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a  b  s  t  r  a  c  t

Space-charge  perturbs  ion  motion  and  affects  mass  accuracy  in  ion  trapping  mass  spectrometers.  In
Fourier  transform  mass  spectrometry  (FTMS),  both  ion–ion  and  ion–image  charge  interactions  have  been
examined  by  experiments  and  by multiparticle  ion  simulations  using  the  particle-in-cell  (PIC)  approach,
and  the  magnitude  of  observed  frequency  shifts  as  a function  of ion  number  agrees  with  theoretical  mod-
els.  Frequency  shifts  due  to  ion–ion  interactions  have  generally  been  treated  in  a time-integrated  fashion,
that  is, for  the  duration  of  the  transient  signal.  Aizikov  and  O’Connor  have  experimentally  shown  that
ell simulation
nalization method
e
t

there  is  a time-dependence  for  such  interactions,  with  a periodicity  that correlates  to  the  beat  period
between  isotope  peaks.  Here,  we  investigate  such  interactions  using  PIC  simulations  and  the  filter  diag-
onalization  method  (FDM)  for  obtaining  frequencies  from  very  short  durations  of  the  transient.  Periodic
decreases  in  observed  frequency  correlate  with  ion clouds  of isotope  peaks  coming  into  phase  in  their
cyclotron  orbit.  A similar  phenomenon  is observed  in  the  simulations  of ion  motion  in an Orbitrap  mass
analyzer,  corresponding  to the  axial  motion  of  isotope  groupings  moving  in  and  out of  phase.
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r transform ion cyclotron resonance mass spectrometry
S)  [1] provides the highest mass accuracy and highest
lution of any currently available mass spectrometer. The

 motion of an ion arises due to a radially constraining
 field and the frequency of this motion can be defined as:

(1)

s the magnetic field, q is the ion’s charge, and m is the ion’s
ues of cyclotron frequency (ωc/2�) range from tens of kHz
or most ions. The study of deviations from the expected

 frequency has been of continued interest in FT-ICR MS
 the desire to reduce mass errors to the sub-ppm range
ased.
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ctice, the magnitude of the observed cyclotron frequency
y reduced from the value predicted by Eq. (1) due to
lly repulsive trapping electric field, by the repulsive
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eld that exists between ions of like charge, also known
charge [11,12], and by ion–image charge interactions

5]. The space–charge induced frequency shift is generally
ated by the following expression:

�Gi

εoB
(2)

is the elementary unit of charge, � is the charge density,
eometrical description of the charge distribution, εo is
permittivity of space, and B is the applied magnetic

 �ωsc is the frequency reduction experienced by all
pendent of their m/z value. Examination of these terms

hat the effect is directly proportional to charge and ion
nd inversely proportional to applied magnetic field.

arge frequency shifts can be reduced experimentally by
f ion number and excitation conditions [16,17], which
on density, and post-experiment by mass calibration
3].

 space–charge frequency reduction is generally treated
ttp://dx.doi.org/10.1016/j.ijms.2012.06.010

e-integrated fashion, it has also been examined in a
endent fashion. As ion packets move into and out of
ith each other, their mutual repulsion increases and
s. The fast nature of such interactions requires a harmonic
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 technique that can operate on short time domain sig-
emonstrated in the work of Aizikov and O’Connor [8,9],
the filter diagonalization method (FDM) [24] was  utilized
t FT-ICR transients to reveal modulations in the orbital
ies of ions during an experimental acquisition. The fast
ransform (FFT) [25] has limited value when applied to

 time domain signals due to limited spectral resolution.
ve inversion techniques such as the short-time Fourier

 [26] or linear prediction [27] can also be utilized but have
 limitations. FDM provides an attractive method due to

tral resolution and moderate computational demands and
tly been applied to peptide, protein, and petroleum mass
8].

amine the nature of dynamic phase-dependent space
ents during Fourier transform mass spectrometry (FTMS)
nts in a controlled manner, particle-in-cell (PIC) ion tra-
lculations have been employed [29–33]. PIC calculations

n shown to accurately model experimental results in FT-
nd currently serve as a valuable tool to gain insight into

ntal aspects of ion behavior. A conceptual model has been
d to systematically examine the time-dependent space
duced frequency shifts due to isotopes of a molecular ion.

 of this model to selected peptides of a tryptic digest
 conditions of a typical MS  experiment. Space charge
e present in any ion-trapping instrument and extension
alysis to simulated orbitrap time domain signals are also
.

imental methods

particle  ion trajectory simulations were conducted
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 clusters located at the Foundation for Fundamental
 on Matter- Institute for Atomic and Molecular Physics
OLF) using a serial version of the PIC code and param-
marized in Table 1. Ion populations were constrained

 utilized for PIC simulations.

ulation

potential 1.0 V
 field 7.0 T
geometry Cubic

 Ellipsoid
or axis 0.2 cm
or axis 0.05 cm
nsion 5.08 cm

32 × 32 × 32
 particles 30,000–52,000

90 (Vp-p)
 steps 16,383

90 �s
 0.005 �s/step

 steps 1,045,876
97.5 ms

 0.093 �s/step

32 × 32 × 64
 acceleration 1300 V
istic radius 22 mm
trode radius 15 mm
lectrode radius 6 mm
otential −3500  V

 time step 0.131 �s/step
 duration 26.2 ms
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y a magnetic field of 7.0 T and trapped axially by 1 V.
rapping potential and an idealized quadrupolar trapping

 of a Penning trap were employed using particle-in-
ods to enable Coulombic interactions on a finite grid

 32 in dimension. The analyzer geometry in all simulations
cm × 5.08 cm × 5.08 cm,  corresponding to a 2-in. cubic cell.

 cells of arbitrary geometry will be implemented for fur-
ies. Prior to excitation, the ion cloud is generated as an
(major axis 0.2 cm,  minor axis 0.05 cm), with the major
llel to the magnetic field and a uniform distribution of par-
tial particle velocities are based on a Maxwell–Boltzmann
on at 300 K. For each particle, the direction of the veloc-

 is randomized. Prior to image current detection, a chirp
 (90 Vp-p) was utilized to produce an orbital radius of
ately 35%. The orbitrap geometry employed for PIC simu-

as  mathematically derived from the analytical expression
tential with relevant element radii listed in Table 1. Ions
ially accelerating by 1300 V toward the central spindle,
s  held at −3500 V. A charge collocation method was used
te the image charge current for the orbitrap [33]. Details

 the orbitrap simulation can be found in the supplemental

ementary material associated with this article can
, in the online version, at http://dx.doi.org/10.1016/
2.06.010.
ch computational experiment, a simulated time domain

 was  generated and a frequency domain spectrum was
sing the FFT incorporated in FOM-AMOLF’s AWE  software
FDM was  also imported in AWE. Frequency chasing exper-
ere performed using a segment of 15–25k data points and
ted 10k data points to provide overlap and reduce bound-
s. Frequency chasing entails performing FDM analysis of
l short segments of the transient. Changes in the observed

y of a selected ion can then be examined as a function of
tive to the start of the transient. Typical transients are 1 M
ts long, from which 100 short transients are extracted,

60% overlap of the data points between consecutive sec-
 transient. Visualization of the simulated ion cloud was
shed with in-house software (Particle Vis) developed at
OLF.

ts and discussion

 simple case of single ion detection in FT-ICR MS,  the tran-
ction signal is a sinusoid generated as the particle passes

surface of the detection electrodes in an alternating fash-
e case of ions of two distinct m/z values, two sinusoids,
uencies inversely proportional to each ion’s m/z value are
, with a periodically varying phase shift between the sinu-

 to the difference in cyclotron frequencies. As the phase
es 0◦, the ions are located on the same side of the analyzer

 maximum amplitude is observed in the time domain sig-
n the phase approaches 180◦, the two  ions are located on
sides of the analyzer cell, and a node occurs due to decon-

 interference in the image current signal. This well-known
 is the basis of isotopic beats in FTMS [35]. This illustrative
is difficult to generate experimentally due to the occur-
a variety of isotopes unless a high resolution isolation is
d with SWIFT [36]. As most systems lack this option, a
stem can be generated in a straightforward manner via
r simulation.
ttp://dx.doi.org/10.1016/j.ijms.2012.06.010

ablish a model for the study of space charge interactions,
ns were conducted based on the isotopes of substance
on was  selected as a model based on prior work by
nd O’Connor, but could have been arbitrarily selected. The

dx.doi.org/10.1016/j.ijms.2012.06.010
http://dx.doi.org/10.1016/j.ijms.2012.06.010
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Fig. 1. Time dependence of the instantaneous frequency, determined by FDM of short time segments, for a simulated FT-ICR time domain signal for the monoisotopic ion (A
peak)  of substance P. The simulated transient, inset at the bottom, appears as a gray box, as the cyclotron period is too short to observe on the 40 ms time scale of the plot.
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troduction of an ion corresponding to the ‘A + 1’ peak differing
 by the mass of one 13C incorporation is shown to introduce
anticipated isotopic beat in Fig. 2. The calculated cyclotron

. Simulated FT-ICR time domain signal for the monoisotopic ion (A) and (A + 1)
n of the time scale, bottom right, reveals the sinusoidal image current signal from
pecies, and the observed frequency is stable within 60 �Hz.

opic ion is denoted as ‘A’ with additional peaks differing
avy isotope as ‘A + 1’ and ‘A + 2’. At an applied magnetic

.0 T, the cyclotron frequency difference between ‘A’ and
‘A + 1’ and ‘A + 2’ are both approximately 60 Hz (16.7 ms
od) with the difference between ‘A’ and ‘A + 2’ as 120 Hz
eat period).

lation of ‘A’ only

mulation of only the A or monoisotopic ion results in
domain signal shown in Fig. 1. A sinusoid of constant

e is generated, but is not entirely apparent due to the
riod of oscillation. Due to the lack of additional iso-
eat pattern is not observed. FDM analysis of the signal

 a frequency that is stable to within 10 ppb. In the
f space–charge interactions, an ion’s cyclotron frequency
ely stable and systematic examination of the addition of
ractions could provide more precise methods for account-
uced perturbations to the cyclotron mode. The presented

simulated with a perfectly quadrupolar trapping potential
uced variation of only 60 �Hz. When compared to a sim-

ploying the trapping potential of a cubic cell, frequency
 ranged approximately 30 mHz, nearly three orders of
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e larger. This result further validates that the incorpo-
a more ideal trapping potential, through compensation or

 design, reduces the variation in measured frequency and
 a more accurate mass measurement.

of substanc
period of 16
cies.  The ins
and minim
overlapping
yclotron motion of the ions. No beat pattern is observed due to the lack

lation of ‘A’ and ‘A + 1’
ttp://dx.doi.org/10.1016/j.ijms.2012.06.010

e P and corresponding FDM frequency analysis. A beat pattern with a
.7 ms  is observed due to ∼59 Hz difference between cyclotron frequen-
ets show snapshots of the PIC results at times corresponding to maxima
a in the beat intensity, for which the isotopic cloud distributions are

 or in opposition, respectively.
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Fig. 3. Simulated FT-ICR time domain signal for the monoisotopic ion (A) and A + 2 of
substance P and corresponding FDM frequency analysis. A beat pattern with a period
of 8.3 ms  is observed due to ∼120 Hz difference between cyclotron frequencies. The
insets show
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 domain signals from the instrument, but we have been able to
uct ion trajectory calculations to simulate such an experiment.
 snapshots of the PIC results at times corresponding to maxima and min-
eat intensity, for which the isotopic cloud distributions are overlapping

ition, respectively.

y difference between these two ions is approximately
d corresponds to the beat period of 17.3 ms  in the time

s the ions come into phase with one another, an ampli-
imum is observed in the transient, whereas a node is

 when ions are on opposite sides of the analyzer due to
ve interference. Considering the location of each ion, the

 space charge interaction is anticipated to occur during
the charge density reaches a maximum.
nalysis of the simulated transient produces two  frequen-
shown in Fig. 2, the higher frequency due to the A peak and
quency due to the A + 1. Each frequency displays variabil-
eral Hz, but a periodic reduction of approximately 15 Hz

 for the A peak and 30 Hz for the A + 1. When the fre-
nalysis and time domain signal are aligned, the maximum
y shift is shown to occur at the beat maximum.

lation of ‘A and ‘A + 2’

ation of the ‘A + 1’ ion and incorporation of an ion 2 amu
an the monoisotopic ion generates the time domain sig-
n in Fig. 3. Due to the difference in cyclotron frequency
, the isotopic beat now occurs twice as often in the time
As depicted in the corresponding frequency chase, the
frequency shift now occurs twice as often when com-
the previous data for the A and A + 1 peaks and remains
ith the transient maxima. Frequency reductions of 15 Hz

z are observed, respectively, for the A and A + 2 peaks.
ion of further combinatorial possibilities due to isotopes
e, but not necessary, as the method has shown validity
pared to theory and prior experimental result.

lation of a protein tryptic digest

ations of the isotopes for a single charge state provide
validation and fundamental insight, but are of limited

 extend this analysis to typical experimental conditions,

is sh
an in
feren
appr
ulati
is kn
son,
appa
duri
for o
futu

3.5.  

S
FTM
for t
limi
such
freq
tuna
time
cond
ite this article in press as: F.E. Leach III, et al., Int. J. Mass Spectrom. (2012), h

ns were conducted based on a more complex mixture of
 ion assemblage was based on the components of a MALDI
S  spectrum acquired from a tryptic digest of BSA. Nine pep-

 their corresponding isotopes were selected as an example

Fig. 5. Sim
positions o
frequencies
ions at max
 analysis of the frequency shifts in the simulated cyclotron frequency
tense monoisotopic ion in a peptide mixture. For comparison, the FT
s shown.

ental acquisition and simulated peptide m/z values are
 as supplementary material).
. 4, the FDM analysis of the frequency corresponding to
oisotopic ion (1567 m/z) for the most abundant peptide
. A periodic reduction in frequency is shown to occur on
al of 23 ms.  The period corresponds to the frequency dif-
etween the monoisotopic ion and its ‘A + 1’ ion, which is
ately 44 Hz. This result is consistent with simplified sim-

esults for substance P discussed earlier as well as what
 experimentally in the literature [8,10–12]. For compari-
FT of the time domain signal is shown. The FFT result is the

 time average of the instantaneous variations in frequency
e experiment. A detailed examination of frequency shifts

 components of complex mixtures will be the subject of a
anuscript.

lation of ion motion in an orbitrap

 charge effects have not been examined in depth for orbital
t recent work has provided a mass calibration to account

 interactions [37]. The occurrence of isotope beating is not
 FT-ICR, and is known to occur in orbital FTMS instruments
e orbitrap [38]. The question arises as to whether similar

y shifts are present during an orbitrap experiment. Unfor-
ttp://dx.doi.org/10.1016/j.ijms.2012.06.010

ulated orbitrap time domain signal generated by summing the Z-axial
f the A and A + 2 ions of substance P and corresponding FDM derived
.  Insets show the PIC results, illustrating the spatial distribution of the
ima and minima in the beat intensity.
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e nature of the effect differs for the orbitrap. After injection
nalyzer, ion clouds form tori which oscillate axially along
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rrent detection, maximum amplitude of the time domain
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