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Improving Estimation of Vehicle’s Trajectory
Using the Latest Global Positioning System
With Kalman Filtering
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Abstract—This paper proposes several extensive methods to
predict the future location of an automobile. The goals of this
paper are to find a more accurate way to predict the future location
of an automobile by 3 s ahead, so that the prediction error can
be greatly reduced with the innovative idea of merging global-
positioning-system (GPS) data with geographic-information-
system (GIS) data. The improvement starts by applying existing
techniques to extrapolate the current GPS location. Comprehen-
sive Kalman filters (KFs) are implemented to deal with inaccuracy
in the different identified possible states an automobile could
be found in, which are identified as constant locations, constant
velocity, constant acceleration, and constant jerks. Then, the KFs
are set up to be part of a interacting-multiple-model (IMM) system
that provides the predicted future location of the automobile. To
reduce the prediction error of the IMM setup, this paper imports
an iterated geometrical error-detection method based on GIS data.
The assumption that the automobile will remain on the road
is made; therefore, the predictions of future locations that fall
outside are corrected accordingly, making a great reduction to
the prediction error. The actual experimental results validate our
proposed system by reducing the prediction error to around half
of what it would be without the use of GIS data.

Index Terms—Geographic information system (GIS), global po-
sitioning system (GPS), Kalman filter (KF), trajectory prediction.

I. INTRODUCTION

CCURATELY predicting the future location of a vehicle

is a very important and relatively difficult topic in in-
telligent transportation systems. It can be effectively used in
obstacle-avoidance systems for vehicles or robots.

Many of the existing obstacle-avoidance systems currently
being researched are limited to line-of-sight sensors, such as
those described in [1]-[9], which uses sensors around the
vehicles to detect nearby objects. For a long-range obstacle-
avoidance system, other types of sensors need to be imple-
mented, such as those presented in [10] and [11].
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Fig. 1. “C” crossing.

Fig. 2.

“S” crossing.

Studies such as [10] or [11] investigate the option of using
global-positioning-system (GPS) data collected from the differ-
ent vehicles to predict the future location of each vehicle. The
methods used to make these predictions are somewhat simple
and do not give very accurate results in scenarios such as curves
(see Figs. 1 and 2), where the estimated future position of the
vehicles will not be a straight path.

It is clear from the current research that we need a more
accurate way to predict the trajectory of vehicles in all different
scenarios. This is where the Kalman filter (KF) comes into play.
The KF has a long history of accurately predicting the future
states of a moving object and has been applied to many different
fields, which is why it has been chosen for this paper [12]-[15].

The contribution of this paper is to investigate the viable idea
of using a geographic information system (GIS) to reduce the
error in the prediction of the future location of an automobile,
particularly during curves. The system implemented in this
paper consists of an IMM with different KFs using a GPS to
get the spatial information of the vehicle. There are a number
of existing studies concerning the best methods to take spatial
coordinates that fall outside of a defined road and to estimate
where they would fall on an actual road, which is also known
as map matching. For example, in [16]-[19], the authors go
into a lot of detail to explain the different errors that need to
be accounted for when using a GPS sensor (among others) and
data for road maps (i.e., in a GIS) and how the GPS bias can
be utilized to improve map-matching accuracy. Other studies
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such as [20] and [21] look into the problem of GPS outages
and how the position of a vehicle can be estimated during the
outage through the use of KF and map-matching techniques.
This paper compares the experimental results of predictions
done with and without our GIS-error-correction algorithm and
does not consider the problem of GPS outages since other
researchers are working solely on this issue.

This paper is based on the use of a GPS receiver to obtain
location information and to be able to estimate the projected
path for a vehicle. There are many factors that can degrade the
GPS signal and thus affect its accuracy, but there are also some
innovative ways of correcting these errors. The Holux GR-213
1-Hz GPS receiver used in this paper is wide-area augmentation
system (WAAS) enabled.

The WAAS is a system developed for civil aviation by
the Federal Aviation Administration in conjunction with the
United States Department of Transportation. It is a nationwide
differential GPS system where base stations with fixed receivers
calculate and transmit the GPS error to the geostationary satel-
lites in its view, which in turn broadcast the corrections that
can be used by individual WAAS-capable GPS receivers. Its
accuracy is less than 3 m 95% of the time, and our GPS receiver
claims to have an accuracy value of less than 2.2 m [22].

Similar systems designed to predict a vehicle’s trajectory
implement the use of other types of sensors to be able to get
an accurate estimation, but this paper looks into the possibility
of using a commercially available inexpensive but accurate GPS
receiver to do a similar task already implemented in some areas
[12], [14], [15], [23]-[25], and it takes advantage of using a
location-based system such as knowing where on a road map
the vehicle is located.

To be able to predict a vehicle’s future location, we used the
KF. The KF is a set of mathematical equations that provides
an efficient computational (recursive) method to estimate the
future state of a process. The filter is very powerful because it
supports the estimations of past, present, and even future states,
and it can do so even when the precise nature of the modeled
system is unknown [25]-[36].

The multiple-KF-model approach was chosen over one com-
plex model because setting up multiple smaller models for
each different scenario would be simpler than defining one
complex model that can be accurate in many different scenarios.
Each simple model is good for one specific set of conditions;
therefore, several models need to be defined to be able to cover
most, if not all, possible scenarios in which a vehicle can be
found. For our setup, four models have been identified to cover
most of the vehicles’ behaviors: a vehicle that is not moving,
a vehicle traveling at (CV), a vehicle traveling with constant
acceleration (CA), and a vehicle traveling with a constant jerk
(C)) (i.e., a constant change in acceleration). These models
provide a mathematical set of equations that can be used to
predict the vehicle’s future location after a set amount of
time Ak.

This paper presents the trajectory estimation at 3 s ahead of
time, which is based on the average human reaction time of
1.5 s to stop a vehicle [37]. We chose to look at 3 s ahead
of time as a reference point that is double the reaction time of
an average human being. In reality, this number will probably
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Correction Step
(a) Calculate the Kalman Gain
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(b) Correct the a priori state estimate
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(c) Correct the a posteriori error
covariance matrix estimate
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Prediction Step
(a) Predict the state

x, = Ax, ,
(b) Predict the error covariance matrix
B =AR A" +Q

Fig. 3. Kalman Filter.

vary in relation to the speed and the type of the vehicle since a
faster or heavier vehicle will need more time to slow down. The
fastest data rate of the GPS receiver we used is 1 s (Ak = 1),
so that it is the rate the system will run at, which is set up to
estimate the location of the vehicle 1 s later in time. To be able
to obtain an estimation for the location of a vehicle 3 s later in
time, we need to run the prediction steps of the KF system with
AkE set to 3 s and use the IMM to obtain the prediction. This
extra step to estimate the 3-s-ahead location adds very little run
time to the overall system since it is only used to predict the
location and no correct step is needed.

II. KF

The KF estimates a process by using a form of a feedback
control loop. The filter estimates the process state at some time
and then obtains feedback in the form of (noisy) measurements,
and then, it repeats (see Fig. 3). In Fig. 3, the following notation
holds:
state estimate
measurement data
Jacobian of the system model with respect to state
Jacobian of the measurement model
process-noise covariance
measurement-noise covariance
Kalman gain
estimated error covariance
prediction noise
measurement noise
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As such, the equations for the KF fall into two groups: the
“prediction step” and the ‘“correction step.” The prediction-
step equations are responsible for projecting forward (in time)
the current state and error-covariance estimates to obtain the
a priori estimates for the next time step. The correction-
step equations are responsible for the feedback, i.e., for
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incorporating a new measurement into the a priori estimate to
obtain an improved a posteriori estimate.

For our system, the state vector for this system consists of
two parameters obtained from the GPS sensor, with each one
decomposed into its = and y components. The general form of
the state-estimate matrix is shown as

ey

v [:cq, ] . {Position of vehicle
Uy Velocity of vehicle

The elements of the state vector in (1) were selected to ac-
count for all the measurements available from the GPS sensor,
and from them, we derived any other variables needed for the
KF models. Keep in mind that each of the components of the
state estimate in (1) has z and y components on it. Therefore,
for every zj represented in the equations, there will be xg,
and 2py,.

The error-covariance matrix is a data set that specifies the
correlations in the observation errors between all possible pairs
of vertical levels. The error covariance for each KF was approx-
imated by running the filters on their own, but its value gets
adjusted every 1 s in our setup.

The estimated error covariance P is used together with the
Jacobian matrix H and the measurement-noise covariance R to
calculate the Kalman gain K, as shown in Fig. 3. These values
are given as follows:

P [ 2oy Ty )
| ey vy
S
h(z, v) = iﬂﬂ 3)
[ o
H=|—h 4
_ax (JC, O):| 'f)zg(k'*l) ( )
I 0
R—o? . {0 1} 5)

Once the Kalman gain K is calculated, the system looks at
the measured data Z to correct the predicted position and also
the covariance error. Since this system only obtains measure-
ments from a GPS receiver, only locations, speed, and heading
angles can be obtained; therefore, the other two parameters
need to be calculated from the measured data. The acceleration
is calculated from the velocity difference between the current
and previous readings, and similarly, the jerk is calculated from
the acceleration difference between the current and previous
values. For this paper, instead of using the current speed and
heading from the GPS sensor, the average speed parameter was
also similarly derived from the location difference between the
current and previous values.

Another important item to point out is that this paper does
not look into solving the GPS measurement errors that are
due to many factors. One of these error contributors is the
“signal multipath” problem, where the signal reflects offly large
objects. In this paper, we are assuming that these errors are
minimal since the experiment is done in a very rural area. In
addition, signal delays (i.e., ionosphere and troposphere delays)
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can cause the location readings from the GPS to bounce around
and imply movement when the vehicle is not even moving.
There are many error contributors to the GPS receivers, but we
will assume them negligible in this paper to concentrate on the
main objective of this system.

After the correction of the previously predicted values, the
system is ready to predict the next position by using the state-
vector equations. The filter estimates also the error covariance
of the estimated location by using the Jacobian matrix A
together with the process-noise covariance (), where

A= [éfxf (x, w)] . ©)

z=x(k—1)
w=0

To obtain an accurate prediction of the vehicle’s future loca-
tion, four adaptive prediction algorithms are defined to account
for the possible scenarios. The state equations are very different
between the models. The following four models account for
most, if not all, possible situations in which a vehicle could be
found.

1) The constant-location (CL) model is

(k) =24k — 1) +w- Ak

vy (k) =0. (7)
2) The CV model is

(k) =z (k — 1) + (vu(k — 1) + w) Ak
vy (k) =v,(k— 1) +w. (8)

3) The CA model is
1
(k) =zp(k — 1) + vy (k — 1) Ak + 3 (ay(k — 1) 4+ w) AK?

(k) =vu(k — 1) + (ay(k — 1) + w) Ak. )

4) The CJ model is

zo(k) =2, (k — 1) + v,(k — 1) Ak + %av(k‘ — 1)AK?

1
+ G (o (k — 1) + w) AK?

vy (k) =vy(k — 1) + ay(k — 1)Ak

+ L Gk —1) +w) AK?.

5 (10)

In (7)-(10), Ak represents the period of time passed; there-
fore, the variables at k£ — 1 represent the data from one period
of time ago. In our setup, the period of time is driven by the data
rate of the GPS (i.e.,1 s). The process-noise covariance for each
of models w is based on the constant term only. For example,
for the CV model, the process-noise covariance is based on the
velocity term only, and it can be derived from the measured data
by applying the CV model to it.

Equations (7)—(10) represent the four states in which a vehi-
cle can be found: at rest, moving at CV, moving at CA, or mov-
ing at a CJ. Each of these models consists of four state equations
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used to calculate each component of the state-estimate matrix
defined in (1). These models are very important as they are the
heart of the prediction system. They need to cover most, if not
all, of the possible scenarios, or the predictions will contain
more errors.

For more details on how to set-up a KF and a detailed
explanation of all required mathematical equations, please refer
to publications such as [25], [27], and [38].

III. IMM ESTIMATION

Because the dynamics of automobiles can vary over time,
we already defined the state equations (7)—(10) to capture the
different states in which a vehicle can be found, but these
independent state equations need to be merged to produce only
one prediction.

There are several algorithms that exist to modify the stochas-
tic information, and they are well known for their ability to
automatically adapt the filter in real time to match any variation
of the errors involved.

The interacting-multiple-model (IMM)-estimation algorithm
calculates the probability of occurrence for each of the in-
dividual filters and uses that information to identify which
of the filters will be predominant. This algorithm continues
recalculating the probability for each iteration throughout the
whole run, weighing the new probability values against the
probability values calculated in the previous iteration.

The IMM filter calculates the probability of success of each
model at every filter execution, providing a combined solution
for the vehicle behavior. These probabilities are calculated ac-
cording to a Markov model for the transition between maneuver
states, as detailed in [28]. To implement the Markov model,
it is assumed that, at each execution time, there is probability
p;; that the vehicle will make a transition from the model
state ¢ to state j. Equation (11) shows the transition matrix
for the four defined KF models in Section II. This is given as
follows:

CL—CL CL—CV CL—CA CL—CJ
_|CV=CL Ccv—=CV CV—CA CV—CJ
Pij= 1 cA-CL CA—CV CA—CA CA—CJ
CJ—-CL CJ—Cv ddJ—cCcA dcd-—-a

(1D

The IMM can be described as a recursive suboptimal algo-
rithm that consists of five core steps:

Step 1) calculation of the mixing probabilities;

Step 2) mixing;

Step 3) mode-matched filtering;

Step 4) mode probability update;

Step 5) estimate and covariance combination.

As in any recursive system, the IMM algorithm needs to be
initialized first before it can start its four-step recursion. The
number of filters used is four.

Step 1) Calculation of the mixing probabilities. The probability-
mixing calculation uses the transition matrix in (11) and the
previous iteration model probabilities in (16) to compute
the normalized mixing probabilities in (12). The mixing
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probabilities are recomputed each time the filter iterates
before the mixing step. This is given as follows:

s ij Ae—1 (4
/\k(l‘]):;?ﬂkil(l)

S pdes (i)

i=1

(12)

Step 2) Mixing. The mixing probabilities are used to compute
new initial conditions for each of the N filters, i.e., four
in our case. The initial state vectors are formed as the
weighted average of all the filter state vectors from the
previous iteration (13). The error covariance correspond-
ing to each of the new state vectors is computed as the
weighted average of the previous iteration error covariance
conditioned with the spread of the means as follows:

Z)\k 1(i15) 2}

mk 1= (13)

N
PP =" Nalil)
=1

T
i 0] i .0
X {Pk—l + { -2l 1} [%-1 - xkjfl} } .

(14)

Step 3) Mode-matched filtering. Using the calculated :%0‘
and P, 0j 7, values, the bank of four KFs produce outputs

7, the covariance matrix P,g, and the probability density
function f,,(zx) for each filter (n) in (16), according to
the equations for the KF. The covariance for each filter is
represented by S in (15) and (18) and is given as

Sy =H-P-HT

fn(zk) =

15)
]. e*(%)‘(VT-Sfl-V)'
(2m)2 |Sk|

(16)

Step 4) Mode probability update. Once the new initial condi-
tions are computed, the filtering step (step 3) generates
a new state vector, an error covariance, and a likelihood
function for each of the filter models. The probability
update step then computes the individual filter probability
as the normalized product of the likelihood function and
the corresponding mixing probability normalization factor.
This is given as follows:

Me(d) =

N me 1 a7
; n(z) =1

Step 5) Estimate and covariance combination. This step is used
for output purposes only; it is not part of the algorithm
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recursions. This is given as follows:
N
T = E A, - @,
J=1

N , ) ) T
Po=3 X {P,g + [iﬁi —:&k} [mfc —a%k} } (19)
=1

IV. GIS

A GIS is a system for capturing, storing, analyzing, and
managing data and associated attributes, which are spatially
referenced to the Earth. It is a tool that allows users to create
interactive queries (i.e., user-created searches), analyze spatial
information, edit data and maps, and present the results of all
these operations. In this paper, we extracted the road infor-
mation from the maps being used to display the location of
a vehicle. It is not a very accurate map, but it is enough to
demonstrate if the implementation of GIS information with the
IMM system improves the prediction of the future location of
the vehicle or not.

The idea of using GIS data to correct an invalid estimation
came about by looking at simulations during curves. When the
vehicle enters a turn, the prediction of its future locations is very
erroneous, i.e., many times outside of a road. If the system had a
way of knowing the direction of the road ahead and whether the
estimated future location was on an actual road or not, it would
be able to correct its estimation and improve its reliability. This
is where the GIS comes into play, with the assumption that the
vehicle will always remain on the road. It is also assumed that
the driver is handling the vehicle properly and is awake for this
GIS correction to be practical. These assumptions, although
restrictive, still allow the correction to be useful in scenarios
such as road intersections.

When a road is designed, the radius of curvature is known,
but this information is not available with the GIS data; there-
fore, a new method is needed to be able to project the estimation
outside of the road back to the road.

Because of the limitation of the mapping software used
during this paper (i.e., MapPoint), the only available function
to interact with GIS data was to check whether the specific
location was on the road or not. A function that provided the
distance from the current location to the nearest road would
have worked a lot better, but it was not available in MapPoint.

To overcome the limitation aforementioned, a method to map
the estimated future location outside of the road to an accurate
location inside the road had to be designed. From the current
GPS location, distance r and angle $ shown in Fig. 4 are
calculated. Angle (3 varies with the direction of the movement
and is calculated from the east being 0 °. r is the distance
between the current location and the estimated location. This
is given in the following:

count — circumference 20)
arc
360 d
o =208 Q1)

count
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Fig. 4. Displaying parameters used in the method to estimate position on the
road.

Fig. 5. Geometry used to map the estimated future location outside the road
to a location inside the road.

Variable arc used in (20) is the predefined distance between
the points in the circumference. The smaller this value is, the
smaller the increments between check points in the circumfer-
ence are and the more accurate the measurement will be. Due
to the fact that the arc value is smaller, more points are needed
to be checked; thus, it requires more central-processing-unit
processing time. Therefore, for this paper, arc has a value of
0.6 m. This value was selected because the smallest road, even
if only a one-way lane, cannot be less than 2-m wide. If we
used a value bigger than 2 m, we could have the possibility
of missing a road between check points; therefore, we chose a
significantly smaller value. Angle « calculated in (21) is the
actual angle increment needed to match the predefined arc
distance on the circumference.

With angle 3 shown in Fig. 4 and angle « calculated in
(21), we can start running through the checkpoints of the
circumference. The estimated location is found at angle (3, and
since this estimated location cannot be very far from the actual
road, we start checking from angle /3. The system will check
both the clockwise and counterclockwise increments of « until
a point is found on the road. Fig. 5 provides a graphical view
of the GIS error checking implemented. The clockwise and
counterclockwise increments will continue to occur until either
aroad is found and a correction on the estimated future location
is made or a maximum number of increments is reached and no
correction is made. If a correction is made, the new estimated
future location will still be the same distance away r; the only
difference is its location coordinates.

In Fig. 6, we can see in MapPoint the current location in a
green dot, the predicted future location in a yellow dot, and the
GIS-corrected data in a red dot. The smaller red dots are the
clockwise and counterclockwise increments aforementioned.
Visually, in Fig. 6, the estimated future location is probably
incorrect as there is no road in that location. Using GIS data to



3752

Fig. 6. GIS error correction in MapPoint.
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Fig. 7. Trajectory recorded in GPS log file, Essex Jct., Vermont, USA.

locate the road, we can adjust the predicted location to be on the
road at the same distance away as the velocity will probably not
change significantly under normal circumstances. The result is
a more accurately predicted future location. This method seems
to work well during curves, but as stated earlier, it requires
several restrictive assumptions. Therefore, this system could
only be useful as a part of a larger and more robust collision-
avoidance system that took into account some of the scenarios
not covered by our proposed method.

V. EXPERIMENTAL RESULTS

The experimental setting for testing the models described in
Section II needs a log file of GPS data that contains different
scenarios, particularly those currently causing problems in the
existing systems (see Figs. 1 and 2). Fig. 7 shows the trajectory
recorded for this paper. It has many turns and contains various
changes in speed and direction. Because we are trying to
improve the trajectory estimation during curves, Fig. 7 also
shows the curve selected for this paper.

The selected road curve is definitely a nice sharp turn that
occurs at medium speeds (i.e., ~60 km/h). We felt that this turn
would be a good scenario to test our improvements on trajectory
estimation.

The code was implemented in Microsoft Visual Basic 6 and
Microsoft MapPoint 2004, allowing the software to display
information in real time on the map as the vehicle moves. Being
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TABLE 1
AVERAGE 3 S AHEAD ESTIMATION ERROR

CL Ccv CA CJ

KF 14.9002 9.8786 7.0812 8.9952
Units are in meters. Used 21 data points for the selected curve.

TABLE 1II
AVERAGE ESTIMATION ERROR

Estimated position 1 sec ahead 3 sec ahead
IMM 2.9056 8.7880
IMM with GIS 1.7834 4.8244

Units are in meters. Used 21 data points for the selected curve.

able to look at the estimated points on an actual map makes it
easier to visually inspect and present the system.

A. Implementation of the KFs

To be able to evaluate, the four KF models, i.e., KF-CL,
KF-CV, KF-CA, and KF-CJ, had to be coded, tested, and tuned
individually to get the most possible accurate estimations. It
is given that one of these models will not be very accurate all
the time on a real-time GPS log; therefore, in order to calibrate
them individually, the GPS log for the full trajectory shown in
Fig. 7 was used to calculate the measurement-noise covariance
and also each of the process-noise covariance for the four
models to exercise only one model at a time. To find the values
for the process- and measurement-noise-covariance matrices,
we smoothed out data using a moving average window to
remove any outlier. The measurement-noise covariance was
calculated for each of the filters by calculating the covariance of
going frame by frame and calculating the error of the real data
to fit into each of the KF models defined in Section II.

Once the filters were tuned, they were individually run
through the different scenarios, and only the results for the data
points in the selected curve were recorded in Table 1.

Running the four filters together showed that, when one
was very close to the real value, the other ones were not that
accurate. In some instances, more than one filter was accu-
rate, which was probably when speed changes or acceleration
changes were very small. In other cases, none of the four filters
was accurate at all, which was probably because of an abrupt
change in direction or even in speed. The system reads data
from the GPS every 1 s; therefore, it is possible, although not
common at higher speeds, to have a big change occur during
that 1 s, particularly in curves. For the most part, 1 s will
not allow the speed and direction to change by a big amount
(except in some lower speed scenarios such as at intersections
when making a sharp turn), allowing the filters to estimate
the next location somewhat accurately. The error calculated in
Tables I-III are based from the actual GPS location. It is the dis-
tance between the estimated 3-s-ahead location and the actual
GPS location 3 s later. Actual GPS errors are not accounted
for in this paper; therefore, both the estimated future location
and the actual GPS location should be similarly affected by the
GPS error.
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TABLE III
AVERAGE ESTIMATION ERROR

Estimated position 1 sec ahead 3 sec ahead
IMM 1.9461 6.5276
IMM with GIS 1.8872 5.1423

Units are in meters. Used 800 data points from trajectory in Fig 8.

T T T T T T )
GPS o KF-CL o KF-CV + KF-CA =« KF-CJ

-100f

-150f

-200

Latitude distance from origin (meters)

650 700 750 800 850
Longitude distance from origin (meters)

600

Fig. 8. Comparison of the estimated 3-s-ahead location and actual GPS
readings for all four KF models using 21 data points for the above specific
turn.

—&—KF-CL —8—KF-CV —+— KF-CA ——KF-CJ

error (meters)
-
w

10 15 20
data points from above graph

Fig. 9. Calculated error for all KF models between the 3-s-ahead estimated
location and the actual location 3 s later using 21 data points for the above
specific turn.

In Figs. 8 and 9, we can analyze the results of running the KF
by themselves (i.e., each KF is predicting the future location
3 s later in time). Fig. 8 shows the predicted location 3 s
ahead of time on the spatial trajectory (i.e., the same curve,
as shown in Fig. 7), whereas Fig. 9 shows the error for each
of the predictions of the future vehicle’s location 3 s later in
time compared with that of the actual GPS measurement. Both
graphs are needed because KF-CL seems to be accurate in
Fig. 8 because it will always be on a real GPS location since
it assumes no movement (i.e., CL), but it is the KF-CL that
shows a lot of errors in Fig. 9 since the vehicle is always moving
through this curve. The estimated future location for this model
will be where the current GPS location is (right over the GPS
line), but this will not be accurate if the vehicle is moving, and
this is where Fig. 9 displays this error.

Because the curve selected in Fig. 7 has been driven at a
somewhat constant speed, we can see that both the KF-CV and
the KF-CA were the most accurate in this case until the curve
started.
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B. Evaluation of the IMMs

To set-up the IMM, it was necessary to calculate the tran-
sition probability matrix in (11) using the GPS log for the full
trajectory shown in Fig. 7. From this full GPS log that contained
multiple scenarios, we determined which transition was occur-
ring frame by frame by comparing the actual measurements
from the GPS to the smoothed measurements. The smoothing
of the data was done with a rolling window using a combina-
tion of median smoothing, splitting the sequence, and Hann’s
sequence, which removed any abrupt changes from the data.
Each transition was determined by the type of change, such as
no change, a constant change, and so on. Similarly, by calcu-
lating the covariance of the differences in the measurements
to each other, we obtained the measurement-noise-covariance
matrix R. Lastly, by calculating the covariance of the differ-
ences in the measurements compared with their respective x
and y components, we obtained the process-covariance noise
@ for each KF. From this type of information, we obtained the
following transition probability matrix:

0.154 0.154 0.385 0.308

i = 0.011 0.470 0.305 0.214 22)
0.014 0.259 0.458 0.269
0.002 0.243 0.508 0.247

Looking at (22), we can clearly identify some scenarios. For
example, when in a CL state (first row), it is more probable for
it to change to a CA or CJ state than to a CV state, and this is
understandable because, for a vehicle to start moving when it is
at a complete stop, it will need to accelerate.

In addition, we are going to look only at the 3-s-away
estimation results as this is the most important one for us.
Looking at a 1-s-ahead estimation gives us some very accurate
results, but this would not be enough warning time for the driver
to react; therefore, we will look at a 3-s-away estimation and
how accurate we can get that.

The results obtained from the IMM were not good enough to
make this system very reliable by itself. In Table II, we can
identify a 45% improvement when using the GIS-correction
method, but the error is still significant when predicting the
vehicle’s location 3 s ahead of time. Table III, which is similar
with Table II, shows the average errors for the estimated future
vehicle’s location 1 and 3 s ahead of time, but the whole
trajectory, as shown in Fig. 8, is used to test this system.
The numbers do not show a great improvement as in Table II
because, when the vehicle is traveling in a straight line, the error
in the estimated future location is smaller; therefore, adding
GIS correction is not as beneficial. Overall, although GIS does
show to be very helpful, particularly during curves, it is still not
enough to use it by itself as it was set up here. A much needed
improvement would be the implementation of more sensors that
could run at higher frequencies.

In Fig. 10, we can compare visually the estimated 3-s-ahead
positions with the GPS values. It also shows that the IMM had a
lot of error at the beginning of the turn and, after a few seconds,
converged more with the actual data. Therefore, this method
used as part of a collision-avoidance system would produce
many false warnings.
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Fig. 10. Comparison of the 3-s-ahead estimated location between IMM,

IMM-GIS, and the actual GPS location 3 s later using 21 data points for the
selected curve.

L)
® o 2 % ¢ o0 ©
®

é 7

L ) ] ®

/ ®

o o @ o®
Fig. 11. Frame shots of simulation during the selected curve.

C. GIS

The implementation of GIS data with the IMM-estimation
process showed very promising results.

In Fig. 11, we can see the frame shots of the simulation pro-
gram. It shows in light yellow the three positions corresponding
to 1- and 3-s-away estimations. In red, the images show the
corrected predicted location for each of the 1- and 3-s-away
estimations. It is easy to see how much the GIS correction helps
with the actual estimation of the future positions of the vehicle.
To look at some numbers, we can use Table II to confirm this
visual conclusion. The table shows the average error for the
selected turn, and we can see a noticeable difference compared
with the method without any GIS correction, particularly when
looking at the 3-s-ahead estimation. This method is a lot more
reliable and should give a lot less false warnings because its
approximated 3 m of error is a little more than a compact-
vehicle width and about the same as its length.

Fig. 12 is a further visual aid to be able to compare it to the
previous two methods and see how much more accurate this is.

The GIS-error-correction method used in this paper is some-
what simple and straightforward, and it can possibly be im-
proved with other existing methods, but it is only enough to
help us determine whether using GIS data with our trajectory
estimation models is an improvement.

VI. CONCLUSION

This paper has implemented four KFs to account for the
identified possible states (i.e., CLs, CV, CA, and CJ) an auto-
mobile can be found in. These four KFs were set up to be part
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Fig. 12.  Error measured between the 3-s-ahead IMM estimation with and
without GIS correction and the actual GPS readings 3 s later using 21 data
points for the selected curve.

of an IMM system that provided the predicted future location
of the automobile up to 3 s ahead of time. To improve the
prediction error of the IMM setup, this paper has added an
iterated geometrical error-detection method based on the GIS
system. The assumption made was that the automobile would
remain on the road; therefore, the predictions of future locations
that fall outside of the road were corrected accordingly, making
great reduction to prediction error, as shown in the experimental
results.

The research-observed estimation values at 3 s ahead of time
to allow for enough reaction time if this setup were to be used
in some type of driver’s aid system. As shown in this paper, a
3-s-ahead estimation has a lot of error, but with the help of GIS
data, this error can be reduced drastically, particularly during
turns, which is where research seems to have the most problems
with [10].

The idea of merging spatial GPS data with GIS road informa-
tion, which is given some assumptions, has proven to improve
the accuracy of predicting a vehicle’s future. In addition, in
some scenarios, it could be an interesting addition to a collision-
avoidance system.

Despite the improved predictions shown in this paper, this
system can be further improved. The implemented GIS method
in this paper has been straightforward and could be improved
by looking into more detailed GIS data and by being able to
determine the lane the vehicle is driving in to correct with
more accuracy a badly estimated future location. The spatial
data used from the GPS can also be complemented by using
other types of sensors that are less error prone and can run at a
frequency higher than 1 Hz.
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