared

PMW Passive microwaves

ESMR Electrically scanning microwave radiometer
SMMR Multi-frequency Microwave Radiometer

BWI Basin wetness index

WSF Water surface fraction

AMSR-E Advanced Microwave Scanning Radiometer - Earth Observing System
NRT Near-real time

NSIDC National Snow and Ice Data Center

DFO Dartmouth Flood Observatory

MODIS-MWP  MODIS near-real-time (NRT) water product
CDF Cumulative probability function

M Number of vectors of microwave brightness temperatures B
k Number of nearest neighbors

B Brightness temperature dictionary

f Inundation fraction

F Inundation dictionary

bobs Observed vector of brightness temperature

K Number of nearest neighbors

Bs Sub-dictionary of B

F; Sub-dictionary of F

c Vector of representation coefficients

f Estimated inundation fraction

W Weight matrix

n Number of frequency channels

P Detection probability € (0, 1)

01 & Ly Regularizations norms

A & Ay Regularization parameters
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