
Coded Machine Learning: Joint Informed

Replication and Learning for Linear Regression

Shahroze Kabir, Frederic Sala, Guy Van den Broeck, and Lara Dolecek

{shkabir, fredsala}@ucla.edu, guyvdb@cs.ucla.edu, dolecek@ee.ucla.edu

UCLA, Los Angeles, CA 90095

Abstract—This paper is concerned with coded machine learn-
ing: protecting machine learning algorithms from noise in test
data by an informed channel coding approach. Unlike with
traditional data storage, we do not seek to ensure that all test
data is correctly read from storage and used as a noiseless input
to the algorithm. Rather, we seek to protect data in a way that
minimizes the effect on the algorithm output (i.e., minimizes a
loss compared to the hypothetical noiseless output). We focus on
the case where the collected test data, derived from low-power
sensors and devices, is inherently noisy. We show that a smart
replication strategy is an effective choice to reduce the impact on
the algorithm output for linear regression algorithms. We focus
on two scenarios. The first case is where the regression model is
fixed, and we must allocate a fixed budget of redundancy for our
replication scheme (in order to minimize the loss on the output
due to noisy test data). Analyzing this case is necessary to build
our understanding for the second case which is more novel. The
second case involves a scenario where we may learn an optimized
model and jointly protect it. We illustrate the advantages of our
approach with practical experiments.

Index Terms—Channel Coding, Machine Learning, Repetition
Coding, Linear Regression.

I. INTRODUCTION

The recent surge in the popularity of machine learning is

a testament to the power and flexibility of the techniques

the field offers. A particularly exciting application of ma-

chine learning relates to low-power devices, energy-efficient

sensors, wireless networks, etc. For example, such devices

are involved in localization and object tracking, security and

intrusion detection, media access control, and fault detection.

Low-power devices collect data and transmit it to a central

processor (sometimes called the fusion center) where the

machine learning models are trained and implemented. Due

to the low-power, cost efficient nature of the devices, the data

collection process along with the transmission link tend to

be noisy. As a result, the algorithm performed at the central

processor operates on noisy data. The purpose of this paper

is to detail how to tackle this noise.

The traditional approach to dealing with noise involves

applying error-correcting codes. In our scenario, however, we

face several concerns:

Research supported in part by NSF grants CAREER CCF-1150212, CCF-
1527130, NSF (#IIS-1657613 and #IIS-1633857), and DARPA (#N66001-
17-2-4032)

• Low-power and low-cost devices may not admit a pow-

erful (energy-consuming) error-correction architecture,

• The measurements available at the sensor may already be

noisy (e.g., due to measurement noise, limited resolution

sampling, etc.) and thus the noiseless data is not available

for encoding, and

• Classically, the goal is to protect all of the data equally

well, but a machine learning model may be influenced

by some parts of the data far more than others, so that

traditional coding methods are not efficient.

We briefly discuss each of these issues and the role they

play in the solution we propose in this paper. We begin

with the last concern. The idea here is that error-correction

typically seeks to protect all of the data. The application of

this data is not considered in the error protection strategy; in

fact, the error-correction strategy typically lies in an entirely

different abstraction layer. Such an approach is sufficient for

general-purpose devices, but in our case, it is not efficient.

Consider, for example, a model with tens of thousands of

binary features. A small number of these features may have a

very large impact on the model output; such features require

significant protection from even a small amount of noise. On

the other hand, the vast majority of features may only have a

very small impact on the final output, so that these features are

resilient to noise. Clearly, a different coding strategy should

be implemented for the two sets of features.

Our goal in this work (building on our previous work in

[1], [2], [3]) is to introduce a coding strategy that takes the

machine learning algorithm into account. We assume that

the fusion center has a high-quality model that has access

to noiseless training data; however, this model will operate

on noisy test data transmitted by the remote low-power

measurement devices1. The noise in the test data is assumed

to be Gaussian in nature as the noise introduced at the output

of these low power sensors is often modeled as Gaussian.

We seek to develop schemes that tailor the error-protection

1More precisely, we consider two cases. In the first case, the high-quality
model is fixed and we can only change the error protection for the noisy
features. Analyzing this helps us to build up to the second, more novel
scenario. In the second case, the model is jointly trained from the noiseless
training data and the test data noise characteristics in order to minimize the
expected loss when using noisy data. Here too, we further reduce the impact
of noise by optimizing the error protection on the test features.





III. NOISE MODEL AND REGRESSION CODES

We begin by establishing notation for linear regression and

some preliminaries regarding the noise models used in this

paper. We define a feature vector x = (x1, . . . , xn) where we

consider elements x j ∈ F2 (for binary regression) and x j ∈ R

(for regression with continuous values). We define the vector

of regression coefficients a = (a1, . . . , an) where a j ∈ R.

The target value corresponding to the jth feature vector is

given by y j ∈ R. We also define the matrix X of p feature

vectors and the corresponding vector y ∈ R
p containing the

corresponding p target values. For a given feature vector x,

linear regression predicts the value of the target variable y as

aTx.

The noise model that we consider is shown in Figure 1.

The noisy version of feature vector x is denoted by x′. The

learning algorithm receives noisy versions of each feature. A

Gaussian random variable η j with mean zero and variance

σ2
j is added to the jth feature. We use Gaussian noise, as the

output of low power sensors used in wireless sensor networks

is often corrupted by Gaussian noise when it arrives at the

fusion center. Depending on the quality of the sensor, different

sensors may have different levels of noise. Therefore our

model is able to handle different levels of noise for different

features.

A. Replication

Next we discuss the effects of channel coding on the noise

applied to each feature. As we previously described, we rely

on replication for two reasons: first, to deal with the fact

that the encoder may not have access to the noiseless, true

data, and, secondly, because replication codes enable us to

provide an appropriate level of protection to each feature.

Replication involves repeating the jth feature k j times, i.e.,

the codeword c j = (x j, x j, . . . , x j). The replicated values

are passed through the noisy channel and are corrupted.

Depending on the type of noise model, replication coding

mitigates the probability of feature error in different ways.

For our Gaussian noise model, the decoding process involves

taking the average of the noisy versions of the repetitions of

a feature: 1
k j
(∑

k j

i=1
c j(i)). This effectively reduces the overall

variance of the noise σ j
2 of the jth feature:

Var





1

k j

k j

∑
i=1

(

c j(i) + η j(i)
)



 =
1

k j
2

Var





k j

∑
i=1

η j(i)





=
1

k j
2
(k jσ j

2) =
σ j

2

k j
.

Thus replication reduces the variance of the noise added to

the feature by a factor equal to the number of repetitions.

Now that we have defined how replication reduces the effect

of noise on the data, we discuss how to allocate redundancy

given a budget of N replications in order to reduce the effects

of noise on the predictions made by the algorithm in an

informed way.

IV. EXPECTED NOISE LOSS

We measure the expected loss due to noise (between the

output of the noisy algorithm and the noiseless algorithm)

with a mean-squared error (MSE) approach. The MSE is the

following:

E

[∥

∥

∥
aTx − aTx′

∥

∥

∥

]

= E[(aT(x − x′))T(aT(x − x′))]

= E[((x − x′)TaaT(x − x′))]

= Tr(aaTCov(x − x′)) +E[x − x′]TaaT
E[x − x′].

(1)

The final step uses the identity that for any matrix A and

vector c we have

E[cTAc] = Tr(ACov(c)) +E[c]TAE[c].

We note that using the MSE (as opposed to MAE) is motivated

in part by the fact that linear regression involves minimizing

square error itself.

A. Optimizing the MSE loss

Next we analyze the continuous version of the optimization

problem. Using the same idea as the expression in (1),

we derive the expected loss for the current scenario. The

combined noise vector η is a zero mean Gaussian random

vector, with covariance matrix Σ = diag(σ2
1

, . . . ,σ2
n). The

expected loss is given by

E

[∥

∥

∥
aTx − aTx′

∥

∥

∥

]

= Tr(aaTCov(x − x′)) +E[x − x′]TaaT
E[x − x′]

=
n

∑
j=1

a2
jσ j

2.

We are now ready to introduce the key optimization for

our informed replication approach. We have a budget of N
repetitions and we wish to allocate these among features in

such a way that our resulting expected loss is minimized.

We define the redundancy allocation vector k = (k1, ..., kn),
where the ith feature is replicated ki times for 1 ≤ i ≤ n. We

set up the constrained optimization problem as follows:

min
k1 ,...,kn

g(k) =
n

∑
j=1

a2
jσ j

2

k j
,

subject to
n

∑
j=1

k j = N.

where k j is a positive integer.

Note that due to the integer constraint, the problem is not

convex. However, if we relax the constraint and allow k j to

be real valued, the optimization problem becomes convex. We

solve this optimization problem using the method of Lagrange

multipliers.



Theorem 1 The optimal redundancy allocation for the con-

tinuous relaxation of the problem for the jth feature is given

by

k j =
|a jσ j|

∑
n
j=1 |a jσ j|

N.

Proof: Define the function g′ and as follows:

g′(a, k, λ) =
n

∑
j=1

a2
jσ j

2

k j
− λ(

n

∑
j=1

k j − N).

Taking the partial derivatives and setting them to zero gives

the following relationship between λ and k j

k j = |a jσ j|

√

−1

λ
.

Substituting this back into the sum constraint gives the fol-

lowing solution for λ:

λ =
−(∑n

j=1 |a jσ j|)
2

N2
.

We then solve for k j by substituting the value of λ in the

equation for k j

k j = |a jσ j|

√

−N2

−(∑n
j=1 |a jσ j|)2

=
|a jσ j|

∑
n
j=1 |a jσ j|

N.

Note that if this solution yields integer values for all k j’s,

then this is the optimal solution for the integer version of the

problem as well. However, if any of obtained values are not

integers, then we do the following. Use bk jc for all values of

j. There are at most n − 1 units left after this for allocation.

We can try all possible allocations for these bits to find the

solution to the integer version of the problem.

B. Solution using submodular optimization

While the continuous relaxation gives an efficient technique

to approach the optimal solution for our optimization problem,

it still requires an exhaustive search to allocate up to n− 1 of

the final redundancy units. To solve this problem efficiently,

we must take the integer constraints into consideration. As

such, we use submodular optimization. Submodular opti-

mization is a technique used to solve optimization problems

that involve integer constraints [17]. It is a computationally

efficient and nearly optimal technique, as shown in [17].

The algorithm, which is a greedy technique, involves allo-

cating units of redundancy one at a time iteratively. Given

m available units of redundancy, consider the redundancy

allocation vector k(i) = (k1(i), . . . , kn(i)), 1 ≤ i ≤ m which

denotes the units of redundancy allocated to each vector at

the ith step of the algorithm. Then at step i + 1, we assign

an additional unit of redundancy to the lth feature. This

gives the vector k(i + 1) = (k1(i), . . . , kl(i) + 1, . . . , kn(i)).
The goal of the minimization at each step is to find the

minl ∑
n
j=1

a2
jσ j

2

k j
, 1 ≤ l ≤ n. This process continues until

all units of redundancy are allocated.

We show that our optimization function is submodular. The

objective function must fulfill the conditions of monotonic-

ity and diminishing returns in order to validate the use of

submodular optimization. The monotonicity statement is as

follows:

Lemma 1 Given redundancy allocation vectors k =
(k1, . . . , ki , . . . , kn) and k̃ = (k1, . . . , ki−1, k̃i , ki+1, . . . , kn),
where ki > k̃i. Then f (k) < f (k̃).

The proof for Lemma 1 is immediate, as the optimization

function is inversely proportional to ki for all i. Lemma 1

shows that the cost function decreases as more units of

redundancy are allocated. Next we consider the diminishing

returns property. For this property to hold, repeated allocation

of redundancy units to the same feature must yield reduced

improvements.

Lemma 2 Consider redundancy allocation vectors k =
(k1, . . . , kn) and z = (z1, . . . , zn), where k j ≤ z j for all

j. Then for all i ,

∑
j

a2
jσ

2
j /k j − (∑

j 6=i

a2
jσ

2
j /k j + a2

iσ
2
i /(ki + 1)) ≥

∑
j

a2
jσ

2
j /z j − (∑

j 6=i

a2
jσ

2
j /z j + a2

iσ
2
i /(zi + 1)).

Proof: We prove the lemma by expanding the summation

on both sides and canceling out terms accordingly. This

simplifies the expression to

a2
iσ

2
i /ki − a2

iσ
2
i /(ki + 1) ≥ a2

iσ
2
i /zi − a2

iσ
2
i /(zi + 1)

⇒ 1/ki − 1/(ki + 1) ≥ 1/zi − 1/(zi + 1)).

This final statement holds true when ki ≤ zi and ki, zi are

integers, which is the indeed the case.

Thus the cost function is indeed submodular. We use

the floor of the redundancy allocations obtained from the

continuous relaxation and then allocate the remaining n − 1

units using submodular optimization.

V. OPTIMIZING THE LINEAR REGRESSION MODEL

So far we have worked on optimizing the redundancy

allocation given a fixed set of regression coefficients. This

reflects the assumption that we have a fixed model, without

the ability to change it. On the other hand, as long as we know

the test data noise characteristics, we can optimize the model

in order to minimize the joint square error (from regression

and noise simultaneously).

Motivated by the previous notion, in this section we show

how we optimize the model for regression given the regression

data and the noise model. Afterwards, we further select the

optimal replication scheme. We assume that the noise on each

feature is independent of noise on all other features. Let X ∈
R

p×n be the matrix of p data points with n features. Let the



matrix X′ = X+N be the noisy data set where N ∈ R
p×n is

a matrix where each row is an independent realization of an n-

variate Gaussian random vector with zero mean and Σ as the

covariance matrix. Assume that each element of this random

vector is independent and as such, the covariance matrix is

a diagonal matrix, i.e. Σ = diag(σ2
1

, . . . ,σ2
n). Then E[N] =

0 and E[NTN] = pΣ (by the expectation of the Wishart

distribution [18]). The objective function to minimize in this

case is as follows:

min
a

E[
∥

∥y − X′a
∥

∥

2
]

= min
a

E[(y − (X + N)a)T(y − (X + N)a)]

= min
a

yTy − yT
E[(X + N)]a

− aT
E[(X + N)T ]y + aT

E[(X + N)T(X + N)]a

= min
a

‖y − Xa‖2 + paT
Σa.

The problem takes the form of the regularized least squares

problem. The solution to the above regression problem is as

follows:

a = (XTX + pΣ)−1XTy.

Now we plug this value of a back into the objective function

and attempt to optimize over the elements of the matrix Σ.

While we have reduced the terms that involve components

of Σ for the optimization, we must still approximate the

inverse of (XTX + pΣ) if we wish to find a solution to the

optimization problem for the noise variance. Plugging in the

value for the optimal a and simplifying gives the following

cost function to minimize:

min
σ1 ,...,σn

yTy − yTX(XTX + pΣ)−1XTy

= min
σ1 ,...,σn

yT(I − X(XTX + pΣ)−1XT)y.

Note that the objective function expression cannot be negative

as it is derived from the linear regression cost, which is a non-

negative value. Thus, the solution to the above optimization

problem is also the solution of the following problem:

max
σ1 ,...,σn

yTX(XTX + pΣ)−1XTy.

A. Solution by submodular optimization

Once again, we attempt to solve the optimization problem

using submodular optimization. Before we begin we state

several facts that will be used to prove that the submodular

optimization approach is applicable.

Fact 1 [19] Let the matrix A ∈ R
n×n be symmetric with

eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn. Then for all x ∈ R
n

λnxTx ≤ xTAx ≤ λ1xTx.

This fact allows us to bounds the quadratic form involving a

matrix with its eigenvalues. We next look at the bounds on

the eigenvalues for a matrix that has been perturbed.

Fact 2 [20] Let A, A + E ∈ R
n×n be symmetric matrices

and λk(G) denote the kth largest eigenvalue of the matrix G.

Then λn(E) + λk(A) ≤ λk(A + E) ≤ λ1(E) + λk(A).

Finally we also state a fact that relates the eigenvalues of a

matrix with its inverse.

Fact 3 [19] Let A ∈ R
n×n be a symmetric non-singular

matrix. Let λ1 ≥ . . . ≥ λn be the eigenvalues of A. Then the

eigenvalues of A−1 are 1
λn

≥ . . . ≥ 1
λ1

.

Now we are ready to prove the submodularity properties for

the joint optimization. We begin by stating the lemma required

to show that successive allocations of redundancy units causes

the objective function to decrease.

Lemma 3 Given two redundancy allocations defined by the

covariance matrices Σ = p × diag(
σ2

1

k1
, . . . ,

σ2
i

ki
, . . . ,

σ2
n

kn
) and

Σ̃ = p × diag(
σ2

1

k1
, . . . ,

σ2
n

ki−1
,
σ2

i

k̃i
,

σ2
n

ki+1
, . . . ,

σ2
n

kn
) respectively,

where k̃i < ki for a particular i where 1 ≤ i ≤ n. We define

h(Σ) = yT(I − X(XTX + Σ)−1XT)y. Then h(Σ) ≤ h(Σ̃).

Proof: Firstly yTy is common to both h(Σ) and h(Σ̃).
Next, we use the above defined facts to put bounds on the

eigenvalues for inverse of a perturbed matrix.

1

λn−l+1(XTX) + λ1(Σ)
≤ λl((X

TX − Σ)−1)

≤
1

λn−l+1(XTX) + λn(Σ)
.

Note that the indices are reversed due to the fact that we

are defining the bounds of the eigenvalue of a matrix using

the eigenvalues of its inverse. We define u = XTy. Then

uT(XTX − Σ)−1u ≤ 1

λn(XTX)+λn(Σ)
uTu. Similarly, for Σ̃

we have uT(XTX − Σ̃)−1u ≤ 1

λn(XTX)+λn(Σ̃)
uTu. As the

covariance matrices are diagonal, we have the fact that

λn(Σ) ≤ λn(Σ̃). Therefore the quadratic form involving Σ is

greater than or equal to the quadratic form involving Σ̃. As

such h(Σ) ≤ h(Σ̃).
Next we wish to prove the diminishing returns property for

this optimization problem. The diminishing returns property

is as follows:

Lemma 4 Given redundancy allocation vectors k =
(k1, . . . , kn) and z = (z1, . . . , zn), where k j ≤ z j for

all j where 1 ≤ j ≤ n. These define two covariance

matrices Σk = p × diag(σ2
1
/k1, . . . ,σ2

n/kn) and Σz =
p × diag(σ2

1
/z1, . . . ,σ2

n/zn). We further define Σk+1 =
p × diag(σ2

1
/k1, . . . ,σ2

i /(ki + 1), . . . ,σ2
n/kn) and Σz+1 =

p × diag(σ2
1
/z1, . . . ,σ2

i /(zi + 1), . . . ,σ2
n/zn). Then for all i

h(Σk)− h(Σk+1) ≥ h(Σz)− h(Σz+1), where 1 ≤ i ≤ n.

Proof: Using the bounds established for the monotonicity

proof, we attempt to show the diminishing returns property.

Firstly we note that λn(Σk) − λn(Σk+1) ≤ σ2
i /(ki) −

σ2
i /(ki + 1). Also as k j ≤ z j for all j (where 1 ≤ j ≤ n)

and are integers, we have for all i (where 1 ≤ i ≤ n):

σ2
i /(ki)−σ2

i /(ki + 1) ≥ σ2
i /(zi)−σ2

i /(zi + 1).



Next we expand the following expression

h(Σk)− h(Σk+1)

= yTX(XTX + Σk+1)
−1XTy − yTX(XTX + Σk)

−1XTy.

We can use the upper bound for the first term and the lower

bound for the second term to get

h(Σk)− h(Σk+1)

≤

(

1

λn(XTX) + λn(Σk+1)
−

1

λ1(XTX) + λ1(Σk)

)

yTXXTy.

Similarly for Σz we have

h(Σz)− h(Σz+1)

≤

(

1

λn(XTX) + λn(Σz+1)
−

1

λ1(XTX) + λ1(Σz)

)

yTXXTy.

We note that:
(

1

λn(XTX) + λn(Σk+1)
−

1

λn(XTX) + λn(Σz+1)

)

yTXXTy

≥

(

1

λ1(XTX) + λ1(Σk)
−

1

λ1(XTX) + λ1(Σz)

)

yTXXTy.

The above inequality is true due to the fact that the terms

on the right hand side involve inverses of larger terms than

that on the left hand side. We can rearrange the inequality

to bring it into the desired form. In addition it is possible to

show that the upper bounds on both sides of the inequality

will be equally tight due to the fact that both sides represent

costs within one additional unit of each other. Therefore we

have:
(

1

λn(XTX) + λn(Σk+1)
−

1

λ1(XTX) + λ1(Σk)

)

yTXXTy

≥

(

1

λn(XTX) + λn(Σz+1)
−

1

λ1(XTX) + λ1(Σz)

)

yTXXTy,

⇒ h(Σk)− h(Σk+1) ≥ h(Σz)− h(Σz+1).

This concludes the proof for submodularity for the joint

optimization.

Thus, given a budget of N repetition, we can use sub-

modular optimization to efficiently allocate the redundancy

optimally. We can now revisit the original example in Section

I and apply this technique. Let us assume that the data is

generated using the model (x = 0.5y + 16z). However,

now the redundancy allocation must be done during the

training phase. Given the fact that the noise variance vector

is know to be [1, 20] (very high noise on feature 2), with

the same redundancy budget of 6 units, we find that the

optimal redundancy allocation remains the same. However,

Fig. 2. MSE for Optimal Allocation vs Uniform Allocation for the 1st set
of regression coefficients.

the regression weights that are calculated change to 0.53 for

feature y and 15.9 for feature z. We will see more examples

of changes in regression weights in the experimental results

section.

VI. EXPERIMENTAL RESULTS

In this section we present experimental results which

demonstrate the advantage our optimization methods provide

(over an uninformed coding scheme). We first present results

for allocating redundancy when the regression coefficients

are fixed. We use the following regression model: u =
3v + 9x + 7y + 4z. The vector of variances is [2, 2, 4, 4].
For a redundancy budget of 40 units, the optimal redundancy

allocation is kv = 4, kx = 13, ky = 15, kz = 8 units. The

mean squared error for the optimal allocation is 38.03 and

for uniform allocation, it is 44.

Next we look at how the cost varies as redundancy alloca-

tion increases from 8 units upwards. We plot the mean squared

cost for the optimal allocation and the uniform allocation for

the above setup. The plot is shown in Figure 2. We can see

that the optimal allocation provides a clear benefit over the

uniform allocation in terms of the MSE. Furthermore we see

that benefit is present even at high values of redundancy.

However there is the factor of diminishing returns which

indicates that for a high enough redundancy budget, the

optimal allocation would be the uniform allocation.

To further see the benefits of our allocation strategy, we

use the following example: Let the regression model be

u = v + 9x + 7y + 4z, with the noise variance vector as

[10, 10, 1, 2]. This means that the noise in features 1 and 2 is

very high, and the noise in features 3 and 4 is comparatively

lower. For this case, the plot for the optimal MSE and uniform

MSE over a range of values of the redundancy is shown in

Figure 3. The advantage of our allocation scheme is very

clear in this scenario. The optimal allocation scheme produces

a MSE which is roughly half of the MSE for the uniform

allocation for almost all values of the redundancy budget. As



Fig. 3. MSE for Optimal Allocation vs Uniform Allocation for the 2nd set
of regression coefficients.

our allocation scheme takes into account both the regression

weights and noise variance for each feature, it is able to

provide a consistent benefit over the uniform scheme in this

case. These two examples also illustrate how the amount of

improvement in the model’s performance depends on the noise

distribution and model parameters.

Next we consider the case where the optimal allocation

must be made during the training phase. We use the power

production dataset [21]. The dataset contains 9568 data points

collected from a power plant working at full load. It contains

four features which are: hourly average ambient variables

Temperature (T), Ambient Pressure (AP), Relative Humidity

(RH) and Exhaust Vacuum (V). The target variable is the

net hourly output of the power plant. To start with, we

consider the following noise variance vector [8, 8, 1, 1]. This

means that the first two features are affected by noise with a

variance of 8 units, while the remaining features are affected

by noise with variance 1. We compute the optimal alloca-

tion of redundancy units when only 8 units of redundancy

are available. The resulting redundancy allocation is kT =
5, kAP = 1, kRH = 1, and kV = 1. We can see that despite the

fact that the first and second features are corrupted by noise

with high variance, only the first feature gets the majority of

the redundancy budget. The output MSE for this allocation is

27, while the output MSE for uniform allocation is 32.2, thus

the optimal allocation provides about 18% improvement over

the uniform case. We find that the regression weight vector

(ignoring the intercept) a obtained using the optimal allocation

is [−1.7761,−0.2888, 0.1338,−0.1179]. On the other hand,

the noiseless training gives us the following vector of re-

gression coefficients: [−1.9689,−0.2316, 0.0772,−0.1620],
showing that it is necessary to change the regression coeffi-

cients when the data is expected to be noisy.

Next we plot the ratio of uniform allocation MSE to optimal

allocation MSE for a range of redundancy allocations for this

setup. The plot is shown in Figure 4. We can see in the

figure that using the submodular optimization technique gives

Fig. 4. Ratio of uniform MSE to optimal MSE for the power data set.

a significant advantage over the uniform allocation for low

values of redundancy budget. This advantage decreases as the

budget increases, however it does not completely vanish. In

scenarios where highly accurate predictions are required, even

the slightest increase in accuracy is valuable. Our redundancy

allocation technique ensures that the model is as accurate as

possible with the given redundancy budget.

VII. CONCLUSION

In this paper, we considered informed replication tech-

niques to protect linear regression test data from noise. We

presented a strategy to compute the optimal redundancy

allocation (in terms of the divergence from the hypothetical

noise-free case on the output) for a regression model when

applied to data that has been corrupted by Gaussian noise.

We showed how this allocation of redundancy is a function

of the regression coefficients and noise variance for each

feature when the regression coefficients are given. We further

presented a technique to obtain the optimal redundancy allo-

cation for noisy features during the training stage. We showed

how the regression coefficients become a function of the

redundancy allocation while the model is being trained, along

with the improvement of our redundancy allocation techniques

compared to a uniform allocation. The optimal redundancy

allocation is a step towards identifying levels of protection

for each feature. Future work can involve application of

these techniques to different noise models such as the binary

symmetric channel and using this concept of protection to

build more complex codes for regression.

REFERENCES

[1] K. Mazooji, F. Sala, G. Van den Broeck, and L. Dolecek, “Robust channel
coding strategies for machine learning data,” in Proc. of 54nd Annual

Allerton Conference on Communication, Control, and Computing, Aller-
ton, IL, Sep. 2016.

[2] F. Sala, S. Kabir, G. Van den Broeck, and L. Dolecek, “Don’t Fear the
Bit Flips: Optimized Coding Strategies for Binary Classification,” arXiv
preprint arXiv:1703.02641 (2017).

[3] F. Sala, S. Kabir, G. Van den Broeck, and L. Dolecek, “Dont Fear the
Bit Flips: Robust Linear Prediction Through Informed Channel Coding,”
in Reliable machine learning in the wild (WILDML 2017), August 2017.



[4] E. Kalapanidas, N. Avouris, M. Craciun, and D. Neagu, “Machine
learning algorithms: a study on noise sensitivity,” in Proc. 1st Balkan

Conference in Informatics, Thessaloniki, Greece, Nov. 2003.
[5] O. Dekel, and O. Shamir, “Learning to classify with missing and

corrupted features, ” in Proc. 25th Int. Conf. on Machine Learning,
Helsinki, Finland Jul. 2008.

[6] A. Globerson, and S. Roweis, “Nightmare at test time: robust learning
by feature deletion,” in Proc. 23rd Int. Conf. on Machine Learning,
Pittsburgh, PA, Jun. 2006.

[7] A. Choi, Y. Xue, and A. Darwiche, “Same-decision probability: A con-
fidence measure for threshold-based decisions,” Int. J. of Approximate

Reasoning vol. 53, no. 9, pp. 1415-1428, Dec. 2012.
[8] B. Frenay, and A. Kaban, “A comprehensive introduction to label

noise,” in Proc. European Symp. on Artificial Neural Networks, Comp.

Intelligence and Machine Learning, ESANN, Bruges, Belgium, Apr.
2014.

[9] C. M. Riggle, and S. G. McCarthy, “Design of error correction systems
for disk drives,” IEEE Trans. Magn, vol 34, no. 4, pp. 2362-2371, Jul.
1998.

[10] Y. Cassuto, M. Schwartz, V. Bohossian, and J. Bruck, “Codes for
asymmetric limited-magnitude errors with application to multilevel flash
memories,” IEEE Trans. Inf. Theory, vol 56, no. 4, pp. 1582-95, Apr.
2010.

[11] L. Dolecek, and F. Sala, “Channel coding methods for non-volatile
memories,” Foundations and Trends in Communications and Information

Theory, vol. 13, no. 1, pp. 1-28, Feb 2016.
[12] K. Zhao, W. Zhao, H. Sun, T. Zhang, X. Zhang, and N. Zheng, “LDPC-

in-SSD: making advanced error correction codes work effectively in solid
state drives,” in Proc of Conf. on File and Storage Technologies (FAST

13), San Jose, CA Feb. 2013.

[13] G. Balakrishnan, M. Yang, Y. Jiang, Y. Kim, “Performance analysis
of error control codes for wireless sensor networks,” in Proc. IEEE Int.

Conf. on Inf Theory, Las Vegas, NV, Apr. 2007.

[14] S. Chung, and S. Lee, “Coding for Wireless Sensor Networks,” in Smart

Sensors for Health and Environment Monitoring, Springer. Netherlands,
2015, pp 307-323.

[15] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
Coding: Avoiding Stragglers in Synchronous Gradient Descent,” stat.,
vol. 1050, Mar. 2017.

[16] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran,
“Distributed storage codes with repair-by-transfer and nonachievability
of interior points on the storage-bandwidth tradeoff,” in IEEE Trans. Inf.

Theory, vol 58, no. 3, pp. 1837-52, Mar. 2012.

[17] A. Krause, and D. Golovin.(2014) Submodular function

maximization[Online]. Available: http://www.cs.cmu.edu/afs/.cs.cmu.
edu/Web/People/dgolovin/papers/submodular survey12.pdf.

[18] J. Wishart, “The generalised product moment distribution in samples
from a normal multivariate population,” Biometrika, pp. 32-52, Jul. 1928.

[19] A. Laub, Matrix analysis for scientists and engineers. SIAM, 2005.

[20] L. N. Trefethen, Numerical linear algebra. SIAM, 1997.

[21] P. Tfekci, “Prediction of full load electrical power output of a base load
operated combined cycle power plant using machine learning methods,”

Int. J. of Elect. Power and Energy Syst., vol. 60, pp. 126-140, Sep. 2014.


	Introduction
	Related work
	Noise model and regression codes
	Replication

	Expected Noise Loss
	Optimizing the MSE loss
	Solution using submodular optimization

	Optimizing the linear regression model
	Solution by submodular optimization

	Experimental Results
	Conclusion
	References

