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Abstract—Principal composite kernel feature analysis (PC-KFA) is presented to show kernel adaptations for nonlinear features of
medical image data sets (MIDS) in computer-aided diagnosis (CAD). The proposed algorithm PC-KFA has extended the existing
studies on kernel feature analysis (KFA), which extracts salient features from a sample of unclassified patterns by use of a kernel
method. The principal composite process for PC-KFA herein has been applied to kernel principal component analysis [34] and to our
previously developed accelerated kernel feature analysis [20]. Unlike other kernel-based feature selection algorithms, PC-KFA
iteratively constructs a linear subspace of a high-dimensional feature space by maximizing a variance condition for the nonlinearly
transformed samples, which we call data-dependent kernel approach. The resulting kernel subspace can be first chosen by principal
component analysis, and then be processed for composite kernel subspace through the efficient combination representations used for
further reconstruction and classification. Numerical experiments based on several MID feature spaces of cancer CAD data have shown
that PC-KFA generates efficient and an effective feature representation, and has yielded a better classification performance for the
proposed composite kernel subspace using a simple pattern classifier.

Index Terms—Principal component analysis, data-dependent kernel, nonlinear subspace, manifold structures

Ç

1 INTRODUCTION

CAPITALIZING on the recent success of kernel methods in
pattern classification [62], [63], [64], [65], Schölkopf and

Smola [34] developed and stud ied a feature selection
algorithm, in which principal component analysis (PCA)
was effectively applied to a sample of n, d-d imensional
patterns that are first injected into a high-d imensional
Hilbert space using a nonlinear embedding. Heuristically,
embedding input patterns into a high-d imensional space
may elucid ate salient nonlinear featu res in the inpu t
d istribution, in the same way that nonlinearly separable
classification problems may become linearly separable in
higher d imensional spaces as suggested by the Vapnik-
Chervonenkis theory [14]. Both the PCA and the nonlinear
embedd ing are facilitated by a Mercer kernel of two
arguments k : Rd Rd ! R, which effectively computes
the inner product of the transformed arguments. This
algorithm, called kernel principal component analysis
(KPCA), thus avoids the problem of representing trans-
formed vectors in the Hilbert space, and enables the
computation of the inner-product of two transformed
vectors of an arbitrarily high dimension in constant time.
Nevertheless, KPCA has two deficiencies: 1) The computa-
tion of the principal components involves the solu tion of an

eigenvalue problem that requires Oðn3Þcomputations, and
2) each principal component in the Hilbert space depends on
every one of the n input patterns, which defeats the goal of
obtaining both an informative and concise representation.

Both of these deficiencies have been addressed in
subsequent investigations that seek sets of salient features
that only depend upon sparse subsets of transformed
input patterns. Tipping [43] applied a maximum-like-
lihood technique to approximate the transformed covar-
iance matrix in terms of such a sparse subset. Franc and
Hlavác [21] proposed a greedy method , which approx-
imates the mapped space representation by selecting a
subset of input data. It iteratively extracts the data in the
m apped sp ace until the reconstruction error in the
mapped high-d imensional space falls below a threshold
value. Its computational complexity is Oðnm3Þ, where n is
the number of input patterns and m is the card inality of
the subset. Zheng et al. [56] split the input data into
M groups of similar size, and then applied KPCA to each
group. A set of eigenvectors was obtained for each group.
KPCA was then applied to a subset of these eigenvectors
to obtain a final set of features. Although these stud ies
proposed useful approaches, none provided a method that
is both computationally efficient and accurate.

To avoid the Oðn3Þ eigenvalue problem, Mangasarian
et al. [16] proposed sparse kernel feature analysis (SKFA),
which extracts l features, one by one, using an l1-const raint
on the expansion coefficients. SKFA requires only Oðl2n2Þ
operations, and is, thus, a significant improvement over
KPCA if the number of dominant features is much less than
the data size. However, if l >

ffiffiffi
n

p
, then the computational

cost of SKFA is likely to exceed that of KPCA.
In this paper, we propose an accelerated kernel feature

analysis (AKFA) that generates l sparse features from a data
set of n patterns using Oðln2Þ operations. Since AKFA is
based on both KPCA and SKFA, we analyze the former
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algorithms, that is, KPCA and SKFA, and then describe
AKFA in Section 2.

We have evalu ated other existing m u ltip le kernel
learning (MKL) approaches [66], [68], and found that those
approaches do not rely on the data sets to combine and
choose the kernel functions very much. The choice of an
appropriate kernel function has reflected prior knowledge
concerning the problem at hand . However, it is often
d ifficult for us to exploit the prior knowledge on patterns
for choosing a kernel function, and how to choose the best
kernel function for a given data set is an open question.
Accord ing to the no free lunch theorem [40] on machine
learning, there is no superior kernel function in general, and
the performance of a kernel function depends on applica-
tions, specifically the data sets. The five kernel functions,
linear, polynomial, Gaussian, Laplace, and sigmoid , are
chosen because they were known to have good perfor-
mances [40], [41], [42], [43], [44], [45].

The main contribution of this paper is a principal
composite kernel feature analysis (PC-KFA) described in
Section 3. In this new approach, the kernel adaptation is
employed in the kernel algorithms above KPCA and AKFA
in the form of the best kernel selection, engineer a
composite kernel which is a combination of data-dependent
kernels, and the optimal number of kernel combination.
Other MKL approaches combined basic kernels, but our
proposed PC-KFA specifically chooses data-depend ent
kernels as linear composites.

In Section 4, we summarize numerical evaluation experi-
ments based on medical image data sets (MIDs) in computer-
aided diagnosis (CAD) using the proposed PC-KFA

1. to choose the kernel function,
2. to evaluate feature representation by calculating

reconstruction errors,
3. to choose the number of kernel functions,
4. to composite the multiple kernel functions,
5. to evaluate feature classification using a simple

classifier, and
6. to analyze the computation time.

Our conclusions appear in Section 5.

2 KERNEL FEATURE ANALYSIS

2.1 Kernel Basics
Using Mercer’s theorem [15], a nonlinear, positive-definite
kernel k : Rd Rd ! R of an integral operator can be
computed by the inner product of the transformed vectors
h ðxÞ; ðyÞi , where : Rd ! H denotes a nonlinear em-
bedding (induced by k) into a possibly infinite d imensional
Hilbert space H . Given n sample points in the domain
Xn ¼ f xi 2 Rdji ¼ 1; . . . ; ng, t h e im a g e Yn ¼ f ðxiÞji ¼
1; . . . ; ng of Xn spans a linear subspace of at most (n 1)
d imensions. By mapping the sample points into a higher
d imensional space, H , the dominant linear correlations in
the d istribution of the image Yn may elucidate important
nonlinear dependences in the original data sample Xn .
This is beneficial because it permits making PCA nonlinear
without complicating the original PCA algorithm. Let us
introduce kernel matrix K as a Hermitian and positive
semi-definite matrix that computes the inner product

between any finite sequences of inputs x :¼ f xj : j 2 Nng
and is defined as

K :¼ ðK ðxi ; xj Þ: i ; j 2 NnÞ¼ ð ðxiÞ: ðxj ÞÞ:

Commonly used kernel matrices are as follows [34]:

. The linear kernel:

K ðx; xiÞ¼ xTxi ; ð1Þ

. The polynomial kernel:

K ðx; xiÞ¼ xTxi þ of f set
d
; ð2Þ

. The Gaussian RBF kernel:

K ðx; xiÞ¼ exp xk xi k
2=2 2 ; ð3Þ

. The Laplace RBF kernel:

K ðx; xiÞ¼ expð xk xi kÞ; ð4Þ

. The sigmoid kernel:

K ðx; xiÞ¼ tanhð 0x
Txi þ 1Þ; ð5Þ

. The ANOVA RB kernel:

K ðx; xiÞ¼
Xn

k¼1

exp xk xki
2 d

: ð6Þ

. The linear spline kernel in one d imension:

K ðx; xiÞ¼ 1 þ xxi minðx; xiÞ

x þ xi
2

minðx; xiÞ
2 þ

ðminðx; xiÞ
3

3

 !

:

ð7Þ

Kernel selection is heavily dependent on the specific data
set. Currently, the most commonly used kernel functions
are the Gaussian and Laplace RBF for general purpose
when prior knowledge of the data is not available. Gaussian
kernel avoids the sparse d istribution while the high degree
polynomial kernel may cause the space distribution in large
feature space. The polynomial kernel is widely used in
image processing while ANOVA RB is often used for
regression tasks. The spline kernels are useful for contin-
uous signal processing algorithms that involve B-spline
inner-products or the convolution of several spline basis
functions. Thus, in this paper, we will adopt only the first
five kernels in (1)-(5).

A choice of appropriate kernel functions as a generic
learning element has been a major problem since classifica-
tion accuracy itself heavily depends on the kernel selection.
For example, Amari and Wu [66] modified the kernel
function by extend ing the Riemannian geometry structure
induced by the kernel. Souza and Carvalho [33] proposed
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selecting the hyper planes parameters by using k-fold cross
validation and leave-one-out criteria. Ding and Dubchak
[57] proposed an ad hoc ensemble learning approach where
multiclass k-nearest neighborhood classifiers were ind ivi-
dually trained on each feature space and later combined .
Damoulas and Girolami [31] proposed the use of four
ad d itional featu re grou p s to rep lace the am ino-acid
composition. Pavlid is et al. [58] performed feature selection
for SVMs by combining the feature scaling technique with
the leave-one-out error bound . Chapelle et al. [59] tuned
multip le parameters for two-norm SVMs by minimizing the
rad ius margin bound or the span bound . Ong et al. [60]
applied semidefinite programming to learn kernel function
by hyperkernel. Lanckriet et al. [61] designed kernel matrix
d irectly by semidefinite programming.

MKL has been considered as a solution to make the
kernel choice in a feasible manner. Amari and Wu [66]
proposed a method of modifying a kernel function to
improve the performance of support vector machine
classifier based on the Riemannian geometrical structure
induced by the kernel function. This idea was to enlarge
the spatial resolution around the separating boundary
surface by a conformal mapping such that the separability
between classes can be increased in the kernel space. The
experiments results showed remarkable improvement for
generalization errors. Rakotomamonjy et al. [68] adopted
MKL method to learn a kernel and associate pred ictor in
supervised learning settings at the same time. This study
illustrated the usefulness of MKL for some regressions
based on wavelet kernels and on some model selection
problems related to multiclass classification problems.

In this paper, we propose a single multiclass kernel
machine that is able to operate on all groups of features
simultaneously and adaptively combine them. This new
framework provides a new and efficient way of incorporat-
ing multip le feature characteristics without increasing the
number of required classifiers. The proposed approach is
based on the ability to embed each object description [47] via
the kernel trick into a kernel Hilbert space. This process
applies a similarity measure to every feature space. We
show in this paper that these similarity measures can be
combined in the form of the composite kernel space. We
design a new single multiclass kernel machine that can
operate composite spaces effectively by evaluating principal
components of the number of kernel feature spaces. A
hierarchical multiclass mod el enables us to learn the
significance of each source/ feature space, and the pred ictive
term computed by the corresponding kernel weights may
provide the regressors and the kernel parameters without
resorting to ad hoc ensemble learning, the combination of
binary classifiers, or unnecessary parameter tuning.

2.2 Kernel Principal Component Analysis
KPCA uses a Mercer kernel [34] to perform a linear PCA.
The gray level image of Xn of computed tomographic
colonography (CTC) has been centered so that its scatter
m atrix of the d ata is given by S ¼ n

i¼1ð ðxiÞ ðxiÞ
T .

Eigenvalues j and eigenvectors ej are obtained by solving

j ej ¼ Sej ¼
Xn

i¼1

ðxiÞ ðxiÞ
Tej ¼

Xn

i¼1

hej ; ðxiÞi ðxiÞ; ð8Þ

for j ¼ 1; . . . ; n. Since is not known, (8) must be solved
ind irectly as proposed in the next Section. Let us introduce
the inner product of the transformed vectors by

aj i ¼ 1
j
ej ; ðxiÞ ;

where

ej ¼
Xn

i¼1

aj i ðxiÞ: ð9Þ

Multiplying by ðxqÞ
T on the left, for q¼ 1; . . . ; n, and

substituting yields

j h ðxqÞ; ej i ¼
Xn

i¼1

hej ; ðxiÞi h ðxqÞ; ðxiÞi : ð10Þ

Substitution of (9) into (10) produces

j ðxqÞ;
Xn

i¼1

aj i ðxiÞ

* +

¼
Xn

i¼1

Xn

k¼1

haj k ðxkÞ; ðxiÞi h ðxqÞ; ðxiÞi

 !

;

ð11Þ

which can be rewritten as, j K aj ¼ K 2aj , where K is an
n n Gram matrix, with the element ki j ¼ h ðxiÞ; ðxj Þi
and aj ¼½aj 1aj 2 . . . aj n

T . The latter is a dual eigenvalue
problem equivalent to the problem

j aj ¼ K aj : ð12Þ

Note that jjaj jj
2 ¼ 1= j .

For example, we may choose a Gaussian kernel such as

ki j ¼ h ðxiÞ; ðxj Þi ¼ exp
1

2 2
kxi xj k

2 : ð13Þ

Please note that if the image of Xn (finite sequences of
inputs x :¼ f xj : j 2 Nng) is not centered in the Hilbert
space, we need to use the centered Gram Matrix deduced
by Mangasarian et al. [16] by applying the following K̂ :

K̂ ¼ K K T TK þ TK T; ð14Þ

where K is the Gram matrix of uncentered data, and

T ¼

1
n

1
n

1
n

1
n

2

4

3

5

n n

:

Let us keep the l eigenvectors associated with the l largest
eigenvalues, we can reconstruct data in the mapped space:

0

i ¼
l
j¼1h i ; ej i ej ¼

l
j ¼1 j i ej ;

where j i ¼ h i ; n
k¼1aj k ki ¼ n

k¼1aj kkik. For the experi-
mental evaluation, we introduce the reconstruction square
error of each data i ; i ¼ 1; . . . ; n, is

Err i ¼ k i
0
i k

2 ¼ ki i
X‘

j ¼1

2
j i :
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The mean square error is MErr ¼ ð1=nÞ n
i¼1Err i . Using

(12), j i ¼ j j i . Therefore, the mean square reconstruction
error is

MErr ¼ ð1=nÞ n
i¼1 ki i

l
j ¼1

2
j a

2
j i :

Since n
i¼1ki i ¼

n
i¼1 i and n

i¼1a
2
j i ¼ jjaj jj

2 ¼ 1= j , MErr ¼
1
n

P n
i¼‘ þ 1 i .

The KPCA algorithm contains an eigenvalue problem of
rank n, so the computational complexity of KPCA is Oðn3Þ.
In addition, each resulting eigenvector is represented as a
linear combination of n terms; the l features depend on
n image vectors of X n. Thus, all data contained in Xn must
be retained , which is computationally cumbersome and
unacceptable for our applications.

2.3 Accelerated Kernel Feature Analysis
AKFA [20] is the method that we have proposed to
improve the efficiency and accuracy of SKFA [16]. SKFA
improves the computational costs of KPCA, associated with
both time complexity and data retention requirements.
SKFA was introduced in [16] and is summarized in the
following three steps:

AKFA [34] has been proposed by the author in an
attempt to achieve further improvements: 1) saves compu-
tation time by iteratively upd ating the Gram matrix,
2) normalizes the images with the l2 constraint before the
l1 constraint is applied , and 3) optionally d iscards data that
falls below a magnitude threshold during updates.

To achieve the computation efficiency described in “1,”
instead of extracting features d irectly from the original
mapped space, AKFA extracts the i th feature based on the

i th updated Gram matrix K i , where each element is
kij k ¼ h i

j ;
i
ki .

The second improvement described in “2” above is to
revise the l1 constraint. SKFA treats each ind ividual sample
data as a possible d irection and computes the projection
variances with all data. Since SKFA includes its length in
its projection variance calculation, it is biased to select
vectors with larger magnitude. We are ultimately looking
for a d irection with unit length, and when we choose an
image vector as a possible direction, we ignore the length
and only consider its d irection for the improved accuracy
of the features.

The third improvement in “3” is to d iscard negligible
data and thereby eliminate unnecessary computations.

AKFA is described in the following three steps and
showed the improvements 1-3 [20]. The vector 0

i represents
the reconstructed new data based on AKFA, and it can be
calculated ind irectly using the kernel trick:

0
i ¼

‘

j ¼1
h i ; j i j ¼ ‘ C ‘ C

T
‘ Ki;

where K i ¼½ki ; i dxð1Þki ; i dxð2Þ. . . ki ; i dxðlÞ
T . Then the re-

construction error of new data i ; i ¼ n þ 1; . . . ; n þ m, is
represented as

Err i ¼ i
0
i

2
¼ ki i KT

i C lC
T
l Ki:

The AKFA algorithm also contains an eigenvalu e
problem of rank n, so the computational complexity of
AKFA is step 1 requires Oðn2Þoperations, Step 2 is Oðl2Þ.
Step 3 requires 1 for Oðn2Þ, 2 for Oði 2Þ, and 3 for Oðn2Þ. The
total computational complexity is increased to Oðln2Þwhen
no data is being truncated during updating in the AKFA.

2.4 Comparison of the Relevant Kernel Methods
Multiple kernel adoption and combination methods are
derived from the principle of empirical risk minimization,
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which performs well in most applications. Actually, to
access the expected risk, there is an increasing amount of
the literature focusing on the theoretical approximation
error bounds with respect to the kernel selection problem,
for example, empirical risk minimization, structural risk
minimization, approximation error, span bound , Jaakkola-
Haussler bound , rad ius-margin bound , and kernel linear
d iscriminant analysis. The following table lists some
comparative methods among the multip le kernel methods.

Those kernel approaches listed in Table 1 have somehow
overlapped the principles and (d is)advantages, depending
on the nature of data. The proposed method described in
Section 3 has a tradeoff in the computational time and
accuracy, but outperformed those counterparts, even if bias
of the data set exists due to cancer screening purposes. The
proposed method works on the condition to measure the
adaptability of a kernel to the target data. The introduced
alignment measure provides a practical objective for kernel
optimization as a method for measuring the fitness between
a kernel and the learning task.

3 PRINCIPAL COMPOSITE KERNEL FEATURE
ANALYSIS

3.1 Kernel Selections
For kernel-based learning algorithms, the key challenge lies
in the selection of kernel parameters and regularization
parameters. Many researchers have identified this problem

and , thus, have tried to solve it. However, the few existing
solutions lack effectiveness, and thus this problem is still
underdevelopment or regarded as an open problem. To this
end , w e are d evelop ing a new framework of kernel
adaptation. Our method exploits the idea presented in
[35], and [36], by exploring data-dependent kernel metho-
dology as follows:

Let f xi ; yi gði ¼ 1; 2; . . . ; nÞ be n d-d imensional training
samples of the given data, where yi ¼ f þ 1; 1g represents
the class labels of the samples. We d evelop a d ata-
dependent kernel to capture the relationship among the
data in this classification task by adopting the idea of
“conformal m ap p ing” [36]. To ad op t th is conform al
transformation technique, this data-dependent composite
kernel for r ¼ 1; 2; 3; 4; 5 can be formulated as

krðxi ; xj Þ¼ qrðxiÞqrðxj Þprðxi ; xj Þ; ð15Þ

where prðxi ; xj Þis one kernel among five chosen kernels and
qðÞ, the factor function, takes the following form for
r ¼ 1; 2; 3; 4; 5:

qrðxiÞ¼ r;0 þ
Xn

m¼1
r ;mk0ðxi ; xmÞ; ð16Þ

where k0ðxi ; xmÞ¼ expð jjxi xmjj
2=2 2Þ, and r ;m is the

combination coefficient for the variable of xm . Let us denote
the vectors f qrðx1Þ; qrðx2Þ; . . . ; qr ðxnÞg

T and f 0; 1; ng
T
r by

qr and r ðr ¼ 1; 2; 3; 4; 5Þ, respectively, w here we have
qr ¼ K 0 r , where K 0 is a n ðn þ 1Þmatrix given by

K 0 ¼

1 k0ðx1; x1Þ k0ðx1; xnÞ
1 k0ðx2; x1Þ k0ðx2; xnÞ

..

. ..
. . .

. ..
.

1 k0ðxn; x1Þ k0ðxn; xnÞ

2

6
6
6
4

3

7
7
7
5
: ð17Þ

Let the kernel matrices corresponding to kðxi ; xj Þ; p1ðxi ; xj Þ
and p2ðxi ; xj Þbe K , P1, and P2, respectively. We can express
data-dependent kernel K as

K ¼½qrðxiÞqrðxj Þprðxi ; xj Þn n: ð18Þ

Defining Qi as the d iagonal matrix of elements f qi ðx1Þ;
qi ðx2Þ; . . . ; qi ðxxnÞg, we can express (18) as the matrix form

K r ¼ QrPrQr : ð19Þ

This kernel model was first introduced in [32] and called
“conformal transformation of a kernel.” We now perform
kernel optimization based on the method to find the
appropriate kernels for the data set.

The optimization of the data-dependent kernel in (19) is
to set the value of combination coefficient vector r so that
the class separability of the training data in mapped feature
space is maximized . For this purpose, Fisher scalar is
adopted as the objective function of our kernel optimization.
Fisher scalar measures the class separability of the training
data in the mapped feature space and is formulated as

J ¼ trðSbrÞ=trðSwrÞ; ð20Þ

where Sb1 and Sb2 represent the “between-class scatter
matrices” and Sw1 and Sw2 are the “within-class scatter
matrices.” Suppose that the training data are grouped
accord ing to their class labels, i.e., the first n1 data belong to
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one class and the remaining n2 data belong to the other class
(n1 þ n2 ¼ n). Then, the basic kernel matrix Pi can be
partitioned as

Pr ¼
Pr

11
Pr

21
:
Pr

12
Pr

22
; ð21Þ

where the sizes of the submatrices Pr
11, Pr

12, Pr
21, Pr

22, r ¼
1; 2; 3; 4; 5 are n1 n1, n1 n2, n2 n1, n2 n2, respectively.

A close relation between the class separability measure J
and the kernel matrices has been established as

Jð rÞ¼
T
r M 0r r
T
r N0r r

; ð22Þ

where

M 0r ¼ K T
0 B0r K 0 and N0r ¼ K T

0 W0r K 0; ð23Þ

and for r ¼ 1; 2; 3; 4; 5

B0r ¼
1
n1
Pr

11

0
:
0
1
n2
Pr

22

 !
1
n
Pr ; ð24Þ

W0r ¼ diag pr11; p
r
22; . . . ; prnn

1
n1
Pr

11
0

:
0
1
n2
Pr

22
:

To maxim ize Jð rÞ in (22), the stand ard grad ient
approach is followed . If matrix N0i is nonsingular, the
op tim al i that m axim izes Ji ð iÞ is the eigenvector
corresponding to the maximum eigenvalue of the system,
we will d rive the following (22) as taking the derivatives

M 0r r ¼ rN0r r : ð25Þ

The criterion for selecting the best kernel function is to find
the kernel that produces the largest eigenvalue from (25), i.e.

r ¼ arg max N 1
r M r : ð26Þ

The idea behind it is to choose the maximum eigenvector i

corresponding to the maximum eigenvalue that can max-
imize the Ji ð iÞthat will result in the optimum solution. We
find the maximum Eigen values for all possible kernel
functions and arrange them in descending order to choose
the most optimum kernels, such as

1 > 3 > 4 > 2 > 5: ð27Þ

We choose the kernels correspond ing to the largest
eigenvalues 1 and forming composite kernels correspond-
ing to f 1; 3 . . .g as follows.

3.2 Kernel Combinatory Optimization
In this section, we propose a principal composite kernel
function that is defined as the weighted sum of the set of
d ifferent optimized kernel functions [41], [42]. To obtain an
optimum kernel process, we define the following composite
kernel as

K compð Þ¼
Xp

i¼1
i QiPiQi ; ð28Þ

where is the constant scalar value of the composite
coefficient, and p is the number of kernels we intend to
combine. Through this approach, the relative contribution
of both kernels to the model can be varied over the input
space. We note that in (28), instead of using K r as a kernel
matrix, w e use K comp as a comp osite kernel matrix.
Accord ing to [46], K comp satisfies the Mercers condition.
We use linear combination of ind ividual kernels to yield an
optimal composite kernel using the concept of kernel
alignment: “conformal transformation of a kernel.” The
empirical alignment between kernel k1 and kernel k2 with
respect to the training set S, is the following quantity
metric:

Aðk1; k2Þ¼
hK 1; :K 2i F :
kK 1kF kK 2kF

; ð29Þ

where K i is the kernel matrix for the training set S using
kernel function K i , and K ik kF¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K i ; K ih i F

p
, hK i ; K j i F is the

Frobenius inner product between K i and K j . S ¼ f ðxi ;
yiÞjxi 2 X ; yi 2 f þ 1; 1g; i ¼ 1; 2; . . . ; ng, X is th e in p u t
space, y is the target vector. Let K 2 ¼ yy0, then the empirical
alignment between kernel K and target vector y is

Aðk; yy0Þ¼
hK ; yy0i F

kK kF kyy
0kF

¼
y0K y
nkK kF

: ð30Þ

It has been shown that if a kernel is well aligned with the
target information, there exists a separation of the data with
a low bound on the generalization error. Thus, we can
op timize the kernel alignm ent based on training set
information to improve the generalization performance of
the test set. Let us consider the combination of kernel
functions as follows:

kð Þ¼
Xp

i¼1
i ki ; ð31Þ

where ind ividual kernels ki , i ¼ 1; 2; . . . ; p are known in
advance. Our purpose is to tune to maximize Að ; k; yy0Þ
the empirical alignment between kð Þand the target vector
y. Hence, we have

^
¼ arg maxðAð ; k; yy0ÞÞ; ð32Þ
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where

ui ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hK i ; yyT i

p
; vi j

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hK i ; K j i

q
; Ui j ¼ ui uj ; Vi j

¼ vi vj ; ¼
ffiffiffiffiffi

1
p

;
ffiffiffiffiffi

2
p

; . . . ;
ffiffiffiffiffi
p

p
:

Let the generalized Raleigh coefficient be

Jð Þ¼
TU
TV

: ð34Þ

Therefore, we can obtain the value of ^ by solving the
generalized eigenvalue problem

U ¼ V ; ð35Þ

where denotes the eigenvalues.

The PC-KFA algorithm contains an eigenvalue problem of
rank n, so the computational complexity of PC-KFA is
Step 1 requires Oðn2Þoperations, Step 2 is n. Step 3 requires
n operations. Step 4 requ ires n operations. The total
computational complexity is increased to Oðn2Þ.

4 EXPERIMENTAL ANALYSIS

4.1 Cancer Image Data Sets

4.1.1 Colon Cancer
This data set consisted of true-positive (TP) and false-
positive (FP) d etections obtained from our previously
developed CAD scheme for the detection of polyps [5],
when it was applied to a CTC image database. This database
contained 146 patients who underwent a bowel preparation
regimen with a standard precolonoscopy bowel-cleansing
method . Each patient was scanned in both supine and prone
positions, resulting in a total of 292 CT data sets. In the
scanning, helical single-slice or multislice CT scanners were
used , with collimations of 1.25-5.0 mm, reconstruction
intervals of 1.0-5.0 mm, X -ray tube currents of 50-260 mA
and voltages of 120- 140 kVp. In-plane voxel sizes were 0.51-
0.94 mm, and the CT image matrix size was 512 512. Out
of 146 patients, there were 108 normal cases and 38 abnormal
cases with a total of 39 colonoscopy-confirmed polyps larger
than 6 mm.

The CAD scheme was applied to the entire cases and it
generated a segmented region for each of its detection
(a candidate of polyp). A volume-of-interest (VOI) of size
64 64 64 voxels was placed at the center of mass of each
candidate for encompassing its entire region; then, it was
resampled to 12 12 12 voxels. Resulting VOIs of 39 TP
and 149 FP detections from the CAD scheme made up the
colon cancer data set 1.

Additional CTC image databases with a similar cohort of
patients were collected from three d ifferent hospitals in the
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TABLE 2
Colon Cancer Data Set 1 (Low Resolution)

TABLE 3
Colon Cancer Data Set 2

TABLE 4
Colon Cancer Data Set 3

TABLE 5
Colon Cancer Data Set 4



US. The VOIs obtained from these databases were re-
sampled to 16 16 16 voxels. We refer to the resulting
data sets as colon cancer data sets 2, 3, 4, 5, and 6 for
Tables 2, 3, 4, 5, and 6 with the d istribution of the training
and testing VOIs, respectively.

4.1.2 Breast Cancer
We extended our own colon cancer data sets into other
cancer-relevant data sets. This data set is available at http:/ /
www.ncbi.nlm.nih.gov/ geo/ query/ acc.cgi?acc = GSE2990.
This data set contains data on 189 women, 64 of which were
treated with tamoxifen, with primary operable invasive
breast cancer, with each feature d imension of 22283. More
information on this data set can be found in [50].

4.1.3 Lung Cancer
This data set is available at http :/ / www.broad institute.
org/ cgi-in/ cancer/ d ata sets.cgi. It contains 160 tissue
samples, 139 of which are of class ’0’ and the remaining
are of class ’2’. Each sam p le is rep resented by the
expression levels of 1,000 genes for each feature d imension.

4.1.4 Lymphoma
This data set is available at http:/ / www.broad .mit.edu/
mpr/ lymphoma. It contains 77 tissue samples, 58 of which

are diffuse large B-cell lymphomas and the remainder is
follicular lymphomas, with each feature d imension of
7,129. Detailed information about this data set can be
found in [48].

4.1.5 Prostate Cancer
This data set is collected from http:/ / www.ncbi.nlm.nih.
gov/ geo/ query/ acc.cgi?acc = GSE6919. It contains prostate
cancer data collected from 308 patients, 75 of which have
m etastatic p rostate tu m or and the rest of the cases
were normal, with each feature d imension of 12,553. More
information on this data set can be found in [51] and [52].

4.2 Kernel Selection
We first evaluate herein the performance on the kernel
selection accord ing to the method proposed in Section 3.1,
regarding how to select the kernel function that will best
fit the data. The larger the eigenvalue is, the greater the
class separability measure J in (22) is to be expected .
Table 11 shows the calculation of the algorithm for all the
data sets mentioned to determine the eigenvalues of all the
five kernels. Specifically, we have set the parameters such
as d, offset, 0, 1, and of each kernel in (1)-(5), and
computed their eigenvalues for all the nine data sets
Tables 2, 3, 4, 5, 6, 7, 8, 9, and 10. After arranging the
eigenvalu es for each d ata set in d escend ing ord er
w e selected the kernel correspond ing to the largest
eigenvalue as the optimum kernel.

The largest eigenvalue for each data set is highlighted in
Table 11. After evaluating the quantitative eigenvalues for
all the nine data sets, we observed that the RBF kernel gives
the maximum eigenvalue among all the five kernels. That
means that RBF kernel produced the dominant results
compared to all other four kernels. For five data sets, colon
cancer data sets 2, 3, 4, 5, and 6: Lymphoma cancer data set,
the polynomial kernel produced the second largest eigen-
value. Linear kernel gave the second largest eigenvalue for
colon cancer data set 1 and lung cancer data set, where as
the Laplace kernel produced the second largest eigenvalue
for the breast cancer data set.
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TABLE 7
Breast Cancer Data Set

TABLE 8
Lung Cancer Data Set

TABLE 9
Lymphoma Data Set

TABLE 10
Prostate Cancer Data Set

TABLE 6
Colon Cancer Data Set 5



As shown in Table 11, the Gaussian GBF kernel showed
largest eigenvalues for the all nine data sets. The perfor-
mance of the selected Gaussian GBF was compared to the
other single kernel function in the reconstruction error
value. As a further experiment, the reconstruction error
results have been evaluated for KPCA using MErr ¼
ð1=nÞ n

i¼lþ 1 i , and for AKFA and SKFA using Err i ¼
jj i

0

i jj
2 ¼ ki i K T

i ClCT
l K i w ith the op timum kernel

(RBF) selected from Table 11. We listed up the selected

kernel, d imensions of the eigenspace (chosen empirically)

and the reconstruction errors of both KPCA, SKFA, and

AKFA for all the data sets shown in Table 12.
Table 12 shows that RBF, the single kernel selected , has a

relatively small reconstruction error, from 3.27 percent to
up to 14.30 percent in KPCA. The reconstruction error of
KPCA is less than that of the reconstruction error of AKFA,
from 0.6 percent to up to 6.29 percent. The d ifference in the
reconstruction error between KPCA and AKFA increased as
the size of the data sets increased . This could be due to the
heterogeneous nature of the data sets. The Lymphoma data
set produced the least mean square error, whereas the colon
cancer data set 3 produced the largest mean-square error for
both KPCA and AKFA.

Table 13 shows that the other four kernel functions have
much more error than Gaissian RBF shown in Table 12. The
difference between Tables 12 and 13 is more than four times
larger reconstruction error, and sometimes 20 times when
the other four kernel functions are applied .
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TABLE 13
Mean-Square Reconstruction Error of

KPCA with Other Four Kernel Functions

TABLE 14
Linear Combination ^ for Selected Two Kernel Functions

TABLE 11
Eigenvalues of Five Kernel Functions
(1)-(5) and Their Parameters Selected

TABLE 12
Mean-Square Reconstruction Error of KPCA, SKFA, and AKFA

with the Selected Kernel Function



4.3 Kernel Combination and Reconstruction
After selecting the number of kernels, we select the first p
kernels that produced the p largest Eigen values in Table 11,
and combine them accord ing to the method proposed in
Section 3.2 to yield lesser reconstruction error. The follow-
ing Table 14 shows the coefficients calculated for the linear
combination of kernels. After obtaining the linear coeffi-
cients accord ing to (35), we combine the kernels accord ing
to (28) to generate the composite kernel matrix K compð Þ.
The following Table 15 shows the reconstruction error
results for both KPCA and AKFA along with the composite
kernel K compð Þ.

The reconstruction error using two composite kernel
functions shown in Table 15 is smaller than the reconstruc-
tion error in the single kernel function RBF in Table 12. This
would lead us to claim that all nine data sets from the above
table made evident that the reconstruction ability of kernel
optimized KPCA and AKFA gives enhanced performance to
that of single kernel KPCA and AKFA. The sp ecific
improvement in the reconstruction error performance is
greater by up to 4.27 percent in the case of KPCA, and by up
to 5.84 and 6.12 percent in the cases of AKFA and SKFA by
mean, respectively. The best improvement of the error
performance is observed in PC-KFA by 4.21 percent by
mean. This improvement in reconstruction of all data sets is
validated using PC-KFA. This successfu lly shows that the
composite kernel produces only a small reconstruction error.

4.4 Kernel Combination and Classification
To analyze how feature extraction methods affect classifica-
tion performance of polyp candidates, we used the k-nearest
neighborhood classifier on the image vectors in the reduced
eigenspace. We evaluated the performance of this simple
classifier by applying to the kernel feature spaces obtained
by KPCA and AKFA with both selected single kernel as well
as composite kernel for all the nine data sets. Six nearest
neighbors were used for the classification purpose. The
classification accu racy w as calcu lated as (TP þ TN)/

(TP þ TN þ FN þ FP). The results of classification accuracy
showed very high values as shown in Table 16.

The results from Table 16 indicate that the classification
accuracy of the composite kernel is better than that of the
single kernel for both KPCA and AKFA in colon cancer data
det 1, Breast cancer, Lung Cancer, Lymphoma, and Prostate
Cancer; whereas in the case of colon cancer data sets 2, 3, 4, 5,
6, because of the huge size of the data, the classification
accuracy is very similar between single and composite
kernels. From this quantitative characteristic among the
entire nine data sets, we can evaluate that the composite
kernel improved the classification performance, and with
single and composite kernel cases the classification perfor-
mance of AKFA is equally good as that of KPCA, from
85.48 percent up to 98.61 percent. The best classification
performance has been shown in PC-KFA, up to 99.70 percent.

4.5 Comparisons of Other Composite Kernel
Learning Studies

In this section, we make experimental comparisons of the
proposed PC-KFA with other popular MKL technique. Such
as regularized kernel d iscriminant analysis (RKDA) for
MKL [32], L2 regulation learning [71], and generality MKL
[69] in Table 17, as follows.
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TABLE 16
Classification Accuracy Using Six Nearest Neighborhoods for

Single-Kernel and Two-Composite-Kernels with
KPCA, SKFA, AKFA, and PC-KFA

TABLE 17
Overall Classification Comparison among

Other Multiple Kernel Methods

TABLE 15
Mean-Square Reconstruction Error with

Kernel Combinatory Optimization



To evaluate algorithms [32], [71], [69], the eight data sets
are used in the binary-class case from the UCI machine
learning repository [61], [72]. L2 regularization learning [71]
showed miss-classification ratio, which may not be equally
comparative to the other three methods. The proposed PC-
KFA overperformed these representative approaches. For
example, PC-KFA for lung was 94.12 percent, not as good as
the performance of SMKL, but better than RKDA for MKL
and GMKL. The classification accuracy of RKDA for MKL in
Data Set 4 and prostate is better than GMKL. This result
indicates PC-KFA is very competitive to the well-known
classifiers for multiple data sets.

4.6 Computation Time
We finally evaluate the computational efficiency of the
proposed PC-KFA method by comparing its runtime with
KPCA and AKFA for all nine data sets as shown in Table 18.
The algorithms have been implemented in Matlab R2007b
using the statistical pattern recognition toolbox for the
Gram matrix calculation and kernel projection. The proces-
sor was a 3.2-GHz Intel Pentium 4 CPU with 3 GB of RAM.
Runtime was determined using the CPU time command.

For each algorithm, computation time increases with
increasing training data size (n), as expected . AKFA
requires the computation of a Gram matrix whose size
increases as the data size increases. The results from the
table clearly indicate that AKFA is faster than KPCA. We
also noticed that the decrease in computation time for
AKFA compared to KPCA was relatively small, implying
that the use of AKFA on a smaller training data set does
not yield much advantage over KPCA. However, as the
data size increases, the computational gain for AKFA is
much larger than that of KPCA as shown in Fig. 1. PC-
KFA shows more computational time since the composite
data-depend ent kernels needs calculations of a Gram
matrix and optimization of coefficient parameters.

Fig. 1 illustrates the increase in the computational time of
both KPCA as well as AKFA corresponding to increased
data. Using Table 18, we listed the sizes of all the data sets
in the ascending order from lymphoma (77) to colon cancer
data set 4 (3021) on the X -axis versus the respective
computational times on the Y -Axis. The red curve ind icates
the computational time for the KPCA, whereas the blue
curve increases the computational time for AKFA for all
nine data sets arranged in ascending order of their sizes.
This curve clearly shows that as the size of the data

increases, the computational gain of AKFA is greater. This
ind icates that AKFA is a pow erfu l algorithm and it
approaches the performance of KPCA by allowing for
significant computational savings.

5 CONCLUSION

This paper describes first AKFA, a faster and more
efficient feature extraction algorithm derived from the
SKFA. The time complexity of AKFA is Oðln2Þ, which has
been shown to be more efficient than the Oðl2n2Þ time
complexity of SKFA and the complexity Oðn3Þof a more
systematic principal component analysis (KPCA). We have
extended these methods into PC-KFA. By introducing a
principal component metric in PC-KFA, the new criteria
performed well in choosing the best kernel function adapted
to the data set, as well as extend ing this process of best
kernel selection into additional kernel functions by calculat-
ing linear composite kernel space. We conducted compre-
hensive exp erim ents u sing nine cancer d ata sets for
evaluating the reconstruction error, classification accuracy
using a k-nearest neighbor classifier, and computational
time. The PC-KFA with KPCA and AKFA had a lower
reconstruction error compared to single kernel method , thus
demonstrating that the features extracted by the composite
kernel method are practically useful to represent the data
sets. Composite kernel approach with KPCA and AKFA has
the potential to yield high detection performance of polyps
resulting in the accurate classification of cancers, compared
to the single kernel method . The computation time was also
evaluated across the variable data sizes, with a tradeoff in
the comp utational time and accuracy, and show ed a
comparative advantage of composite kernel AKFA.
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Fig. 1. The computation time comparison between KPCA, SKFA, AKFA,
and PC-KFA as the data size increases.

TABLE 18
PC-KFA Computation Time for Kernel Selection and Operation

with KPCA, SKFA, AKFA, and PC-KFA
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[11] J. Näppi and H. Yoshida, “Fully Automated Three-Dimensional
Detection of Polyps in Fecal-Tagging CT Colonography,” Academic
Radiology, vol. 14, pp . 287-300, Mar. 2007.

[12] A.K. Jerebko, J.D. Malley, M. Franaszek, and R.M. Summers,
“Multiple Neural Network Classification Scheme for Detection of
Colonic Polyps in CT Colonography Data Sets,” Academic
Radiology, vol. 10, pp . 154-160, Feb. 2003.

[13] A.K. Jerebko, J.D. Malley, M. Franaszek, and R.M. Summers,
“Support Vector Machines Committee Classification Method for
Computer-Aided Polyp Detection in CT Colonography,” Academic
Radiology, vol. 12, pp . 479-486, Apr. 2005.

[14] V.N. Vapnik, The Nature of Statistical Learning Theory, second ed .
Springer, 2000.

[15] R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 1
ed ition, Wiley-VCH, 1989.

[16] O.L. Mangasarian, A.J. Smola, and B. Schölkopf, “Sparse Kernel
Feature Analysis,” Technical Report 99-04, Univ. of Wisconsin,
1999.

[17] J. Franc and V. Hlavac, “Statistical Pattern Recognition Toolbox
for Matlab,” http:/ / cmp.felk.cvut.cz/ cmp/ software/ stprtool/ ,
2004.

[18] “Partners Research Com pu ting,” http :/ / w w w .partners.org/
rescomputing/ , 2006.

[19] A.J. Smola and B. Schölkopf, “Sparse Greedy Matrix Approx-
imation for Machine Learning,” Proc. 17th Int’l Conf. Machine
Learning, 2000.

[20] X. Jiang, R.R. Snapp, Y. Motai, and X. Zhu, “Accelerated Kernel
Feature Analysis,” Proc. IEEE CSConf. Computer Vision and Pattern
Recognition, pp. 109-116, 2006.
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