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Principal Composite Kernel Feature Analysis:
Data-Dependent Kernel Approach

Yuichi Motai, Senior Member, IEEE, and Hiroyuki Yoshida, Member, IEEE

Abstract—Principal composite kernel feature analysis (PC-KFA) is presented to show kernel adaptations for nonlinear features of
medical image data sets (MIDS) in computer-aided diagnosis (CAD). The proposed algorithm PC-KFA has extended the existing
studies on kernel feature analysis (KFA), which extracts salient features from a sample of unclassified patterns by use of a kernel
method. The principal composite process for PC-KFA herein has been applied to kernel principal component analysis [34] and to our
previously developed accelerated kernel feature analysis [20]. Unlike other kernel-based feature selection algorithms, PC-KFA
iteratively constructs a linear subspace of a high-dimensional feature space by maximizing a variance condition for the nonlinearly
transformed samples, which we call data-dependent kernel approach. The resulting kernel subspace can be first chosen by principal
component analysis, and then be processed for composite kernel subspace through the efficient combination representations used for
further reconstruction and classification. Numerical experiments based on several MID feature spaces of cancer CAD data have shown
that PC-KFA generates efficient and an effective feature representation, and has yielded a better classification performance for the
proposed composite kernel subspace using a simple pattern classifier.

Index Terms—Principal component analysis, data-dependent kernel, nonlinear subspace, manifold structures

1 INTRODUCTION

CAPITALIZING on the recent success of kernel methods in
pattern classification [62], [63], [64], [65], Schilkopfand
Smola [34] developed and studied a feature selection
algorithm, in which principal component analysis (PCA)
was effectively applied to a sample of n, d-dimensional
patterns that are first injected into a high-dimensional
Hilbert space using a nonlinear embedding. Heuristically,
embedding input patterns into a high-dimensional space
may elucidate salient nonlinear features in the input
distribution, in the same way that nonlinearly separable
classification problems may become linearly separable in
higher dimensional spaces as suggested by the Vapnik-
Chervonenkis theory [14]. Both the PCA and the nonlinear
embedding are facilitated by a Mercer kernel of two
arguments k:RY [[RY1 R, which effectively computes
the inner product of the transformed arguments. This
algorithm, called kernel principal component analysis
(KPCA), thus avoids the problem of representing trans-
formed vectors in the Hilbert space, and enables the
computation of the inner-product of two transformed
vectors of an arbitrarily high dimension in constant time.
Nevertheless, KPCA has two deficiencies: 1) The computa-
tion of the principal components involves the solution of an
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eigenvalue problem that requires O&3Pcomputations, and
2) each principal component in the Hilbert space depends on
every one of the n input patterns, which defeats the goal of
obtaining both an informative and concise representation.

Both of these deficiencies have been addressed in
subsequent investigations that seek sets of salient features
that only depend upon sparse subsets of transformed
input patterns. Tipping [43] applied a maximum-like-
lihood technique to approximate the transformed covar-
iance matrix in terms of such a sparse subset. Franc and
HlavéEZl] proposed a greedy method, which approx-
imates the mapped space representation by selecting a
subset of input data. It iteratively extracts the data in the
mapped space until the reconstruction error in the
mapped high-dimensional space falls below a threshold
value. Its computational complexity is O&m3B where n is
the number of input patterns and m is the cardinality of
the subset. Zheng et al. [56] split the input data into
M groups of similar size, and then applied KPCA to each
group. A set of eigenvectors was obtained for each group.
KPCA was then applied to a subset of these eigenvectors
to obtain a final set of features. Although these studies
proposed useful approaches, none provided a method that
is both computationally efficient and accurate.

To avoid the O&3P eigenvalue problem, Mangasarian
et al. [16] proposed sparse kernel feature analysis (SKFA),
which extracts | features, one by one, using an |;-constraint
on the expansion coefficients. SKFA requires only Od%n’p
operations, and is, thus, a significant improvement over
KPCA ifthe number ofdominaBtﬁﬁﬁatures is much less than
the data size. However, if | > = n, then the computational
cost of SKFA is likely to exceed that of KPCA.

In this paper, we propose an accelerated kernel feature
analysis (AKFA) that generates | sparse features from a data
set of n patterns using Odn?Poperations. Since AKFA is
based on both KPCA and SKFA, we analyze the former
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algorithms, that is, KPCA and SKFA, and then describe
AKFA in Section 2.

We have evaluated other existing multiple kernel
learning (MKL) approaches [66], [68], and found that those
approaches do not rely on the data sets to combine and
choose the kernel functions very much. The choice of an
appropriate kernel function has reflected prior knowledge
concerning the problem at hand. However, it is often
difficult for us to exploit the prior knowledge on patterns
for choosing a kernel function, and how to choose the best
kernel function for a given data set is an open question.
According to the no free lunch theorem [40] on machine
learning, there is no superior kernel function in general, and
the performance of a kernel function depends on applica-
tions, specifically the data sets. The five kernel functions,
linear, polynomial, Gaussian, Laplace, and sigmoid, are
chosen because they were known to have good perfor-
mances [40], [41], [42], [43], [44], [45].

The main contribution of this paper is a principal
composite kernel feature analysis (PC-KFA) described in
Section 3. In this new approach, the kernel adaptation is
employed in the kernel algorithms above KPCA and AKFA
in the form of the best kernel selection, engineer a
composite kernel which is a combination of data-dependent
kernels, and the optimal number of kernel combination.
Other MKL approaches combined basic kernels, but our
proposed PC-KFA specifically chooses data-dependent
kernels as linear composites.

In Section 4, we summarize numerical evaluation experi-
ments based on medical image data sets (MIDs) in computer-
aided diagnosis (CAD) using the proposed PC-KFA

1. to choose the kernel function,

2. to evaluate feature representation by calculating
reconstruction errors,

3. to choose the number of kernel functions,

to composite the multiple kernel functions,

5. to evaluate feature classification using a simple
classifier, and

6. to analyze the computation time.

b

Our conclusions appear in Section 5.

2 KERNEL FEATURE ANALYSIS

2.1 Kernel Basics

Using Mercer’s theorem [15], a nonlinear, positive-definite
kernel k:RI[ZIRY! R of an integral operator can be
computed by the inner product of the transformed vectors
Hﬁ(ﬁmﬁ, where L1 R%! H denotes a nonlinear em-
bedding (induced by K) into a possibly infinite dimensional
Hilbert space H. Given n sample points in the domain
Xn Vafxi 2 RYi %1;...;ng, the image Y, vflidhi %
1;...;ng of X, spans a linear subspace of at most (n )
dimensions. By mapping the sample points into a higher
dimensional space, H, the dominant linear correlations in
the distribution of the image Y, may elucidate important
nonlinear dependences in the original data sample Xp.
This is beneficial because it permits making PCA nonlinear
without complicating the original PCA algorithm. Let us
introduce kernel matrix K as a Hermitian and positive
semi-definite matrix that computes the inner product
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between any finite sequences of inputs X :%4fX; :j 2 Nng
and is defined as

K % 8K 8; x;b: i;j 2 NybYs 818k plidk; Ho
Commonly used kernel matrices are as follows [34]:

The linear kernel:

K & xiPVaxTx;; 3lb
The polynomial kernel:
il
Ka&;xibp% x'x;p of fset ap
The Gaussian RBF kernel:
[
K &; x; bV exp xik2=2EP foi]
The Laplace RBF kernel:
K &; x; b expd TEkk [, kb oMb
The sigmoid kernel:
K &;xiPV%tanhd 3k Tx; p [k &b
The ANOVA RB kernel:
X0 (] [E] (Gl
K &; xi PV expB(ik i &b
kvl
The linear spline kernel in one dimension:
K&x; xiP% 1 p xx; min&;x;p \
E(—b Xi miné(;xilﬁb —dnmd(;xiﬁ :
2 3
a7p

Kernel selection is heavily dependent on the specific data
set. Currently, the most commonly used kernel functions
are the Gaussian and Laplace RBF for general purpose
when prior knowledge of the data is not available. Gaussian
kernel avoids the sparse distribution while the high degree
polynomial kernel may cause the space distribution in large
feature space. The polynomial kernel is widely used in
image processing while ANOVA RB is often used for
regression tasks. The spline kernels are useful for contin-
uous signal processing algorithms that involve B-spline
inner-products or the convolution of several spline basis
functions. Thus, in this paper, we will adopt only the first
five kernels in (1)-(5).

A choice of appropriate kernel functions as a generic
learning element has been a major problem since classifica-
tion accuracy itself heavily depends on the kernel selection.
For example, Amari and Wu [66] modified the kernel
function by extending the Riemannian geometry structure
induced by the kernel. Souza and Carvalho [33] proposed
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selecting the hyper planes parameters by using k-fold cross
validation and leave-one-out criteria. Ding and Dubchak
[57] proposed an ad hoc ensemble learning approach where
multiclass k-nearest neighborhood classifiers were indivi-
dually trained on each feature space and later combined.
Damoulas and Girolami [31] proposed the use of four
additional feature groups to replace the amino-acid
composition. Pavlidis et al. [S8] performed feature selection
for SVMs by combining the feature scaling technique with
the leave-one-out error bound. Chapelle et al. [59] tuned
multiple parameters for two-norm SVMs by minimizing the
radius margin bound or the span bound. Ong et al. [60]
applied semidefinite programming to learn kernel function
by hyperkernel. Lanckriet et al. [61] designed kernel matrix
directly by semidefinite programming.

MKL has been considered as a solution to make the
kernel choice in a feasible manner. Amari and Wu [66]
proposed a method of modifying a kernel function to
improve the performance of support vector machine
classifier based on the Riemannian geometrical structure
induced by the kernel function. This idea was to enlarge
the spatial resolution around the separating boundary
surface by a conformal mapping such that the separability
between classes can be increased in the kernel space. The
experiments results showed remarkable improvement for
generalization errors. Rakotomamonjy et al. [68] adopted
MKL method to learn a kernel and associate predictor in
supervised learning settings at the same time. This study
illustrated the usefulness of MKL for some regressions
based on wavelet kernels and on some model selection
problems related to multiclass classification problems.

In this paper, we propose a single multiclass kernel
machine that is able to operate on all groups of features
simultaneously and adaptively combine them. This new
framework provides a new and efficient way of incorporat-
ing multiple feature characteristics without increasing the
number of required classifiers. The proposed approach is
based on the ability to embed each object description [47] via
the kernel trick into a kernel Hilbert space. This process
applies a similarity measure to every feature space. We
show in this paper that these similarity measures can be
combined in the form of the composite kernel space. We
design a new single multiclass kernel machine that can
operate composite spaces effectively by evaluating principal
components of the number of kernel feature spaces. A
hierarchical multiclass model enables us to learn the
significance of each source/ feature space, and the predictive
term computed by the corresponding kernel weights may
provide the regressors and the kernel parameters without
resorting to ad hoc ensemble learning, the combination of
binary classifiers, or unnecessary parameter tuning.

2.2 Kernel Principal Component Analysis

KPCA uses a Mercer kernel [34] to perform a linear PCA.
The gray level image of X, of computed tomographic
colonography (CTC) has been centered so that its scatter
matrix of the data is given by S Va[, didkH%4dH.

Eigenvalues ETJand eigenvectors g are obtained by solving
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X X
v%Se v [HDHeg % hy;[@BpBR &b
ivil iVl
for j Yal;...;n. Since [Ths not known, (8) must be solved
indirectly as proposed in the next Section. Let us introduce
the inner product of the transformed vectors by

(=] |
aji %qu;@ib;
where
xo
g%  agldp »b

ival

Multiplying by |3(q|J on the left, for q%1;...;n, and
substituting yields

G P gi %)@ ey ; [E8; b M o [Tk i

olop
ival
Substitution of (9) into (10) produces
* +
X
I;Tf_l E(ql:? ajiB(ib
il ! allb
X X
Ya by ki b (kB HEdk g (A B
ivil Kl

which can be rewritten as, Ekaj ‘/4K2a,-, where K is an
n[Ch Gram matrix, with the element kj %HEQPB(J-F'P
and a ¥ '4,3j,...an[2] The latter is a dual eigenvalue
problem equivalent to the problem

(fh vaKay:

Note that jjajj* va 1=[5]
For example, we may choose a Gaussian kernel such as

(& X |
kij VaHidpd B Yaexp [E] kxi [k Kk

o12p

o13p

Please note that if the image of X,, (finite sequences of
inputs x :%4fx; :j 2 Nng) is not centered in the Hilbert
space, we need to use the centered Gram Matrix deduced
by Mangasarian et al. [16] by applying the following K:

K%K EKTLEIK p TKT;
where K is the Gram matrix of uncentered data, and
1 mmy’
T v 4 CEDEDEE
1 EEIEY 1

o14p

nlfd

Let us keep the | eigenvectors associated with the | largest
eigenvalues, we can reconstruct data in the mapped space:

EOAEIN RETERABIME Y
where Iﬂ%fm/dajklﬂi %majkkik. For the experi-

mental evaluation, we introduce the reconstruction square
error of each data [5}i % 1;...;n, is

Err v vk (T ()

jval
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The mean square error is MErr 1/‘61=nmErri. Using
(12), Lyl va . Therefore, the mean square reconstruction
error is

MErr %61=n/41 Kii /.1 j2i :

Sipce -/1k., v [0, [and [, &2 Yjjaji* v 1=(5] MErr %
b

The KPCA algorithm contains an eigenvalue problem of
rank n, so the computational complexity of KPCA is O&n3p
In addition, each resulting eigenvector is represented as a
linear combination of n terms; the | features depend on
n image vectors of X,. Thus, all data contained in X, must
be retained, which is computationally cumbersome and
unacceptable for our applications.

KPCA algorithm [34]
Step 1: Calculate the Gram matrix, which contains the inner
products between pairs of image vectors.
Step 2: Use A,a~=Ka; to obtain the coefficient vectors g; for
J=1,..,n
Step 3: The projection of xeR” along the j-th eigenvector is

(e,,®(x)) = Z a, (®(x,), ®(x)) = Z a,k(x,x,).

2.3 Accelerated Kernel Feature Analysis

AKFA [20] is the method that we have proposed to
improve the efficiency and accuracy of SKFA [16]. SKFA
improves the computational costs of KPCA, associated with
both time complexity and data retention requirements.
SKFA was introduced in [16] and is summarized in the
following three steps:

SKFA algorithm [16]
Step 1: Compute the matrix k;:=k(x;x;), it costs O(d.n,) op-
erations, where d is the dimensionality of input space X.
Step 2: Initialize ayy,...,a0,=1, and idx(-) as the empty list,
these are the initial scaling for the directions of projection. It
costs O(m).
Step 3: For i=1 to / repeat(/ represent the number of featues
to be extracted)
1. Compute the Q values based on ®(x;),...D(x,,) for all direc-
tions @y, ..., ;. it can be got by

<d>’ (x, > ao/k//+z,1 ki - 1t costs O(i.m’) steps

since we need i operations per dot product. Compute the Q
value for each direction @';.

2. Perform a maximum search over all O values (O(m)) and
pick the corresponding @'; this is the i-th principal direction v;,
and store the corresponding coefficients ay;, ...ay, set idx(i)=j.

3. Compute the new search space to perform orthogonalization

by q;.' - @’ ,V (p' /H" H All coefficients have to be
stored into a;. All entries ®(x;), concerning are sorted into a;

with 1</<m respectively. The other coefficients are assigned to
atl with 1<¢<i and 1</<m.

AKFA [34] has been proposed by the author in an
attempt to achieve further improvements: 1) saves compu-
tation time by iteratively updating the Gram matrix,
2) normalizes the images with the |, constraint before the
[, constraint is applied, and 3) optionally discards data that
falls below a magnitude threshold uring updates.

To achieve the computation efficiency described in “1,”
instead of extracting features directly from the original
mapped space, AKFA extracts the ith feature based on the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO.8, AUGUST 2013

ith updated Gram matrix K', where each element is

(A EHER

The second improvement described in “2” above is to
revise the || constraint. SKFA treats each individual sample
data as a possible direction and computes the projection
variances with all data. Since SKFA includes its length in
its projection variance calculation, it is biased to select
vectors with larger magnitude. We are ultimately looking
for a direction with unit length, and when we choose an
image vector as a possible direction, we ignore the length
and only consider its direction for the improved accuracy
of the features.

The third improvement in “3” is to discard negligible
data and thereby eliminate unnecessary computations.

AKFA is described in the following three steps and
showed the improvements 1-3 [20]. The vector represents
the reconstructed new data based on AKFA, and it can be
calculated indirectly using the kernel trick:

% [FHI G e Tk

where K; v %;idx8lPk;;idx@p. . k.,|dxdhl Then the re-
construction error of new data ml Yanb 1;...;np m, is
represented as

—
Err; %%A kii :FC|C|TK

AKFA algorithm [20]

Step 1: Compute the nxn Gram matrix k; k(x,, ), whcrc nis
the number of input vectors. This part requlres O(n ) opera-
tions.

Step 2: Let / denote the number of features to be extracted.
Initialize the /x/ coefficient matrix C to 0, and idx(-) as an
empty list which will ultimately store the indices of the se-
lected image vectors, and C;, is an upper-triangle coefficient
matrix. Let us define dJ',-,,X(,»>=d),-dY(,‘)fZF,f"(d),-dv(i,,v,)v,. Initialize
the threshold value &=0 for the reconstruction error. The over-
all cost is O(P).

Step 3: For i=1 to / repeat:

1. Using the i-th updated K’ matrix, extract the i-th feature. If
k; < &, the predetermined &> 0. It is a threshold that deter-
mines the number of features we selected. Then discard j-th
column and j-th row vector without calculating the pI‘Q]eCthIl
variance. Use idx(i) to store the index. This step requires O(n”)
operations.

2. Update the
Cu =1/ k!’l/\’(l),u/\’(l) -and Cl:(z—l

O(i*) operations.

3. Obtain K™™', an updated Gram matrix. Neglect all rows
and columns contalmng diagonal elements less than J. This
step requlres o) operatlons The total computatlonal com-
plexity is increased to O(/n”) when no data is being truncated
during updating in the AKFA.

coefficient ~ matrix by using
i = =CConCiionKiawsy -, which requires

The AKFA algorithm also contains an eigenvalue
problem of rank n, so the computational complexity of
AKFA is step 1 requires Otn?boperations, Step 2 is Odp
Step 3 requires 1 for OM2R 2 for O&2R and 3 for OM?k The
total computational complexity is increased to Odn’Pwhen
no data is being truncated during updating in the AKFA.

2.4 Comparison of the Relevant Kernel Methods

Multiple kernel adoption and combination methods are
derived from the principle of empirical risk minimization,
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TABLE 1

Overview of Method Comparison for Parameters Tunring

Method

Principle

(dis)Advantage

Empirical risk
minimization[73]

averaging the loss
function on the

training set for un-

known distribution

high variance, poor
generalization,
overfitting

Structural risk
minimization[73]

Approximation
error[70]

Span bound [74]

Jaakkola-
Haussler bound
[75]

Radius-margin
bound[76]

Kernel linear
discriminant

analysis [77]

incorporating a
regularization pen-
alty into the optimi-

zation
featuring diameter
of the smallest
sphere containing
the training points
applying a gradient
descent method
through learning the
distribution of kernel
functions
computing the leave-
one-out error and the
inequality
introducing each
feature, and calculat-
ing the gradient of
bound value with the
scaling factor
extending a noline
LDA via a kernel
trick

low bias, high vari-
ance, prevent overfit-
ting

expensive computa-
tion

optimal approxima-
tion of an upper
bound of the pre-
diction risk

loose approximations
for bounds

optimal parameters
depending on the
performance measure

complicated charac-
teristics of kernel
discriminant analysis

which performs well in most applications. Actually, to
access the expected risk, there is an increasing amount of
the literature focusing on the theoretical approximation
error bounds with respect to the kernel selection problem,
for example, empirical risk minimization, structural risk
minimization, approximation error, span bound, Jaakkola-
Haussler bound, radius-margin bound, and kernel linear
discriminant analysis. The following table lists some
comparative methods among the multiple kernel methods.

Those kernel approaches listed in Table 1 have somehow
overlapped the principles and (dis)advantages, depending
on the nature of data. The proposed method described in
Section 3 has a tradeoff in the computational time and
accuracy, but outperformed those counterparts, even if bias
of the data set exists due to cancer screening purposes. The
proposed method works on the condition to measure the
adaptability of a kernel to the target data. The introduced
alignment measure provides a practical objective for kernel
optimization as a method for measuring the fitness between
a kernel and the learning task.

3 PRINCIPAL COMPOSITE KERNEL FEATURE
ANALYSIS

3.1 Kernel Selections

For kernel-based learning algorithms, the key challenge lies
in the selection of kernel parameters and regularization
parameters. Many researchers have identified this problem
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and, thus, have tried to solve it. However, the few existing
solutions lack effectiveness, and thus this problem is still
underdevelopment or regarded as an open problem. To this
end, we are developing a new framework of kernel
adaptation. Our method exploits the idea presented in
[35], and [36], by exploring data-dependent kernel metho-
dology as follows:

Let fxi;yigd “41;2;...;nPbe n d-dimensional training
samples of the given data, where y; % fp 1;[Zlg represents
the class labels of the samples. We develop a data-
dependent kernel to capture the relationship among the
data in this classification task by adopting the idea of
“conformal mapping” [36]. To adopt this conformal
transformation technique, this data-dependent composite
kernel for r ¥4 1;2;3;4;5 can be formulated as

ke ; x; PYa 0 i oy ] Bpr i xj R olsb

where pr&;; X; Pis one kernel among five chosen kernels and
odBl the factor function, takes the following form for
r¥al;2;3;4;5:

X
qd(ib%mo b I:‘L,Imkod(i;xml:? alep

m¥al
where kod(i;xmb%expxi E(mjj2=2 and is the
combination coefficient for the variable of X,. Let us denote
the vectors fg& B g &,h... ;q(‘)(nligT and 5} 5L Ii_};,brT by
G and Yal1;2;3;4;58 respectively, where we have
G Ya Koli_;_l where Ky isan [Tn b 1Pmatrix given by

2 3
1 koé(l;xlb koa(l;an
1 ko®o;x,p [EEKy6,; xn b

Koo . i _ . : al7b

1 kodxn:x b ko, 0P

Let the kernel matrices corresponding to kdxi; X; R pi&;; X P
and p,&;; x;Pbe K, Py, and P,, respectively. We can express
data-dependent kernel K as

K T 16 oi by ] Fpr i s xj iy :

Defining Q; as the diagonal matrix of elements fgd&;R
G&,B...;g8&Fg, we can express (18) as the matrix form

o18p

K, %QP,Q: a19p

This kernel model was first introduced in [32] and called
“conformal transformation of a kernel.” We now perform
kernel optimization based on the method to find the
appropriate kernels for the data set.

The optimization of the data-dependent kernel in (19) is
to set the value of combination coefficient vector |;_,_|so that
the class separability of the training data in mapped feature
space is maximized. For this purpose, Fisher scalar is
adopted as the objective function of our kernel optimization.
Fisher scalar measures the class separability of the training
data in the mapped feature space and is formulated as

J VatrdShrbtréSwrb ®0b

where Sy and Sp represent the “between-class scatter
matrices” and S,; and Sy, are the “within-class scatter
matrices.” Suppose that the training data are grouped
according to their class labels, i.e., the first n; data belong to
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one class and the remaining n, data belong to the other class
(ny p ny ¥an). Then, the basic kernel matrix P; can be
partitioned as

m, o O
P, Vi .12 &1b
"7 PP

where the sizes of the submatrices P{,, P{,, P;,, P},, r %
1;2;3;4;5are n; D‘Il, ny Ehz, n, IIhl, n, 2, respectively.

A close relation between the class separability measure J
and the kernel matrices has been established as

J d:b% M Orm.

CTN, [ @2pb

where

Mo V4K BorKoand Nor 4K W Ko; @3b

and for r % 1;2;3;4;5

1 r
Bor %y 1) &4b
0

(=]
[l ~apr oo
Wor %diag%];pgz;...;p;n n Ph.9

To maximize JA4P in (22), the standard gradient
approach is followed. If matrix Ny is nonsingular, the
optimal |i_¢_|that maximizes Ji is the eigenvector
corresponding to the maximum eigenvalue of the system,
we will drive the following (22) as taking the derivatives

IlerI;_i—l% Ij\IOr

The criterion for selecting the best kernel function is to find
the kernel that produces the largest eigenvalue from (25), i.e.

(] (]
A arg max NrmMr :

The idea behind it is to choose the maximum eigenvector
corresponding to the maximum eigenvalue that can max-
imize the J; that will result in the optimum solution. We
find the maximum FEigen values for all possible kernel
functions and arrange them in descending order to choose
the most optimum kernels, such as

T [ O [
We choose the kernels corresponding to the largest

eigenvalues nd forming composite kernels correspond-
ing to f ..g as follows.

&sp

&ob

&7pb

Kernel Selection Algorithm
Step 1: Group the data according to their class labels. Calculate
P,, K, first and then B,,, W, through which we can calculate
My, and Ny, forr=1,2,3,4,5;
Step 2: Calculate the eigenvalue ¢, corresponding to maxi-
mum eigenvector 4 = arg m?X(NflM);
Step 3: Arrange the eigenvalues in the descending order of
magnitude;
Step 4: Choose the kernels corresponding to most dominant
eigenvalues;
Step 5: Calculate ¢, =K o
Step 6: Calculate Q, and then compute Q.P.Q, for the most
dominant kernels.
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3.2 Kernel Combinatory Optimization

In this section, we propose a principal composite kernel
function that is defined as the weighted sum of the set of
different optimized kernel functions [41], [42]. To obtain an
optimum kernel process, we define the following composite
kernel as

Xp
Kompd 8%  EQPQ; ®8p

il

where [Elis the constant scalar value of the composite
coefficient, and p is the number of kernels we intend to
combine. Through this approach, the relative contribution
of both kernels to the model can be varied over the input
space. We note that in (28), instead of using K, as a kernel
matrix, we use Kemp as a composite kernel matrix.
According to [46], Kemp satisfies the Mercers condition.
We use linear combination of individual kernels to yield an
optimal composite kernel using the concept of kernel
alignment: “conformal transformation of a kernel.” The
empirical alignment between kernel k; and kernel k, with
respect to the training set S, is the following quantity
metric:

K5 Kaip:

. 1
Ad‘l'kzb”‘kKlkaszF’

&9p

where K is the kernel matrix %r N g set S using
kernel function K, and kKikg 2~ HKi;Kjig, Ki; Kjig is the
Frobenius inner product between K; and Kj. S V4fd;
yibx 2 X;y; 2 fp 1;[Elg;i %1;2;...;ng, X is the input
space, y is the target vector. Let K, ¥4 yy® then the empirical
alignment between kernel K and target vector y is

. 1
A Yy kv 7 kK ke

80b

It has been shown that if a kernel is well aligned with the
target information, there exists a separation of the data with
a low bound on the generalization error. Thus, we can
optimize the kernel alignment based on training set
information to improve the generalization performance of
the test set. Let us consider the combination of kernel
functions as follows:

k@%xp e

ival

S1p

where individual kernels k;, i ¥41;2;...;p are known in
advance. Our purpose is to tune (o maximize Adk; yyP
the empirical alignment between kdBand the target vector
y. Hence, we have

argrmaxOAd ik; yyte &32p
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TABLE 2
Colon Cancer Data Set 1 (Low Resolution)

Portion Data Portion Data Size
TP 80.0% 31
Training Set 148
FP 78.3% 117
TP 20.0% 8
Testing Set 40
FP 21.7% 32
TABLE 3
Colon Cancer Data Set 2
Portion Data Portion Data Size
TP 80.0% 16
Training Set 766
FP 70.0% 750
TP 20.0% 16
Testing Set 316
FP 30.0% 300

&33P

where

p
ui Yo K vyTi v

q

Va MK KiLUy Yauiygs Vg
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Let the generalized Raleigh coefficient be

Cud]

Therefore, we can obtain the value of Eby solving the
generalized eigenvalue problem

vl M

where [Edenotes the eigenvalues.

JdBY. &B4b

&s5p

PC-KFA Algorithm
Step 1: Compute optimum parameter o in Up=dVp.
Step 2: Implement K.,,,(0) for optimum parameter 5 .

Step 3: Build the model with K,,,,(0) using all training data.
Step 4: Test the completed model on the test set.
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TABLE 4
Colon Cancer Data Set 3

Portion Data Portion Data Size
TP 80.0% 22
Training Set 1012
FP 70.0% 990
TP 20.0% 6
Testing Set 431
FP 30.0% 425
TABLE 5
Colon Cancer Data Set 4
Portion Data Portion Data Size
TP 80.0% 17
Training Set 1817
FP 60.0% 1800
TP 20.0% 4
Testing Set 1204
FP 40.0% 1200

The PC-KFA algorithm contains an eigenvalue problem of
rank n, so the computational complexity of PC-KFA is
Step 1 requires OZPoperations, Step 2 is n. Step 3 requires
n operations. Step 4 requires n operations. The total
computational complexity is increased to O’k

4 EXPERIMENTAL ANALYSIS
4.1 Cancer Image Data Sets

4.1.1 Colon Cancer

This data set consisted of true-positive (TP) and false-
positive (FP) detections obtained from our previously
developed CAD scheme for the detection of polyps [5],
when it was applied to a CTC image database. This database
contained 146 patients who underwent a bowel preparation
regimen with a standard precolonoscopy bowel-cleansing
method. Each patient was scanned in both supine and prone
positions, resulting in a total of 292 CT data sets. In the
scanning, helical single-slice or multislice CT scanners were
used, with collimations of 1.25-5.0 mm, reconstruction
intervals of 1.0-5.0 mm, X-ray tube currents of 50-260 mA
and voltages of 120- 140 kVp. In-plane voxel sizes were 0.51-
0.94 mm, and the CT image matrix size was 512 [fk12. Out
of 146 patients, there were 108 normal cases and 38 abnormal
cases with a total of 39 colonoscopy-confirmed polyps larger
than 6 mm.

The CAD scheme was applied to the entire cases and it
generated a segmented region for each of its detection
(a candidate of polyp). A volume-of-interest (VOI) of size
64 (b4 [Tb4 voxels was placed at the center of mass of each
candidate for encompassing its entire region; then, it was
resampled to 12 (12 [Th2 voxels. Resulting VOIs of 39 TP
and 149 FP detections from the CAD scheme made up the
colon cancer data set 1.

Additional CTC image databases with a similar cohort of
patients were collected from three different hospitals in the
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TABLE 6
Colon Cancer Data Set 5

Portion Data Portion Data Size
TP 58. 8% 80
Training Set 2080
FP 55. 3% 2000
TP 412% 56
Testing Set 1668
FP 54.7% 1612
TABLE 7
Breast Cancer Data Set
Portion Data Portion Data Size
TP 80.0% 51
Training Set 126
FP 60.0% 75
Testing Set TP 20.0% 13 63
FP 40.0% 50
TABLE 8
Lung Cancer Data Set
Portion Data Portion Data Size
TP 70.0% 15
Training Set 126
FP 80.0% 111
TP 30.0% 6
Testing Set 34
FP 20.0% 28

US. The VOIs obtained from these databases were re-
sampled to 16 [The [The voxels. We refer to the resulting
data sets as colon cancer data sets 2, 3, 4, 5, and 6 for
Tables 2, 3, 4, 5, and 6 with the distribution of the training
and testing VOIs, respectively.

4.1.2 Breast Cancer

We extended our own colon cancer data sets into other
cancer-relevant data sets. This data set is available at http:/ /
www.ncbi.nlm.nih.gov/ geo/ query/ acc.cgi?acc = GSE2990.
This data set contains data on 189 women, 64 of which were
treated with tamoxifen, with primary operable invasive
breast cancer, with each feature dimension of 22283. More
information on this data set can be found in [50].

4.1.3 Lung Cancer

This data set is available at http:/ / www .broadinstitute.
org/ cgi-in/ cancer/ data sets.cgi. It contains 160 tissue
samples, 139 of which are of class ’0’ and the remaining
are of class 2. Each sample is represented by the
expression levels of 1,000 genes for each feature dimension.

4.1.4 Lymphoma
This data set is available at http:// www.broad.mit.edu/
mpr/ lymphoma. It contains 77 tissue samples, 58 of which
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TABLE 9
Lymphoma Data Set

Portion Data Portion Data Size
TP 85.0% 17
Training Set 62
FP 78.0% 45
TP 15.0% 3
Testing Set 14
FP 22.0% 13
TABLE 10
Prostate Cancer Data Set
Portion Data Portion Data Size
TP 85.0% 64
Training Set 250
FP 80.0% 186
TP 15.0% 11
Testing Set 58
FP 20.0% 47

are diffuse large B-cell lymphomas and the remainder is
follicular lymphomas, with each feature dimension of
7,129. Detailed information about this data set can be
found in [48].

4.1.5 Prostate Cancer

This data set is collected from http:// www.ncbinlm.nih.
gov/ geo/ query/ acc.cgi?acc = GSE6919. It contains prostate
cancer data collected from 308 patients, 75 of which have
metastatic prostate tumor and the rest of the cases
were normal, with each feature dimension of 12,553. More
information on this data set can be found in [51] and [52].

4.2 Kernel Selection

We first evaluate herein the performance on the kernel
selection according to the method proposed in Section 3.1,
regarding how to select the kernel function that will best
fit the data. The larger the eigenvalue is, the greater the
class separability measure J in (22) is to be expected.
Table 11 shows the calculation of the algorithm for all the
data sets mentioned to determine the eigenvalues of all the
five kernels. Specifically, we have set the parameters such
as d, offset, EE.] (] and [Ebf each kernel in (1)-(5), and
computed their eigenvalues [Zlfor all the nine data sets
Tables 2, 3, 4, 5, 6, 7, 8, 9, and 10. After arranging the
eigenvalues for each data set in descending order
we selected the kernel corresponding to the largest
eigenvalue as the optimum kernel.

The largest eigenvalue for each data set is highlighted in
Table 11. After evaluating the quantitative eigenvalues for
all the nine data sets, we observed that the RBF kernel gives
the maximum eigenvalue among all the five kernels. That
means that RBF kernel produced the dominant results
compared to all other four kernels. For five data sets, colon
cancer data sets 2, 3,4, 5, and 6: Lymphoma cancer data set,
the polynomial kernel produced the second largest eigen-
value. Linear kernel gave the second largest eigenvalue for
colon cancer data set 1 and lung cancer data set, where as
the Laplace kernel produced the second largest eigenvalue
for the breast cancer data set.
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TABLE 11
Eigenvalues [bf Five Kernel Functions
(1)-(5) and Their Parameters Selected

Cancer . . Gaussian Laplace . .
Linear Polynomial Sigmoid
Datasets RBF RBF
11.54 16.82 7.87 3.02
Colonl 13.28
d=1, offset=1 c=4.00 o=0.1 =2, =17
84.07 139.96  40.37 64.5
Colon2  75.43
d=1, ofset=4  6=5.65 o=1.5 f=1,p=25
106.52 137.74  80.67 532
Colon3  100.72
d=1,ofset=1 o=447 o=15 H=2/=3
166.44 192.14 3499 142.3
Colon4  148.69
d=1,offet=1 =458 o=15 H=2p=2
91.7 141.72 88. 1 102.4
Colon5 78. 4
d=1.7, offset=0.8 0=0.7 =23 A=0.0L5=0
20.43 64.38 56.85 23.2
Breast  22.85
d=12, offset=1 o=447 &=3.0 /H=0.75 =l
47.49 54.60 38.74 29.2
Lung 36.72
d=12, ofset=4 =387 o=24 PH=4 /=25
37.50 42.13 35.37 23.6
Lymphoma 19.71
d=1.5, offset=2 =282 =20 H=L5 /=2
48.82 53.98  40.33 43.1
Prostate  50.93
d=1, offser=1 o=447 o=1.5 /h=0.5,/=05
TABLE 12

Mean-Square Reconstruction Error of KPCA, SKFA, and AKFA
with the Selected Kernel Function

Cancer Selected Eigenspace KPCA SKFA AKFA
Datasets Kemel Dimension Error Error Error
Function (%) (%) (%)
Colonl RBF 75 6.86 11.56 10.74
Colon2 RBF 100 27.08 18.41 17.00
Colon3 RBF 100 14.30 2229 20.59
Colon4 RBF 100 12.48 19.66 18.14
Colon5 RBF 90 11.89 15. 41 17.90
Breast RBF 55 6.05 2.10 10.10
Lung RBF 50 1.53 2.55 7.30
Lymphoma RBF 20 3.27 72 3.87
Prostate RBF 80 10.33 11.2 13.83

As shown in Table 11, the Gaussian GBF kernel showed
largest eigenvalues for the all nine data sets. The perfor-
mance of the selected Gaussian GBF was compared to the
other single kernel function in the reconstruction error
value. As a further experiment, the reconstruction error
results have been evaluated for KPCA using MErr Y4
Al= Abl@ and for AKFA and SKFA using Err %
JEIELL? ki [EKTCCTK; with the optimum kernel
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TABLE 13
Mean-Square Reconstruction Error of
KPCA with Other Four Kernel Functions

Cancer Linear Kernel Po]l(y:rzr;ial Laplace RBF Sigmoid kernel
Datasets  Function (%) Function (%) kernel (%)  Function (%)
Colonl 1739 1739 46.43 238.6
Colon2 12133 33170 90.05 291.1
Colon3 4276 4276 3841 294.6
Colon4 1972 1972 26.28 228.6
Colon5 1794 1801 29.71 198.6

Breast 471.6 2061 49.63 465.3

Lung 1009 5702 59.51 464.8

Lymphoma  362.5 362.5 63.04 2285

Prostate 849.8 849.8 67.44 159.8
TABLE 14

Linear Combination F¥or Selected Two Kernel Functions

Linear Combination

Cancer Datasets Two Selected Kernels

of Kernels

Colonl RBF+Linear ;,] :0.9852,;,: =0.1527
Colon2 RBF+Polynomial ;;] :0.6720,;2:0. 1582
Colon3 RBF+Polynomial ;)I :0.9920,/;2:0.1204
Colond RBF+Polynomial ~ p =0.9775, , =0.1375
Colon5 RBF+Polynomial ;] :0.7300,2,220.2700
Breast RBF+Laplace ;] =0.8573, , =0.1386
Lung RBF+Lincar p,=0.9793, , =0.1261
Lymphoma RBF+Polynomial ;JI =0.9903,;z=0.2082
Prostate RBF+Linear /AO] :0.9756,;::0.1219

(RBF) selected from Table 11. We listed up the selected
kernel, dimensions of the eigenspace (chosen empirically)
and the reconstruction errors of both KPCA, SKFA, and
AKFA for all the data sets shown in Table 12.

Table 12 shows that RBF, the single kernel selected, has a
relatively small reconstruction error, from 3.27 percent to
up to 14.30 percent in KPCA. The reconstruction error of
KPCA is less than that of the reconstruction error of AKFA,
from 0.6 percent to up to 6.29 percent. The difference in the
reconstruction error between KPCA and AKFA increased as
the size of the data sets increased. This could be due to the
heterogeneous nature of the data sets. The Lymphoma data
set produced the least mean square error, whereas the colon
cancer data set 3 produced the largest mean-square error for
both KPCA and AKFA.

Table 13 shows that the other four kernel functions have
much more error than Gaissian RBF shown in Table 12. The
difference between Tables 12 and 13 is more than four times
larger reconstruction error, and sometimes 20 times when
the other four kernel functions are applied.
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TABLE 15
Mean-Square Reconstruction Error with
Kernel Combinatory Optimization

Cancer Eigenspace KPCA SKFA AKTA ]lzlfx;
Datasets Dimension Error Error Error
(%) (%) (%) (%)
Colonl 75 4.20 6.34 4.30 4.18
Colon2 100 5.53 7.23 5.20 5.17
Colon3 100 5.23 7.70 7.29 5.21
Colon4 100 10.50 15.17 14.16 10.48
Colon5 90 5.61 5.81 5.76 4.98
Breast 55 2.88 3.47 6.56 2.78
Lung 50 243 3.71 3.67 2.44
Lymphoma 20 2.01 3.11 4.44 2.12
Prostate 80 1.34 2.23 1.06 1.28

4.3 Kernel Combination and Reconstruction

After selecting the number of kernels, we select the first p
kernels that produced the p largest Eigen values in Table 11,
and combine them according to the method proposed in
Section 3.2 to yield lesser reconstruction error. The follow-
ing Table 14 shows the coefficients calculated for the linear
combination of kernels. After obtaining the linear coeffi-
cients according to (35), we combine the kernels according
to (28) to generate the composite kernel matrix Komp
The following Table 15 shows the reconstruction error
results for both KPCA and AKFA along with the composite
kernel KoompdE

The reconstruction error using two composite kernel
functions shown in Table 15 is smaller than the reconstruc-
tion error in the single kernel function RBF in Table 12. This
would lead us to claim that all nine data sets from the above
table made evident that the reconstruction ability of kernel
optimized KPCA and AKFA gives enhanced performance to
that of single kernel KPCA and AKFA. The specific
improvement in the reconstruction error performance is
greater by up to 4.27 percent in the case of KPCA, and by up
to 5.84 and 6.12 percent in the cases of AKFA and SKFA by
mean, respectively. The best improvement of the error
performance is observed in PC-KFA by 4.21 percent by
mean. This improvement in reconstruction of all data sets is
validated using PC-KFA. This successfully shows that the
composite kernel produces only a small reconstruction error.

4.4 Kernel Combination and Classification

To analyze how feature extraction methods affect classifica-
tion performance of polyp candidates, we used the k-nearest
neighborhood classifier on the image vectors in the reduced
eigenspace. We evaluated the performance of this simple
classifier by applying to the kernel feature spaces obtained
by KPCA and AKFA with both selected single kernel as well
as composite kernel for all the nine data sets. Six nearest
neighbors were used for the classification purpose. The
classification accuracy was calculated as (TP p TN)/
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TABLE 16
Classification Accuracy Using Six Nearest Neighborhoods for
Single-Kernel and Two-Composite-Kernels with
KPCA, SKFA, AKFA, and PC-KFA

Cancer KPCA KPCA SKFA SKFA AKFA AKFA
X " . . . = . PC-KFA
Datasets single composite single composite single composite
Colonl 9750 9750  92.50 97.50 95.00 9500 97.61
Colon2  86.02 86.02  86.02 86.02 85.48 86.02  86.13
Colon3  98.61 98.61 98.61 98.61 98.61 98.61 98.82
Colond  99.67  99.67  99.67 99.67 99.67  99.67  99.70
Colon5  98.12  98.12  98.12 98.12 9647 9531 96.47
Breast 87.50  98.41 96.81 98.41 95.21 96.83  98.55
Lung 91.18 97.06 94.12 94.12 91.18 94.12 97.14
Lymphoma 87.50 9375  93.75 93.75 9750 9375 97.83
Prostate  87.96 9483 9138 98.28 89.66 9828  98.56
TABLE 17
Overall Classification Comparison among
Other Multiple Kernel Methods
Regularized . Generality Multiple Proposed
D kernel discrimi- L2 Regulari- Kernel L . PC-KFA
atasets nant analysis Zation[71]* ernel Learning -
(RKDA)[32] (GMKL)[69]
heart 73.21 0.17 NA 81.21
cancer 95.64 NA NA 95.84
breast NA 0.03 NA 84.32
ionosphere 87.67 0.08 94.4 95.11
sonar 76.52 0.16 82.3 84.02
Parkinson’s NA NA 92.7 93.17
Musk NA NA 93.6 93.87
Wpbc NA NA 80.0 80.56

* misclassification rate, NA: not available

(TP p TN p FNp FP). The results of classification accuracy
showed very high values as shown in Table 16.

The results from Table 16 indicate that the classification
accuracy of the composite kernel is better than that of the
single kernel for both KPCA and AKFA in colon cancer data
det 1, Breast cancer, Lung Cancer, Lymphoma, and Prostate
Cancer; whereas in the case of colon cancer data sets 2, 3,4, 5,
6, because of the huge size of the data, the classification
accuracy is very similar between single and composite
kernels. From this quantitative characteristic among the
entire nine data sets, we can evaluate that the composite
kernel improved the classification performance, and with
single and composite kernel cases the classification perfor-
mance of AKFA is equally good as that of KPCA, from
85.48 percent up to 98.61 percent. The best classification
performance has been shown in PC-KFA, up to 99.70 percent.

4.5 Comparisons of Other Composite Kernel
Learning Studies

In this section, we make experimental comparisons of the

proposed PC-KFA with other popular MKL technique. Such

as regularized kernel discriminant analysis (RKDA) for

MKL [32], L2 regulation learning [71], and generality MKL

[69] in Table 17, as follows.



MOTAI AND YOSHIDA: PRINCIPAL COMPOSITE KERNEL FEATURE ANALYSIS: DATA-DEPENDENT KERNEL APPROACH

TABLE 18
PC-KFA Computation Time for Kernel Selection and Operation
with KPCA, SKFA, AKFA, and PC-KFA

Cancer Data- KPCA AKFA PC-KFA
sets (sec) SKFA (sec) (sec) (sec)
Colonl 0.266 3.39 0.218 6.12
Colon2 2.891 5.835 1.875 10.01
Colon3 6.83 16.44 3.30 21.25
Colon4 31.92 47.17 11.23 93.41
Colon5 50.78 61.81 19.76 160.4
Breast 0.266 0.717 0.219 1.37
Lung 0.125 0.709 0.0625 1.31
Lymphoma 0.0781 0.125 0.0469 0.27
Prostate 1.703 4.717 1.109 9.31

To evaluate algorithms [32], [71], [69], the eight data sets
are used in the binary-class case from the UCI machine
learning repository [61], [72]. L2 regularization learning [71]
showed miss-classification ratio, which may not be equally
comparative to the other three methods. The proposed PC-
KFA overperformed these representative approaches. For
example, PC-KFA for lung was 94.12 percent, not as good as
the performance of SMKL, but better than RKDA for MKL
and GMKL. The classification accuracy of RKDA for MKL in
Data Set 4 and prostate is better than GMKL. This result
indicates PC-KFA is very competitive to the well-known
classifiers for multiple data sets.

4.6 Computation Time

We finally evaluate the computational efficiency of the
proposed PC-KFA method by comparing its runtime with
KPCA and AKFA for all nine data sets as shown in Table 18.
The algorithms have been implemented in Matlab R2007b
using the statistical pattern recognition toolbox for the
Gram matrix calculation and kernel projection. The proces-
sor was a 3.2-GHz Intel Pentium 4 CPU with 3 GB of RAM.
Runtime was determined using the CPU time command.

For each algorithm, computation time increases with
increasing training data size (n), as expected. AKFA
requires the computation of a Gram matrix whose size
increases as the data size increases. The results from the
table clearly indicate that AKFA is faster than KPCA. We
also noticed that the decrease in computation time for
AKFA compared to KPCA was relatively small, implying
that the use of AKFA on a smaller training data set does
not yield much advantage over KPCA. However, as the
data size increases, the computational gain for AKFA is
much larger than that of KPCA as shown in Fig. 1. PC-
KFA shows more computational time since the composite
data-dependent kernels needs calculations of a Gram
matrix and optimization of coefficient parameters.

Fig. 1 illustrates the increase in the computational time of
both KPCA as well as AKFA corresponding to increased
data. Using Table 18, we listed the sizes of all the data sets
in the ascending order from lymphoma (77) to colon cancer
data set 4 (3021) on the X-axis versus the respective
computational times on the Y-Axis. The red curve indicates
the computational time for the KPCA, whereas the blue
curve increases the computational time for AKFA for all
nine data sets arranged in ascending order of their sizes.
This curve clearly shows that as the size of the data
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Fig. 1. The computation time comparison between KPCA, SKFA, AKFA,
and PC-KFA as the data size increases.

increases, the computational gain of AKFA is greater. This
indicates that AKFA is a powerful algorithm and it
approaches the performance of KPCA by allowing for
significant computational savings.

5 CONCLUSION

This paper describes first AKFA, a faster and more
efficient feature extraction algorithm derived from the
SKFA. The time complexity of AKFA is Odn?B which has
been shown to be more efficient than the Od2nP time
complexity of SKFA and the complexity O&3Pof a more
systematic principal component analysis (KPCA). We have
extended these methods into PC-KFA. By introducing a
principal component metric in PC-KFA, the new criteria
performed well in choosing the best kernel function adapted
to the data set, as well as extending this process of best
kernel selection into additional kernel functions by calculat-
ing linear composite kernel space. We conducted compre-
hensive experiments using nine cancer data sets for
evaluating the reconstruction error, classification accuracy
using a K-nearest neighbor classifier, and computational
time. The PC-KFA with KPCA and AKFA had a lower
reconstruction error compared to single kernel method, thus
demonstrating that the features extracted by the composite
kernel method are practically useful to represent the data
sets. Composite kernel approach with KPCA and AKFA has
the potential to yield high detection performance of polyps
resulting in the accurate classification of cancers, compared
to the single kernel method. The computation time was also
evaluated across the variable data sizes, with a tradeoff in
the computational time and accuracy, and showed a
comparative advantage of composite kernel AKFA.
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