
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 59, NO. 11, NOVEMBER 2012 4421

Respiratory Motion Estimation With Hybrid
Implementation of Extended Kalman Filter

Suk Jin Lee, Student Member, IEEE, Yuichi Motai, Member, IEEE, and Martin Murphy

Abstract—The extended Kalman filter (EKF) can be used for
the purpose of training nonlinear neural networks to perform
desired input–output mappings. To improve the computational
requirements of the EKF, Puskorius et al. proposed the decoupled
EKF (DEKF) as a practical remedy for the proper management of
computational resources. This approach, however, sacrifices com-
putational accuracy of estimates because it ignores the interactions
between the estimates of mutually exclusive weights. To overcome
such a limitation, therefore, we proposed hybrid implementation
based on EKF (HEKF) for respiratory motion estimation, which
uses the channel number for the mutually exclusive groups and
the coupling technique to compensate the computational accuracy.
Moreover, the authors restricted to a DEKF algorithm in which
the weights connecting the inputs to a node are grouped together. If
there are multiple input training sequences with respect to the time
stamp, the complexity can increase by the power of the input chan-
nel number. To improve the computational complexity, we split the
complicated neural network into a couple of simple neural net-
works to adjust separate input channels. The experimental results
validated that the prediction overshoot of the proposed HEKF was
improved by 62.95% in the average prediction overshoot values.
The proposed HEKF showed a better performance of 52.40%
improvement in the average of the prediction time horizon. We
have evaluated that the proposed HEKF can outperform DEKF by
comparing the prediction overshoot values, the performance of the
tracking estimation value, and the normalized root-mean-squared
error.

Index Terms—Estimate, extended Kalman filter (EKF),
multilayer perceptron (MLP), recurrent neural network (RNN),
tracking.

I. INTRODUCTION

THE problem of predicting moving objects with a given
reference trajectory is a common estimation problem

[1]–[5]. Kalman filters can be widely used in many indus-
trial electronics for state estimation and prediction [6]–[14].
Due to increasingly complex dynamical systems, a variety of
methodologies has been proposed based on the Kalman filter
and its hybrid approach [14]–[19]. The recurrent neural network

Manuscript received December 21, 2010; revised March 20, 2011; accepted
May 5, 2011. Date of publication May 27, 2011; date of current version
June 19, 2012. This work was supported in part by the Dean’s Office of the
School of Engineering, Virginia Commonwealth University, and in part by NSF
ECCS under Grant 1054333.

S. J. Lee and Y. Motai are with the Department of Electrical and Computer
Engineering, Virginia Commonwealth University, Richmond, VA 23284 USA
(e-mail: leesj9@mymail.vcu.edu; ymotai@vcu.edu).

M. Murphy is with the Department of Radiation Oncology, Virginia
Commonwealth University, Richmond, VA 23298 USA (e-mail: mjmurphy@
vcu.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIE.2011.2158046

(RNN) can also be one of the estimation methods for predictive
control in many application systems [20]–[32]. Here, RNN is
a class of neural network where connections between units
exhibit dynamic temporal behavior with their synaptic weights.
Owing to this dynamic behavior, RNN can implement dynam-
ical nonlinear multivariable discrete-time systems of arbitrary
complexity [33]–[36].

Target-tracking estimation can be one of the applications of
RNN because of its adaptive learning, which is an ability to
learn how to do tasks based on the data given for training or
initial experience [20], [21], [25], [26], [64]. For example, RNN
can be used for respiratory motion prediction for real-time mo-
tion adaptation in the medical application [37]–[42]. Because of
the self-organized characteristic of neural networks, it can have
a built-in capability to adapt their synaptic weights to change
based on the given samples in the specific circumstance. Thus,
it can provide a better performance in comparison to the con-
ventional methods of respiratory motion prediction [43]–[47].
Intrinsically, a training algorithm for RNN became an issue in
improving the performance of dynamical systems with respect
to the specific environment [48].

There are several algorithms available in training the weights
of recurrent networks based on streams of input–output data.
Basically, the most widely used are the back-propagation-
through-time algorithm [49]–[51] and the real-time recurrent
learning (RTRL) algorithm [51]–[54], which are both based
on the computation of the gradient of an output error measure
with respect to network weights. However, the calculation of
the dynamic derivatives of the recurrent network’s outputs with
respect to its weights by RTRL is computationally expensive
since these derivatives cannot be computed by the same back-
propagation mechanism that was employed in the training of
multilayer perceptron (MLP) networks [55].

As an alternative or improvement of the gradient descent-
based methodology, several authors have noted that the ex-
tended Kalman filter (EKF) can also be used for the purpose
of training networks to perform the desired input–output map-
pings [15]–[19]. Note that the predictor–corrector property is
an intrinsic property of the Kalman filter, its variants, and exten-
sions. Thus, whereas, in traditional applications of the Kalman
filter for sequential state estimation, the roles of predictor and
corrector are embodied in the Kalman filter itself, in supervised-
training applications, these two roles are split between the
RNN and the EKF. Here, the RNN, in which the input training
samples are applied to the recurrent MLP (RMLP) as the
excitation, performs the role of the predictor, and the EKF, in
which the training samples of the desired response are applied

0278-0046/$26.00 © 2011 IEEE



4422 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 59, NO. 11, NOVEMBER 2012

to the EKF as the observable data in providing the supervision,
performs the role of the corrector [55].

In comparison to the gradient descent algorithms, EKF-based
algorithms for recurrent networks do not require batch process-
ing, making them more suitable for online use. To improve
the computational requirements of the EKF, Puskorius et al.
proposed decoupled EKF (DEKF) as a practical remedy for
the proper management of computational resources [15]. The
author in [15] restricted to a DEKF algorithm in which the
weights connecting the inputs to a node are grouped together.
This approach, however, sacrifices computational complexity
and estimation accuracy since DEKF defines a node as the
mutually exclusive weight group. If there are multiple input
training sequences with respect to the time stamp, the com-
plexity can increase by the power of the input channel number.
To overcome these limitations, we do not adopt the mutually
exclusive weight groups. Instead, we adopt the channel number
for the mutually exclusive groups to propose the coupling tech-
nique to compensate the computational accuracy using multiple
sensory channel inputs. We call this newly proposed method as
hybrid motion estimation based on EKF (HEKF).

The contribution of this paper is twofold. First, we propose
a new approach to split the whole RMLP with the complicated
neuron number into a couple of RMLPs with the simple neuron
number to adjust separate input channels. Second, we present
a new method for respiratory motion estimation using EKF,
which adapts the coupling technique using multiple channel
inputs for the mutually exclusive groups to compensate the
computational accuracy, instead of mutually exclusive weight
groups.

This paper is organized as follows. In Section II, the theoret-
ical background of the proposed algorithm is briefly discussed.
In Section III, the proposed hybrid implementation based on
EKF for RNN with multiple sensory channel inputs is presented
in detail. Section IV presents and discusses the experimental
results of the proposed filter design method—efficient estima-
tion of the measurements, optimized group number for RMLP,
prediction overshoot analysis, prediction time horizon, and
computational complexity of HEKF and DEKF. A summary
of the performance of the proposed method is presented in
Section V.

II. BACKGROUND

A. RNN

An RNN is a class of neural network where connections
between units form a directed cycle. This creates an internal
state of the network which allows it to exhibit dynamic temporal
behavior. A network with a rich representation of past outputs
is a fully connected RNN, known as the Williams–Zipser
network, as shown in Fig. 1[48]. This network consists of
three layers: the input, processing, and output layers. For each
neuron i (i = 1, 2, . . . , N), the elements uj of the input vector
(j = 1, 2, . . . ,M + N + 1) to a neuron u are as follows:

uT
j (k)=[x(k−1), . . . , x(k−M), 1, y1(k−1), . . . , yN (k−1)]

(1)

Fig. 1. Fully connected RNN with external inputs.

where M is the number of external inputs, N is the number
of feedback connections, (·)T denotes the vector transpose
operation, and the (M + N + 1) × 1 dimensional vector u
comprises both the external and feedback inputs to a neuron,
as well as the unity valued constant bias input. Equation (1) is
weighted and then summed to produce an internal activation
function of a neuron v as follows:

vi(k) =
M+N+1∑

l=1

wi,l(k)ul(k) (2)

where w represents weights. Finally, (2) is fed through a non-
linear activation function Φ to form the output of the ith neuron
yi. Here, the function Φ is a monotonically increasing sigmoid
function with slope β, as, for instance, the logistic function

Φ(v) =
1

1 + e−βv
. (3)

At the time instant k, for the ith neuron, its weights form
an (M + N + 1) × 1 dimensional weight vector wT

i (k) =
[wi,1(k), . . . , wi,M+N+1(k)]. One additional element of the
weight vector w is the bias input weight. After feeding (2) into
(3) using the function Φ, the output of the ith neuron yi can be
formed as follows:

yi(k) = Φ (vi(k)) , i = 1, 2, . . . , N. (4)

In an RNN architecture, the feedback brings the de-
layed outputs from hidden and output neurons back into
the network input vector u(k), as shown in Fig. 1. Due
to this recursive function at each time instant, the net-
work is presented with the raw possibly noisy external in-
put data x(k), x(k − 1), . . . , x(k − M) from Fig. 1, input
elements (1) and the filtered data y1(k − 1), . . . , yN (k − 1)
from the network output. Intuitively, this filtered input his-
tory helps in improving the processing performance of RNNs,
as compared with feedforward networks. Therefore, an RNN
should be able to process signals corrupted by additive noise
even in the case when the noise distribution is varying
over time.



LEE et al.: RESPIRATORY MOTION ESTIMATION WITH HYBRID IMPLEMENTATION OF EKF 4423

B. EKF for RNNs (EKF-RNN)

As mentioned in the previous section, the learning algorithm
based on gradient descent, exemplified by the RTRL algorithm,
is typically slow due to reliance on instantaneous estimates
of gradients [15]. We can overcome this serious limitation by
using the supervised training of a recurrent network which
recursively utilizes information contained in the training data in
a manner going back to the first iteration of the learning process.
That is based on Kalman filter theory [55].

Consider a recurrent network built around a static MLP with
s weights and p output nodes. Let the vectors w(k), v(k), and
u(k) denote the weights of the entire network, the recurrent
activities inside the network, and the input signal applied to the
network at time k, respectively. With adaptive filtering in mind,
the system state model and measurement model equations for
the network may be modeled as follows:

w(k + 1) =w(k) + q(k) (5)

d(k) = b (w(k), v(k), u(k)) + r(k) (6)

where q(k) and r(k) are the process and measurement noise
with the property of a multivariate zero-mean white noise
with covariance matrices Q and R, respectively. d(k) is the
observable data, and b(·, ·, ·) is the measurement function that
accounts for the overall nonlinearity of the MLP from the input
to the output layer.

For us to be able to apply the EKF algorithms as the facil-
itator of the supervised-learning task, we have to linearize the
measurement equation (6) by retaining the first-order terms in
the Taylor series expansion of the nonlinear part of the equation.
With b(w(k), v(k), u(k)) as the only source of nonlinearity, we
may approximate (6) as follows:

d(k) = B(k)w(k) + r(k) (7)

where B(k) is the p × s measurement matrix of the linearized
model. The linearization consists of the partial derivatives of the
p outputs of the whole network with respect to the s weights of
the model as shown

B(k) =

⎡
⎢⎢⎢⎣

∂b1
∂w1

∂b1
∂w2

· · · ∂b1
∂ws

∂b2
∂w1

∂b2
∂w2

· · · ∂b2
∂ws

...
...

. . .
...

∂bp

∂w1

∂bp

∂w2
· · · ∂bp

∂ws

⎤
⎥⎥⎥⎦ . (8)

The partial derivatives in (8) are evaluated at w(k) =
ŵ(k|k − 1), where ŵ(k|k − 1) is the prediction of the weight
vector w(k) computed by EKF at time k, given the observed
data up to time k − 1.

For the purpose of our present discussion, the relevant equa-
tions in the EKF algorithm are the innovation process and the
weight update equations as follows:

α(k) = d(k) − b(k) (ŵ(k|k − 1), v(k), u(k)) (9)

ŵ(k + 1|k) = ŵ(k|k − 1) + G(k)α(k) (10)

Fig. 2. Closed-loop feedback system embodying the RMLP and the EKF.

where α(k) is the p × 1 matrix denoting the innovations defined
as the difference between the desired response d(k) for the
linearized system and its estimation, ŵ(k|k − 1) is the s × 1
vector denoting the estimate of the weight vector w(k) at time k
given the observed data up to time k − 1, and ŵ(k|k)(= ŵ(k +
1|k)) is the filtered updated estimate of w(k) on the receipt
of the observable d(k). G(k) is the s × p matrix denoting the
Kalman gain that is an integral part of the EKF algorithm.

Let Γ(k), P (k|k − 1), and P (k|k) be defined as the p × p
matrix denoting the global conversion factor for the entire
network, the s × s prediction-error covariance matrix, and the
s × s filtering-error covariance matrix, respectively. In light
of these new notations, we can write the EKF algorithms as
follows:

Γ(k)=
[
B(k)P (k|k−1)BT (k)+R(k)

]−1
(11)

G(k)=P (k|k−1)BT (k)Γ(k) (12)

P (k|k)=P (k|k−1)−G(k)B(k)P (k|k−1) (13)

P (k+1|k)=P (k|k)+Q(k). (14)

As shown in Fig. 2, with the weight vector set at its old
predicted value ŵ(k|k − 1), the RMLP computes the actual
output vector y(k) in response to the input vector u(k). After
updating the old estimate of the weight vector by operating on
the current desired response d(k), the filtered estimate of the
weight vector ŵ(k|k) is computed in accordance with (10).

Note that, in the EKF-RNN of Fig. 2, the RNN performs
the role of the predictor, and the EKF performs the role of the
corrector.

III. MULTICHANNEL COUPLED EKF-RNN: PROPOSED

FILTER DESIGN FOR MULTIPLE SENSORS

A. DEKF

The computational requirement of the EKF is dominated
by the need to store and update the filtering-error covariance
matrix P (k|k) at time step k. For an RNN containing p output
nodes and s weights, the computational complexity of the
EKF is O(ps2), and its storage requirement is O(s2). For a
large s, these requirements may be highly demanding. In such



4424 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 59, NO. 11, NOVEMBER 2012

Fig. 3. DEKF for RNN. Each group is corresponding to mutually exclusive weight group. The concatenation of the filtered weight vector ŵi(k|k) forms the
overall filtered weight vector ŵ(k|k).

situations, we need to look for a practical remedy for the proper
management of computational resources, i.e., DEKF [15], [55].

The basic idea behind the DEKF is to ignore the interactions
between the estimates of certain weights in the RNN. If the
weights in the network are decoupled in such a way that we can
create mutually exclusive weight groups, then the covariance
matrix P (k|k) is structured into a block-diagonal form, as
shown at the bottom left of Fig. 3.

Let g denote the designated number of mutually exclusive
disjoint weight groups. Also, for i = 1, 2, . . . , g, let ŵi(k|k),
Pi(k|k), and Gi(k) be defined as the filtered weight vector, the
subset of the filtering-error covariance matrix, and the Kalman
gain matrix for the group i, respectively. The concatenation of
the filtered weight vectors ŵi(k|k) forms the overall filtered
weight vector ŵ(k|k). In light of these new notations, we can
now rewrite the DEKF algorithm for the ith weight group as
follows:

αi(k)=di(k)−bi(k)

(ŵi(k|k−1), vi(k), ui(k)) (15)

Γ(k)=

[
g∑

i=1

Bi(k)Pi(k|k−1) (Bi(k))T

+R(k)

]−1

(16)

Gi(k)=Pi(k|k−1) (Bi(k))T Γ(k) (17)

ŵi(k+1|k)=ŵi(k|k−1)+Gi(k)αi(k) (18)

Pi(k+1|k)=Pi(k|k)+Qi(k) (19)

Pi(k|k)=Pi(k|k−1) − Gi(k)Bi(k)Pi(k|k−1) (20)

where αi(k), Γ(k), and Pi(k + 1|k) denote the difference
between the desired response di(k) for the linearized system
and its estimation for the ith weight group, the global con-
version factor for the entire network, and the prediction-error
covariance matrix, respectively.

DEKF can reduce the computational complexity and its
storage requirement of the EKF, but [15] restricts to a DEKF
algorithm for which the weights are grouped by node. That
sacrifices the computational accuracy because of omitting the
interactions between the estimates of certain weights.

To verify the prediction accuracy, we used a certain marginal
value that can be explained in detail in Section III-D. Fig. 4
shows the estimation of the respiratory motion with DEKF. As
shown in Fig. 4, we can notice that the percentage of prediction
overshoot based on the marginal value is over 35%, which
means that we need a new approach to compensate the predic-
tion accuracy with multiple input sequences. Therefore, we will
show a hybrid motion estimation based on EKF (HEKF) in the
next section, which uses the channel number for the mutually
exclusive groups and the coupling technique to compensate the
computational accuracy.



LEE et al.: RESPIRATORY MOTION ESTIMATION WITH HYBRID IMPLEMENTATION OF EKF 4425

Fig. 4. Prediction overshoot with DEKF.

B. Hybrid Estimation Based on EKF
for Neural Network (HEKF)

We have extended the DEKF into hybrid motion estimation
based on EKF (HEKF). The author in [15] restricted to a DEKF
algorithm in which the weights connecting the inputs to a node
are grouped together. If there are multiple input sequences with
respect to time k, the complexity can increase by the power
of the input number. To overcome computational complexity
and estimation accuracy, we propose the coupling technique to
compensate the computational accuracy using multiple sensory
channel inputs. We refer to this newly proposed method as
hybrid motion estimation based on EKF (HEKF).

There are two significant innovations for the proposed HEKF.
The first innovation is to comprehensively organize the multiple
channel sensory process by adapting the coupling technique.
The second innovation is the multiple RMLPs with the simple
neuron number for separate input channels. We first introduce
the coupling matrix in (21) and then show the separate EKF
process for each RMLP in (22)–(27).

Let c denote the designated channel number for the mutually
exclusive groups. Here, each group corresponds to an individ-
ual channel that is composed of a position vector sequence
with respect to time k. Also, for i = 1, 2, . . . , c, let ŵCP

i (k|k)
be defined as the filtered weight vector, and PCP

i (k|k) and
GCP

i (k) are the subsets of the filtering-error covariance matrix
and the Kalman gain matrix for the channel i coupled with other
channels, respectively.

Let ΓCP (k) and PCP
i (k|k − 1) be defined as the p × p

matrix denoting the global conversion factor for the coupled
entire network and the s × s prediction-error covariance matrix
for the coupled EKF, respectively. Here, we also need to define
the degree of coupling μij representing the degree to which
component (i) depends on one another (j). Coupling matrix
Π is the p × p matrix containing all components of coupling
degree. We can represent coupling matrix (Π) and coupling
degree (μij) as follows:

Π =

⎡
⎢⎢⎣

μ11 μ12 · · · μ1p

μ21 μ22 · · · μ2p

...
...

. . .
...

μp1 μp2 · · · μpp

⎤
⎥⎥⎦

p∑
j=1

μij = 1, for all i. (21)

The closer to one the coupling degree is, the more tightly
the channels i and j are coupled, i.e., tight coupling. If the
coupling degree is close to zero, we can expect loose coupling.
If μij is corresponding to zero, there is no coupling with
one another. For i = 1, 2, . . . , c, let us define ŵCP

i (k|k) as
the filtered weight vector, and PCP

i (k|k) and GCP
i (k) are the

subsets of the filtering-error covariance matrix and the Kalman
gain matrix for the channel number i, respectively. In light of
these new notations, we can write the hybrid motion estimation
based on EKF (HEKF) as follows:

αCP
i (k)=di(k)−

⎡
⎣ p∑

j=1

μij×yj

⎤
⎦ (22)

ΓCP (k)=

[
p∑

i=1

p∑
j=1

μijBi(k)PCP
i (k|k−1) (Bi(k))T

+R(k)

]−1

(23)

GCP
i (k)=PCP

i (k|k−1) (Bi(k))T ΓCP (k) (24)

ŵCP
i (k+1|k)=ŵCP

i (k|k−1)+GCP
i (k)αCP

i (k) (25)

PCP
i (k+1|k)=PCP

i (k|k)+Qi(k) (26)

PCP
i (k|k)=PCP

i (k|k−1)

−GCP
i (k)Bi(k)PCP

i (k|k−1) (27)

where αCP
i (k), ΓCP (k), and PCP

i (k + 1|k) denote the dif-
ference between the desired response di(k) for the linearized
system and coupled estimations for the channel number i, the
global conversion factor for the entire-coupled network, and the
prediction-error covariance matrix for the coupled, respectively.
In the case of HEKF, we have c identical networks for c input
channels. Each input sequence is inserted into individual neural
network process for each channel prediction, as shown in Fig. 5.

C. Adaptive Coupling Matrix

At the beginning of this section, we define that the coupling
matrix Π of (21) is the p × p matrix containing all components
of coupling degree. To make the time-adaptive coupling system,
we need to adjust the coupling matrix Π(k) with respect to
time k. Here, we define H(k) as the error-gain matrix as
follows:

H(k) =
(
GCP (k)

)T
PCP (k|k)GCP (k) (28)

where GCP (k) and PCP (k|k) are the s × p matrix denoting
the Kalman gain and the s × s filtering-error covariance matrix,
respectively. As would be expected, H(k) can get the p × p
matrix denoting global error gain value. Now, we can define
Δ(k) as the difference of the consecutive global error gain
values as follows:

Δ(k) = H(k) − H(k − 1). (29)

Finally, we can adjust the adaptive coupling matrix as follows:

Π(k) = Π(k − 1) + Δ(k) (30)



4426 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 59, NO. 11, NOVEMBER 2012

Fig. 5. Hybrid motion estimation based on EKF (HEKF) for RNN. Each group corresponds to an individual channel that is composed of (x, y, z) position
sequence with respect to the time step k.

where the current coupling matrix values can be increased or
decreased depending on the difference value (29) in comparison
with the previous coupling matrix values.

D. Optimized Group Number for RMLP

In the DEKF algorithm, the weights connecting the inputs
to a node are grouped together, whereas each group in the
HEKF algorithm corresponds to the individual channel that
is composed of a position vector sequence with respect to
time k. In order to analyze the group number, we can incor-
porate Fisher linear discriminant on the discriminant analysis,
which employs the within-class scatter value (SW ) and the
between-class scatter value (SB) in the given samples [56].

We have a set of nD-dimensional samples, which correspond
to the filtering-error covariance matrices (Pi and PCP

i ) defined
in (20) and (27) for each group i. Let mi denote the
D-dimensional sample mean for group i, and then, define mi

as follows:

mi =
1
ni

ni∑
j=1

Pi(j) (31)

where ni is the component number of group i.
To obtain the optimization objective function, we define the

scatter values Si and SW as

Si =
∑
P∈Pi

(P − mi)2 (32)

SW =
g∑

k=1

Sk (33)

where g is the number of group in the given samples.

We define the between-class scatter value SB as follows:

SB =
g∑

i=1

g∑
j=1

|mi − mj |2 (i �= j) (34)

where g is the number of group in the given samples and mi is
not identical to mj .

In terms of SB and SW , the objective function J(·), called as
the discriminant criterion, can be written as

J(g) = arg min
g

SW

SB
. (35)

This introduced criterion expects that the within-class scatter
value should be minimized and that the between-class scatter
value should be maximized in the given number. Under the
minimizing eq. (35), we can get the optimized number of group
(g) for RMLP by choosing the smallest J(·) with optimized
group number (g). This value can be used to test the optimized
number of RMLP between HEKF and DEKF. We can evaluate
whether HEKF or DEKF could be more discriminated by com-
paring the objective function values J(·) as the discriminant
degree at the selected (g).

E. Prediction Overshoot Analysis

Here, we evaluate the performance of overshoot for the
prediction values. We define overshoot for cases in which the
predicted output exceeds a certain marginal value with confi-
dence levels corresponding to the tolerances. We would like to
derive such marginal value based on the estimation process of
the uncertainty point estimators or predictors [57]–[63].



LEE et al.: RESPIRATORY MOTION ESTIMATION WITH HYBRID IMPLEMENTATION OF EKF 4427

We noted in (4) in the previous section that, generally, a
neural network model can be represented as a nonlinear regres-
sive function as follows:

yi(k) = Φ(xi, θ) + εi, i = 1, 2, . . . , n (36)

where xi (with dimension M × 1) is the input vector and θ
(with dimension s × 1) is a set of neural network true weights.
It is assumed that εi is independent and identically distributed
with a normal distribution N(0, σ2). Let us define θ̂ as the least
square estimation of θ. In a small neighborhood θ, the linear
Taylor series expansion for the model (36) can be shown as
follows [62]:

ŷi(k) = Φ(xi, θ) + ΦT
0 (θ̂ − θ), i = 1, 2, . . . , n (37)

where

ΦT
0 =

[
∂Φ(xi, θ)

∂θ1

∂Φ(xi, θ)
∂θ2

· · · ∂Φ(xi, θ)
∂θs

]
. (38)

To construct marginal values for nonlinear regressive models
in neural networks, the standard asymptotic theory should be
applied. For the linear model in (37), an approximate mar-
ginal value (γ) with 100(1 − α) confidence can be obtained
[58], [62]

γ = ±t1−α/2,nσ̂

√√√√1 +
n∑

i=1

(
Fi · FT

i

)
(39)

where t1−α/2,n is the 1 − α/2 quantile of a t-distribution
function with n degrees of freedom, σ̂ is the standard deviation
estimator, and Fi is the Jacobian matrix of the neural network
outputs with respect to weights, respectively. σ̂ and Fi are
calculated as follows:

σ̂ =

√√√√ 1
n

n∑
i=1

(
yi − Φ(xi, θ̂)

)2

(40)

Fi =

[
∂Φ(xi, θ̂)

∂θ1
· · · ∂Φ(xi, θ̂)

∂θs

]
. (41)

In the experimental Section IV-E, we use this marginal value
to judge whether the predicted outcomes exceed or not and to
know how many overshoots occur.

F. Comparisons on Computational Complexity
and Storage Requirement

The computational requirements of the DEKF, described in
Section III-A, are dominated by the need to store and update
the filtering-error covariance matrix P (k|k) at each time step
n. For an RNN containing p output nodes and s weights, the
computational complexity of the DEKF assumes the following
orders:
computational complexity

O

(
p2s + p

g∑
i=1

s2
i

)
(42)

storage requirement

O

(
g∑

i=1

s2
i

)
(43)

where si is the size of the state in group i, s is the total state
size, and p is the number of output nodes [17].

The computational requirements of the HEKF are also de-
termined by the need to store and update the filtering-error
covariance matrix PCP at each time step n. In the HEKF, it
also needs to calculate the coupling matrix that contains all
components of coupling degree, which means that we need
additional p2 computation at each time step n. Therefore, the
computational complexity of the HEKF assumes the following
orders:
computational complexity

O

(
p2(s + 1) + p

c∑
i=1

s2
i

)
(44)

storage requirement

O

(
p2 +

c∑
i=1

s2
i

)
(45)

where si is the size of the state in channel i.
Note that the HEKF algorithm needs additional computation

to calculate the coupling matrix, whereas the total compu-
tational complexity depends on the channel number c. The
total computational complexity of the DEKF algorithm can be
determined by the group number g. Here, we need to consider
the group and channel numbers. If the group number is greater
than the channel number (g > c) and the output node number
is smaller than the size of the state in group i(p < si), the
HEKF algorithm can improve computational complexity in
comparison to the DEKF algorithm. Note that this complexity
analysis does not include the computational requirements for
the matrix of dynamic derivatives.

When we compare HEKF and DEKF, the computational
complexity of DEKF is recalculated as multiple channel num-
bers. When we use multiple channel numbers, the computa-
tional complexity of the DEKF assumes the following orders:
computational complexity

O

(
p2sc + cp

g∑
i=1

s2
i

)
(46)

storage requirement

O

(
c

g∑
i=1

s2
i

)
(47)

where c is the channel number. The computational complexities
of the DEKF shown in (46) and (47) are larger than that of
HEKF, shown in (44) and (45).

When we implement the proposed HEKF method by compar-
ing it to the DEKF method, it is required to evaluate how much
is the additional computational time. For the comparison on



4428 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 59, NO. 11, NOVEMBER 2012

Fig. 6. Comparison of objective function values between the HEKF and the
DEKF. With this figure, we can expect to choose the selected neuron number
for HEKF or DEKF to be more optimized. Also, the discriminant criterion itself
tests whether HEKF or DEKF is less enormous.

computational complexity, we have evaluated the performance
of average CPU time in experimental Section IV-F. Here, we
used three RMLPs for each channel in HEKF, whereas we used
one RMLP in DEKF.

IV. EXPERIMENTAL RESULTS

A. Motion Data Captured

We used three channel sets of patient breathing data to eval-
uate the filter performance. Each set of data consisted of chest
displacements recorded continuously in three dimensions at a
sampling frequency of 26 Hz. The recordings lasted anywhere
from 5 min to 1.5 h of the average time at the Georgetown
University CyberKnife treatment facility. These records were
arbitrarily selected to represent a wide variety of breathing pat-
terns, including highly unstable and irregular examples. Each
patient’s breathing record was used to independently train and
test the predictive accuracy of the filter.

B. Optimized Group Number for RMLP

1) Optimized Group Number: With respect to the selected
group number (g) to implement the RMLP, we used an MLP
with two hidden layers, where the first hidden layer is recur-
rent and the second one is not. We increased the number of
hidden units for the first and second hidden layers according to
the group number to calculate the objective function value in
comparing two different methods. In order to analyze the group
number for RMLP, we incorporated objective function (35) in
Section III-C.

As shown in Fig. 6, HEKF is optimized when the group
number is two, whereas DEKF is optimized when the group
number is six. Therefore, we choose the neuron number as two
for HEKF and six for DEKF.

2) Discriminant Criterion to Compare HEKF and DEKF:
Using Fisher linear discriminant on the discriminant analysis
in Section III-C, we can expect that HEKF or DEKF could be
more optimized by comparing them with the objective function
values J(·). Fig. 6 shows the objective function values J(·)
defined in (35). HEKF itself has fewer values than DEKF; thus,

HEKF has more discriminated or further discriminant degree in
comparison to DEKF across any group numbers selected, which
means that HEKF has less error than DEKF.

C. Prediction Overshoot Analysis

To evaluate the performance of overshoot for the predic-
tion values, we derived the marginal value (γ) using (39) in
Section III-D. In this section, we would like to use this marginal
value to judge whether the predicted outcomes exceed or not
and to know how many overshoots occur. With the marginal
value (γ), we can define the upper and lower bounds by adding
the marginal value to the measurement value and by subtracting
the marginal value from the measurement value, respectively.

Fig. 7 shows the comparison of prediction overshoots be-
tween the HEKF and the DEKF. As shown in Fig. 7, most of
the estimation values of the HEKF align between the upper and
lower bounds. After the transient state, we can notice that the
average percentage of prediction overshoot for HEKF is 3.72%,
whereas the average percentage of prediction overshoot for
DEKF is 18.61%. As shown in Table I, most of the prediction
overshoot of the HEKF is within 5%, except for data sets DB00,
DB02, and DB03. We have also noticed that DEKF is slightly
better than HEKF in the case of data sets DB13 and DB14,
which include some discontinuities as well as the system noise
because of the irregular patient breathing and the system latency
during the breathing record [40]. We think that these lacks of
continuity could decrease the Kalman filter gain during the
target prediction. In spite of these defect, however, the proposed
HEKF can improve the average prediction overshoot by 62.95%
in comparison to DEKF.

D. Comparison on Estimation Performance

We evaluate the target estimation by comparing the proposed
HEKF described in Section III-B with the alternative DEKF
described in Section III-A.

1) Tracking Position Estimation: Fig. 8 shows the average
target position estimation of the 3-D Euclidian distance be-
tween the predicted value and the measurement values with
respect to the data time index given by the original CyberKnife
data set. The unit of the vertical axes in Figs. 8 and 9 is
dimensionless for the amplitude, i.e., the target estimation
corresponds to the 3-D position, has the range of [−1,+1], cor-
responding to the real measurement data set range [−1.4735 ×
103,−1.5130 × 103]. As shown, the position estimation values
of the HEKF align closer to the measurement values than the
DEKF values.

2) Position Error Value: We would like to compare the
performance of tracking errors with respect to the data time
index across the entire measurement period between the HEKF
and the DEKF. The error value in Fig. 9 was calculated by the
subtraction of the 3-D Euclidian distance between the predicted
values and the measurement values in the data time index.

Fig. 9 shows that the error value of the HEKF is smaller than
that of the DEKF across the data time index 25 200–25 350 s.
At the beginning of tracking estimation, we notice that both ap-
proaches have several overshoots across the data time because



LEE et al.: RESPIRATORY MOTION ESTIMATION WITH HYBRID IMPLEMENTATION OF EKF 4429

Fig. 7. Comparison of prediction overshoot between the HEKF and the DEKF. In this figure, we can notice that most of the estimation values of the HEKF align
between the upper and lower bounds, whereas the values of DEKF do not. After the transient state, we can evaluate that the average percentage of prediction
overshoot for the HEKF is 3.72%, whereas the average percentage of prediction overshoot for the DEKF is 18.61%. Thus, HEKF has a smaller prediction overshoot
value than DEKF.

TABLE I
PREDICTION OVERSHOOT ANALYSIS (HEKF VERSUS DEKF)

Fig. 8. Target estimation between the HEKF and the DEKF. This figure shows
that the position estimation values of the HEKF align closer to the measurement
values than the DEKF values.

of the unstable initialization of the original data set. After the
steady state, the error value of the HEKF aligns more close to
zero point. Two significant position errors are shown in DEKF,
whereas the position error is negligible in HEKF.

Fig. 9. Comparison of the position error between the HEKF and the DEKF.
This figure shows two significant position errors in DEKF, whereas the position
error is negligible in HEKF.

E. Error Performance Over Prediction Time Horizon

Prediction time horizon is the term to indicate the con-
secutive estimate interval that is used to predict the future
sensory signal. We would like to compare the error performance
among various prediction time horizons between the HEKF
and the DEKF in Table II. For the comparison, we used a
normalization that is the normalized root-mean-squared error
(NRMSE) between the predicted and actual signals over all of
the samples in the test data set as follows [40]:

NRMSE =

√∑
i

(yi − ŷi)2
/ ∑

i

(yi − ŷi)2 (48)

where yi is the ith measurement, ŷi is the estimation of the ith
measurement, and my is the mean of all of the measurements.
This metric is dimensionless, and it allows us to compare
prediction accuracy for different signals of widely varying
amplitude.

As shown in Table II, the error performance in the pro-
posed HEKF has improved for all of the data sets by 26.65%
in the average of the prediction time horizon for 38.46 ms.
The prediction interval time has increased, and the calculated
NRMSE has increased. Notice that seven data sets are shown
in bold font since the improvement of error performance for the
proposed method maintained over 25%, with 50% across the
prediction time horizons in data sets DB01, DB03, DB07, and



4430 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 59, NO. 11, NOVEMBER 2012

TABLE II
ERROR PERFORMANCE AMONG PREDICTION TIME HORIZONS (HEKF VERSUS DEKF)

DB12. Compared to the patient of the CyberKnife data set in the
latest paper [47], the proposed HEKF showed a better NRMSE
performance across all variable prediction interval times (e.g.,
at the prediction time horizon of 500 ms, there is a 422%
NRMSE improvement).

F. Comparisons on Computational Complexity

We would like to evaluate how much additional compu-
tational time is required when we implement the proposed
HEKF method by it comparing with the DEKF method. For
HEKF, we used three RMLPs for each channel, whereas we
used one RMLP for DEKF, where the neuron number for the
first and second hidden layers is two for HEKF and six for
DEKF, respectively. Regarding CPU experimental time, we
have evaluated the overall performance of the average CPU
time using a PC with Pentium core 2.4 GHz and with 3.25-GB
RAM.

Table III shows the performance of the CPU time used.
As shown in Table III, the HEKF method needs more time
compared with DEKF. We think that the actual difference of the
CPU time used in Table III mainly comes from the calculation
of the coupling matrix and the separate neural network for
channel number. Although 30.07% more time is required to
implement the proposed HEKF, it is a modest tradeoff to
consider the better performance than the better computational
time under the condition that PC speed is improving these days.

V. CONCLUSION

In this paper, we have presented respiratory motion estima-
tion with hybrid implementation of EKF, called as HEKF. Our
new method has two main contributions in improving the tradi-
tional EKF-based RNN target tracking. The first contribution is
to present a new approach in splitting the whole RMLP with the
complicated neuron number into a couple of RMLPs with the
simple neuron number to adjust separate input channels. The

TABLE III
CPU TIME USED IN THE TARGET ESTIMATION

second contribution is to comprehensively organize the multiple
channel sensory process by adapting the coupling technique
using multiple channel inputs for the mutually exclusive groups
to compensate the computational accuracy.

The experimental results have validated that the prediction
overshoot of the proposed HEKF was improved for 13 data sets
among 15 data sets by 62.95%. The proposed HEKF showed
a better performance of 52.40% NRMSE improvement in the
average of the prediction time horizon. We have evaluated
that the proposed HEKF can outperform DEKF by comparing
the performance of the tracking estimation values, NRMSE,
and prediction overshoot analysis. Moreover, HEKF has more
discriminated degree in comparison to DEKF across any group



LEE et al.: RESPIRATORY MOTION ESTIMATION WITH HYBRID IMPLEMENTATION OF EKF 4431

numbers selected, which means that HEKF has less error
than DEKF. Even though the provided method needed more
computational time compared with the previous method, the
experimental results showed that it improved NRMSE around
24.72% across the overall prediction time horizon.

ACKNOWLEDGMENT

The work reported here would not be possible without the
help of J. Williamson.

REFERENCES

[1] J. Tan and N. Kyriakopoulos, “Implementation of a tracking Kalman filter
on a digital signal processor,” IEEE Trans. Ind. Electron., vol. 35, no. 1,
pp. 126–134, Feb. 1988.

[2] H.-W. Kim and S.-K. Sul, “A new motor speed estimator using Kalman
filter in low-speed range,” IEEE Trans. Ind. Electron., vol. 43, no. 4,
pp. 498–504, Aug. 1996.

[3] B. Terzic and M. Jadric, “Design and implementation of the extended
Kalman filter for the speed and rotor position estimation of brushless
dc motor,” IEEE Trans. Ind. Electron., vol. 48, no. 6, pp. 1065–1073,
Dec. 2001.

[4] M. Barut, S. Bogosyan, and M. Gokasan, “Speed-sensorless estimation
for induction motors using extended Kalman filters,” IEEE Trans. Ind.
Electron., vol. 54, no. 1, pp. 272–280, Feb. 2007.

[5] S.-H. P. Won, W. W. Melek, and F. Golnaraghi, “A Kalman/particle filter-
based position and orientation estimation method using a position sen-
sor/inertial measurement unit hybrid system,” IEEE Trans. Ind. Electron.,
vol. 57, no. 5, pp. 1787–1798, May 2010.

[6] M. Chueh, Y. L. W. Au Yeung, K.-P. C. Lei, and S. S. Joshi, “Following
controller for autonomous mobile robots using behavioral cues,” IEEE
Trans. Ind. Electron., vol. 55, no. 8, pp. 3124–3132, Aug. 2008.

[7] Y. Motai and A. Kosaka, “Hand–eye calibration applied to viewpoint
selection for robotic vision,” IEEE Trans. Ind. Electron., vol. 55, no. 10,
pp. 3731–3741, Oct. 2008.

[8] W.-S. Ra, H.-J. Lee, J. B. Park, and T.-S. Yoon, “Practical pinch detection
algorithm for smart automotive power window control systems,” IEEE
Trans. Ind. Electron., vol. 55, no. 3, pp. 1376–1384, Mar. 2008.

[9] K. Szabat and T. Orlowska-Kowalska, “Performance improvement of
industrial drives with mechanical elasticity using nonlinear adaptive
Kalman filter,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1075–1084,
Mar. 2008.

[10] A. G. Beccuti, S. Mariethoz, S. Cliquennois, S. Wang, and M. Morari,
“Explicit model predictive control of dc–dc switched-mode power sup-
plies with extended Kalman filtering,” IEEE Trans. Ind. Electron., vol. 56,
no. 6, pp. 1864–1874, 2009.

[11] K. Szabat, T. Orlowska-Kowalska, and M. Dybkowski, “Indirect adaptive
control of induction motor drive system with an elastic coupling,” IEEE
Trans. Ind. Electron., vol. 56, no. 10, pp. 4038–4042, Oct. 2009.

[12] C. Mitsantisuk, S. Katsura, and K. Ohishi, “Kalman-filter-based sensor
integration of variable power assist control based on human stiffness
estimation,” IEEE Trans. Ind. Electron., vol. 56, no. 10, pp. 3897–3905,
Oct. 2009.

[13] N. Salvatore, A. Caponio, F. Neri, S. Stasi, and G. L. Cascella, “Opti-
mization of delayed-state Kalman-filter-based algorithm via differential
evolution for sensorless control of induction motors,” IEEE Trans. Ind.
Electron., vol. 57, no. 1, pp. 385–394, Jan. 2010.

[14] M. Charkhgard and M. Farrokhi, “State of charge estimation for lithium-
ion batteries using neural networks and extended Kalman filter,” IEEE
Trans. Ind. Electron., vol. 57, no. 12, pp. 4178–4187, Dec. 2010.

[15] G. V. Puskorius and L. A. Feldkamp, “Neurocontrol of nonlinear dynam-
ical systems with Kalman filter trained recurrent networks,” IEEE Trans.
Neural Netw., vol. 5, no. 2, pp. 279–297, Mar. 1994.

[16] R. J. Williams, “Training recurrent networks using the extended
Kalman filter,” in Proc. Int. Joint Conf. Neural Netw., Jun. 1992, vol. 4,
pp. 241–246.

[17] D. W. Ruck, S. K. Rogers, M. Kabrisky, P. S. Maybeck, and M. E. Oxley,
“Comparative analysis of backpropagation and the extended Kalman filter
for training multilayer perceptrons,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 14, no. 6, pp. 686–691, Jun. 1992.

[18] S. Murtuza and S. F. Chorian, “Node decoupled extended Kalman filter
based learning algorithm for neural network,” in Proc. IEEE Int. Symp.
Intell. Control, Aug. 1994, pp. 364–369.

[19] S. Li, D. C. Wunsch, E. O’Hair, and M. G. Giesselmann, “Extended
Kalman filter training of neural networks on a SIMD parallel machine,” J.
Parallel Distrib. Comput., vol. 62, no. 4, pp. 544–562, Apr. 2002.

[20] T. Ozaki, T. Suzuki, T. Furuhashi, S. Okuma, and Y. Uchikawa, “Trajec-
tory control of robotic manipulators using neural networks,” IEEE Trans.
Ind. Electron., vol. 38, no. 3, pp. 195–202, Jun. 1991.

[21] H. Tai, J. Wang, and K. Ashenayi, “A neural network-based tracking
control system,” IEEE Trans. Ind. Electron., vol. 39, no. 6, pp. 504–510,
Dec. 1992.

[22] T. Fukuda and T. Shibata, “Theory and applications of neural networks
for industrial control systems,” IEEE Trans. Ind. Electron., vol. 39, no. 6,
pp. 472–489, Dec. 1992.

[23] M. Saad, P. Bigras, L.-A. Dessaint, and K. Al-Haddad, “Adaptive robot
control using neural networks,” IEEE Trans. Ind. Electron., vol. 41, no. 2,
pp. 173–181, Apr. 1994.

[24] T. W. S. Chow and Y. Fang, “A recurrent neural-network-based real-time
learning control strategy applying to nonlinear systems with unknown
dynamics,” IEEE Trans. Ind. Electron., vol. 45, no. 1, pp. 151–161,
Feb. 1998.

[25] P. Payeur, H. Le-Huy, and C. M. Gosselin, “Trajectory prediction for mov-
ing objects using artificial neural networks,” IEEE Trans. Ind. Electron.,
vol. 42, no. 2, pp. 147–158, Apr. 1995.

[26] C.-H. Lu and C.-C. Tsai, “Adaptive predictive control with recurrent
neural network for industrial processes: An application to temperature
control of a variable-frequency oil-cooling machine,” IEEE Trans. Ind.
Electron., vol. 55, no. 3, pp. 1366–1375, Mar. 2008.

[27] B. M. Wilamowski, N. J. Cotton, O. Kaynak, and G. Dundar, “Comput-
ing gradient vector and Jacobian matrix in arbitrarily connected neural
networks,” IEEE Trans. Ind. Electron., vol. 55, no. 10, pp. 3784–3790,
Oct. 2008.

[28] M. Wlas, Z. Krzemiriski, and H. A. Toliyat, “Neural-network-based pa-
rameter estimations of induction motors,” IEEE Trans. Ind. Electron.,
vol. 55, no. 4, pp. 1783–1794, 2008.

[29] J. Mazumdar and R. G. Harley, “Recurrent neural networks trained with
backpropagation through time algorithm to estimate nonlinear load har-
monic currents,” IEEE Trans. Ind. Electron., vol. 55, no. 9, pp. 3484–
3491, Sep. 2008.

[30] S. Cong and Y. Liang, “PID-like neural network nonlinear adaptive con-
trol for uncertain multivariable motion control systems,” IEEE Trans. Ind.
Electron., vol. 56, no. 10, pp. 3872–3879, Oct. 2009.

[31] T. Orlowska-Kowalska and M. Kaminski, “Effectiveness of saliency-
based methods in optimization of neural state estimators of the drive
system with elastic couplings,” IEEE Trans. Ind. Electron., vol. 56, no. 10,
pp. 4043–4051, Oct. 2009.

[32] C. Y. Lai, F. L. Lewis, V. Venkataramanan, X. Ren, S. Sam Ge, and
T. Liew, “Disturbance and friction compensations in hard disk drives using
neural networks,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 784–792,
Feb. 2010.

[33] I. J. Leontaritis and S. A. Billings, “Input–output parametric models
for non-linear systems Part I: Deterministic non-linear systems,” Int. J.
Control, vol. 41, no. 2, pp. 303–328, Feb. 1985.

[34] S. Chen and S. A. Billings, “Representations of non-linear systems:
The NARMAX model,” Int. J. Control, vol. 49, no. 3, pp. 1013–1032,
Mar. 1989.

[35] K. S. Narendra and K. Parthasarathy, “Identification and control of dy-
namical systems using neural networks,” IEEE Trans. Neural Netw.,
vol. 1, no. 1, pp. 4–27, Mar. 1990.

[36] O. Nerrand, P. Roussel-Ragot, L. Personnaz, and G. Dreyfus, “Neural
networks and nonlinear adaptive filtering: Unifying concepts and
new algorithms,” Neural Comput., vol. 5, no. 2, pp. 165–199,
Mar. 1993.

[37] G. C. Sharp, S. B. Jiang, S. Shimizu, and H. Shirato, “Prediction of res-
piratory tumour motion for real-time image-guided radiotherapy,” Phys.
Med. Biol., vol. 49, no. 3, pp. 425–440, Feb. 2004.

[38] S. S. Vedam, P. J. Keall, A. Docef, D. A. Todor, V. R. Kini, and R. Mohan,
“Predicting respiratory motion for four-dimensional radiotherapy,” Med.
Phys., vol. 31, no. 8, pp. 2274–2283, Aug. 2004.

[39] M. Kakar, H. Nyström, L. R. Aarup, T. J. Nøttrup, and D. R. Olsen,
“Respiratory motion prediction by using the adaptive neuro fuzzy infer-
ence system (ANFIS),” Phys. Med. Biol., vol. 50, no. 19, pp. 4721–4728,
Oct. 2005.

[40] M. J. Murphy and S. Dieterich, “Comparative performance of linear and
nonlinear neural networks to predict irregular breathing,” Phys. Med.
Biol., vol. 51, no. 22, pp. 5903–5914, Nov. 2006.

[41] Q. Ren, S. Nishioka, H. Shirato, and R. I. Berbeco, “Adaptive prediction
of respiratory motion for motion compensation radiotherapy,” Phys. Med.
Biol., vol. 52, no. 22, pp. 6651–6661, Oct. 2007.



4432 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 59, NO. 11, NOVEMBER 2012

[42] D. Ruan, J. A. Fessler, and J. M. Balter, “Real-time prediction of respira-
tory motion based on local regression methods,” Phys. Med. Biol., vol. 52,
no. 23, pp. 7137–7152, Dec. 2007.

[43] F. Ernst, A. Schlaefer, S. Dieterich, and A. Schweikard, “A fast lane ap-
proach to LMS prediction of respiratory motion signals,” Biomed. Signal
Process. Control, vol. 3, no. 4, pp. 291–299, Oct. 2008.

[44] J. H. Goodband, O. C. L. Haas, and J. A. Mills, “A comparison of neural
network approaches for on-line prediction in IGRT,” Med. Phys., vol. 35,
no. 3, pp. 1113–1122, Mar. 2008.

[45] D. Putra, O. C. L. Haas, J. A. Mills, and K. J. Burnham, “A multiple model
approach to respiratory motion prediction for real-time IGRT,” Phys. Med.
Biol., vol. 53, no. 6, pp. 1651–1663, Mar. 2008.

[46] F. Ernst and A. Schweikard, “Predicting respiratory motion signals for
image-guided radiotherapy using multi-step linear methods (MULIN),”
Int. J. CARS, vol. 3, no. 1/2, pp. 85–90, Jun. 2008.

[47] M. J. Murphy and D. Pokhrel, “Optimization of adaptive neural network
to predict breathing,” Med. Phys., vol. 36, no. 1, pp. 40–47, Jan. 2009.

[48] D. Mandic and J. Chambers, Recurrent Neural Networks for Prediction:
Learning Algorithms, Architectures, and Stability. New York: Wiley,
2001.

[49] F. J. Pineda, “Generalization of backpropagation to recurrent neural net-
works,” Phys. Rev. Lett., vol. 59, no. 19, pp. 2229–2232, Nov. 1987.

[50] P. J. Werbos, “Backpropagation through time: What it does and how to do
it?,” Proc. IEEE, vol. 78, no. 10, pp. 1550–1560, Oct. 1990.

[51] B. A. Pearlmutter, “Gradient calculations for dynamic recurrent neural
networks: A survey,” IEEE Trans. Neural Netw., vol. 6, no. 5, pp. 1212–
1228, Sep. 1995.

[52] R. J. Williams and D. Zipser, “A learning algorithm for continually run-
ning fully recurrent neural networks,” Neural Comput., vol. 1, no. 2,
pp. 270–280, Summer 1989.

[53] R. J. Williams and D. Zipser, “Experimental analysis for the real-time
recurrent learning algorithm,” Connection Sci., vol. 1, no. 1, pp. 87–111,
1989.

[54] G. Kechriotis and E. S. Manolakos, “Training fully recurrent neural net-
works with complex weights,” IEEE Trans. Circuits Syst. II, Analog Digit.
Signal Process., vol. 41, no. 3, pp. 235–238, Mar. 1994.

[55] S. Haykin, Neural Networks and Learning Machines, 3rd ed. Upper
Saddle River, NJ: Pearson, 2009.

[56] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. New
York: Wiley, 2001.

[57] G. Chryssolouris, M. Lee, and A. Ramsey, “Confidence interval prediction
for neural network models,” IEEE Trans. Neural Netw., vol. 7, no. 1,
pp. 229–232, Jan. 1996.

[58] J. T. Gene Hwang and A. Adam Ding, “Prediction intervals for artificial
neural networks,” J. Amer. Statist. Assoc., vol. 92, no. 438, pp. 748–757,
Jun. 1997.

[59] T. Heskes, “Practical confidence and prediction intervals,” in Proc. Adv.
Neural Inf. Process. Syst., vol. 9, pp. 176–182.

[60] D. L. Shrestha and D. P. Solomatine, “Machine learning approaches for
estimation of prediction interval for the model output,” Neural Netw.,
vol. 19, no. 2, pp. 225–235, 2006.

[61] D. J. Olive, “Prediction intervals for regression models,” Comput. Statist.
Data Anal., vol. 51, no. 6, pp. 3115–3122, Mar. 2007.

[62] A. Khosravi, S. Nahavandi, and D. Creighton, “Constructing prediction
intervals for neural network metamodels of complex systems,” in Proc.
Int. Joint Conf. Neural Netw., Jun. 2009, pp. 1576–1582.

[63] J. G. Ramírez, Statistical Intervals: Confidence, Prediction, Enclosure.
Cary, NC: SAS Inst. Inc., 2009.

[64] A. Bhattacharya and C. Chakraborty, “A shunt active power filter with
enhanced performance using ANN-based predictive and adaptive con-
trollers,” IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 421–428,
Feb. 2011.

Suk Jin Lee (S’11) received the B.S. degree in
electronic engineering and the M.S. degree in telem-
atics engineering from Pukyong National University,
Busan, Korea, in 2003 and 2005, respectively. He
is currently working toward the Ph.D. degree in
the School of Engineering, Virginia Commonwealth
University, Richmond.

In 2007, he was a Visiting Research Scientist with
the GW Center for Networks Research, The George
Washington University, Washington, DC. His re-
search interests include network protocols, neural

networks, target estimation, and classification.

Yuichi Motai (M’01) received the B.Eng. degree in
instrumentation engineering from Keio University,
Tokyo, Japan, in 1991, the M.Eng. degree in ap-
plied systems science from Kyoto University, Kyoto,
Japan, in 1993, and the Ph.D. degree in electrical and
computer engineering from Purdue University, West
Lafayette, IN, in 2002.

He is currently an Assistant Professor of electrical
and computer engineering with Virginia Common-
wealth University, Richmond. His research interests
include the broad area of sensory intelligence, partic-

ularly in medical imaging, pattern recognition, computer vision, and sensory-
based robotics.

Martin Murphy received the Sc.B. degree in
physics from Brown University, Providence, RI, in
1973 and the Ph.D. degree in physics from the
University of Chicago, Chicago, IL, in 1980.

In 1992, he joined the initial development team
for the CyberKnife, which is a revolutionary image-
guided radiosurgical system, first as the Director of
System Development at Accuracy Incorporated and
later as a Senior Research Scientist at Stanford Uni-
versity, Stanford, CA. He is currently an Associate
Professor with the Department of Radiation Oncol-

ogy, School of Medicine, Virginia Commonwealth University, Richmond.


