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Tracking moving objects is one of the most important but problematic features of
motion analysis and understanding. The Kalman filter (KF) has commonly been used for
estimation and prediction of the target position in succeeding frames. In this paper, we
propose a novel and efficient method of tracking, which performs well even when the
target takes a sudden turn during its motion. The proposed method arbitrates between
KF and Optical flow (OF) to improve the tracking performance. Our system utilizes a
laser to measure the distance to the nearest obstacle and an infrared camera to find the
target. The relative data is then fused with the Arbitrate OFKF filter to perform real-time
tracking. Experimental results show our suggested approach is very effective and

reliable for estimating and tracking moving objects.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Human tracking using mobile robots serves a lot of
attention because an automated system estimating and
tracking moving objects has many potential applica-
tions in the field of surveillance and engineering [46].
The mobile robot target tracking mechanism essentially
needs the motion analysis of the target behavior. A
number of approaches on prediction and tracking are
based on the traditional Kalman filter (KF) [10-15]. In
the KF approach, it is presumed that the behavior of a
moving target could be characterized by a predefined
model, and the models can be represented in terms of a
state vector. In reality, however, these models fail to
characterize the motion of moving targets accurately.
As a result of this, KF fails to track a target, especially
when there are occlusions caused by other objects or
sudden changes in the trajectory of the motion [13]. In
this paper, we propose an efficient method of tracking
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the target called Arbitrate OFKF, which will overcome
the abovementioned problem and work successfully
even when sudden changes in trajectory occur. This
proposed method arbitrates the output of OF and KF
depending on the trajectory of the previous motion. Our
arbitration algorithm is such that the output, during
sharp turns, will be taken from OF algorithm, and, in all
other instances, from KF algorithm.

There are some visual restrictions in which any meth-
ods cannot be applicable, for instance in industrial appli-
cations, like the ones examined in visual environments
and applications [48], airports with crowded conditions,
industrial process monitoring [49] and environmental
monitoring. We have exploited an infra-camera for visual
content, in which the presented technique is applicable as
other types of visual contents that can potentially solve
these existing issues in [48,49].

The paper is organized as follows. Section 2 introduces
the related work in the tracking using a mobile robot.
Section 3 explains the piecewise constant acceleration
model for implementation of KF. In Section 4, a solution
for improving KF based tracking wusing arbitration
between KF and OF. Section 5 reports experimental
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results and considerations. Finally, conclusions and future
work are illustrated in Section 6.

2. Related works
2.1. Mobile robot

Tracking people by the use of a mobile robot is an
essential task for the coming generation of service and
human-interaction robots. In the field of computer vision,
the tracking of moving objects by mobile robot is a
relatively hard problem. The system described in [1] uses
a sample-based joint probabilistic data association filter
for human tracking with a mobile robot. A fuzzy logic
approach is used for navigation of the mobile robot [2]
whereas the neurofuzzy-based approach for tracking
described in [3—-6] uses a learning algorithm based on
neural network techniques to tune the parameters of
membership functions. Artificial potential functions [7]
and vector-field histograms [8] are also used for mobile
robot navigation. Most of the tracking methods focus on
tracking humans in image sequences from a single camera
view. In [9], each walking subject image was bounded by
a rectangular box, and the centroid of the bounding box
was used as the feature to track. We have used the KF and
the OF for the navigation of the mobile robot because it
will predict next state from the previous state.

2.2. Kalman filter-based target tracking

Human tracking by mobile robots has been an area of
intense research for years. Humans can be tracked by
mobile robots using 3D or 2D data by any normal KF
[10,13], or using segmentation of the main target from the
background [11,12]. Other approaches are based on hier-
archical KF [14] and quaternion [15]. Extended KF [16]
and the interactive multiple model [17] have successfully
been used for human tracking using mobile robots in the
past. In [18], stereo vision and KFs are used to track and
follow a single person using a mobile robot for short
distances. But sudden deformation in the target motion
can cause the failure of the predefined behavior model of
KF [13]. In [19], a robot equipped with two laser range
sensors, one pointing forward and another backward, can
track several people using a combination of particle filters
and joint probabilistic data association. The system
described in [21] uses a classic histogram intersection to
identify people together with a standard KF for laser-
based tracking. In [20], a particle filter is used for the data
fusion of a laser and an omnidirectional camera is used for
multiple people tracking. Particle filters are the sequential
of Markov chain Monte Carlo methods, and alternative to
the KF with the advantage that, with sufficient samples,
they approach the Bayesian optimal estimate. We also
have specifically developed a new KF framework of
Interactive Multiple Model-based Estimation (IMME)
[43-46], and showed the best prediction performance.
While the methods described above are computationally
expensive, our proposed method is, by comparison, inex-
pensive and also produces better results in the event of
sudden deformations of the target motion. The experimental

sections demonstrate the performance and comparisons
with respect to the particle filers [47].

2.3. Optical flow-based target tracking

Optical flow can arise from relative motion between
objects and the viewer [22]. OF can give important informa-
tion about the spatial arrangement ofthe viewed objects and
the rate of change of this arrangement [26]. There are a
number of methods for calculating OF. The primitive meth-
ods are Sum of Squared Difference [23—-25] and the Normal-
ized Cross-Correlation [27] [29]. The other methods are
based on Laplacian derivative [28,30]. In these algorithms,
a small area of the image is used as a template, searched
later throughout the interested region in the next frame for
finding the target location. Another template-matching
method called contour matching [31-33] uses a non-rigid
contour as a model, and is relatively robust to a cluttered
background. All of these methods are, however, computa-
tionally expensive. The algorithm for calculating OF is made
a little more efficient as in [34]. Our proposed method for
calculating OF does not involve much computational cost.
Since, in our setup, the camera is also moving, we have to
use the concept of superposition. According to superposition,
OF generated by the target is the difference of the total
OF generated and the OF generated by camera motion.
OF-based tracking works well only when the target is
moving and its surroundings are still. Due to this property,
OF gives the best tracking results in an indoor environment.

2.4. Arbitration

Arbitration is the process of selecting one action or
behavior from multiple possible candidates. When two or
more algorithms control the motion of the robot, in order
to use mutually exclusive condition for the controller, we
have to use the concept of arbitration [35]. Depending on
the task, the algorithm for arbitration is decided. In the
tasks of recognition and detection, the arbitration is
decided by the threshold value [36,39], and sensor fusion
is handled by the probability based on priority [38—42].
An arbitration operator based on Revesz’s definition of
arbitration must use an arbitration algorithm [37]. We
have developed our own algorithm for the arbitration
module, which arbitrates between KF and OF depending
on the trajectory of the target motion.

3. Traditional methods: Framing the model of target
tracking

First, we choose a state vector to contain information
about the position and the velocity of the man. We then
update the state according to our model called the constant
acceleration model, in which the value of acceleration is
calculated from the last few states, using a Taylor series
expansion of the present expansion. The state can thus be
thought of as being updated through the equations:

d
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And the output equations may be written as
vk Y4 Cx bz, 2P

where A, Band Care matrices of the required order to be
multiplied with the state vectors. The terms ‘w’and z’are
noise matrices of the same order as X’ and ‘y’ vectors,
respectively. The noise matrices can be preset to the
maximum error value possible in the measurements,
and may vary as the readings get more and more accurate.

3.1. Kalman filter using piecewise constant acceleration
model

Ifthe time difference of the two readings is taken to be
‘Dt’, we can write the present velocity of the man as

Vip 1 1AthlJ uth, Bb

where uy is the calculated acceleration of the man at the
previous instant. We assume that ‘Dt’ being small the
acceleration of the man remains small. In reality, ‘Dt’is of
the order of 0.05[0.067 s. So our assumption does not
become a source of error.

Let us consider two variables in our state vector— one
being the position of the man (p), and the other being the
velocity at that instant (v). We can write the updated
equations for the position and the velocity, taking into
account the noise:

ka 1 %ka uktkb \?k AP
Pxp 1 “apxb tivib %tzukb Bi &P

Thus the state matrix becomes x, %
k

We can thus update Egs. (1) and (2) as follows:

" #
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The process noise covariance may be written as
Sw V4 Edwi w b &b

Similarly the measurement covariance noise may be
written as

S, s B,z b ®»b

The superscript ‘T suggests the transpose of the
matrices. Thus, we have obtained the basic matrices:

Dt
AY o 1 310b
" 4
Dt?=2
BY: ot 8l1p
|
C% I 0 312p

We use two matrices— one called the estimation error
covariance matrix, which we shall denote by ‘P’, and the
other called the Kalman gain matrix, which will be

denoted by K’ Initially we set P as
PYSy: ol3p
And we set our initial estimate

Xy Va Xt ol4pb

We first calculate the Kalman gain matrix, which is
given by

K Y AP, CTaCP,CTp S,B7: 3l5p
We then predict the next state, which is given by
Xip 1 Ve Axicb Buy: ol6b

Based on the data we obtain from the sensor, i.e. the
infrared camera and then the range finder, we update the
estimate. We develop a correction term ‘Corr’, which gives
us the error that has propagated in our state estimate. We
thus have to correct our state estimate by that amount

Corry Yayip 1 [y, 817p

X"kb 1 Ya X“kl) 1b kaﬁorrkb. ol 8P

We then update the estimation error covariance
matrix:

Py 1 Y AP ATD S, [TAP,CTSH P AT: 319p

The first element of the estimation vector thus gives
the predicted position ofthe man, and the second element
gives its predicted velocity. Using this data, the robot is
maneuvered accordingly.

3.2. Feedback mechanism

There is a time lag between the initiation of a movement
by the robot, and the rate at which frames are scanned by the
infrared camera. Hence we use a feedback mechanism to
overwrite the command given to the robot as shown in Fig. 1.

The rate at which commands are issued to the robot
depends on the rate of the camera, which is faster com-
pared to the robot. Thus, at each stage, while the robot is in
motion, frames are grabbed by the camera, and the remain-
ing angle left to rotate is calculated and estimated. After
this has been calculated, the command in the robot buffer is
over-written by the remaining angle left to rotate.

One advantage of the feedback motion is the angle, by
which the robot movement is constantly updated. Hence, the
robot comes to a standstill when it is centered on the man it
is tracking. When the man moves again from the central

Command .
Estimated Robot Position
Angular Error| Computer¥
Position and
Internal  |—| Robot >
: Motors
Micro-
controller

Far-Infrared
Camera
Sensor

Position of Human

Fig. 1. Semantic diagram for feedback system of human target tracking.
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position of the camera, the same process is again initiated to
bring the man back to the center of the image. Thus, the
camera never loses the man.

Say at (kp 1)th frame, the estimated angle is y with
respect to reference, and the camera facing angle at (k)th
frame is @ with respect to same reference frame so that
the robot should be moved for tracking the man, only by b
which is equal to

b'%y7 a, &20P

where the sign in (20) depends upon the direction of
angle. If both angles are in same direction, take minus
sign, otherwise plus sign will be used.

Another advantage of the feedback motion comes into
play when the man suddenly changes direction while walk-
ing, or moves further away. If the feedback system had not
been implemented, the man could have disappeared from
the camera visibility by the time the robot rotated and got to
the man’s original position. With the system in place, even if
the man moves further away or changes direction, the
commands for robot rotation or translation will be changed
immediately. We ensure that the Kalman filter is continu-
ously updated, and new commands immediately overwrite
the old commands in the robot buffer.

4. Proposed pan-tilt operation

In the target region of interest (ROI) tracking, we need
to find the required pan and tilt angle for the specific
camera configuration as shown in Fig. 2 so that the
camera head can rotate to track the target. In other words,
this is the angle vector y required to make image center
coincident with the target centroid:

"#

Yx

iz , Q1P
y 74 Yy

where the rotational angle (yy) with respect of the center
ofthe image is the only angle associated with pan defined
by DX It is similar with (yy), when there is only tilt
operation. We calculate the degree of these values using

Most

salient
49 P
I

column of
image

Y 4

X

CAMERA FRAME

Fig. 2. Camera configuration.
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where (1) is the focal length of camera, and y, and y, are
unknown. We need to now calculate the rotation angles
to be operated by the pan-tilt-camera. The following is
our solution to this problem.

Optical flow is the pattern of apparent motion of objects
in a visual scene caused by the relative motion between a
camera and the scene. The concept behind the Optical flow
based tracking is— if the target motion is known, then the
camera may be made to eliminate relative motion between it
and the target, hence facilitating tracking. In particular, if the
motion of the target is known well, then “perfect tracking”
may be achieved, i.e. center position of the target region of
interest (ROI) can always be kept at the center of image.
Target motion can be estimated through the change of the
image position, which is called “Optical flow” or image
displacement. By calculating the image displacement or
optical flow, which is induced by target motion, one can
estimate the motion of the target when the camera is
stationary. For a stationary object and a moving camera,

the optical flow induced by the camera motion is as follows:
!

XR, Ry X
up ¥ 7 7 b wyb yw, ®4p
| &, !
2
vou el LPY, @ E,, @5b

where up and vp are obtained from the optical flow, and wy,
wy, W, and Ry, Ry, R, are rotational and translational velocity
of the camera, respectively, X’ and ’y’ are center of ROI in
image frame, Z’is the Z coordinate of the target in camera
frame, | is a focal length and subscript ‘O’ is denoted as an
object. If we assume a moving object and a stationary
camera instead ofa moving camera and a stationary object,
then we can obtain the same result as (24) and (25) except
for a sign reversal [23].

In our tracking environment, both the camera and the
target are non-stationary. The optical flow is thus subject
to both the camera and the target movement. In order to
take this into account we have to modify the optical flow
equation such that the optical flow induced only by target
motion is taken into account. According to superposition,
the total optical flow is equal to the sum of the optical
flow of'target and that of camera. Suppose that the optical
flow at the time instant k during the tracking phase is
[u(k), v(k)], then the optical flows Are [23]

u&kpbV up&bp uc, &b, ®R6P

v&kbYa vo&kbb v, &b, 7P

where u(k) and v(k) are the total optical flow, vo(k) and up(k)
are the optical flow induced by the target motion, whereas
Uca(k) and v, (k) are the optical flows induced by the tracking
motion of the camera in X and Y directions, respectively.
Therefore, the optical flow induced by the target motion
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Camera

Y Camera
Frame

Fig. 3. Camera pan-tilt motion in 3-D plane.

during the tracking phase can be obtained by modifying (26)
and (27) as follows:

uokbYs udk il , &b, 28p

vokbVs vk ., kP &9p

Pan-directional angle w, and tilt-directional angle w,
in Fig. 3 allow the camera to rotate only in the direction
with respect to the image plane X-Y. So the motion vector
of camera is

h it
RY% Wx wy 0 B0p

Usually cross-correlation and sum-of-difference method
are used for calculating observable modified optical flow, but
we will use our own method for finding this. By using our
own motion estimation algorithm, we can estimate the target
image position at any time. Assume that the center of ROI at
(k)th frame is [x(k) y(kD)]Tand our camera’s angular
velocity is wx(k)%Dyx/Dt and wy(km)%Dyy/Dt, where
Dyy and Dy, are the changes in pan and tilt angles,
respectively, and Dt is the time interval between two
consecutive frames. Let the target move to the position
[x(k), y(k)]" at the next frame, then u(k[E1), v(k[E1), ue(k[E1)
and vca(k) at the (k)th frame may be derived as follows
using (24), (25) and (30):

bl
wk[Elpvs %ﬁk-b B1p
Bk
v&[ElpYs %t&-p, B2b
!
[ (] 2p x2
e Vi m Ox&mﬂjlbxlﬂ’ o, &,
B3P
: ] [E]
2p y2
v Vi 11”17&-1’ OX&@M o, &[p,
B4Dp
and using (28) and (29)
- xd(d(b xak[E pyak[Ed p
O - 4
Dt 1
!
1°p x2&p
o [ % o , &[T p ®5b

vok[H pY4

|
ykHE &[T P | 2p y2a&lEip
Dt

[E] [E]
o &[T pp M o, &[ip B6b

We can estimate the motion using the above modified
optical flow equation. The motion estimation algorithm is
based on the estimation of rotation velocity wy and wy.
Our algorithm can estimate the motion of the target

without knowing the actual depth information. We write
equations (24) and (25) in discrete time expression as
n n

#
uok[fp R&[T1p
Ya [ B
vodk[@p v, Joxek [ by pzak[E B waddp ’ B87b
where
Jéxgklj by bz [ B

3
1 xk[@p  xak[@wa&Ep  peaCipp 12
g%\:ﬁ 0 Z&[TTp T L T y&lHp
1 y&[@ip  y2&Eipp 1° —xk[E yalDip
o Bl ; HELL (Halidp

Z&[E1p

B8P

The matrix Jx(k[), yk[E), zk[d) is called the
Image Jacobian and RY[R,, Ry, RZ]TAR3 and w[wy, Wy,
w,]"AR? are the translational and rotational velocities of
camera, respectively.

In order to keep tracking, the ROI centroid in image
frame should pass through the center of the image. Accord-
ing to the content above, we use (x(k), y(k)) to
represent the center of ROI at (k-1)th frame. Using (30)
and (37) and perspective projection model [35] gives

" # 2 N 3n #
woak[@p  coliwalie [aldn il o g[Hp
vok(fip ™ yaliw1®  [jalinalie o,&[Ep -

®B9p
Let
2 aEnalde paddmi® ! = ! #
salipacile  [Eractep o &k[ip uok[iip

P4

5 1 1
yzv&mapblz D&E‘I”“‘E" r V¥ o, &[Ep and C% voxk[Elp

Rewrite (39) as
C%uPV, HOP

where Cis the optical flow induced by target motion, P is
composed of feature’s image coordinate and focal length
and V consists of rotational velocity of camera with
respect to the camera frame. For non-singular matrix P,
(40) can be easily solved as follows:

vypEc #*1b

Thus, we can calculate the unknown values for w, and
wy using (41).

The next step of our tracking algorithm is the predic-
tion. The purpose herein is to predict where the target
image location will ‘move to’ in the next (k)th frame
predicted. Thus, the prediction (Xpregict(K), Ypredict(k)) can
be obtained as follows:

Xpredict KP4 xSk Bp uodk[E1 BDt, 2P

ypredictdﬁb% yd(ljbb Vod( PDt: 3P

The value (x, y) is fed to the tracking module to
generate the desired camera angular motion yy(k) and
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yy(k) so that we can calculate the camera parameters for
tracking ROI at the (k)th frame:

yxkbVa tan[ﬂ Xpredict a(entera( b ) siab
ot KB Y o KT P
de(b% tan Ypredlct ‘lcemer , #5p

where (Xeenter(k[), Veenter(k[E1)) is the center of the
image, and not the center of ROl obtained from the
pan-tilt camera position using the triangulation shown
in Fig. 2 at (k)th frame. Note that Eqs. (44) and (45)
correspond to Egs. (21), (22) and (23) to calculate the
desired camera pan-tilt-parameters shown in Fig. 3.

5. Arbitration of Optical flow and Kalman filter

We have applied the Optical flow as shown in the flow
chart in Fig. 4 for the tracking process. We further propose
the Arbitrate OF and KF algorithm to calculate the estimated
value of the pan angle, which will be used for our prediction.
In our proposed method, both KF and OF will predict the
value of the pan angle but, depending on the situation, we
will decide which value should be fed to the robot for track-
ing the target. If the man walks smoothly, then the pan angle
value predicted by KF will be fed to the robot. Otherwise, the

Extraction of Center of Target from Infrared Image

Optical Flow induced by the target in X and Y

v

Target motion vector V is estimated

'

Evaluated the predicted target center using (35), (36).

Pan angle is calculated (44), (45).

Fig. 4. Flow chart of optical-flow based target tracking.

Sharp Turn Smooth

so value from turn so
OF ; value from
N =

‘A

Fig. 5. Previous trajectory of man’s motion by which the required pan

angle is decided.

Raytheon Infrared
Camera @15Hz,
Image size 640x480
pixel

SICK Laser
Range Finder

Mobile Robot

Fig. 6. Pioneer mobile robot platform.

Fig. 7. Sample images from (a) Ground Proof, (b) Human Target and
(c) Human Target with a noisy background.
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pan angle value predicted by OF will be fed to the robot. The
proposed algorithm for arbitration is as follows:

Step 1: Make a triangle using the center of the target in
(k)th, (k )th and (k)th as vertices as shown in

Fig. 5. Say (X, Yi), (Xcm, Ycrm) and (X[m, Yi[m) are the
centers of the target in (k)th, (k)th and (k)th
frames, respectively. Find out the length of each side:

q
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H6b
q A A TAER T
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Fig. 8. Angular position of Ground Proof for (a) slow mode, (b) moderate
mode and (c) fast mode.
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Step 2: Using a, b and c from (46), (47) and (48), the
angle y between side of length a and b equals to

[jElzb b22-

[0
2ab

y Vacos

Step 3: From (49) y is an angle of the triangle, so its
value will be less than 1801 If 1601r yr 1801 then we
are assuming that the man is walking in a straight line.
The pan angle value will in this case be estimated by
KF. In all other cases, the pan angle value is estimated
by the OF. As one example, the pan angle will be
estimated by OF for the trajectories shown by rectan-
gular boxes in Fig. 5, otherwise KF will estimate the
pan angle.
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Fig. 9. Angular position of Human Target versus time for (a) slow
walking mode, (b) moderate moving mode and (c) fast walking mode.
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6. Experimental results

This section compares the results obtained from algo-
rithms using only KF, only OF, and finally the Arbitrate
OFKF model developed in this paper. Since we have tracked
a single point in the KF, we have used only one feature
point in the OF for comparisons. A final comparison is made
between Arbitrate OFKF and the particle filter at the end of

the section. In the series of the experiments, we have
specifically evaluated pan angle values.
6.1. Input datasets

Online data was collected using a Raytheon Infrared
Camera operated at 15 Hz frame rate and image size of

Optical Flow
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— Arbitrate OFKF
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200 250 300 350 400
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Fig. 10. Angular position of Human Target with a noisy background versus time for (a) slow walking mode, (b) moderate walking mode and (c) fast

walking mode.
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640 kg0 pixels. The data collection procedure consisted
of a target moving in front of an infrared camera, which
was mounted on the Active Media robot shown in Fig. 6.
Data was collected for the three modes of walking: slow,
moderate and fast. In slow walking mode, the target
moved slowly in front of the camera without taking any
sudden turns. In the moderate walking mode, the target
moved with moderate speed in front of the camera taking
smooth turns. In the fast walking mode, the target moved
with high velocity taking sudden turns during the course
of its motion.

Fig. 7a—c is collections of images that show the various
target types during their motion. Each of these images is
30 frames apart in the time reference. The white line, as
shown in Fig. 7, is the most salient image column, which
is our measured tracking location through our algorithms.
Instead of showing specific Human Target tracking
results, we have evaluated three different target cases.
Fig. 7a is a ground proof experiment, which involves a
simple target in a noiseless background, Fig. 7b involves a
human target walking in a low noise environment and
Fig. 7c shows a human target walking in a very noisy
environment. The ground proof was examined using a

50 —

simple hot spot shown in Fig. 7a to make sure whether
the experimental condition was under control or not. The
noise was simulated using numerous light and heat
sources in the area of the experiment to attract the
thermal cameras.

In any Kalman filter implementation, the next state
prediction depends on the previous state vector. So without
correct initialization the predicted values become erroneous.
The piecewise constant acceleration model carries the
assumption that the initial state vector is equal to zero,
ie. the initial angular position of the target is zero (with
respect to Sick) and tb; ir#itiaity of the target is zero.

0

Mathematically, xo Y4 Va
Vo 0

In optical flow, we don’t have to initialize any variable
because we are not using an initial state vector.

6.2. Prediction accuracy of OF, KF and arbitrate OFKF
In fact, moderate and slow walking modes, both the

algorithms track well when the target moves in one
direction, i.e. along a straight line. However, during a
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Fig. 11. Pan angle versus (X, Y) coordinate of Human Target in image plane for KF, OF, arbitrate OFKF and Actual.

Table 1

Error analysis of Arbitrate OFKF for (A) Ground Proof, (B) Human Target and (C) Human Target with noisy background.

Filter Slow walking Moderate walking Fast walking
Avg.err. (°) OS (% Avg.(°) Max.(°) Avg.err.(°) OS(% Avg. (°) Max.(°) Avg.err.(°) OS(% Avg. (°) Max. (°)

(A)

OF 2.117 136 30.30 2.13 5.85 2117 1.43 33.57 2.09 13.22 2597275 31.76 2.58 37.58
KF 1907 1.82 3478 2.07 6.62 2.637 235 37.02 299 8.12 2667 271 2881  3.06 19.57
Arbitrate OFKF  1.697 1.30 2637 1.76 5.85 2067 1.69 2930 223 7.80 2.117 1.88 2123 220 19.57
B)

OF 2.047 4.15 8.88 1.89 4598 2867 4.57 12.77 2.73 41.25 3317 4.96 15.02 3.33 4433
KF 1767 2.44 6.66 1.71 23.80 2.697 336 1407 329 20.05 3.647 3.68 20.18 450 24.16
Arbitrate OFKF 1.747 3.43 7.98 1.68 40.44 2347 3.73 11.96 2.52 41.25 2.687 424 14.11 3.06 39.42
©

OF 2537 1.94 19.53 249 20.58 2867 2.15 4558 2.81 3550 2.887 239 27.30 2.86 23.06
KF 1.007 1.02 1398 140 9.16 1.807 1.71 3632 230 16.89 3597 3.08 37.50 453 11.77
Arbitrate OFKF 1.377 1.63 1434 1.80 11.10 1307 1.63 34.66 1.79 16.89 1.707 1.67 24.74 2.14 15.01
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walk if the target takes a sudden turn, OF gives a better
estimate of angular position of the target as compared to
the KF as shown in Figs. 8—10.

The main problem lies in the fact that in KF, the
prediction of present state is based on the previous state
vector. So when the target takes a sudden turn, the KF
has no way to predict using only the previous data. On
the contrary, the KF would predict a motion along the
previous direction. The OF uses positional coordinates of
the target in the previous frame to predict the pan angle.
Figs. 8—10 show that optical flow works better than the
Kalman filter in regions of sharp turns and zigzag motion.

As shown in Figs. 8-10 the error in angular position at
turning points is the highest in the fast walking mode and
the lowest in the slow walking mode. When the target
walks slowly, the acceleration change on a turn is very
small when compared to the same value for a fast walk.
When we compared the targets variations among
Figs. 8-10, the prediction performance of ground proof
object was the best, and the background noise was the
worst, although the difference between them was the
modest.

The arbitration of either KF and OF will provide a good
estimation of the angular position of the target. Depend-
ing on the situation we will decide which value should be
fed to the robot for efficient tracking. We have used (41)
for estimating the required pan angle. The Arbitrate OFKF
gives relatively less error in estimation of angular position
for all walking mode as shown in Figs. 8—10.

A 3-D plot of pan angle corresponding to the (x, y)
coordinate of target in the image plane is shown in Fig. 1 1.
Fig. 11 shows that the pan angle estimated by Arbitrate
OFKF closely matches the actual value of the pan angle.
We have chosen OF prediction at sharp turning points
(shown by rectangular boxes in Fig. 11) and for the rest of
the motion we have followed the KF prediction. It is thus
evident that the arbitrate OFKF works better than either
the KF or the OF individually.

6.3. Prediction error with overshoot

This section presents statistical analysis of the errors in
the prediction of pan angle by OF and KF. The error in
angular position shows how precisely the algorithm
estimates the angular position of the target. A compre-
hensive table for average error and Overshoot (OS) for OF
and KF is shown in Table 1.

We defined the percentage overshoot (OS) as the num-
ber of times the error in the estimation of the pan angle
exceeded a certain threshold value. Since a large error
generally occurs during points where the target turns, the
OS can indirectly give us information about turning point
prediction accuracy. From Table 1, it is evident that the KF,
in general, works better than the OF for all three walking
modes. Around turning points, however, the OS of the error
is relatively less in the OF than KF.

The percentage OS of the error is drastically improved
by the Arbitrate OFKF as shown in Fig. 12. As shown in
Table 1, it is clear that Arbitrate OFKF predicts the angular
position more accurately than OF and KF for all three
modes of walking. The percentage OS of the error is

improved by the Arbitrate OFKF as shown in Fig. 12. As
shown in Table 1, it is clear that Arbitrate OFKF predicts
the angular position much more accurately than OF and
KF especially in the moderate and fast modes of walking.

The outcomes of Table 1 Error Analysis shows (A)
Ground Proof has reached the best prediction performance,
although (C) Human Target with Noise background has
not degenerated as expected, compared to (B) Human
Target case.

6.4. Execution time
The execution time per iteration was observed for the

KF, the OF and the arbitrate OFKF. Since the number of
mathematical operations involved per iteration in the KF
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Fig. 12. Comparison of average overshoot angle for the turning periods
for the three walking modes for (a) Ground Proof, (b) Human Target and

(c) Human Target with noisy background.



Y. Motai et al. / Signal Processing: Image Communication 27 (2012) 83-95

algorithm is higher than that required in the OF algorithms,
the time required for the OF was experimentally confirmed
to be lower than that required for the KF computations. In
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Fig. 13. Computation time required for each iteration versus no. of
iteration for (a) Ground Proof, (b) Human Target and (c) Human Target
with noisy background.

Table 2
Comparison of Arbitrate OFKF versus Particle Filter for Human Target.
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fact, the OF algorithms took only 58%of the time taken by
the KF algorithm. The data was collected for the 6.5s of
motion of the man in front of the infrared camera operated
at 15 frames per second, and the corresponding plot of the
time required per iteration is shown in Fig. 13.

Regarding time complexity, the arbitrate OFKF will
require, on average, 2.5 [10™ s more than the KF. It is
much less, however, in comparison to the time interval
between two consecutive frames, which is equal to
0.067 s, so the time factor won’t matter much. However,
we gain in accuracy when we use the arbitrate OFKF.

6.5. Performance analysis of arbitrate OFKF versus particle
filter

Finally in Table 2, we compared the overall perfor-
mance of arbitrate OFKF versus particle filter [47] using
Human Target in the different speed settings as shown.
The particle filter was initialized with 50 particles and its
likelihood was measured by a Gaussian weight (Fig. 14).

In all walking modes, the filters had similar perfor-
mances. The particle filter had less error on average from
the measured track; however it also had a higher percent
overshoot. Most notably, the particle filter required much
more computation time per frame than the arbitrate OFKF
algorithm.

7. Conclusion

In this paper, a novel tracking method is proposed,
which is able to predict a target position very efficiently
even if the target object turns suddenly during its motion.
The proposed method is based on an arbitration between
OF and KF. It takes into consideration the trajectory of the
target motion, and gives a much better result of tracking
than individual OF or KF filters. In this paper, attention
has been drawn to different scenarios where either the KF
works better or the OF does. A comparison has also been
made with the particle filter and been shown to have a
similar performance with a great decrease in computation
time. Our algorithm for the arbitrate OFKF has been
successfully tested on our mobile robot in real-time
tracking of a man in an indoor lab environment. As a part
of future work, we will address the design of an autono-
mous mobile robot, which can track two or more targets
simultaneously. We also feel our system might be made
even more robust and efficient by insertion of other
sensors resulting in asynchronous and heterogeneous
multiple sensory fusions.

Filter Slow walking Moderate walking Fast walking
Error (°) oS Computation time Error (°) (6] Computation time Error (°) oS Computation time
(79 (ms) (9 (ms) (9 (ms)
Arbitrate 1217 3.45 556 0.08 1.597 3.14 9.24 0.08 1.837 356 1191 0.09
OFKF
Particle Filter 1.147 4.40 4.43 1.17 1397 424 1144 1.16 1.627 437 15.67 1.18
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Fig. 14. Comparison of arbitrate OFKF versus a Particle Filter tracking
Human Target in (a) slow walking mode, (b) moderate walking mode
and (c) fast walking mode.
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