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The form and function of river deltas is intricately linked to the
evolving structure of their channel networks, which controls how
effectively deltas are nourished with sediments and nutrients.
Understanding the coevolution of deltaic channels and their flux
organization is crucial for guiding maintenance strategies of these
highly stressed systems from a range of anthropogenic activi-
ties. To date, however, a unified theory explaining how deltas
self-organize to distribute water and sediment up to the shore-
line remains elusive. Here, we provide evidence for an optimality
principle underlying the self-organized partition of fluxes in delta
channel networks. By introducing a suitable nonlocal entropy
rate (nER) and by analyzing field and simulated deltas, we sug-
gest that delta networks achieve configurations that maximize
the diversity of water and sediment flux delivery to the shore-
line. We thus suggest that prograding deltas attain dynamically
accessible optima of flux distributions on their channel network
topologies, thus effectively decoupling evolutionary time scales
of geomorphology and hydrology. When interpreted in terms
of delta resilience, high nER configurations reflect an increased
ability to withstand perturbations. However, the distributive
mechanism responsible for both diversifying flux delivery to
the shoreline and dampening possible perturbations might lead
to catastrophic events when those perturbations exceed certain
intensity thresholds.

spectral graph theory | information theory | self-organization |
resilient deltas

R iver deltas are depositional landforms forming downstream
of major rivers, often home to large populations and impor-

tant natural resources (1–10). In the last decades, many deltas
of the world have been under threat from a range of stressors,
including sea-level rise, upstream dam development, and local
exploration (2, 4, 5, 11–17). Deltas are nourished by channel net-
works whose connectivity constrains, if not drives, the evolution,
functionality, and resilience of these systems. Remarkably, the
properties of delta channel networks differ substantially from the
tree-like topology of the rivers that feed them (18). Tree-like net-
works, defined by the absence of loops, are characteristic of trib-
utary river networks and are found abundantly in nature across
different systems and scales (e.g., botanical trees, veins of leaves,
blood vessels, lightning, and river networks). The propensity of
nature in choosing tree-like configurations has been grounded
as an optimality principle. Specifically, tributary river channel
networks achieve minimal total energy dissipation, that is, mini-
mal loss of potential energy as water and sediment flow down-
stream, albeit often manifesting as feasible optimality, that is,
a dynamically accessible local minimum due to initial condi-
tions and other constraints (19–22). Similar to river networks,
vascular networks in biological systems (e.g., animals, plants,
insects, etc.), which transport materials through space filling frac-
tal networks of branching tubes, achieve states of minimal energy
dissipation (23, 24). Analogous optimality principles have also
been suggested to constrain processes as diverse as root water
uptake in plants (minimization of internal dissipation) (25) and

land surface energy and water balance (maximization of power)
(26–28).

Despite the importance of deltaic systems and the recent
advances in quantifying their connectivity properties (18, 29–34),
an optimality principle for the organization of their distributary
channel networks, akin to that existing for the tributary networks,
remains elusive. A recent framework based on spectral graph
theory (29, 30, 32) sheds light on the topologic and steady-state
flux partitioning characteristics of delta channel networks and
their relationship to underlying morphodynamic controls (e.g.,
sediment composition and tidal and wave energy), paving the way
for quantitative delta classification and inference of process from
form. However, the diversity of topologic structures of channel
networks across a broad spectrum of deltas, and the fact that
deltas are highly dynamic systems within which topology and flux
partition coevolve, make it challenging to find a universal first-
order optimality principle (e.g., minimization of energy, maxi-
mization of entropy, or minimization of free energy) governing
their formation.

We are physically motivated by the foundational principle
that deltas build land by spreading their fluxes on their delta
top, as opposed to creating single pathways to the ocean which
would diminish the formation of islands that retain sediment
and nutrients and reduce land-building potential. This notion
resonates with previous results applied to tidal deltas showing
that tidal channels self-organize to uniformly distribute the tidal
prism across the delta (35). Under this premise, we postulate the
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existence of an optimality principle in delta channel networks in
terms of achieving configurations that maximize the diversity of
flux delivery from any point of the network to the shoreline. The
time scale of topologic reorganization in deltas, which is mainly
through major channel avulsions, is of the order of decades to
millennia, depending on the deltaic system (36, 37), whereas the
flux adaptation on a given channel topology has a characteristic
time scale which is orders of magnitude smaller. This separation
of scales allows us to study the system on a fixed topology and
focus on whether an optimality principle governs the distribution
of fluxes on that topology.

Given the nature of our hypothesis, that is, maximization of
the diversity (or uncertainty) of flux delivery from any point of
the network to the shoreline, we adopt an information theo-
retic approach to quantify uncertainty based on Shannon entropy
(38). Note that Jaynes (39) introduced a formalism demon-
strating the equivalence (under thermodynamic equilibrium) of
the statistical mechanics and information theory approach to
entropy. Furthermore, it has been argued (not exempt from
certain controversy) that the mathematical framework formu-
lated by Jaynes (39) serves as a generalization of the statisti-
cal mechanics framework for both equilibrium and nonequilib-
rium systems (40, 41). In this work, we propose the notion of
nonlocal entropy rate (nER) and suggest by comparative anal-
ysis of field and numerical deltas that indeed deltas self-adjust
their flux partition so that they maximize their flux diversity.
Note that by “maximization” we do not refer to a global opti-
mization, that is, deltas generally do not achieve flux configura-
tions that correspond to the absolute maximum value of nER but
exhibit configurations corresponding to dynamically accessible
(local) maximum (feasible optimality). We also discuss the possi-
ble implications of the proposed optimality principle with respect
to delta resilience in response to perturbations, arguing that flux
distributions characterized by extreme values of nER are more
resilient, in that a local perturbation (e.g., flux reduction in a
channel) will affect the least the distribution of fluxes at the
shoreline outlets.
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Fig. 1. Field deltas and their corresponding location. Ten deltas with diverse morphodynamic environments and of various degrees of channel complexity
were analyzed in terms of their nER (see SI Appendix for further details about the deltas). Satellite images provided by Landsat/Copernicus, NASA, Digital
Globe, and CNES/Airbus were extracted from Google Earth. We acknowledge their respective copyrights.

Nonlocal Entropy Rate (nER)
Entropy quantifies the uncertainty in the occurrence of events
(38), that is, the amount of information needed to describe the
outcome of an experiment. Uncertainty intuitively emerges from
the notions of probability and surprise. For instance, given a
discrete stochastic process {Xi}, such as rolling a six-sided die,
with specified probability distribution of outcomes, for example
{p1, p2, ..., p6}, the occurrence of rolling a 3 when all sides are
numbered 3 produces zero surprise. Conversely, on the same die
rolling a number other than 3 would produce infinite surprise.
Mathematically, this surprise is defined as − log(pi). There-
fore, the uncertainty of an event, hi , is the product of − log(pi)
times its probability of occurrence pi . Thus, either the occur-
rence of a completely certain event (pi = 1) or an impossible
one (pi = 0) introduces zero uncertainty (hi = 0, by convention
0 log 0= 0). The uncertainty is maximal when all of the N possi-
ble outcomes have the same probability of occurrence 1/N (e.g.,
fair die where the number on each face has a probability of
occurrence 1/6). The total uncertainty or entropy, H , of a set
of N discrete outcomes with probabilities {p1, p2, ...pi .., pN } is
equal to the sum of the uncertainties corresponding to each out-
come i (42):

H =

N∑
i

hi = −
N∑
i

pi log pi . [1]

We aim to develop an entropic metric for delta channel net-
works that quantifies the diversity of flux delivery to the shore-
line. Thus, a delta channel network with low entropy, that is, with
low uncertainty in flux pathways, would be one with a dominant
channel that carries most of the flux. This configuration is inher-
ently unstable, assuming no redistribution of sediment by marine
processes, because that channel would prograde until its water
slope reduces and the channel avulses down a steeper path (43,
44). However, a delta channel network that achieves a configu-
ration where all of the possible pathways that drain water and
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sediment from any point of the network to the shoreline are
equally probable would have the highest entropy. This uncer-
tainty in delivery would have the stabilizing effect of spreading
sediment evenly across the shoreline. Notice that maximizing the
uncertainty of water and sediment flux delivery to the shore-
line does not necessarily imply networks that proportion fluxes
equally at every single bifurcation. In fact, this would be incon-
sistent with morphodynamic theories (45, 46) which showed that
asymmetric flux partition at a junction is a requirement for
stability.

Conceptualizing delta channel networks as graphs, where
nodes correspond to junctions or bifurcations, and links repre-
sent channels (Materials and Methods), we define a metric of
uncertainty of water and sediment flux pathways from the node i
to the shoreline as

hNL
i = −

∑
k

pik log pik , [2]

where pik is the transition probability from node i to outlet node
k . Alternatively, pik represents the fraction of water and sedi-
ment flux from node i that eventually drains to outlet k (see
Materials and Methods for details on the computation of pik ). We
refer to hNL

i as the nonlocal entropy for node i , to emphasize that
the transition probabilities are between nodes i and the shoreline
nodes k as opposed to among neighboring nodes (local). This
notion acknowledges important nonlocal effects on delta dynam-
ics, such as the hydrodynamic backwater where the water surface
slope is dependent on the water depth at the shoreline and the
local slope between subsequent bifurcations (36, 44).

By weighing hNL
i with the normalized steady-state flux at each

node πi (
∑

i πi =1), we define the nER of the complete delta
channel network:

nER =
∑
i

πi
hNL
i

hNL
i,max

=
∑
i

πi

∑
k pik log pik

log 1
Ni

, [3]

where hNL
i,max =− log 1

Ni
is a normalization factor computed for

each node i and Ni represents the number of outlet nodes that
can be reached from node i . The normalized nER admits values
in the interval [0,1].

Results and Discussion
We hypothesize that deltas distribute the flux at each bifurcation
to maximize the uncertainty in the delivery of fluxes from any
point of the delta to the shoreline, that is, to achieve a dynam-
ically accessible maximum of nER. We computed the nER for
10 deltas with diverse morphodynamic environments and chan-
nel complexity (Fig. 1; see SI Appendix for the extracted channel
networks and physical information about the deltas). We com-
pared the computed nER for each field delta (based on the
actual flow partitions) against 105 randomizations of the flux
partition at each bifurcation [sampled from a uniform distribu-
tion in the interval (0, 1)] holding the network structure con-
stant. Despite the broad range of climate, discharge, and sed-
iment influencing these deltas, all but one (the Niger delta)
have flux configurations that exhibit extreme values of nER, that
is, 9 of 10 field deltas have nER above the 90th percentile of
the random distribution (probability of exceedance PE < 0.1)
(Fig. 2). The fact that the computed value of nER does not
correspond to the absolute maximum of the distribution is not
surprising. Natural systems have been argued to achieve sta-
tionary configurations that do not correspond to the absolute
optimum of the functional describing their organizational prin-
ciple but to local optima that are accessible given the initial
conditions, constraints, and the system dynamics, known as the
feasible optimality principle (19–22). Beyond field deltas, we
also applied the nER analysis to numerically simulated deltas
that formed under varying incoming sediment grain sizes (32,
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Fig. 2. nER for 10 field deltas. Green stars represent the values of nER
computed for each field delta, using channel width (extracted from Landsat)
as proxy for flux partition in bifurcations. We compared the values of nER for
each delta with 105 randomizations of flux partitions (histograms). Nine out
of the 10 deltas analyzed exhibit a maximal value of nER, defining maximal
as a value where the probability of exceedance, PE , by a random realization
is less than 0.1.

47, 48) using the physically based hydromorphodynamic model
Delft3D (see SI Appendix for further details). The results show
that five of the six numerical deltas exhibit extreme values of
nER with probability of exceedance PE < 0.1 (Fig. 3), further
supporting our optimality hypothesis. Note that the simulated
delta (D50 = 0.01 mm) that does not satisfy the optimality of
nER is an extreme case, in terms of cohesiveness, for field deltas.
Very cohesive banks are harder to erode and form levee breaches
infrequently, delaying the triggering mechanism of avulsions. As
a result, the system maintains itself at states at which the fluxes
are not at equilibrium with its underlying channel network topol-
ogy. This is reflected in suboptimal states of flux distribution and
thus nER.
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Fig. 3. nER for simulated deltas. We examine the nER of numerically simu-
lated deltas obtained by the Delft3D model. The simulated deltas are river-
dominated, with no vegetation, and with a lognormal distribution of incom-
ing sediment size with median grain size D50 varying from 0.01 to 1.0 mm
and the same variance in the log space (for more details see SI Appendix).
These deltas exhibit a wide variety of channel network topologies as shown
in ref. 32. Similar to the analysis conducted for the field deltas, green stars
represent the values of nER using channel width (extracted from simula-
tions) as proxy for flux partition in each bifurcation. Compared with 105

randomizations of flux partition (histogram), five out of six deltas analyzed
exhibit a maximal value of nER, defining maximal as a value where the prob-
ability of exceedance by a random realization is less than 0.1.

Our results suggest that the flux partitions at each bifurcation,
which have evolved naturally, are not random but rather follow a
rule that optimizes the delta system as a whole. In fact, an inter-
esting paradox arises from our analysis. Although the entropy
introduced locally by each bifurcation, considered as an insulated
unit, is suboptimal [the maximum would correspond to a sym-
metric bifurcation which is not consistent with stability theory of
delta bifurcations that requires asymmetric local flux partition
(45)], the specific assemblage of those bifurcations forming the
delta network as a system is optimal (in terms of nER) and con-
sistent with maximization of the diversity of fluxes delivered to
the shoreline.

Turning attention to delta dynamics, we further hypothesize
that during an avulsion the delta nER would decrease (see
schematic in Fig. 4A). This is because during this phase of topo-
logic reorganization the flux distribution inherited from the pre-
vious channel network structure is in general suboptimal with

respect to the incipient channel network reworked by the avul-
sion (i.e., the new channel structure created during the avulsion
received a disproportionally small share of the flux, creating an
asymmetry in the flux delivery to the shoreline and thus reducing
the value of nER). Testing this hypothesis in field deltas is chal-
lenging because avulsions occur infrequently. However, using
numerical models we can observe that during an avulsion cycle
the nER drops significantly at the onset of a new flow path and
following the abandonment of the old channel (Fig. 4B). Since
the time scale of the avulsion itself is negligible in comparison
with the lifespan of the topologies before and following the avul-
sion, it is observed that the flux partition is able to self-organize
to achieve a configuration that maximizes nER. This supports
our assumption that the time scale of the flux reorganization is
several orders of magnitude smaller than the characteristic time
scale of topologic reorganization which is set by the time lapse
between avulsion cycles.

An important implication of this optimality principle can be
interpreted in terms of the resilience of deltas to withstand per-
turbations. Intuitively, if a perturbation (e.g., flux reduction) is
applied to a delta during its high-nER state, the perturbation will
be damped as it will spread through the diverse pathways con-
necting the delta top to the shoreline. However, if the same per-
turbation is applied to a delta in a low-nER state, the perturba-
tion will be more confined to a localized part of the delta but
will exert a more severe disturbance. As revealed by our analy-
sis, river deltas operate in configurations characterized by high
values of nER, supporting the idea that deltas self-organize to
achieve resilient morphologies priming self-maintenance. As a
word of caution, especially relevant in the current scenario where
deltas are subjected to increasing anthropogenic stresses, this dis-
tributive mechanism that dampens the intensity of perturbations
can also lead to delta-wide catastrophic disturbances and tipping
points when those perturbations exceed certain thresholds.

Conclusions
Deltas are highly productive regions supporting extensive agri-
culture and aquaculture and diverse ecosystems and containing
natural resources such as hydrocarbon deposits. Climate change
and human actions, both in the upstream basins and locally, act
as stressors on these landscapes, calling for a thorough under-
standing of these complex systems and their response to per-
turbations. We examined the existence of an optimality prin-
ciple that governs the self-organization of water and sediment
fluxes on delta channel networks. Specifically, (i) we put forth
the hypothesis that maximizing nER, which quantifies the diver-
sity in flux delivery to the shoreline, is a selective criterion in
the evolutionary dynamics of delta networks; (ii) we tested this
hypothesis by analyzing 10 field deltas of diverse complexity,
age, and environmental settings and showed that all but one, the
Niger delta, exhibited maximum nER; (iii) we further supported
the existence of an optimality principle by analysis of Delft3D
simulated deltas; (iv) we showed that during major reorgani-
zation, such as avulsions, nER exhibits suboptimal values and
increases back to high rates (maximum values) when the flux dis-
tribution self-adjusts to the new delta channel network topology;
and, finally, (v) we discussed the relation between entropy and
resilience, arguing that delta flux configurations characterized by
maximal nER are more resilient in the face of random perturba-
tions. In the anthropocene where human activities have become
a major agent of geomorphic change, understanding delta self-
organization within an optimality perspective offers new ways of
thinking about delta dynamics and disturbances that might hin-
der self-maintenance.

Materials and Methods
Deltas as Directed Graphs. Tejedor et al. (29, 30) presented a rigorous frame-
work based on graph theory within which a delta channel network is
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representedbyadirectedgraph,thatis,acollectionofvertices(bifurcations

andjunctions)anddirectededges(channelsin-betweenvertices,wherethe

directionisgivenbytheflow).Allinformationaboutnetworkconnectivity

anddirectionalityoftheflowcanbestoredinasparsematrixcalledthe

adjacencymatrix,A.Specifically,AisanN×Nmatrix,whereNisthenum-

berofvertices,andwhoseentryaijisunityifvertexireceivesfluxesdirectly

fromvertexj(i.e.,verticesiandjareconnectedbyalinkdirectedfromjtoi)

andzerootherwise.FromAwecanderiveanimportantmatrixcalledLapla-

cian,whichisequivalenttoadiffusivityoperatorinagraph.Toconstruct

theLaplacianweneedfirsttointroducethedegreematricesfordirected

graphs.Thein-degree(out-degree)matrixDin(Dout)isanN×Ndiagonal

matrixwhoseentriesdiidepictthenumberoflinksentering(exiting)vertex

iandarecomputedasthesumoftheentriesinthei-throw(column)of

A.TheLaplacianmatrix,Lin(Lout),isdefinedasDin−A(Dout−A).Tejedor

etal.(29,30)showedthatcertaineigenvectorsoftheLaplacianoperator

containimportanttopologicinformationofthedeltaicnetwork.Further-

more,informationaboutfluxpropagationcanbeobtainedifAisreplaced

withtheweightedadjacencymatrixW,wheretheweightswijcorrespond

tothefractionoffluxinlink(ji)withrespecttothefluxinvertexj.Similar

totheat-stationhydraulicgeometryrelationship(49)—widthtolandscape-

formingdischarge—reportedfortributaryrivers(50)andtidalchannels(51),

weassumethefluxpartitionatthebifurcationtobeproportionaltothe

widthofthedownstreamchannels(18).Notethateventhoughwedonot

considerexplicitlyinthecomputationofsteady-statefluxesrelevantpro-

cessessuchaswater–sedimentinterchangebetweenchannelandislands

(31,52,53),vegetation(54),tides(35),andsoon,alloftheseprocesses

setthehydrogeomorphicattributesofthechannelnetwork.Therefore,the

computationofsteady-statefluxesinthechannelnetworkbasedonphysi-

calattributessuchaschannelwidthscanbeinterpretedtoacertaindegree

astheresultoftheintegrativeeffectofallofthe mainprocessesacting

onadelta.Forthepurposesofthispaper,therearetwoprobabilitydis-

tributionsthatcanbecomputedbysimplealgebraicmanipulationinthe

above-mentionedoperators,namely,thesteady-statefluxdistributionand

thenode-to-outlettransitionprobabilitydistribution.

Steady-StateFluxDistribution.Havingadeltarepresentedasadirected

acyclicgraph(DAG)allowsustocomputethesteady-statefluxbyassum-

ingconservationofmass.Forinstance,Tejedoretal.(29)showedhowthe

steady-statefluxcanbeformulatedasaneigenvalue–eigenvectorproblem

oftheLaplacian matrixofthegraph.Here,wepresenttheinput/output

modelasamoreintuitivewaytocomputethedeltasteady-stateflux.Let

usconsideraDAGfedfromthe mostupstreamnode(apex)withacon-

stantunitflux. Withoutlossofgenerality,andforsimplicityinthesubse-

quentderivations,theapexisassumedtobelabeledasnode1.Then,we

candefinethestationarydistribution,F,as

F=


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

, [4]

wherethecolumnvectore1=(100···0)
Tcorrespondstotheinitialstate,

andW correspondstotheweightedadjacencymatrixofthegraph.Alter-

natively,e1representsaconstantinflowattheapexnormalizedto1,and

Wke1theresultingdownstreamresponseattime/distancespecifiedbyk.

ForaDAG,thereexistsatleastoneindexingofthegraphsuchthateach

offspringvertexhasahigherindexthanitsparentvertex.Inthisindex-

ing,byconstruction,the matrixW isstrictlyuppertriangular,andthere-

forethematrixW isnilpotent,guaranteeingtheconvergenceofthesum

asexpressedinEq.4.InSIAppendixweprovethatthestationaryfluxdis-

tributionFcanalsobeobtainedasthestationaryprobabilityofaMarkov

processπ.

Node–OutletTransitionProbabilityDistribution.Thenode-to-outlettransi-

tionprobability,pik,isdefinedastheprobabilitythatapackageoffluxat

nodeidrainstooutletk.Thus,thetransportfromeachnodei,tothediffer-

entoutletsM,canbeunderstoodasadiscretestochasticprocesswithprob-

abilitydistribution{pik},withk=1,..,M.Tejedoretal.(29)showedthat

whenadeltachannelnetworkisrepresentedbyadirectedacyclicgraphG

withaweightedadjacencymatrixW,

i)Thenullspaceofthe weightedin-degreeLaplacianLinW(G
R)forthe

reversegraphGRhasdimension(multiplicityoftheeigenvaluezero)
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Fig.4. nERduringanavulsioncycle.(A)TheresultspresentedinFigs.2

and3supportthehypothesisthatriverdeltasself-organizeto maximize

nER.However,deltasindynamicequilibriumexperienceavulsions,periodi-

callycausingmajorreorganizationoftheirchannelnetworks.Ourhypoth-

esisisthatduringtheseperiodsofmajorreorganizationdeltanERdrops

significantlyuntilthedeltafluxesareself-organizedbacktoanewstruc-

tureasshownintheschematicofA.(Insets,fromlefttoright)Schemat-

icsofthefivestageswithinasingleavulsioncycle(noticethatforillus-

trationpurposes,onlythe mainchannelwasdrawntobetterdepictthe

avulsioncycle):(I)startingfromagivenchannelnetworktopology,(II)a

newchannelstructureiscreateddownstreamoftheavulsionnodedrain-

inginitiallyasmallpartoftheflux,butprogressivelyreceivinglarger

proportionsoffluxesuntil(III)thenewandtheoldchannelstructures

receivesimilaramountsofflux,andeventuallytransitionto(IV)aconfig-

urationwhereinthenewchannelstructurehasmoreflux,tofinallylead

to(V)theabandonmentoftheformerchannelstructuredownstreamof

theavulsionnode.(B) WehavetestedthishypothesisusingDelft3Dsimu-

lationsandanalyzingsubsequentinstancesofadeltaevolution,wherein

anavulsioncycleisobserved.Theprobability(Prob.)ofexceedanceof

thedeltanERbyarandomizationofthefluxconfigurationisdisplayed.

Theresultsagreewiththeposedhypothesis,showingthatnERdropsat

thebeginningandendoftheavulsioncycle,keepinga maximalvalue

otherwise.

ii)Thereexistsauniquebasisγk,k= 1,···,M,ofthisnullspaceinR
N

(i.e.,thebasisconsistsofM vectorseachhavingNentries) withthe

property

γk(i)=
1, i=k

0, i=k
for k=1,···,M. [5]
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That is, the entry of the vector γk corresponding to outlet k is one, and zero
at all other outlets.

iii) The value γk(i) represents the portion of flux at the vertex i that drains
to the outlet k, that is, pik.

Thus, if we define a matrix T , whose columns form the basis of the null
space of Lin

W (GR), {γ}, then the i-th row corresponds to the probability dis-
tribution {pik}.
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Equivalence of the Input/output model to a Markov pro-
cess

In this section, we prove the equivalence of the stationary
probabilities that result from an irreducible and aperiodic dis-
crete Markov process and the input/output model introduced
in the Materials and Methods section.

Irreducible and aperiodic discrete Markov process. Let P be
the transition probability matrix of a discrete Markov process
which is irreducible (all the states are reachable from any state)
and aperiodic (the return period to a given state can occur at
different time steps),

P =
{
pij

}
NxN

. [1]

P is an N x N square matrix, being N the number of states,
and pij the probability of transition from state j to state i at
each time step. Then, we can define a stationary probability
distribution π:

Pπ = π, [2]

where π = {πi}Nx1 is a column vector, whose entries corre-
spond to the stationary probability distribution of each state i.
Therefore, πi are non-negative values, satisfying

∑N

i=1 πi = 1.
For a given directed acyclic graph, such as the ones we used

to represent delta channel networks, if we assume conservation
of mass, the dynamics of the system can be modelled by a
Markov process where the outlets of the graph are reconnected
to the apex with transition probability one. Thus, the tran-
sition probability matrix is equal to the weighted adjacency
matrix of the graph, W , if the entries wij corresponding to
transition outlets to the apex are substituted by ones.

Equivalence of the Input/output model and Markov process
solutions. We have shown in the Materials and Methods sec-
tion that for a delta conceptualized as a directed acyclic graph
fed from the most upstream node (apex) with a constant unit
flux, we can compute the steady-state flux distribution F as:

F = (I −W )−1


1
0
0
...
0

 . [3]

We prove in this section that the stationary distributions ob-
tained from an irreducible and aperiodic Markov process, π,
and an input/output model, F , are equivalent (up to a normal-
ization factor). To prove this statement, we can decompose

the transition probability matrix of the Markov process P as
P = W + R, R is called the recirculation matrix and it is
defined as follows:

R =
{
rij = δi1δj{k}

}
NxN

. [4]
where δ represents the Kronecker delta; and therefore, all
the entries of matrix R are zeros, except for the entries of
the first row (apex has been indexed with i = 1 without loss
of generality) that correspond to {k}-columns indexing the
outlets.

Proof: If F = π, then F must be an eigenvector of the
probability transition matrix P , and therefore PF = F .
Given, 

F = (I −W )−1


1
0
0
...
0


P = W +R

[5]

then,

(W +R)(I −W )−1


1
0
0
...
0

 = (I −W )−1


1
0
0
...
0

 . [6]

By multiplying both sides of Eq. 6 from the left by (I −W ),

(I −W )(W +R)(I −W )−1


1
0
0
...
0

 =


1
0
0
...
0

 . [7]

Expanding the left side of Eq. 7,

(I−W )W (I−W )−1


1
0
0
...
0

+(I−W )R(I−W )−1


1
0
0
...
0

 =


1
0
0
...
0

 .

[8]
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Simplifying and rearranging Eq. 8,

W


1
0
0
...
0

+ (I −W )R(I −W )−1


1
0
0
...
0

 =


1
0
0
...
0

 , [9]

(I −W )R(I −W )−1


1
0
0
...
0

 = (I −W )


1
0
0
...
0

 , [10]

R(I −W )−1


1
0
0
...
0

 =


1
0
0
...
0

 . [11]

Defining B = R(I −W )−1,

B


1
0
0
...
0

 =


1
0
0
...
0

 . [12]

Considering the structure of matrix R (see Eq. 4), then B is
also a sparse matrix with the following entries:

B =
{
bij

}
NxN

; bij =
N∑

l=1

ril(I −W )−1
lj δ1iδl{k}, [13]

where the only non-zeros entries of the B matrix are in the
first row (the apex has been indexed with i = 1 without loss
of generality). Thus, the condition needed to satisfy Eq. 13 is
simply that the entry b11 = 1. Therefore,

b11 =
N∑

l=1

r1l(I −W )−1
l1 δl{k} =

N∑
l=1

(I −W )−1
l1 δl{k} = 1. [14]

In other words, the sum of the entries of the first column of
(I −W )−1 that corresponds to the outlets, {k}, must be equal
to one.

Given the definition of the input/output model (see Eq. 3),
the first column of (I −W )−1 stores the values of the fluxes,
F . Assuming conservation of mass, and that the input of the
model is set to 1, the sum of the fluxes of the outlets must
be one also, proving that the Markov model based on the
idea of recirculating the flux and Input/Ouput model provide
consistent stationary probability distributions.

Internal Nodes   (Bifurcation or Junctions)
External Nodes   (Outlets at the shoreline)

a

b

0.8 0.2 0.5 0.5 0.2 0.8

Fig. 1. Graph representation of a delta and nonlocal Entropy Rate (nER) for deltas.
(a) A river delta channel network topology can be represented by a graph where
channels correspond to links in the graph, and junctions and bifurcations are internal
nodes (blue circles). Delta outlets are represented as external nodes (red squares).
The graphs used in this paper to model delta channel networks are directed graphs
(link direction corresponds to the direction of the flow in the channel) and acyclic (no
cycles, i.e., water recirculation). All the information in the graph can be stored in a
sparse matrix called Adjacency matrix (see text in Tejedor et al. (1) and supporting
information for further details). (b) The topologic representation of a delta channel
network does not contain any relevant information (besides flux directionality) about
flux dynamics, and more specifically about flux partition in the bifurcations. Thus, for
the same topologic configuration, such a bifurcation can exhibit very different flux
partition depending on its physical attributes. Here, we use downstream channel
width as a proxy of the flux partition in bifurcations. This graph representation allows
us to compute algebraically different properties of the graph, including the stationary
flux distribution when a constant flow input is supplied through the delta apex. One of
the magnitudes that we can compute is what we define as nER. Intuitively, nER

can be understood as the average amount of information (or uncertainty) needed to
track packages of flux in their journey from an internal node (blue circle in a) to the
outlet (red square) where it is delivered. We hypothesized that nER is maximized by
delta self-organization, adjusting flux partition to maximize this uncertainty metric. To
test this hypothesis, we compare the value of nER computed using channel width as
proxy for flux partition, with values of nER computed when the flux partition in each
bifurcation is randomized, i.e., the channel network structure (topology) is preserved
but the flux partition changes at the bifurcation scale as is exemplified in b.

Physical characteristics of the ten deltas analyzed

In this section, we summarize the physical characteristics of
the ten deltas selected for analysis namely: Niger, Parana,
Yukon, Irrawaddy, Colville, Wax Lake, Mossy, Fraser, Danube
and Mekong (Fig. 2). Extracting the channel networks from
an air photo or satellite image of a delta is not an easy task.
For this reason, we have adopted here for our preliminary
analysis the exact five traced deltas in the study of Smart and
Moruzzi (2) – Niger, Parana, Yukon, Irrawaddy, and Colville
– and have added the Wax Lake and Mossy deltas for which
channel networks have been extracted in previous studies (3).
We also added the channel networks of Fraser, Danube and
Mekong extracted from Google Earth satellite images.

Niger Delta: The Niger delta is located in the West coast
of Nigeria (latitude 4.95◦, longitude 6.18◦). It receives input
from the Niger River with an average water discharge of 6,130
m3s−1 and sediment discharge of 3.97 x 107 tons yr−1 (4).
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Fig. 2. Field deltas and their channel network structure. Clockwise starting from top left: Yukon, Colville, Danube, Mekong, Irrawaddy, Niger, Parana, Wax Lake, Mossy,
and Fraser. Satellite images provided by Landsat/Copernicus, NASA, Digital Globe and CNES/Airbus were extracted from Google Earth. We acknowledge their respective
copyrights.

Niger delta is the largest delta in Africa covering an area of
24,508 km2, sediment is mostly fine sand (5) and the tidal
range is 3.0 m. The origin of the delta is estimated to be
80 - 35 million years BP during the Late Cretaceous (6). It
is classified as tide and wave dominated (4). By using the
channel network extracted by Smart and Moruzzi (2), we
identified 181 links, 130 vertices and 15 shoreline outlets.

Parana Delta: The Parana delta is located North of Buenos
Aires, Argentina (-33.80◦, -59.25◦). It is fed by the Parana
River, which delivers an average water discharge of 13,600
m3s−1 and sediment discharge of 7.75 x 107 tons yr−1 (4).
Parana delta covers an area of 15,463 km2 and sediment are
mostly fine sand, silt and clay (8), and the tidal range is 4.0
m. Delta genesis was estimated during the Middle Holocene
(6,000 years BP) (7). It is classified as a river and geology
dominated delta (4). By using the channel network extracted
by Smart and Moruzzi (2), we identified 86 links, 69 vertices
and 18 shoreline outlets.

Yukon Delta: The Yukon Delta, located in the West coast of
Alaska, USA (63.05◦, -164.05◦) receives input from the Yukon
River with an average water discharge of 6,620 m3s−1 and
sediment discharge of 5.97 x 107 tons yr−1 (4). It has an area
covering 8,313 km2 with mainly fine-grained sediments (10)
and the tidal range is 1.5 m. Delta genesis is estimated to
be during the Middle Holocene (5,000 years BP) (9). It is
classified as a wave dominated delta (4). By using the channel
network extracted by Smart and Moruzzi (2), we identified
169 links, 126 vertices and 24 shoreline outlets in the delta.

Irrawaddy Delta: The Irrawaddy delta is located in the
Southernmost coast of Myanmar (16.20◦, 95.00◦). It is fed by
the Irrawaddy River at an average water discharge of 13,558
m3s−1 and sediment discharge of 2.60 x 108 tons yr−1 (4). The
delta covers an area of 6,438 km2 with the deposited sediment
composed of mostly mixed mud and silt (5), and the tidal

range is 4.2 m. It is estimated that the delta began to form
around 8,000-7,000 years BP together with most of the deltas
in Southeast Asia (11). It is classified as a tide dominated
delta (4). By using the channel network extracted by Smart
and Moruzzi (2), we identified 100 links, 71 vertices and 6
shoreline outlets in the delta.

Colville Delta: The Colville delta, located in the Northern
part of Alaska, USA (70.40◦, -150.65◦), receives input from
the Colville River with an average water discharge of 491.7
m3s−1 (5) and sediment discharge of 1.16 x 108 tons yr−1 (12).
With an area of 240 km2, it is relatively small compared to
other polar deltas. Sediment is mostly composed of gravel
and sand (5). The tidal range is 0.2 m. The delta began to
develop during the Middle Holocene (4,000 years BP) (13).
It is classified as a river dominated delta (4). By using the
channel network extracted by Smart and Moruzzi (2), we
identified 140 links, 107 vertices and 20 shoreline outlets in
the delta.

Wax Lake Delta: The Wax Lake delta, located in the coast
of Louisiana, USA (29.51◦, -91.44◦), receives input from the
Wax Lake outlet, a channel that was dredged in the early
1940s to mitigate flooding risk in the nearby Morgan City,
at an average water discharge of 2,900 m3s−1 and sediment
discharge of 2.35 x 107 tons yr−1 (14). The slope of the
Wax Lake delta from the delta apex to the Gulf of Mexico
is 5.8 x 10−5 (15). Subaerial land only developed after the
1970s flood and has been experiencing rapid growth in the last
two decades doubling to more than 100 km2 today (16, 17).
Sediment deposit in the delta is composed of approximately
67% sand (16), and the tidal range is 0.40 m (18). It is
classified as a river dominated delta. We utilized the outline of
the Wax Lake delta channel network processed by Edmonds et
al. (3) containing 59 links, 56 vertices and 24 shoreline outlets.
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Mossy Delta: The Mossy delta is located in Saskatchewan,
Canada (54.07◦, -102.35◦). It is fed by the Mossy River with
an average water discharge of 300 m3s−1(3) and sediment
discharge of 2.20 x 106 tons yr−1 (19). The delta was formed
as a result of the avulsion of the Saskatchewan River in the
1870s (20). Progradation of the delta resulted in an area of
14 km2 in the early 1940s (19) and after the construction of a
spillway dam in the 1960s, the delta ever since slowly evolved
with a current area of approximately 17 km2. Sediment in
the delta is roughly 50% fine-grained sand (3). Since the
delta drains into a lake (Lake Cumberland), the effect of tides
is insignificant. It is classified as a river dominated delta.
We have extracted the channel network of Mossy delta and
identified 67 links, 61 vertices and 23 shoreline outlets.

Danube Delta: The Danube delta is located in Romania
(45.2◦, 29.4◦) and receives input from the Danube River with
an average water discharge of 6,420 m3s−1 and sediment dis-
charge of 6.72 x 107 tons yr−1 (4). It has an area of 6,468 km2.
Main control of the delta is waves (southern part) although
the northern part is river-dominated (21). Recent studies show
that the intensification of land use in the watershed as the
population increased and land use technology has increased
sedimentation in the delta (22).

Fraser Delta: The Fraser delta is located in Canada (49.18◦,
-122.95◦) and receives input from the Fraser River with an
average water discharge of 3,560 m3s−1 and sediment discharge
of 2.00 x 107 tons yr−1 (4). It has an area of 876 km2. Main
control of the delta is river and tide. Recent studies show that
the delta is experiencing more human intervention.

Mekong Delta: The Mekong delta is located in Vietnam
(10.1◦, 150.6◦) and receives input from the Mekong River with
an average water discharge of 14,770 m3s−1 and sediment
discharge of 1.60 x 107 tons yr−1 (4). It has an area of 91,789
km2. Main control of the delta is river and wave.

Delft3D Numerical Simulations

We use Delft3D to simulate the self-formed evolution of delta
distributary networks. Delft3D is a physics-based morpho-
dynamic model that has been validated for morphodynamics
applications (23). We employ the depth-averaged version of
Delft3D, which solves the unsteady shallow water equations in
the horizontal dimension and assumes hydrostatic pressure in
the vertical. Specifically, in this paper, we use model runs from
Caldwell and Edmonds (24), which simulate a sediment-laden
river entering a standing body of water that is devoid of waves,
tides, and buoyancy forces. The river has an upstream water
discharge boundary condition (steady flow of 1000 m3s−1) and
carries sediment fluxes in equilibrium with the flow field. The
downstream water surface boundary conditions are fixed at
sea level. The flow field is coupled to the sediment transport
equations (25, 26) and bed surface equations so it dynami-
cally evolves in response to sediment transport gradients. The
incoming sediment consists of grain sizes, D, lognormally dis-
tributed with a median size, D50, and standard deviation σ(φ)
(in φ space, where φ = log2 D). We note that cohesiveness
(defined as the percent of sediment with grain size D ≤ Dc

= 0.064 mm) and dominant grain size (D84) can be uniquely
determined as a function of D50 and σ(φ) when the sediment
size is lognormally distributed. Notice that other variables
that can affect directly or indirectly the bulk cohesion of the
system (e.g., vegetation, flow variability, and spatial hetero-

D50 = 0.01 mm

D50 = 0.05 mm

D50 = 0.10 mm

= 0.25 mmD50 

= 0.50 mmD50 

= 1.00 mmD50 

Fig. 3. Numerical deltas and their channel network structure. Six river dominated
deltas (no wave or tidal energy) are displayed where the only difference is the median
of the incoming grain size distributions D50 = 0.01 mm, 0.05 mm, 0.10 mm, 0.25 mm,
0.50 mm, and 1.00 mm.

geneities from apex to shoreline) have not been considered
here. Specifically, we compare six runs where the only differ-
ence is the median of the incoming grain size distributions
D50, while the standard deviation is fixed to σ(φ) = 1. The
distributions have median sizes of 0.01 mm, 0.05 mm, 0.1 mm,
0.25 mm, 0.5 mm, and 1 mm, respectively (Fig. 3). These
simulations are identical to runs B1a1, B1c1, B1e1, B1h1,
B1m1, and B1o1 in Table 2 of Caldwell and Edmonds (24),
exploring the whole range of cohesiveness (from 0% to 100%)
and values of dominant grain size from 0.014 to 1.896 mm.
For more discussion on the morphodynamics of these deltaic
simulations, see Caldwell and Edmonds (24).

We utilized the capability of numerical simulations to in-
vestigate the change in nER during an avulsion cycle. Fig. 4
shows the avulsion cycle analyzed in this paper obtained from
the run with D50 = 0.10 mm.

Channel Network Extraction and Analysis. The analysis con-
ducted in this paper relies on spectral graph theory, which
requires transforming each delta channel network into a graph.
Graphs are mathematical objects composed of vertices and
edges. For delta channel networks, the edges represent chan-
nels, and vertices correspond to the locations where one chan-
nel splits into new channels (bifurcation) or two or more chan-
nels merge into a single channel (junction). In pre-processing
the gridded data produced by the simulations, we perform the
following steps:

1. Classify pixels as Land/Channels/Ocean: First, we define
a shoreline with the opening angle method (27) on a
binarized image where bed elevations below sea level were
considered water and above sea level were considered land.
We use an opening angle of 70◦. All pixels not within
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I
 255 h

III
 285 h

V
 345 h

II
 262.5 h

IV
 300 h

Fig. 4. Avulsion cycle. Five instances in an avulsion cycle of a Delft3D simulated delta where the main channel shifts, draining from the left (I) to the right (V) part of the delta
shoreline. Intermediate stages of the avulsion cycle are also displayed: (II) the new path is created, (III) fluxes are equally divided between both paths, and (IV) the new path
carries most of the flux. Top (bottom) panels are characterized by high (low) nER. Each panel is labelled with its corresponding time of simulation in hours (1 hr = 7.3 days
morphodynamic time).

the shoreline are defined as ocean. Within the enclosed
shoreline, pixels are defined as channels if depth > 0.25
m, velocity > 0.2 m s−1, and sediment transport rate >
2.25 x 105 m3s−1. Everything else within the shoreline is
defined as land.

2. Eliminate disconnected channels: From all the channel
pixels, we only consider those ones that belong to channel
pathways that eventually drain from the apex to the
shoreline, removing isolated pixels and paths.

3. Extract skeleton network: We use an algorithm (28) to
define the centerline of each channel, taking into account
that channels can have a large range of variation in widths
(from one pixel to several). From the resulting skeleton
structure and flow directions, we define the vertices and
edges that uniquely determine the directed graph corre-
sponding to the delta channel network [e.g., see Tejedor
et al. (1), Figure 7].

4. Compute adjacency matrix: All information about the
network connectivity can be stored in a sparse matrix
called adjacency matrix. The element of the matrix aij

is different from zero if the vertex j is directly connected
to downstream vertex i, and zero otherwise.

5. Extract channel widths: The width of channels measured
directly downstream of each bifurcation is stored and used

as a proxy for flux partition [see Tejedor et al. (1), section
2.2].
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