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Abstract—We present a new back propagation based training
algorithm for discrete-time spiking neural networks (SNN).
Inspired by recent deep learning algorithms on binarized neural
networks, binary activation with a straight-through gradient
estimator is used to model the leaky integrate-fire spiking neuron,
overcoming the difficulty in training SNNs using back
propagation. Two SNN training algorithms are proposed: (1) SNN
with discontinuous integration, which is suitable for rate-coded
input spikes, and (2) SNN with continuous integration, which is
more general and can handle input spikes with temporal
information. Neuromorphic hardware designed in 40nm CMOS
exploits the spike sparsity and demonstrates high classification
accuracy (>98% on MNIST) and low energy (48.4-773 nJ/image).
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L INTRODUCTION

Recently, many deep learning algorithms such as multi-layer
perceptrons (MLP) and convolutional neural networks (CNN)
have demonstrated human-level recognition accuracy in image
and speech classification tasks [1-2]. The number of operations
in these artificial neural networks (ANN) do not generally
depend on input data, and the high amount of input-independent
computations in deep networks can lead to high energy
consumption. On the other hand, spiking neural networks (SNN)
[3] more closely mimic the operations in biological nervous
systems and explore new avenues for brain-like cognitive
computing. SNNs can exploit the input-dependent sparsity or
redundancy to dynamically scale the amount of computation,
leading to energy-efficient hardware implementation [4].

Back-propagation (BP) based stochastic gradient descent is
widely used to train ANNs, and has shown high accuracy for
many benchmarks. However, literature on SNN training
algorithms still has not proven sufficiently high accuracy,
especially for deep networks with multiple layers. Existing
training algorithms for SNNs are categorized into unsupervised
learning (without labeled data) and supervised learning (with
labeled training data). Bio-plausible learning rules, such as
spike-timing dependent plasticity (STDP) [5-6], have been
explored for unsupervised learning, but do not exhibit
competitive accuracy for deep networks. Recently, several
supervised learning algorithms for SNNs were proposed, where
an ANN is first trained using BP and then converted to an SNN
[7-9] by mapping real-valued inputs/activations to average firing
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rates of Poisson spikes. This approach has two drawbacks: (1) it
requires many time steps to achieve high accuracy; (2) it is only
suitable for rate-coding input spikes, but not for other spike
coding formats such as temporal coding. Other supervised
learning algorithms have been proposed to directly train SNNs
with BP [10-11]. However, these algorithms exhibit complex
neuron models with exponential post-synaptic potential or
membrane decay, which are computationally expensive.

In this paper, we propose a BP-based training algorithm that
can train hardware-friendly SNNs with simple neuron models
for both rate-coding and temporal-coding inputs. We also
present experimental results of energy-efficient neuromorphic
hardware designs in 28nm CMOS that implement our trained
SNN models for MNIST [12] and N-MNIST [13] datasets.

II.  SPIKING NEURON MODELS WITH BINARY ACTIVATION

In this section, we propose two variants of discrete-time
leaky integrate-fire (LIF) spiking neuron models that are
suitable for BP-based training of deep SNNs.

A. Spiking neuron with discontinuous integration (SNN-DC)
In ANNS, the activation output of a neuron % in layer L is:

ap = y(TM(al'wit) + bi), (1)

where y(x) is the activation function, wi;* is the synapse

weight connecting neuron i to neuron k, and by, is the bias. One
popular activation function is rectified linear unit (ReLU), as
illustrated in Fig. 1.

Compared to these artificial neurons, spiking neurons have
two distinct properties: (1) the neuron value (membrane
potential) is integrated over time and (2) each neuron outputs a
binary spike. To incorporate these into our first proposed spiking
neuron model, we introduce a discrete time step variable ¢ and
choose a special binary activation function:

vE() = TM(af T ©Owlt) + b, )
ag (t) =y, (v (D), 3)

where vE(t) is the membrane potential and y, (x) is a binary
activation function depicted in Fig. 1. y,(x) =1 if x>0,
otherwise y, (x) = 0, where @ is the firing threshold. Note that
this spiking neuron model performs synaptic integration in a
discontinuous manner, and we denote this model as SNN-DC.
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Fig. 1. Comparison of neuron models for ANN with ReLU activation and
discrete-time SNN with binary activation (SNN-DC and SNN-CT).

In other words, vE(t) is reset to zero at the beginning of every
time step ¢, before the neuron integrates the presynaptic
injections and the bias term. If the membrane potential after
integration at time step ¢ exceeds threshold 6, the neuron fires
(ak(t) = 1); otherwise, the neuron remains silent (aj (t) = 0).

Since the neuron membrane potential is discontinuous
between sequential time steps, time is not incorporated into SNN
training. Thus, the SNN-DC model can be reduced to a form
similar to (1) except that the activation is a special binary
activation function y;, (x). Note that the gradient of this binary
function is zero everywhere, blocking back propagation of the
error signals. To overcome this difficulty, we adopt the
“straight-through estimator” [14] during BP to estimate the
gradient of the binary activation function. The straight-through
estimator enables fast training with stochastic discrete neurons
[14]. When the threshold 8 = 1, our straight-through estimator
of the gradient of y;, (x) is the following:

(05, 0<x<2
gp(x) = {O, otherwise )

SNNs trained with the SNN-DC model are suitable for rate-
coding spike inputs such as Poisson spikes, which assume no
temporal correlation between adjacent time steps. Compared to
the SNNs converted from ANNs in [7-8], which are also
designed for rate-coding spike inputs, our SNNs using the SNN-
DC model can achieve good accuracy with much fewer time
steps (even with one time step), because the proposed SNNs are
directly trained over many single-time-step training samples.
Corresponding experimental results will be shown in Section III.

B. Spiking neuron with continuous integration (SNN-CT)

For spike input encodings other than rate-coding, the SNN-
DC model may not be sufficient to capture the temporal
correlation between time steps. By including membrane
potential integration across multiple time steps, the SNN-DC
model can be extended to a spiking neuron model with
continuous integration, which we denote as SNN-CT:

vE(E™) = XM(al  OwWEY) + bl + vkt — 1), (5)
ag () = v (vE (), (6)
vE(t) = vE(t™) — 0 - ag (D), (7

where vE(t™) and vE(t) are the membrane potentials of neuron
k at time step ¢ before and after the neuron firing check. The
initial membrane potential is set to zero (v (—1) = 0). When
vE(t™) exceeds the threshold 6, the neuron fires and the
membrane potential is decremented by 6 as shown in (7) [8]. To
enable SNN-CT training with BP-based stochastic gradient
descent, the same straight-through estimator shown in (4) is
used. Compared to conventional frame-based ANNs, SNN-CT
generates outputs with one more dimension: time. We design
appropriate loss functions to train SNNs over all the time steps
of interest. For example, to train the SNN to generate a specific
spike output pattern, the loss is selected as a distance function
between the actual and desired output spike patterns.
Alternatively, to train rate-encoded outputs over a period of time
related to the temporal inputs, the loss is chosen as a function of
the sum of output neuron spikes over that period.

III.  SOFTWARE RESULTS ON BENCHMARKS

We trained the discrete-time SNNs with both SNN-DC and
SNN-CT neuron models using the Theano framework. In the
following experiments, the Adam optimizer [15] is used to train
the SNNs, the batch size is 100, and the neuron threshold 6 = 1.

A. SNN-DC evalutaion for MNIST dataset

The MNIST [12] dataset contains 60k training and 10k
testing grey-scale 28x28 pixel images for handwritten digits.
The first 50k and last 10k images in the training set are used for
training and validation, respectively. We trained both MLP
SNNs and convolutional SNNs using SNN-DC neuron models
for MNIST. Spike inputs are stochastically sampled from the
static image pixels as a Bernoulli process with firing probability
proportional to the pixel value normalized to (0, 1). Each
training image is presented to the SNN once per epoch. The
same training image generates different binary spikes in
different epochs as in Bernoulli processes.

The MLP SNNs have two hidden layers with either 256 or
1024 neurons. The squared hinge loss function [16] is employed
for training. We performed training for 400 epochs, where
learning rate starts at le-3 and exponentially decays to le-7.
Dropout is employed with a dropout ratio of 0.2 for the input
layer and 0.1 or 0.3 for the hidden layers of 256 or 1024 neurons,
respectively. For baseline comparison, we trained two ReLLU-
based MLP ANNSs of the same network size and then converted
them to MLP SNNs following the technique described in [8].

The convolutional SNN architecture is 28%28-12¢5-mp2-
64c5-mp2-512fc-100. The two convolution layers have 12 and
64 kernels of size 5x5 (c5), respectively, each followed by a 2x2
max-pooling (mp) layer. After these layers, a fully-connected
(fc) layer of 512 neurons is added before the final output layer,
and no dropout is employed. Note that max-pooling is often
avoided in previous ANN to SNN conversion approaches [7],
due to the inefficiency of spike-counting/-coding before/after
max-pooling. Our proposed approach does not have this
limitation. We trained the convolutional SNN for 200 epochs,
with the learning rate decaying from le-3 to le-5.

Fig. 2 shows MNIST classification accuracies of four MLP
SNNs and the convolutional SNN as a function of time steps.
The proposed SNNs using SNN-DC achieve high accuracy even
with only one time step, whereas the SNNs converted from ANN
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Fig. 2. MNIST accuracies for different time steps (averaged over 20 tests) are
shown for various SNN designs.

(ANN2SNN) require 4-16x more time steps to achieve the same
accuracy. Our convolutional SNN achieves 99.44% accuracy
with 256 time steps and 99.40% accuracy with only 8 time steps.

B. SNN-CT evaluation for N-MNIST dataset

The Neuromorphic-MNIST (N-MNIST) [13] dataset is a
spiking version of the original frame-based MNIST dataset. N-
MNIST dataset images (34x34 pixels) are generated by moving
an asynchronous time-based image sensor (ATIS) in front of
the MNIST images (Fig. 3). A 3-phase saccadic movement by
the ATIS generates two types of events: an on-event for pixel
intensity increase; an off-event for decrease.

t=0 t=15

Fig. 3. An example of discrete-time N-MNIST input spikes (digit “7”) at four
time steps (=0, 5, 10, 15). Note that the digit “7” is moving downward.

In our experiment, only the on-events in saccade-1 (sensor
moving up, digits moving down) are used for training and
testing a discrete-time MLP SNN with the SNN-CT model. The
100 ms duration of saccade-1 is equally divided into 16 bins,
corresponding to 16 time steps. An input neuron spikes if any
on-events of its associated pixel occur in that time bin. To
demonstrate the proposed SNN’s capability to capture temporal
information, we expand the saccade-1 dataset by adding the
reversely played data with digits moving upwards. Therefore,
training/validation/testing sets now consist of 100k/20k/20k
images, with half moving upward and half downward. We
trained an MLP SNN consisting of two 256-neuron hidden
layers of 256 neurons and a 12-neuron output layer for this
augmented N-MNIST benchmark. Note that our MLP SNN is
trained for dual tasks with 10 output neurons for digit
classification and 2 output neurons for upward and downward
motion recognition.

During training, the squared hinge loss function is applied
to output spike counts. We trained the SNN for 200 epochs with
the learning rate decaying from le-3 to le-5 and a dropout ratio
of 0.2/0.1 for the input/hidden layers. For testing, we classify
the digit and its motion direction based on output neuron spike
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Fig. 4. N-MNIST accuracies of digit classification and motion recognition of
the proposed MLP SNN-CT as a function of time steps.

counts. Digit classification and motion recognition accuracies
are 96.33% and 99.83%, respectively. This shows that our SNN
using the SNN-CT model is successfully trained to extract
temporal information from input spikes. For real-time
processing with incomplete saccade-1 presentations, the test
accuracies after 1 to 16 time steps are shown in Fig. 4. For both
tasks, accuracies increase as the number of time steps increase.
Fewer input spikes in the last few time steps cause the motion
recognition accuracy to slightly decrease.

IV. HARDWARE IMPLEMENTATION RESULTS

We designed neuromorphic hardware for discrete-time MLP
SNNs for MNIST and N-MNIST classification tasks in TSMC
28nm HPC CMOS. Both SNNs have two 256-neuron hidden
layers. The SNN-DC (SNN-CT) for MNIST (N-MNIST) has
784 (1,156) input neurons and 10 (12) output neurons. Synapse
weights are stored in on-chip SRAMs, and the neuron membrane
potential values are stored in registers. Fig. 5 shows the overall
hardware architecture, where synchronous clocking is used with
extensive clock gating. We employ parallel output neurons for
the hidden/output layers, while the input spikes of the neurons
are processed serially in each clock cycle.

A. Spike scheduler for event-driven operation

A spike scheduler featuring 256-/784-/1156-input priority
encoders sequentially generates active presynaptic neuron
indices from binary input spike vectors. The generated neuron
index is sent to the weight memory to fetch the weights for all
parallel postsynaptic neurons, which are then integrated onto
the neurons’ membrane potentials. After all input spikes are
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Fig. 5. Hardware achitecture for the proposed MLP SNNs. Total weight
memory of SNN-DC (SNN-CT) for MNIST (N-MNIST) is 289 kB (346 kB).



processed, the postsynaptic neurons fire if their membrane
potentials exceed the threshold. Since only a small fraction
(4.8% in the SNN-CT for N-MNIST dataset) of the presynaptic
neurons are active at each time step, the spike scheduler enables
event-driven computation for only active neuron spikes,
substantially reducing the latency and energy.

B. Pipeline architecture and handshaking

All SNN layers are pipelined to improve throughput. Since
the number of active spikes vary with layer and time, handshake
signals are exchanged between adjacent layers to reduce the
overall latency. Each layer starts processing the its input spikes
for next time step when it receives a ‘done’ signal from its
previous layer and a ‘data_fetched’ signal from its next layer.
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Fig. 6. Classification accuracies for different precision of weights.

C. Precision, area, latency, and energy

Fig. 6 shows how classification accuracy varies with weight
precision. We selected 7-b weight precision for both SNN-DC
and SNN-CT, resulting in negligible accuracy loss compared to
floating-point precision. Synapse weights are stored in SRAM
generated from a memory compiler, and digital logic is
synthesized using standard cells. The total post-layout
neuromorphic processor area is 1.65 mm?, with 0.79 mm? logic
and 0.86 mm? memory. At the nominal supply voltage of 0.9 V,
power consumption results are obtained from Cadence Innovus
with data switching activity information from post-layout
simulation. The proposed SNN hardware implementation
results are summarized in Table I, where the capability to
train/classify with a small number of time steps greatly reduced
the energy down to 48.4 nJ per classification.

Fig. 7 shows a comparison to previous MNIST hardware
designs [17-19] for accuracy and energy. Compared to a recent
28nm ANN design [17], the proposed SNN-DC reduces energy
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Fig. 7. MNIST accuracy and energy comparison to hardware design literature.

by ~3X at iso-accuracy between 98% and 99%. Note that our
reported energy is based on post-layout simulation, while others
are based on chip measurement results.

TABLE L SNN HARDWARE IMPLEMENTATION RESULTS
. # of time | Freq. | Latency | Power | Energy (nJ) per
SNN Design steps | (MHz) | (cycles) | (mW) | classification
1 163 112 70.4 484
SNN-DC for MNIST | ¢ 163 | 1780 | 70.8 773
SNN-CT for N-MNIST 16 163 654 73.2 294

V. CONCLUSION

In this paper, we presented new training algorithms and
classification hardware design for discrete-time SNNs. By
employing binary activation with a straight-through estimator,
we can effectively train SNNs using error back propagation.
SNN-DC with discontinuous neuron integration is suitable for
rate-coded input spikes, and SNN-CT with continuous neuron
integration is more general and applicable for input spikes with
temporal information. The corresponding MLP SNNs were
implemented in 28nm CMOS, demonstrating high accuracy and
low energy. SNN-DC shows 98.0-98.70% accuracy at 48.4—773
nJ per classification for MNIST, and SNN-CT shows 96.33%
accuracy at 294 nJ per classification for N-MNIST.
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