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a b s t r a c t

Tracking m oving objects is one of the m ost im portan t but problem at ic features of
m otion analysis and understanding. The Kalm an filter (KF) has com m only been used for
est im at ion and predict ion of the target posit ion in succeeding fram es. In this paper, w e
propose a novel and efficient m ethod of tracking, w hich perform s w ell even w hen the
target takes a sudden turn during its m otion . The proposed m ethod arbitrates betw een
KF and Optical flow (OF) to im prove the tracking perform ance. Our system utilizes a
laser to m easure the distance to the nearest obstacle and an infrared cam era to find the
target . The relat ive data is then fused w ith the Arbitrate OFKF filter to perform real-t im e
tracking. Experim ental results show our suggested approach is very effect ive and
reliable for est im ating and tracking m oving objects.

& 2011 Elsevier B.V. All rights reserved .

1. In t rodu ct ion

Hu m an t rackin g usin g m obile robots serves a lot of
at ten t ion because an au tom at ed system est im at ing and
t racking m oving object s has m any poten t ial applica-
t ion s in the field of su rveillance and engineering [46].
The m obile robot target t racking m echan ism essen t ially
needs the m ot ion analysis of the target behavior. A
num ber of approaches on pred ict ion and t rackin g are
based on the t rad it ion al Kalm an filter (KF) [10–15]. In
the KF approach , it is presum ed th at the behavior of a
m oving target cou ld be characterized by a predefined
m odel, an d th e m odels can be represen ted in term s of a
st ate vector. In reality, h ow ever, these m odels fail to
ch aracterize the m ot ion of m oving target s accu rately.
As a resu lt of th is, KF fails to t rack a target , especially
w hen there are occlu sions caused by other objects or
sudden ch anges in the t rajectory of th e m ot ion [13]. In
th is paper , w e propose an efficien t m ethod of t racking

the target called Arbit rate OFKF, w hich w ill overcom e
the abovem ent ioned problem and w ork successfu lly
even w hen sudden ch anges in t raject ory occu r. Th is
proposed m eth od arbit rat es the ou tpu t of OF and KF
depending on th e t rajectory of the previous m ot ion . Our
arbit rat ion algorithm is such that the ou tpu t , dur in g
sharp tu rns, w ill be taken from OF algorithm , an d, in all
oth er in stances, from KF algorithm .

There are som e visual restrict ions in w hich any m eth-
ods cannot be applicable, for instance in industrial appli-
cations, like the ones exam ined in visual environm ents
and applicat ions [48], airports w ith crow ded condit ions,
industrial process m onitoring [49] and environm ental
m onitoring. We have exploited an infra-cam era for visual
content, in which the presented technique is applicable as
other types of visual contents that can potentially solve
these exist ing issues in [48,49].

The paper is organized as follow s. Sect ion 2 introduces
the related w ork in the tracking using a m obile robot .
Section 3 explains the piecewise constant accelerat ion
m odel for im plem entat ion of KF. In Sect ion 4, a solut ion
for im proving KF based tracking using arbitrat ion
betw een KF and OF. Sect ion 5 reports experim ental
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resu lts and considerat ions. Finally, conclusions and future
w ork are illustrated in Sect ion 6.

2. Rela t ed w orks

2.1. Mobile robot

Tracking people by the use of a m obile robot is an
essent ial task for the com ing generat ion of service and
hum an-interact ion robots. In the field of com puter vision,
the tracking of m oving objects by m obile robot is a
relat ively hard problem . The system described in [1] uses
a sam ple-based join t probabilist ic data associat ion filter
for hum an tracking w ith a m obile robot . A fuzzy logic
approach is used for navigat ion of the m obile robot [2]
w hereas the neurofuzzy-based approach for tracking
described in [3–6] uses a learning algorithm based on
neural network techniques to tune the param eters of
m em bership functions. Art ificial potent ial funct ions [7]
and vector-field histogram s [8] are also used for m obile
robot navigat ion. Most of the tracking m ethods focus on
tracking hum ans in im age sequences from a single cam era
view . In [9], each w alking subject im age w as bounded by
a rectangular box, and the centroid of the bounding box
w as used as the feature to track. We have used the KF and
the OF for the navigation of the m obile robot because it
w ill predict next state from the previous state.

2.2. Kalman filter-based target tracking

Hum an tracking by m obile robots has been an area of
intense research for years. Hum ans can be tracked by
m obile robots using 3D or 2D data by any norm al KF
[10,13], or using segm entation of the m ain target from the
background [11,12]. Other approaches are based on hier-
archical KF [14] and quatern ion [15]. Extended KF [16]
and the interact ive m ult iple m odel [17] have successfully
been used for hum an tracking using m obile robots in the
past . In [18], stereo vision and KFs are used to track and
follow a single person using a m obile robot for short
distances. But sudden deform ation in the target m otion
can cause the failure of the predefined behavior m odel of
KF [13]. In [19], a robot equipped w ith tw o laser range
sensors, one point ing forw ard and another backw ard, can
track several people using a com binat ion of part icle filters
and join t probabilist ic data associat ion . The system
described in [21] uses a classic histogram intersect ion to
ident ify people together with a standard KF for laser-
based tracking. In [20], a part icle filter is used for the data
fusion of a laser and an om nidirectional cam era is used for
m ultiple people tracking. Part icle filters are the sequential
of Markov chain Monte Carlo m ethods, and alternative to
the KF w ith the advantage that , w ith sufficient sam ples,
they approach the Bayesian optim al est im ate. We also
have specifically developed a new KF fram ew ork of
Interact ive Mult iple Model-based Est im ation (IMME)
[43–46], and show ed the best prediction perform ance.
While the m ethods described above are com putationally
expensive, our proposed m ethod is, by com parison, inex-
pensive and also produces bet ter results in the event of
sudden deformations of the target m otion. The experim ental

sections dem onstrate the perform ance and com parisons
with respect to the part icle filers [47].

2.3. Optical flow-based target tracking

Optical flow can arise from relative motion between
objects and the viewer [22]. OF can give important informa-
tion about the spatial arrangem ent of the viewed objects and
the rate of change of this arrangem ent [26]. There are a
number of methods for calculating OF. The prim itive meth-
ods are Sum of Squared Difference [23–25] and the Normal-
ized Cross-Correlation [27] [29]. The other m ethods are
based on Laplacian derivative [28,30]. In these algorithms,
a sm all area of the image is used as a template, searched
later throughout the interested region in the next fram e for
finding the target location. Another template-m atching
method called contour matching [31–33] uses a non-rigid
contour as a m odel, and is relatively robust to a cluttered
background. All of these m ethods are, however, computa-
tionally expensive. The algorithm for calculating OF is m ade
a little more efficient as in [34]. Our proposed m ethod for
calculating OF does not involve much computational cost.
Since, in our setup, the cam era is also moving, we have to
use the concept of superposition. According to superposition,
OF generated by the target is the difference of the total
OF generated and the OF generated by cam era m otion.
OF-based tracking works well only when the target is
m oving and its surroundings are still. Due to this property,
OF gives the best tracking results in an indoor environment.

2.4. Arbitration

Arbitration is the process of select ing one act ion or
behavior from m ult iple possible candidates. When two or
m ore algorithm s control the m otion of the robot , in order
to use m utually exclusive condit ion for the controller, we
have to use the concept of arbit rat ion [35]. Depending on
the task, the algorithm for arbit rat ion is decided. In the
tasks of recognition and detect ion, the arbit rat ion is
decided by the threshold value [36,39], and sensor fusion
is handled by the probability based on priority [38–42].
An arbitrat ion operator based on Revesz’s definit ion of
arbit rat ion m ust use an arbit rat ion algorithm [37]. We
have developed our ow n algorithm for the arbit rat ion
m odule, w hich arbitrates betw een KF and OF depending
on the trajectory of the target m otion .

3. Trad it ion al m eth ods: Fram in g th e m od el of target
t rack in g

First, w e choose a state vector to contain inform ation
about the posit ion and the velocity of the m an. We then
update the state according to our m odel called the constant
acceleration m odel, in which the value of acceleration is
calculated from the last few states, using a Taylor series
expansion of the present expansion. The state can thus be
thought of as being updated through the equat ions:

xk þ 1 ¼ Axk þ B
dxk

dtk
þ wk ð1Þ
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And the output equat ions m ay be w rit ten as

yk ¼ Cxk þ zk, ð2Þ

where A, B and C are m atrices of the required order to be
m ult iplied w ith the state vectors. The term s ‘w’ and ‘z’ are
noise m atrices of the sam e order as ‘x’ and ‘y’ vectors,
respect ively. The noise m atrices can be preset to the
m axim um error value possible in the m easurem ents,
and m ay vary as the readings get m ore and m ore accurate.

3.1. Kalman filter using piecewise constant acceleration
model

If the tim e difference of the tw o readings is taken to be
‘Dt ’, we can w rite the present velocity of the m an as

vk þ 1 ¼ vk þ ukDt, ð3Þ

where uk is the calculated accelerat ion of the m an at the
previous instant . We assum e that ‘Dt ’ being sm all the
accelerat ion of the m an rem ains sm all. In reality, ‘Dt ’ is of
the order of 0.05 0.067 s. So our assum ption does not
becom e a source of error.

Let us consider tw o variables in our state vector— one
being the posit ion of the m an (p), and the other being the
velocity at that instant (v). We can w rite the updated
equat ions for the posit ion and the velocity, taking into
account the noise:

vk þ 1 ¼ vk þ uktk þ v̂k ð4Þ

pk þ 1 ¼ pk þ tkvk þ 1
2t 2 uk þ p̂k ð5Þ

Thus the state m atrix becom es xk ¼
pk

vk

" #

.

We can thus update Eqs. (1) and (2) as follow s:

xk þ 1 ¼
1 Dt

0 1
xk þ

Dt 2

2

Dt

" #

uk þ wk ð6Þ

yk ¼ 1 0 xk þ zk ð7Þ

The process noise covariance m ay be w rit ten as

Sw ¼ EðwkwT
k Þ: ð8Þ

Sim ilarly the m easurem ent covariance noise m ay be
writ ten as

Sz ¼ EðzkzT
k Þ: ð9Þ

The superscript ‘T’ suggests the transpose of the
m atrices. Thus, w e have obtained the basic m atrices:

A¼
1 Dt

0 1
ð10Þ

B¼
Dt 2 =2

Dt

" #

ð11Þ

C ¼ 1 0 ð12Þ

We use tw o m atrices— one called the est im ation error
covariance m atrix, w hich w e shall denote by ‘P’, and the
other called the Kalm an gain m atrix, w hich w ill be

denoted by ‘K’. Init ially w e set P as

P ¼ Sw : ð13Þ

And w e set our init ial est im ate

~xk ¼ x: ð14Þ

We first calculate the Kalm an gain m atrix, w hich is
given by

K ¼ APkCTðCPkCT þ SzÞ 1 : ð15Þ

We then predict the next state, w hich is given by

~xk þ 1 ¼ A~xk þ Buk: ð16Þ

Based on the data we obtain from the sensor, i.e. the
infrared cam era and then the range finder, w e update the
est im ate. We develop a correct ion term ‘Corr’, which gives
us the error that has propagated in our state est im ate. We
thus have to correct our state est im ate by that am ount

Corrk ¼ yk þ 1 Cxk, ð17Þ

~xk þ 1 ¼ ~xk þ 1 þ KkðCorrkÞ: ð18Þ

We then update the est im ation error covariance
m atrix:

Pk þ 1 ¼ APkAT þ Sw APkCTS 1
z CPkAT: ð19Þ

The first elem ent of the est im ation vector thus gives
the predicted posit ion of the m an, and the second elem ent
gives its predicted velocity. Using this data, the robot is
m aneuvered accordingly.

3.2. Feedback mechanism

There is a tim e lag between the initiation of a m ovement
by the robot, and the rate at which fram es are scanned by the
infrared camera. Hence we use a feedback mechanism to
overwrite the command given to the robot as shown in Fig. 1.

The rate at w hich com m ands are issued to the robot
depends on the rate of the cam era, which is faster com -
pared to the robot. Thus, at each stage, w hile the robot is in
m otion, fram es are grabbed by the cam era, and the rem ain-
ing angle left to rotate is calculated and est im ated. After
this has been calculated, the com m and in the robot buffer is
over-writ ten by the rem aining angle left to rotate.

One advantage of the feedback m otion is the angle, by
which the robot movem ent is constantly updated. Hence, the
robot comes to a standstill when it is centered on the man it
is tracking. When the m an moves again from the central

Computer
and
Internal
Micro-
controller

Robot
Motors

Far-Infrared
Camera
Sensor

+

−

Estimated
Angular
Position

Error

Command
Robot Position

Position of Human

Fig. 1. Sem ant ic diagram for feedback system of hum an target t racking.
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position of the cam era, the sam e process is again initiated to
bring the man back to the center of the image. Thus, the
cam era never loses the man.

Say at (kþ 1)th fram e, the est im ated angle is y w ith
respect to reference, and the cam era facing angle at (k)th
fram e is a w ith respect to sam e reference fram e so that
the robot shou ld be m oved for tracking the m an, only by b
w hich is equal to

b ¼ y7 a, ð20Þ

w here the sign in (20) depends upon the direct ion of
angle. If both angles are in sam e direction , take m inus
sign , otherw ise plus sign w ill be used.

Another advantage of the feedback motion comes into
play when the man suddenly changes direction while walk-
ing, or moves further away. If the feedback system had not
been implem ented, the man could have disappeared from
the camera visibility by the time the robot rotated and got to
the man’s original position. With the system in place, even if
the man moves further away or changes direction, the
commands for robot rotation or translation will be changed
immediately. We ensure that the Kalman filter is continu-
ously updated, and new com mands immediately overwrite
the old commands in the robot buffer.

4. Proposed pan -t ilt opera t ion

In the target region of interest (ROI) tracking, w e need
to find the required pan and tilt angle for the specific
cam era configurat ion as show n in Fig. 2 so that the
cam era head can rotate to track the target . In other w ords,
this is the angle vector y requ ired to m ake im age center
coinciden t w ith the target centroid:

y ¼
yx

yy

" #

, ð21Þ

w here the rotat ional angle (yx) w ith respect of the center
of the im age is the only angle associated with pan defined
by DX. It is sim ilar w ith (yy), w hen there is only t ilt
operation . We calculate the degree of these values using

the geom etry:

yx ¼ tan 1 DX
l

, ð22Þ

yy ¼ tan 1 DY
l

, ð23Þ

where (l ) is the focal length of cam era, and yx and yy are
unknow n. We need to now calculate the rotat ion angles
to be operated by the pan-t ilt -cam era. The following is
our solut ion to this problem .

Optical flow is the pattern of apparent motion of objects
in a visual scene caused by the relative motion between a
camera and the scene. The concept behind the Optical flow
based tracking is— if the target motion is known, then the
camera m ay be made to elim inate relative motion between it
and the target, hence facilitating tracking. In particular, if the
motion of the target is known well, then ‘‘perfect tracking’’
may be achieved, i.e. center position of the target region of
interest (ROI) can always be kept at the center of im age.
Target motion can be estimated through the change of the
image position, which is called ‘‘Optical flow’’ or im age
displacement. By calculating the image displacement or
optical flow, which is induced by target motion, one can
estimate the m otion of the target when the camera is
stationary. For a stationary object and a moving camera,
the optical flow induced by the camera motion is as follows:

uO ¼
xRz

Z
l Rx

Z
þ

xywx

l
l 2 þ x2

l
wy þ ywz

 !

ð24Þ

vO ¼
yRz

Z
l Ry

Z
þ

l 2 þ y2

l
wx

xywy

l
xwz

 !

ð25Þ

where uO and vO are obtained from the optical flow , and wx,
wy, wz and Rx, Ry, Rz are rotational and translational velocity
of the cam era, respectively, ‘x’ and ’y’ are center of ROI in
im age fram e, ‘Z’ is the Z coordinate of the target in cam era
fram e, l is a focal length and subscript ‘O’ is denoted as an
object. If we assum e a m oving object and a stat ionary
cam era instead of a m oving cam era and a stat ionary object ,
then w e can obtain the sam e result as (24) and (25) except
for a sign reversal [23].

In our tracking environm ent , both the cam era and the
target are non-stat ionary. The optical flow is thus subject
to both the cam era and the target m ovem ent . In order to
take this into account w e have to m odify the optical flow
equation such that the optical flow induced only by target
m otion is taken into account . According to superposit ion,
the total opt ical flow is equal to the sum of the optical
flow of target and that of cam era. Suppose that the optical
flow at the t im e instant k during the tracking phase is
[u(k), v(k)], then the optical flow s Are [23]

uðkÞ¼ uOðkÞþ uca ðkÞ, ð26Þ

vðkÞ¼ vOðkÞþ vca ðkÞ, ð27Þ

where u(k) and v(k) are the total optical flow, vO(k) and uO(k)
are the optical flow induced by the target motion, whereas
uca(k) and vca(k) are the optical flows induced by the tracking
motion of the cam era in X and Y directions, respectively.
Therefore, the optical flow induced by the target motionFig. 2. Cam era configuration .
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during the tracking phase can be obtained by modifying (26)
and (27) as follows:

uOðkÞ¼ uðkÞ uca ðkÞ, ð28Þ

vOðkÞ¼ vðkÞ vca ðkÞ: ð29Þ

Pan-directional angle wx and tilt -direct ional angle wy

in Fig. 3 allow the cam era to rotate only in the direct ion
with respect to the im age plane X–Y. So the m otion vector
of cam era is

R¼ wx wy 0
h i T

: ð30Þ

Usually cross-correlation and sum-of-difference method
are used for calculating observable m odified optical flow, but
we will use our own method for finding this. By using our
own motion estim ation algorithm , we can estim ate the target
image position at any tim e. Assume that the center of ROI at
(k 1)th frame is [x(k 1) y(k 1)]T and our camera’s angular
velocity is wx(k 1)¼Dyx/Dt and wy(k 1)¼Dyy/Dt, where
Dyx and Dyy are the changes in pan and tilt angles,
respectively, and Dt is the time interval between two
consecutive frames. Let the target move to the position
[x(k), y(k)]T at the next frame, then u(k 1), v(k 1), uca(k 1)
and vca(k 1) at the (k)th frame m ay be derived as follows
using (24), (25) and (30):

uðk 1Þ¼
xðkÞ xðk 1Þ

Dt
ð31Þ

vðk 1Þ¼
yðkÞ yðk 1Þ

Dt
, ð32Þ

uca ¼
xðk 1Þyðk 1Þ

l
o xðk 1Þ

l 2 þ x2 ðk 1Þ
l

 !

o yðk 1Þ,

ð33Þ

vca ¼
l 2 þ y2 ðk 1Þ

l

 !

o xðk 1Þ
xðk 1Þyðk 1Þ

l
o yðk 1Þ,

ð34Þ

and using (28) and (29)

uOðk 1Þ¼
xðkÞ xðk 1Þ

Dt
xðk 1Þyðk 1Þ

l

o xðk 1Þþ
l 2 þ x2 ðk 1Þ

l

 !

o yðk 1Þ ð35Þ

vOðk 1Þ¼
yðkÞ yðk 1Þ

Dt
l 2 þ y2 ðk 1Þ

l

 !

o xðk 1Þþ
xðk 1Þyðk 1Þ

l
o yðk 1Þ ð36Þ

We can estim ate the m otion using the above m odified
optical flow equat ion. The m otion estim ation algorithm is
based on the est im ation of rotat ion velocity wx and wy.
Our algorithm can estim ate the m otion of the target
w ithout knowing the actual depth inform ation . We write
equat ions (24) and (25) in discrete t im e expression as

uOðk 1Þ

vOðk 1Þ

" #

¼ Jðxðk 1Þ,yðk 1Þ,zðk 1ÞÞ
Rðk 1Þ

wðk 1Þ

" #

, ð37Þ

w here

Jðxðk 1Þ,yðk 1Þ,zðk 1ÞÞ¼

l
Zðk 1Þ 0 xðk 1Þ

Zðk 1Þ
xðk 1Þyðk 1Þ

l
x2 ðk 1Þþ l 2

l yðk 1Þ

0 l
Zðk 1Þ

yðk 1Þ
Zðk 1Þ

y2 ðk 1Þþ l 2

l
xðk 1Þyðk 1Þ

l xðk 1Þ

2

6
4

3

7
5

ð38Þ

The m atrix J(x(k 1), y(k 1), z(k 1) is called the
Im age Jacobian and R¼[Rx, Ry, Rz]

TAR3 and w ¼[wx, wy,
wz]

TAR3 are the translat ional and rotat ional velocit ies of
cam era, respect ively.

In order to keep tracking, the ROI centroid in im age
fram e should pass through the center of the im age. Accord-
ing to the content above, w e use (x(k 1), y(k 1)) to
represent the center of ROI at (k-1)th fram e. Using (30)
and (37) and perspective project ion m odel [35] gives

uOðk 1Þ

vOðk 1Þ

" #

¼

xðk 1Þyðk 1Þ
l

x2 ðk 1Þþ l 2

l

y2 ðk 1Þþ l 2

l
xðk 1Þyðk 1Þ

l

2

4

3

5
o xðk 1Þ

o yðk 1Þ

" #

:

ð39Þ
Let

P ¼

xðk 1Þyðk 1Þ
l

x2 ðk 1Þþ l 2

l

y2 ðk 1Þþ l 2

l
xðk 1Þyðk 1Þ

l

2

4

3

5, V ¼
o xðk 1Þ

o yðk 1Þ

" #

and C ¼
uOðk 1Þ

vOðk 1Þ

" #

Rew rite (39) as

C ¼ P V, ð40Þ

w here C is the optical flow induced by target m otion , P is
com posed of feature’s im age coordinate and focal length
and V consists of rotat ional velocity of cam era w ith
respect to the cam era fram e. For non-singular m atrix P,
(40) can be easily solved as follow s:

V ¼ P 1 C: ð41Þ

Thus, w e can calculate the unknown values for wx and
wy using (41).

The next step of our tracking algorithm is the predic-
t ion . The purpose herein is to predict where the target
im age locat ion will ‘m ove to’ in the next (k)th fram e
predicted. Thus, the prediction (xpredict(k), ypredict(k)) can
be obtained as follow s:

xpredict ðkÞ¼ xðk 1Þþ uOðk 1ÞDt, ð42Þ

ypredict ðkÞ¼ yðk 1Þþ vOðk 1ÞDt : ð43Þ

The value (x, y) is fed to the tracking m odule to
generate the desired cam era angular m otion yx(k) and

Fig. 3. Cam era pan-tilt m ot ion in 3-D plane.
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yy(k) so that w e can calcu late the cam era param eters for
t racking ROI at the (k)th fram e:

yxðkÞ¼ tan 1 xpredict ðkÞ xcenter ðk 1Þ

l
, ð44Þ

yyðkÞ¼ tan 1 ypredict ðkÞ ycenter ðk 1Þ

l
, ð45Þ

w here (xcenter(k 1), ycenter(k 1)) is the center of the
im age, and not the center of ROI, obtained from the
pan-t ilt cam era posit ion using the triangulation show n
in Fig. 2 at (k 1)th fram e. Note that Eqs. (44) and (45)
correspond to Eqs. (21), (22) and (23) to calculate the
desired cam era pan-t ilt -param eters show n in Fig. 3.

5. Arb it ra t ion of Opt ica l flow an d Kalm an filt er

We have applied the Optical flow as shown in the flow
chart in Fig. 4 for the tracking process. We further propose
the Arbitrate OF and KF algorithm to calculate the estim ated
value of the pan angle, which will be used for our prediction.
In our proposed m ethod, both KF and OF will predict the
value of the pan angle but, depending on the situation, we
will decide which value should be fed to the robot for track-
ing the target. If the m an walks smoothly, then the pan angle
value predicted by KF will be fed to the robot. Otherwise, the

Extraction of Center of Target from Infrared Image

Optical Flow induced by the target in X and Y

Target motion vector V is estimated

Pan angle is calculated (44), (45). 

Evaluated the predicted target center using (35), (36). 

Fig. 4. Flow chart of optical-flow based target tracking.

Fig. 5. Previous trajectory of m an’s m otion by w hich the required pan
angle is decided.

Raytheon Infrared 
Camera @15Hz,
Image size 640×480
pixel

SICK Laser 
Range Finder

PC

Mobile Robot

Fig. 6. Pioneer m obile robot plat form .

Fig. 7. Sam ple im ages from (a) Ground Proof, (b) Hum an Target and
(c) Hum an Target w ith a noisy background.
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pan angle value predicted by OF will be fed to the robot. The
proposed algorithm for arbitration is as follows:

Step 1: Make a triangle using the center of the target in
(k)th , (k 1)th and (k 2)th as vert ices as shown in
Fig. 5. Say (Xk, Yk), (Xk 1, Yk 1) and (Xk 2, Yk 2) are the
centers of the target in (k)th, (k 1)th and (k 2)th
fram es, respect ively. Find out the length of each side:

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXk 1 Xk 2 Þ2 þ ðYk 1 Yk 2 Þ2

q
ð46Þ

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXk Xk 1 Þ2 þ ðYk Yk 1 Þ2

q
ð47Þ

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXk Xk 2 Þ2 þ ðYk Yk 2 Þ2

q
ð48Þ

Step 2: Using a, b and c from (46), (47) and (48), the
angle y betw een side of length a and b equals to

y ¼ cos 1 a2 þ b2 c2

2ab
ð49Þ

Step 3: From (49) y is an angle of the triangle, so its
value w ill be less than 1801. If 1601r yr 1801, then w e
are assum ing that the m an is walking in a straight line.
The pan angle value w ill in this case be estim ated by
KF. In all other cases, the pan angle value is estim ated
by the OF. As one exam ple, the pan angle w ill be
est im ated by OF for the trajectories shown by rectan-
gular boxes in Fig. 5, otherwise KF w ill estim ate the
pan angle.
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Fig. 8. Angular posit ion of Ground Proof for (a) slow m ode, (b) m oderate
m ode and (c) fast m ode.
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Fig. 9. Angular posit ion of Hum an Target versus t im e for (a) slow
w alking m ode, (b) m oderate m oving m ode and (c) fast w alking m ode.
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6. Exper im en ta l resu lt s

This section com pares the results obtained from algo-
rithm s using only KF, only OF, and finally the Arbitrate
OFKF m odel developed in this paper. Since we have tracked
a single point in the KF, w e have used only one feature
point in the OF for com parisons. A final com parison is m ade
between Arbitrate OFKF and the part icle filter at the end of

the sect ion. In the series of the experim ents, we have
specifically evaluated pan angle values.

6.1. Input datasets

Online data w as collected using a Raytheon Infrared
Cam era operated at 15 Hz fram e rate and im age size of
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Fig. 10. Angular posit ion of Hum an Target w ith a noisy background versus t im e for (a) slow w alking m ode, (b) m oderate w alking m ode and (c) fast
w alking m ode.
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640 480 pixels. The data collect ion procedure consisted
of a target m oving in front of an infrared cam era, w hich
was m ounted on the Active Media robot show n in Fig. 6.
Data w as collected for the three m odes of w alking: slow ,
m oderate and fast . In slow w alking m ode, the target
m oved slow ly in front of the cam era w ithout taking any
sudden turns. In the m oderate walking m ode, the target
m oved with m oderate speed in front of the cam era taking
sm ooth turns. In the fast w alking m ode, the target m oved
with high velocity taking sudden turns during the course
of its m otion.

Fig. 7a–c is collect ions of im ages that show the various
target types during their m otion. Each of these im ages is
30 fram es apart in the t im e reference. The white line, as
show n in Fig. 7, is the m ost salient im age colum n, w hich
is our m easured tracking locat ion through our algorithm s.
Instead of show ing specific Hum an Target tracking
results, w e have evaluated three different target cases.
Fig. 7a is a ground proof experim ent , w hich involves a
sim ple target in a noiseless background, Fig. 7b involves a
hum an target w alking in a low noise environm ent and
Fig. 7c shows a hum an target walking in a very noisy
environm ent . The ground proof was exam ined using a

sim ple hot spot show n in Fig. 7a to m ake sure w hether
the experim ental condit ion w as under con trol or not . The
noise w as sim ulated using num erous light and heat
sources in the area of the experim ent to at t ract the
therm al cam eras.

In any Kalman filter implementation, the next state
prediction depends on the previous state vector. So without
correct initialization the predicted values become erroneous.
The piecewise constant acceleration model carries the
assumption that the initial state vector is equal to zero,
i.e. the initial angular position of the target is zero (with
respect to Sick) and the initial velocity of the target is zero.

Mathem atically, x0 ¼
p0

v0

" #

¼
0

0
.

In optical flow, w e don’t have to init ialize any variable
because w e are not using an init ial state vector.

6.2. Prediction accuracy of OF, KF and arbitrate OFKF

In fact , m oderate and slow walking m odes, both the
algorithm s track w ell w hen the target m oves in one
direct ion, i.e. along a straight line. How ever, during a
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Fig. 11. Pan angle versus (X, Y) coordinate of Hum an Target in im age plane for KF, OF, arbitrate OFKF and Actual.

Tab le 1
Error analysis of Arbit rate OFKF for (A) Ground Proof, (B) Hum an Target and (C) Hum an Target w ith noisy background.

Filter Slow w alking Moderate w alking Fast w alking

Avg. err. (o) OS (%) Avg. (o) Max. (o) Avg. err. (o) OS (%) Avg. (o) Max. (o) Avg. err. (o) OS (%) Avg. (o) Max. (o)

(A)
OF 2.11 7 1.36 30.30 2.13 5.85 2.11 7 1.43 33.57 2.09 13.22 2.59 7 2.75 31.76 2.58 37.58
KF 1.907 1.82 34.78 2.07 6.62 2.63 7 2.35 37.02 2.99 8.12 2.66 7 2.71 28.81 3.06 19.57
Arbitrate OFKF 1.69 7 1.30 26.37 1.76 5.85 2.06 7 1.69 29.30 2.23 7.80 2.11 7 1.88 21.23 2.20 19.57

(B)
OF 2.04 7 4.15 8.88 1.89 45.98 2.86 7 4.57 12.77 2.73 41.25 3.31 7 4.96 15.02 3.33 44.33
KF 1.76 7 2.44 6.66 1.71 23.80 2.69 7 3.36 14.07 3.29 20.05 3.64 7 3.68 20.18 4.50 24.16
Arbitrate OFKF 1.74 7 3.43 7.98 1.68 40.44 2.34 7 3.73 11.96 2.52 41.25 2.68 7 4.24 14.11 3.06 39.42

(C)
OF 2.53 7 1.94 19.53 2.49 20.58 2.86 7 2.15 45.58 2.81 35.50 2.88 7 2.39 27.30 2.86 23.06
KF 1.007 1.02 13.98 1.40 9.16 1.80 7 1.71 36.32 2.30 16.89 3.59 7 3.08 37.50 4.53 11.77
Arbitrate OFKF 1.37 7 1.63 14.34 1.80 11.10 1.30 7 1.63 34.66 1.79 16.89 1.707 1.67 24.74 2.14 15.01
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w alk if the target takes a sudden turn, OF gives a bet ter
estim ate of angular posit ion of the target as com pared to
the KF as show n in Figs. 8–10.

The m ain problem lies in the fact that in KF, the
predict ion of present state is based on the previous state
vector. So w hen the target takes a sudden turn, the KF
has no w ay to predict using only the previous data. On
the contrary, the KF w ould predict a m otion along the
previous direct ion. The OF uses posit ional coordinates of
the target in the previous fram e to predict the pan angle.
Figs. 8–10 show that optical flow w orks better than the
Kalm an filter in regions of sharp turns and zigzag m otion.

As show n in Figs. 8–10 the error in angular posit ion at
turn ing points is the highest in the fast w alking m ode and
the low est in the slow w alking m ode. When the target
w alks slowly, the accelerat ion change on a turn is very
sm all w hen com pared to the sam e value for a fast w alk.
When we com pared the targets variat ions am ong
Figs. 8–10, the predict ion perform ance of ground proof
object w as the best , and the background noise w as the
w orst , although the difference betw een them was the
m odest .

The arbit rat ion of either KF and OF w ill provide a good
estim ation of the angular posit ion of the target . Depend-
ing on the situat ion w e w ill decide which value should be
fed to the robot for efficient tracking. We have used (41)
for est im ating the required pan angle. The Arbitrate OFKF
gives relat ively less error in est im ation of angular posit ion
for all walking m ode as show n in Figs. 8–10.

A 3-D plot of pan angle corresponding to the (x, y)
coordinate of target in the im age plane is show n in Fig. 11.
Fig. 11 shows that the pan angle est im ated by Arbitrate
OFKF closely m atches the actual value of the pan angle.
We have chosen OF predict ion at sharp turning points
(show n by rectangular boxes in Fig. 11) and for the rest of
the m otion w e have follow ed the KF predict ion. It is thus
evident that the arbit rate OFKF w orks bet ter than either
the KF or the OF individually.

6.3. Prediction error with overshoot

This sect ion presents stat ist ical analysis of the errors in
the predict ion of pan angle by OF and KF. The error in
angular posit ion shows how precisely the algorithm
estim ates the angular posit ion of the target . A com pre-
hensive table for average error and Overshoot (OS) for OF
and KF is show n in Table 1.

We defined the percentage overshoot (OS) as the num -
ber of tim es the error in the estim ation of the pan angle
exceeded a certain threshold value. Since a large error
generally occurs during points where the target turns, the
OS can indirectly give us inform ation about turning point
prediction accuracy. From Table 1, it is evident that the KF,
in general, works better than the OF for all three walking
m odes. Around turning points, however, the OS of the error
is relat ively less in the OF than KF.

The percentage OS of the error is drast ically im proved
by the Arbitrate OFKF as show n in Fig. 12. As shown in
Table 1, it is clear that Arbitrate OFKF predicts the angular
posit ion m ore accurately than OF and KF for all three
m odes of w alking. The percentage OS of the error is

im proved by the Arbitrate OFKF as show n in Fig. 12. As
show n in Table 1, it is clear that Arbitrate OFKF predicts
the angular posit ion m uch m ore accurately than OF and
KF especially in the m oderate and fast m odes of w alking.

The outcom es of Table 1 Error Analysis shows (A)
Ground Proof has reached the best prediction perform ance,
although (C) Human Target w ith Noise background has
not degenerated as expected, com pared to (B) Hum an
Target case.

6.4. Execution time

The execution tim e per iterat ion w as observed for the
KF, the OF and the arbitrate OFKF. Since the num ber of
m athem atical operations involved per iterat ion in the KF

Fig. 12. Com parison of average overshoot angle for the tu rn ing periods
for the three w alking m odes for (a) Ground Proof, (b) Hum an Target and
(c) Hum an Target w ith noisy background.
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algorithm is higher than that required in the OF algorithm s,
the t im e required for the OF w as experim entally confirmed
to be low er than that required for the KF com putat ions. In

fact , the OF algorithm s took only 58%of the t im e taken by
the KF algorithm . The data w as collected for the 6.5 s of
m otion of the m an in front of the infrared cam era operated
at 15 fram es per second, and the corresponding plot of the
t im e required per iterat ion is show n in Fig. 13.

Regarding t im e com plexity, the arbit rate OFKF w ill
require, on average, 2.5 10 5 s m ore than the KF. It is
m uch less, how ever, in com parison to the t im e interval
betw een tw o consecut ive fram es, w hich is equal to
0.067 s, so the t im e factor w on’t m atter m uch. How ever,
w e gain in accuracy w hen we use the arbitrate OFKF.

6.5. Performance analysis of arbitrate OFKF versus particle
filter

Finally in Table 2, w e com pared the overall perfor-
m ance of arbit rate OFKF versus part icle filter [47] using
Hum an Target in the different speed set t ings as show n.
The part icle filter w as init ialized with 50 particles and its
likelihood w as m easured by a Gaussian weight (Fig. 14).

In all w alking m odes, the filters had sim ilar perfor-
m ances. The particle filter had less error on average from
the m easured track; how ever it also had a higher percent
overshoot . Most notably, the particle filter required m uch
m ore com putat ion t im e per fram e than the arbit rate OFKF
algorithm .

7. Con clu sion

In th is paper, a novel tracking m ethod is proposed,
w hich is able to predict a target posit ion very efficient ly
even if the target object turns suddenly during its m otion.
The proposed m ethod is based on an arbit rat ion betw een
OF and KF. It takes in to considerat ion the trajectory of the
target m otion, and gives a m uch bet ter resu lt of tracking
than individual OF or KF filters. In th is paper, attent ion
has been draw n to different scenarios w here either the KF
w orks bet ter or the OF does. A com parison has also been
m ade w ith the part icle filter and been show n to have a
sim ilar perform ance w ith a great decrease in com putat ion
t im e. Our algorithm for the arbit rate OFKF has been
successfully tested on our m obile robot in real-t im e
tracking of a m an in an indoor lab environm ent . As a part
of fu ture work, w e will address the design of an autono-
m ous m obile robot, w hich can track tw o or m ore targets
sim ultaneously. We also feel our system m ight be m ade
even m ore robust and efficient by insert ion of other
sensors result ing in asynchronous and heterogeneous
m ult iple sensory fusions.
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Fig. 13. Com putat ion t im e required for each iterat ion versus no. of
iterat ion for (a) Ground Proof, (b) Hum an Target and (c) Hum an Target
with noisy background.

Tab le 2
Com parison of Arbitrate OFKF versus Part icle Filter for Hum an Target .

Filter Slow w alking Moderate w alking Fast w alking

Error (o) OS
(%)

Com putat ion tim e
(m s)

Error (o) OS
(%)

Com putation tim e
(m s)

Error (o) OS
(%)

Com putat ion t im e
(m s)

Arbitrate
OFKF

1.21 7 3.45 5.56 0.08 1.59 7 3.14 9.24 0.08 1.83 7 3.56 11.91 0.09

Part icle Filter 1.147 4.40 4.43 1.17 1.39 7 4.24 11.44 1.16 1.62 7 4.37 15.67 1.18
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Fig. 14. Com parison of arbitrate OFKF versus a Part icle Filter t racking
Hum an Target in (a) slow w alking m ode, (b) m oderate w alking m ode
and (c) fast w alking m ode.
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