Coded Machine Learning: Joint Informed
Replication and Learning for Linear Regression

Shahroze Kabir, Frederic Sala, Guy Van den Broeck, and Lara Dolecek
{shkabir, fredsala} @ucla.edu, guyvdb@cs.ucla.edu, dolecek@ee.ucla.edu
UCLA, Los Angeles, CA 90095

Abstract—This paper is concerned with coded machine learn-
ing: protecting machine learning algorithms from noise in test
data by an informed channel coding approach. Unlike with
traditional data storage, we do not seek to ensure that all test
data is correctly read from storage and used as a noiseless input
to the algorithm. Rather, we seek to protect data in a way that
minimizes the effect on the algorithm output (i.e., minimizes a
loss compared to the hypothetical noiseless output). We focus on
the case where the collected test data, derived from low-power
sensors and devices, is inherently noisy. We show that a smart
replication strategy is an effective choice to reduce the impact on
the algorithm output for linear regression algorithms. We focus
on two scenarios. The first case is where the regression model is
fixed, and we must allocate a fixed budget of redundancy for our
replication scheme (in order to minimize the loss on the output
due to noisy test data). Analyzing this case is necessary to build
our understanding for the second case which is more novel. The
second case involves a scenario where we may learn an optimized
model and jointly protect it. We illustrate the advantages of our
approach with practical experiments.

Index Terms—Channel Coding, Machine Learning, Repetition
Coding, Linear Regression.

I. INTRODUCTION

The recent surge in the popularity of machine learning is
a testament to the power and flexibility of the techniques
the field offers. A particularly exciting application of ma-
chine learning relates to low-power devices, energy-efficient
sensors, wireless networks, etc. For example, such devices
are involved in localization and object tracking, security and
intrusion detection, media access control, and fault detection.

Low-power devices collect data and transmit it to a central
processor (sometimes called the fusion center) where the
machine learning models are trained and implemented. Due
to the low-power, cost efficient nature of the devices, the data
collection process along with the transmission link tend to
be noisy. As a result, the algorithm performed at the central
processor operates on noisy data. The purpose of this paper
is to detail how to tackle this noise.

The traditional approach to dealing with noise involves
applying error-correcting codes. In our scenario, however, we
face several concerns:

Research supported in part by NSF grants CAREER CCF-1150212, CCF-
1527130, NSF (#1IS-1657613 and #IIS-1633857), and DARPA (#N66001-
17-2-4032)

o Low-power and low-cost devices may not admit a pow-
erful (energy-consuming) error-correction architecture,

o The measurements available at the sensor may already be
noisy (e.g., due to measurement noise, limited resolution
sampling, etc.) and thus the noiseless data is not available
for encoding, and

o Classically, the goal is to protect all of the data equally
well, but a machine learning model may be influenced
by some parts of the data far more than others, so that
traditional coding methods are not efficient.

We briefly discuss each of these issues and the role they
play in the solution we propose in this paper. We begin
with the last concern. The idea here is that error-correction
typically seeks to protect all of the data. The application of
this data is not considered in the error protection strategy; in
fact, the error-correction strategy typically lies in an entirely
different abstraction layer. Such an approach is sufficient for
general-purpose devices, but in our case, it is not efficient.

Consider, for example, a model with tens of thousands of
binary features. A small number of these features may have a
very large impact on the model output; such features require
significant protection from even a small amount of noise. On
the other hand, the vast majority of features may only have a
very small impact on the final output, so that these features are
resilient to noise. Clearly, a different coding strategy should
be implemented for the two sets of features.

Our goal in this work (building on our previous work in
[1], [2], [3]) is to introduce a coding strategy that takes the
machine learning algorithm into account. We assume that
the fusion center has a high-quality model that has access
to noiseless training data; however, this model will operate
on noisy test data transmitted by the remote low-power
measurement devices'. The noise in the test data is assumed
to be Gaussian in nature as the noise introduced at the output
of these low power sensors is often modeled as Gaussian.
We seek to develop schemes that tailor the error-protection

"More precisely, we consider two cases. In the first case, the high-quality
model is fixed and we can only change the error protection for the noisy
features. Analyzing this helps us to build up to the second, more novel
scenario. In the second case, the model is jointly trained from the noiseless
training data and the test data noise characteristics in order to minimize the
expected loss when using noisy data. Here too, we further reduce the impact
of noise by optimizing the error protection on the test features.

Fig. 1. Noise model for linear regression.

strategy used by these remote sensors in order to minimize
the noise impact on the fusion center’s model output.

What type of error-correcting codes suit our needs? Here
we must recall the first and second issues described above.
Firstly, low-cost devices with energy constraints imply that we
must use simple, easily-decoded classes of codes. Secondly,
the fact that the noiseless data is not available suggests the
use of replication coding. With replication (repetition), the
processor can simply ask for more samples as an encoding
technique, never relying on the (unavailable) noiseless data.
We will attempt to apply these principles to designing codes
for protecting linear regression test data.

We use the following example to build intuition regarding
the technique that can be used to improve the performance
of the algorithm. Consider a small data set generated from an
underlying system where the model is x = 0.5y + 16z, where
y and z are the measured features which have noise added to
them. When the features are corrupted equally by zero mean
Gaussian noise with a variance of 4, then the mean squared
loss at the output of the algorithm is 1025. With uniform
repetition coding of 3 replications for each feature, the loss
is reduced to 341.7. However by exhaustive search we can
find that the optimal redundancy allocation is 1 units to y
and 5 units to feature z. This yields a mean squared loss of at
the output 205.8. This simple example motivates the need for
a strategy to efficiently optimize coding (that is, redundancy
allocations).

The rest of this paper is organized as follows. In Section
IT we briefly describe related work. In Section III we present
our noise model and the use of replication. In Section IV
we present our metric to measure the performance of the
algorithm and how to optimize a redundancy allocation given
regression coefficients using convex and submodular opti-
mization techniques. Building on this, in Section V we present
how to jointly optimize the linear regression model (that is,
the regression coefficients) and redundancy allocation during
the training phase using submodular optimization techniques.
We present experimental results in Section VI and conclude
in Section VII.

II. RELATED WORK

There is an abundance of papers studying robust machine
learning. For example, the authors in [4] study the exper-
imental performance of several algorithms with artificially
noisy datasets. Machine learning algorithms also have to
deal with either missing features or features that have been
corrupted, the effects of which were studied in [5]. In [6],
a game theoretic approach to avoid an over reliance on
particular features was discussed. However these papers do
not consider coding strategies for improving the performance
of the algorithms. In contrast, we use coding theory strategies
to protect the data in our application.

Research has also been done based on measuring the
“correctness” of the output of the algorithm when the data
is known to be noisy. The authors in [7] define the notion
of “same decision probability” in order to measure the prob-
ability of making the same decision for Bayesian networks
when additional information is known. In [8] the authors
study classification techniques when the labels are known to
be noisy. Our own work measure the importance of features
in terms of how much redundancy needs to be allocated to
them.

On the other hand, there is a rich body of work regarding
protection of data from different types of noise using coding
techniques. This involves coding for data storage mediums
such as disk drives [9], flash memory devices [10], non
volatile memories [11] and solid state drives [12]. There are
also papers proposing coding to improve the robustness of
wireless sensor networks [13], [14]. However, as mentioned
the techniques in these papers do not take advantage of the
extra application-specific information that may be known.

There has been a rising interest regarding developing
application-specific coding techniques to solve particular
problems. For example, in the problem posed by the au-
thors in [15] for a distributed learning system, some nodes
communicate to the central fusion center slower than others.
The authors in [15] provide a method called Gradient Coding
which involves transmitting a linear combination of data from
each node to counteract the effects of some nodes lagging
behind others. The authors in [16] study codes for distributed
coding. They introduce techniques that are able to recover lost
data when a storage node goes down in a distributed storage
system. Our own work is in the same vein as these papers
as we attempt to address the problem of noisy data for linear
regression with coding theory strategies.

This paper builds on our previous work presented in [1], [2]
and [3]. In [1], we used an approximation of the mean absolute
error (MAE) as the metric to optimize via repetition coding.
In [2] and [3], we presented an efficient way of computing
the approximate mean absolute loss for linear classifiers and
present submodular techniques for optimizing redundancy
allocation. In contrast, in this paper, we presents techniques to
optimize the actual mean squared loss for regression. We also
present a technique to optimize the allocation of redundancy
during training, a novel and previously not considered idea.

III. NOISE MODEL AND REGRESSION CODES

We begin by establishing notation for linear regression and
some preliminaries regarding the noise models used in this
paper. We define a feature vector x = (x1, R xn) where we
consider elements x; € [, (for binary regression) and Xj € R
(for regression with continuous values). We define the vector
of regression coefficients a = (ay,...,a,) where aj € R.
The target value corresponding to the jth feature vector is
given by y; € R. We also define the matrix X of p feature
vectors and the corresponding vector y € RP containing the
corresponding p target values. For a given feature vector X,
linear regression predicts the value of the target variable y as
alx.

The noise model that we consider is shown in Figure 1.
The noisy version of feature vector x is denoted by x’. The
learning algorithm receives noisy versions of each feature. A
Gaussian random variable 7n; with mean zero and variance
o2 is added to the jth feature. We use Gaussian noise, as the
output of low power sensors used in wireless sensor networks
is often corrupted by Gaussian noise when it arrives at the
fusion center. Depending on the quality of the sensor, different
sensors may have different levels of noise. Therefore our
model is able to handle different levels of noise for different
features.

A. Replication

Next we discuss the effects of channel coding on the noise
applied to each feature. As we previously described, we rely
on replication for two reasons: first, to deal with the fact
that the encoder may not have access to the noiseless, true
data, and, secondly, because replication codes enable us to
provide an appropriate level of protection to each feature.
Replication involves repeating the jth feature k; times, i.e.,
the codeword c; = (x]-, xj,...,x]-). The replicated values
are passed through the noisy channel and are corrupted.
Depending on the type of noise model, replication coding
mitigates the probability of feature error in different ways.
For our Gaussian noise model, the decoding process involves
taking the average of the noisy versions of the repetitions of

a feature: kl(L 7 ¢)) This effectively reduces the overall

variance of the noise 0 2 of the jth feature:

19 1 &

Var | -~ Z (cj(i) +ni())| = PVar Z n;(i)
] i=1 j i=1

1 2 _ O

Thus replication reduces the variance of the noise added to
the feature by a factor equal to the number of repetitions.

Now that we have defined how replication reduces the effect
of noise on the data, we discuss how to allocate redundancy
given a budget of N replications in order to reduce the effects
of noise on the predictions made by the algorithm in an
informed way.

IV. EXPECTED NOISE LOSS

We measure the expected loss due to noise (between the
output of the noisy algorithm and the noiseless algorithm)
with a mean-squared error (MSE) approach. The MSE is the
following:

= El(a" (x X)) (a’ (x)] 0
= E[((x —x')Taa" (x = x'))]
= Tr(aa” Cov(x — X)) + E[x —

B [[a7x— o'

x'|Taa"E[x — x/].

The final step uses the identity that for any matrix A and
vector ¢ we have

E[c'Ac] = Tr(ACov(c)) + E[c]T AE][c].

We note that using the MSE (as opposed to MAE) is motivated
in part by the fact that linear regression involves minimizing
square error itself.

A. Optimizing the MSE loss

Next we analyze the continuous version of the optimization
problem. Using the same idea as the expression in (1),
we derive the expected loss for the current scenario. The
combined noise vector 1 is a zero mean Gaussian random
vector, with covariance matrix £ = diag(o?,...,03). The
expected loss is given by

}

= Tr(aa” Cov(x — X)) + E[x — x']Taa’ E[x — x|
n
2 2
j=1

We are now ready to introduce the key optimization for
our informed replication approach. We have a budget of N
repetitions and we wish to allocate these among features in
such a way that our resulting expected loss is minimized.
We define the redundancy allocation vector k = (ky, ..., ky),
where the ith feature is replicated k; times for 1 <i < n. We
set up the constrained optimization problem as follows:

E [HaTx —alyx

2.2
ﬂ]-O']

kj’

AM:

-
Il
-

min g(k) =

k1, kn

subject to
n
Y k=
j=1

where k; is a positive integer.

Note that due to the integer constraint, the problem is not
convex. However, if we relax the constraint and allow k]- to
be real valued, the optimization problem becomes convex. We
solve this optimization problem using the method of Lagrange
multipliers.

Theorem 1 The optimal redundancy allocation for the con-
tinuous relaxation of the problem for the jth feature is given
by

|ajo;]

k —
27:1 lajo;]

j =

Proof: Define the function ¢’ and as follows:
n 2, 2

a,k A) =

Taking the partial derivatives and setting them to zero gives
the following relationship between A and k]-

[—1
k] = |a]0]| 7

Substituting this back into the sum constraint gives the fol-
lowing solution for A:

(T4 lajo])?
N2 ’

We then solve for k; by substituting the value of A in the
equation for k;

A=

Py R——
ki =lajo;
PN = (2 lajoy))?
__ lajoil
Z?:1|aj‘7j|

|
Note that if this solution yields integer values for all k;’s,
then this is the optimal solution for the integer version of the
problem as well. However, if any of obtained values are not
integers, then we do the following. Use Lk]-J for all values of
j. There are at most n — 1 units left after this for allocation.
We can try all possible allocations for these bits to find the
solution to the integer version of the problem.

B. Solution using submodular optimization

While the continuous relaxation gives an efficient technique
to approach the optimal solution for our optimization problem,
it still requires an exhaustive search to allocate up to n — 1 of
the final redundancy units. To solve this problem efficiently,
we must take the integer constraints into consideration. As
such, we use submodular optimization. Submodular opti-
mization is a technique used to solve optimization problems
that involve integer constraints [17]. It is a computationally
efficient and nearly optimal technique, as shown in [17].
The algorithm, which is a greedy technique, involves allo-
cating units of redundancy one at a time iteratively. Given
m available units of redundancy, consider the redundancy
allocation vector k(i) = (k1 (i), ..., ku(i)),1 < i < m which
denotes the units of redundancy allocated to each vector at
the ith step of the algorithm. Then at step i + 1, we assign
an additional unit of redundancy to the [th feature. This
gives the vector k(i +1) = (k1(7),..., k(i) +1,..., ku(i)).
The goal of the minimization at each step is to find the

2 2
min; Z] 1 ’ i
all units of redundancy are allocated.

We show that our optimization function is submodular. The
objective function must fulfill the conditions of monotonic-
ity and diminishing returns in order to validate the use of
submodular optimization. The monotonicity statement is as
follows:

,1 < 1 < n. This process continues until

Lemma 1 Given redundancy allocation vectors k =
(kl/- . .,kl',.~. .,kn) and k = (k~1, . 'rki—lrki/ki+1/ . .,kn),
where k; > k;. Then f(k) < f(k).

The proof for Lemma 1 is immediate, as the optimization
function is inversely proportional to k; for all i. Lemma 1
shows that the cost function decreases as more units of
redundancy are allocated. Next we consider the diminishing
returns property. For this property to hold, repeated allocation
of redundancy units to the same feature must yield reduced
improvements.

Lemma 2 Consider redundancy allocation vectors k =

(k1,...,kn) and z = (z1,...,24), where ki < z; for all
j- Then for all i ,

Za /k - Za
Za — Z‘aj
iZi

of [kj+aio? /(ki+1)) >

2 +a20? (2 1))

Proof: We prove the lemma by expanding the summation
on both sides and canceling out terms accordingly. This
simplifies the expression to

202 [k — a?0? [(k; + 1) > a?0?/z; — a?0? /(z; + 1)
= 1/ki—1/(ki+1) > 1/z; = 1/(z; +1)).

This final statement holds true when k; < z; and k;, z; are
integers, which is the indeed the case. [|

Thus the cost function is indeed submodular. We use
the floor of the redundancy allocations obtained from the
continuous relaxation and then allocate the remaining n — 1
units using submodular optimization.

V. OPTIMIZING THE LINEAR REGRESSION MODEL

So far we have worked on optimizing the redundancy
allocation given a fixed set of regression coefficients. This
reflects the assumption that we have a fixed model, without
the ability to change it. On the other hand, as long as we know
the test data noise characteristics, we can optimize the model
in order to minimize the joint square error (from regression
and noise simultaneously).

Motivated by the previous notion, in this section we show
how we optimize the model for regression given the regression
data and the noise model. Afterwards, we further select the
optimal replication scheme. We assume that the noise on each
feature is independent of noise on all other features. Let X €
RP*" be the matrix of p data points with n features. Let the

matrix X’ = X+ N be the noisy data set where N € RP*" is
a matrix where each row is an independent realization of an n-
variate Gaussian random vector with zero mean and X as the
covariance matrix. Assume that each element of this random
vector is independent and as such, the covariance matrix is
a diagonal matrix, i.e. £ = diag(o?,...,07). Then E[N] =
0 and E[NTN] = pZ (by the expectation of the Wishart
distribution [18]). The objective function to minimize in this
case is as follows:

minE||y — X'a|’]

(X+N)a)'(y -
=miny'y - y'E[(X+N)Ja
—a'E[(X+N))y +a’E[(X+ N)T(X +N)]a
:mainHy—XaII +pa'z

= minE[(y — (X+N)a)]

The problem takes the form of the regularized least squares
problem. The solution to the above regression problem is as
follows:

a=(X"X+pz) XTy.

Now we plug this value of a back into the objective function
and attempt to optimize over the elements of the matrix X.
While we have reduced the terms that involve components
of X for the optimization, we must still approximate the
inverse of (XTX + pZX) if we wish to find a solution to the
optimization problem for the noise variance. Plugging in the
value for the optimal a and simplifying gives the following
cost function to minimize:
rn1r1 y y - yIX(XIX + pz) Xy

,,,,,

= min y (I -X(X"X+ pz)~xT)y.

Note that the objective function expression cannot be negative
as it is derived from the linear regression cost, which is a non-
negative value. Thus, the solution to the above optimization
problem is also the solution of the following problem:

max y!X(XIX + pz)~xTy.
01,...,0n

A. Solution by submodular optimization

Once again, we attempt to solve the optimization problem
using submodular optimization. Before we begin we state
several facts that will be used to prove that the submodular
optimization approach is applicable.

Fact 1 [19] Let the matrix A € R"™" be symmetric with
eigenvalues Ay > Ay > ... > Ay Then for all x € R"
AxIx < xTAx < /\1xTx.

This fact allows us to bounds the quadratic form involving a
matrix with its eigenvalues. We next look at the bounds on
the eigenvalues for a matrix that has been perturbed.

Fact 2 [20] Let A,A + E € R" " be symmetric matrices
and A (G) denote the kth largest eigenvalue of the matrix G.
Then Ay(E) + A (A) < A (A+E) < A(E) + A (A).

Finally we also state a fact that relates the eigenvalues of a
matrix with its inverse.

Fact 3 [19] Let A € R"™™" be a symmetric non-singular
matrix. Let Ay > ... > Ay, be the eigenvalues of A. Then the
eigenvalues of A1 are /\17 > ... > A%

Now we are ready to prove the submodularity properties for
the joint optimization. We begin by stating the lemma required
to show that successive allocations of redundancy units causes
the objective function to decrease.

Lemma 3 Given two redundancy allozcations defined by the

. . . 0 2 2
covariance matrices & = p X dlag(ﬁ, .. k—l .., %) and
& . 0‘2 0‘2 O’-2 0‘2 2 .

I = px dmg(ﬁ, O k,-:1’ .., kn) respectively,
- 1

where k; < k; for a particular i where 1 <i < n. We define
hE) =y ' (1-XXTX+Z)"XT)y. Then h(£) < h(Z).

Proof: Firstly y'y is common to both #(Z) and h(Z).
Next, we use the above defined facts to put bounds on the
eigenvalues for inverse of a perturbed matrix.

1
An-1+1(XTX) + M1 (Z)
< Tl .

An—H—l (X X) + An(z)

<A(XTX—x)7h

Note that the indices are reversed due to the fact that we
are defining the bounds of the eigenvalue of a matrix using
the eigenvalues of its inverse. We define u = XTy. Then

u'(XTX - £)~lu < muTu. Similarly, for

we have ul(XTX — £)~lu < Wu u. As the
covariance matrices are dlagonal we have the fact that
M (Z) < Ay (Z). Therefore the quadratic form involving X is
greater than or equal to the quadratic form involving £. As
such h(Z) < h(%).]
Next we wish to prove the diminishing returns property for
this optimization problem. The diminishing returns property
is as follows:

Lemma 4 Given redundancy allocation vectors k =
(k1,...,kn) and z = (z1,...,24), where ki < z; for
all j where 1 < j < mn. These define two covariance
matrices Zk = pX diag(olz/kl,...,crrzl/kn) and X, =

p x diag(0?/z1,...,02/zn). We further define Xy, =
p x diag(%/kl,... 0?/(ki+1),...,02/ky) and £, =
p x diag(o5/z1,...,0; /(z, + 1) ,02/zy). Then for all i
h(Zy) — h(Zk_H) Z h(z) — h(ZZ+1), where 1 <i < n.

Proof: Using the bounds established for the monotonicity
proof, we attempt to show the diminishing returns property.
Firstly we note that Ay(Zy) — An(Zxi1) < 07/(ki) —
0?/(ki+1). Also as k; < z; for all j (where 1 < j < n)
and are integers, we have for all i (where 1 < i < n):

of [(ki) — of / (ki +1) = 07 /(zi) — of /(2 +1).

Next we expand the following expression

h(Zx) — h(Zx+1)
=y XXX+ Zye1) Xy — y XXX+ 24) Xy

We can use the upper bound for the first term and the lower
bound for the second term to get

h(Zx) — h(Zxi1)
1
+ An(Zxs1)

1
~ A (XTX) + A1 (Zk)

= (AH(XTX>

Similarly for £, we have

h(}:z) - h(zz+1)

<(:

We note that:

1
Al (XTX) + Al (}:z)

) y XXy

1 1 TouT
— XX
(M(XTX) FAn(Zi) | A(XTX) +An<zm>> yary
1 1 T T
> — XX'vy.
= (A1<XTX> FA(E) MXTX) +Al<zz>> yary

The above inequality is true due to the fact that the terms
on the right hand side involve inverses of larger terms than
that on the left hand side. We can rearrange the inequality
to bring it into the desired form. In addition it is possible to
show that the upper bounds on both sides of the inequality
will be equally tight due to the fact that both sides represent
costs within one additional unit of each other. Therefore we
have:

1 1 TouT
— XX
(An<XTx> Fa(Eer) | XX +A1<zk>> yory
1 1 TouT
> — XX
- (An(XTX) Fan(Ea) MOXTX) +Al<zz>> yory

= h(Zy) = h(Zwy1) 2 (Zz) — h(Zz41).

This concludes the proof for submodularity for the joint
optimization.]

Thus, given a budget of N repetition, we can use sub-
modular optimization to efficiently allocate the redundancy
optimally. We can now revisit the original example in Section
I and apply this technique. Let us assume that the data is
generated using the model (x 0.5y + 16z). However,
now the redundancy allocation must be done during the
training phase. Given the fact that the noise variance vector
is know to be [1,20] (very high noise on feature 2), with
the same redundancy budget of 6 units, we find that the
optimal redundancy allocation remains the same. However,

> yI xxTy.

—+— Uniform Redundancy
;| —%— Optimal Redundancy |

Mean Squared Error

1
25

20
Redundancy budget

40

_Fig. 2. MSE for Optimal Allocation vs Uniform Allocation for the 1st set
of regression coefficients.

the regression weights that are calculated change to 0.53 for
feature y and 15.9 for feature z. We will see more examples
of changes in regression weights in the experimental results
section.

VI. EXPERIMENTAL RESULTS

In this section we present experimental results which
demonstrate the advantage our optimization methods provide
(over an uninformed coding scheme). We first present results
for allocating redundancy when the regression coefficients
are fixed. We use the following regression model: u
30 4 9x + 7y + 4z. The vector of variances is [2,2,4,4].
For a redundancy budget of 40 units, the optimal redundancy
allocation is ky = 4,ky = 13,k;, = 15,k; = 8 units. The
mean squared error for the optimal allocation is 38.03 and
for uniform allocation, it is 44.

Next we look at how the cost varies as redundancy alloca-
tion increases from 8 units upwards. We plot the mean squared
cost for the optimal allocation and the uniform allocation for
the above setup. The plot is shown in Figure 2. We can see
that the optimal allocation provides a clear benefit over the

" uniform allocation in terms of the MSE. Furthermore we see

that benefit is present even at high values of redundancy.
However there is the factor of diminishing returns which
indicates that for a high enough redundancy budget, the
optimal allocation would be the uniform allocation.

To further see the benefits of our allocation strategy, we
use the following example: Let the regression model be
u v 4 9x + 7y + 4z, with the noise variance vector as
[10,10,1,2]. This means that the noise in features 1 and 2 is
very high, and the noise in features 3 and 4 is comparatively
lower. For this case, the plot for the optimal MSE and uniform
MSE over a range of values of the redundancy is shown in
Figure 3. The advantage of our allocation scheme is very
clear in this scenario. The optimal allocation scheme produces
a MSE which is roughly half of the MSE for the uniform
allocation for almost all values of the redundancy budget. As

500 T T T .
5 —+—Uniform Redundancy
:| —%—Optimal Redundancy ||

4501

400
350
300
250+
200

Mean Squared Error

150
100

50

i i
5 10 15 20 25 30 35 40
Redundancy budget

Fig. 3. MSE for Optimal Allocation vs Uniform Allocation for the 2nd set
of regression coefficients.

our allocation scheme takes into account both the regression
weights and noise variance for each feature, it is able to
provide a consistent benefit over the uniform scheme in this
case. These two examples also illustrate how the amount of
improvement in the model’s performance depends on the noise
distribution and model parameters.

Next we consider the case where the optimal allocation
must be made during the training phase. We use the power
production dataset [21]. The dataset contains 9568 data points
collected from a power plant working at full load. It contains
four features which are: hourly average ambient variables
Temperature (T), Ambient Pressure (AP), Relative Humidity
(RH) and Exhaust Vacuum (V). The target variable is the
net hourly output of the power plant. To start with, we
consider the following noise variance vector [8, 8,1, 1]. This
means that the first two features are affected by noise with a
variance of 8 units, while the remaining features are affected
by noise with variance 1. We compute the optimal alloca-
tion of redundancy units when only 8 units of redundancy
are available. The resulting redundancy allocation is kr =
5kap =1,kryg = 1, and kyy = 1. We can see that despite the
fact that the first and second features are corrupted by noise
with high variance, only the first feature gets the majority of
the redundancy budget. The output MSE for this allocation is
27, while the output MSE for uniform allocation is 32.2, thus
the optimal allocation provides about 18% improvement over
the uniform case. We find that the regression weight vector
(ignoring the intercept) a obtained using the optimal allocation
is [-1.7761, —0.2888,0.1338, —0.1179]. On the other hand,
the noiseless training gives us the following vector of re-
gression coefficients: [—1.9689, —0.2316,0.0772, —0.1620],
showing that it is necessary to change the regression coeffi-
cients when the data is expected to be noisy.

Next we plot the ratio of uniform allocation MSE to optimal
allocation MSE for a range of redundancy allocations for this
setup. The plot is shown in Figure 4. We can see in the
figure that using the submodular optimization technique gives

12 ! . ;

i [—e—MSE Ratio

Mean Squared Error Ratio

1.1

1.08

i | i I 1 i
1'065 10 15 20 25 30 35 40

Redundancy budget

Fig. 4. Ratio of uniform MSE to optimal MSE for the power data set.

a significant advantage over the uniform allocation for low
values of redundancy budget. This advantage decreases as the
budget increases, however it does not completely vanish. In
scenarios where highly accurate predictions are required, even
the slightest increase in accuracy is valuable. Our redundancy
allocation technique ensures that the model is as accurate as
possible with the given redundancy budget.

VII. CONCLUSION

In this paper, we considered informed replication tech-
niques to protect linear regression test data from noise. We
presented a strategy to compute the optimal redundancy
allocation (in terms of the divergence from the hypothetical
noise-free case on the output) for a regression model when
applied to data that has been corrupted by Gaussian noise.
We showed how this allocation of redundancy is a function
of the regression coefficients and noise variance for each
feature when the regression coefficients are given. We further
presented a technique to obtain the optimal redundancy allo-
cation for noisy features during the training stage. We showed
how the regression coefficients become a function of the
redundancy allocation while the model is being trained, along
with the improvement of our redundancy allocation techniques
compared to a uniform allocation. The optimal redundancy
allocation is a step towards identifying levels of protection
for each feature. Future work can involve application of
these techniques to different noise models such as the binary
symmetric channel and using this concept of protection to
build more complex codes for regression.

REFERENCES

[1] K. Mazooji, F. Sala, G. Van den Broeck, and L. Dolecek, “Robust channel
coding strategies for machine learning data,” in Proc. of 54nd Annual
Allerton Conference on Communication, Control, and Computing, Aller-
ton, IL, Sep. 2016.

F. Sala, S. Kabir, G. Van den Broeck, and L. Dolecek, “Don’t Fear the
Bit Flips: Optimized Coding Strategies for Binary Classification,” arXiv
preprint arXiv:1703.02641 (2017).

F. Sala, S. Kabir, G. Van den Broeck, and L. Dolecek, “Dont Fear the
Bit Flips: Robust Linear Prediction Through Informed Channel Coding,”
in Reliable machine learning in the wild (WILDML 2017), August 2017.

[2

—

3

—_

[4] E. Kalapanidas, N. Avouris, M. Craciun, and D. Neagu, “Machine
learning algorithms: a study on noise sensitivity,” in Proc. 1st Balkan
Conference in Informatics, Thessaloniki, Greece, Nov. 2003.

[5] O. Dekel, and O. Shamir, “Learning to classify with missing and
corrupted features, ” in Proc. 25th Int. Conf. on Machine Learning,
Helsinki, Finland Jul. 2008.

[6] A. Globerson, and S. Roweis, “Nightmare at test time: robust learning
by feature deletion,” in Proc. 23rd Int. Conf. on Machine Learning,
Pittsburgh, PA, Jun. 2006.

[71 A. Choi, Y. Xue, and A. Darwiche, “Same-decision probability: A con-
fidence measure for threshold-based decisions,” Int. J. of Approximate
Reasoning vol. 53, no. 9, pp. 1415-1428, Dec. 2012.

[8] B. Frenay, and A. Kaban, “A comprehensive introduction to label
noise,” in Proc. European Symp. on Artificial Neural Networks, Comp.
Intelligence and Machine Learning, ESANN, Bruges, Belgium, Apr.
2014.

[9]1 C. M. Riggle, and S. G. McCarthy, “Design of error correction systems
for disk drives,” IEEE Trans. Magn, vol 34, no. 4, pp. 2362-2371, Jul.
1998.

[10] Y. Cassuto, M. Schwartz, V. Bohossian, and J. Bruck, “Codes for
asymmetric limited-magnitude errors with application to multilevel flash
memories,” IEEE Trans. Inf. Theory, vol 56, no. 4, pp. 1582-95, Apr.
2010.

[11] L. Dolecek, and F. Sala, “Channel coding methods for non-volatile
memories,” Foundations and Trends in Communications and Information
Theory, vol. 13, no. 1, pp. 1-28, Feb 2016.

[12] K. Zhao, W. Zhao, H. Sun, T. Zhang, X. Zhang, and N. Zheng, “LDPC-

in-SSD: making advanced error correction codes work effectively in solid
state drives,” in Proc of Conf. on File and Storage Technologies (FAST
13), San Jose, CA Feb. 2013.

[13] G. Balakrishnan, M. Yang, Y. Jiang, Y. Kim, “Performance analysis
of error control codes for wireless sensor networks,” in Proc. IEEE Int.
Conf. on Inf Theory, Las Vegas, NV, Apr. 2007.

[14] S. Chung, and S. Lee, “Coding for Wireless Sensor Networks,” in Smart
Sensors for Health and Environment Monitoring, Springer. Netherlands,
2015, pp 307-323.

[15] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
Coding: Avoiding Stragglers in Synchronous Gradient Descent,” stat.,
vol. 1050, Mar. 2017.

[16] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran,
“Distributed storage codes with repair-by-transfer and nonachievability
of interior points on the storage-bandwidth tradeoff,” in IEEE Trans. Inf.
Theory, vol 58, no. 3, pp. 1837-52, Mar. 2012.

[17] A. Krause, and D. Golovin.(2014) Submodular function
maximization[Online]. Available: http://www.cs.cmu.edu/afs/.cs.cmu.
edu/Web/People/dgolovin/papers/submodular_survey12.pdf.

[18] J. Wishart, “The generalised product moment distribution in samples
from a normal multivariate population,” Biometrika, pp. 32-52, Jul. 1928.

[19] A. Laub, Matrix analysis for scientists and engineers. SIAM, 2005.

[20] L. N. Trefethen, Numerical linear algebra. SIAM, 1997.

[21] P. Tfekci, “Prediction of full load electrical power output of a base load
operated combined cycle power plant using machine learning methods,”

Int. J. of Elect. Power and Energy Syst., vol. 60, pp. 126-140, Sep. 2014.

	Introduction
	Related work
	Noise model and regression codes
	Replication

	Expected Noise Loss
	Optimizing the MSE loss
	Solution using submodular optimization

	Optimizing the linear regression model
	Solution by submodular optimization

	Experimental Results
	Conclusion
	References

