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Local Intensity Feature Tracking and Motion
Modeling for Respiratory Signal Extraction
in Cone Beam CT Projections

Salam Dhou, Student Member, IEEE, Yuichi Motai*, Member, IEEE, and Geoffrey D. Hugo

Abstract—Accounting for respiration motion during imaging
can help improve targeting precision in radiation therapy. We pro-
pose local intensity feature tracking (LIFT), a novel markerless
breath phase sorting method in cone beam computed tomography
(CBCT) scan images. The contributions of this study are twofold.
First, LIFT extracts the respiratory signal from the CBCT projec-
tions of the thorax depending only on tissue feature points that ex-
hibit respiration. Second, the extracted respiratory signal is shown
to correlate with standard respiration signals. LIFT extracts fea-
ture points in the first CBCT projection of a sequence and tracks
those points in consecutive projections forming trajectories. Clus-
tering is applied to select trajectories showing an oscillating behav-
ior similar to the breath motion. Those ‘“breathing” trajectories are
used in a 3-D reconstruction approach to recover the 3-D motion of
the lung which represents the respiratory signal. Experiments were
conducted on datasets exhibiting regular and irregular breathing
patterns. Results showed that LIFT-based respiratory signal cor-
relates with the diaphragm position-based signal with an average
phase shift of 1.68 projections as well as with the internal marker-
based signal with an average phase shift of 1.78 projections. LIFT
was able to detect the respiratory signal in all projections of all
datasets.

Index Terms—Cone beam computed tomography (CBCT),
image motion analysis, respiration signal.

I. INTRODUCTION

ESPIRATORY motion extraction from cone beam com-
R puted tomography (CBCT) images is an important task in
biomedical engineering research [1]-[3]. It can be used to study
the influence of organ motion on CBCT imaging [4]. Motion
modeling can be used also for measuring the position and ori-
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entation of objects [5], [6] or for respiratory image sequence
segmentation techniques [7]. Four-dimensional or respiration-
correlated CT (4DCT) imaging techniques have become a basic
task in radiation therapy planning. As the respiratory motion
can be a major source of error in determining the position of
thoracic and upper abdominal tumor targets during radiother-
apy, extracting respiratory motion is a key task in reconstructing
4DCT. Volumetric image guidance techniques, such as 4D Cone
Beam CT (4DCBCT), have been recently and rapidly integrated
into the clinic for verifying tumor position during treatment and
managing respiration-induced tissue motion [4], [8], [9]. An
acquired respiratory signal serves as a surrogate for the tumor
position. This surrogate is used to assign each projection to its
appropriate breathing phase bin, in a process termed “sorting,”
prior to 4-D image reconstruction.

Respiratory signals can be extracted using external sources
such as skin markers, abdominal belts, or spirometry [4], [10].
Those methods require additional equipment such as infrared
cameras, detectors, or spirometry that may not be available.
Another solution was an image-based measure of diaphragm
position directly from the 4DCBCT radiographic projections
[8], [11]. The extraction of a diaphragm position-based signal
requires the diaphragm to be visible in all acquired CBCT pro-
jections, which is not possible in some commonly used CBCT
systems that have limited longitudinal fields of view. Also, a
number of studies have shown that tumor position is difficult to
predict directly from the diaphragm or external surrogate mo-
tion, with reported errors of up to 6 mm in predicting tumor po-
sition from external marker position [12]-[21]. Another option
is using transthoracically or bronchoscopically radio-opaque tu-
mor markers that are implanted near the tumor and tracked to
extract the respiratory motion [22], [23]. This method solves the
problem, but the additional procedure to implant the markers is
invasive and expensive, and any complications may significantly
delay treatment initiation.

Thus, we propose local intensity feature tracking (LIFT), an
image-based respiration signal extraction method. The contribu-
tions of this paper are twofold. First, the proposed method uses
only the CBCT projections of the lung to extract the respiratory
signal depending on tissue feature points local to the tumor. Sec-
ond, the extracted respiration signal using LIFT correlates to the
standard respiration signals. The specific novel contributions of
this study are the following: 1) LIFT extracts the respiratory sig-
nal without dependence on a particular anatomical structure in
the CBCT images (such as the diaphragm), and can be tuned to
focus on a particular region of the anatomy (say, near a tumor).
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TABLE I
COMPARISON OF RESPIRATORY MOTION DETECTION METHODS

Method name Procedure

Requirements

Diaphragm position[8],[11]

Measuring the position of the diaphragm in subsequent projections and

Diaphragm should be visible in all projections

using it as a surrogate to the respiration motion

Internal Marker-based [22], [23]
based tracking techniques
Proposed LIFT

Tracking the markers in subsequent projection images using image-

Tracking interest points local to the tumor position and 3D motion

Internal markers/ implanting procedure costs

CT projections only

modeling of the 2D motion of the best selected motion trajectories

2) No other group has used 3-D motion modeling in recovering
the 3-D motion of the lung and used it as a respiratory signal.
LIFT works as follows. First, the CBCT projections of the entire
dataset are grouped into arcs. Then, in each arc, we extract fea-
ture points in the lung. Those feature points are tracked from one
projection to another using optical flow [24] to form trajectories
of the feature points’ correspondences. A selection criterion is
applied to select the trajectories that show an oscillating be-
havior similar to respiration. Using those selected trajectories,
the 3-D motion is recovered. Then, the 3-D rotation around the
Z-axis of the patient represents the respiration motion in this
study. CBCT projections are sorted into phases according to the
respiration signal detected.

The advantage of LIFT over the external resources methods is
that no external equipment is required. It also has the advantage
over the diaphragm position method in that the diaphragm is
not required to be visible in all CBCT projections. Moreover,
no internal markers are required to be implanted as the signal is
generated from tissue features local to the tumor position. We
consider LIFT widely applicable as only the CBCT projections
are required to generate the respiratory signal. There are several
works related to our study. Bergner et al. [25] proposed a method
for measuring motion between 4DCBCT projections based on
dense optical flow using a Horn—Schunk [26] implementation.
Their method was developed to improve the reconstruction qual-
ity in stationary regions of the anatomy. For respiration sorting,
they used a diaphragm position-based method similar to [8].
Wachinger et al. [27] extract an image-based respiratory sig-
nal using manifold learning; however, this method was applied
only for fixed view (fluoroscopic) images, as opposed to the
rotational view (tomographic) projections used here.

The works in [11] and [28]-[30] are also related. In [11],
thousands of interest points are selected and tracked across pro-
jections using a block matching algorithm. Signal processing
techniques are then used to acquire a respiratory signal. In [28],
Siochi developed a technique that locates a bounding box for
the diaphragm motion for all projections based on two pairs of
full-inhale and full-exhale views. However, the aforementioned
methods [11], [28] require that the diaphragm be present in the
field of view. In [29], the respiratory signal is acquired from
an analysis of the variation in pixel values between projection
images by developing a simple pixel value summation followed
by a high-pass filtering. This method is effective, but its effi-
ciency should be demonstrated for various CBCT patient cases
and compared to other methods in the literature. Vergalasova
et al. [30] proposed a markerless method for respiration sig-
nal detection based on the principles on the Fourier Transform
theory. However, when the entire projections of patient data

were used, the results showed a big phase shift between the
extracted signal and the ground truth signal. Thus, LIFT is the
first method to use feature tracking and 3-D motion modeling
for respiratory signal extraction. Table I shows a comparison
summary of respiration signal extraction methods.

The remainder of this paper is organized as follows. Section I1
describes in detail the proposed method. Section III presents the
experimental results on four clinical datasets and a discussion
of the results. Section I'V concludes this paper.

II. PROPOSED RESPIRATORY MOTION EXTRACTION METHOD

Here, we present the proposed LIFT method. In Section II-A,
we discuss feature extraction and tracking. In Section II-B, we
present trajectory clustering. In Section II-C, respiratory motion
detection is discussed. In Section II-D, projection phase sorting
is presented.

A. Feature Extraction and Tracking

Feature points are extracted and tracked through projection
sequences to detect the optical flow motion in the following
three steps:

Step 1: We extract feature points at pixel locations equally
spaced by a constant number of pixels. We do not extract fea-
ture points based on image intensity (like corners) because of
the nature of transmission tomography in which corners visible
in 2-D projection images may not correspond to actual high
contrast boundaries in the 3-D anatomy. Also, choosing fea-
tures at equally spaced locations allows the extraction of feature
points in any CT projection image. An extracted feature point
is represented by py, = (xf,.yf,»), Where f is the projection
number and p is the point number. We aim at analyzing the mo-
tion between any pair of consecutive projections. The inferior
portion of projections containing the diaphragm was excluded to
simulate common CBCT acquisition systems that have smaller
longitudinal fields of view. Fig. 1 shows feature points extraction
in one projection.

Step 2: Feature points are tracked through subsequent pro-
jection frames. Due to the respiration motion and differ-
ent projection angles, a feature point has different locations
(x- and y-coordinates) in every subsequent projection. Those
locations of the feature point are called “correspondences.” To
find the displacement d(Ax,Ay) that a point ps , with intensity
I(x¢,,ysp, 7) makes when it moves from one image to the next,
a single pixel cannot be tracked. That is because the value of the
pixel can change due to noise, and be confused with adjacent
pixels [31]. Thus, windows of pixels are tracked instead of single
pixels. Since adjacent projections refer to the same scene taken
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Fig. 1.  Feature points extraction used in this study. Feature points are extracted
at specific pixel locations spaced by a number of pixels (20 pixels in this figure).
The inferior part of the projection image is excluded to simulate the CBCT
systems that have a small field of view.

from slightly different viewpoints at 7 and 74+AT, intensity
patterns move in the image sequence satisfying the constraint
property I(xf . Y5, T) = L(xg, +Ax,ys ,+Ay, 7+AT). The
next image can be defined as J(p) = I(p — 0) + n(p), where 7
is some noise. We find the displacement §(Ax, Ay) that min-
imizes the sum of squared intensity differences between a past
and current window w in the following cost function:

[I(p—6)—J(p)*dp

w

ey

£ =

which canbe writtenase = (h — 90)*dp, where h = I(p) —
J(p). The residue is minimized by differefifipting  with respect
to 0 and setting the result equal to zeroas | (h — gd)gdA = 0,
where (gd)g = (997 )6, d is assumedtTp be constant within
w. Therefore, we have ( g9l dA)S = ., hgdA. This system
has two scalar equations and two unknowns which can be writ-
ten as G0 = e, where G can be computed from one image
by estimating gradients and computing their second-order mo-
ments, and e can be computed from the difference between the
two images along with the gradient computed previously. The
displacement 9 is then the solution of system [31].

Drift problem is a very classical issue when tracking feature
points through long sequences. To overcome this problem, the
quality of feature points is monitored during tracking by mea-
suring the dissimilarity of the features between the first image
in the sequence and the current image. The feature is abandoned
when dissimilarity grows too large. Affine image changes are
used to calculate dissimilarity as in [32].

Step 3: A trajectory is formed as sequence of point corre-
spondences through F' frames and is defined by ¢, as t, =
{p1p:D2p,..-,prp}. A set of trajectories is represented by
T ={ty,ts,...,tp}, where P is the total number of trajecto-
ries which equals the total number of points. Trajectories are
represented by a list of line-angle vectors (,0), where [ is the
line between two adjacent feature points py,, and pyy1 ,, and
O is the value of the angle between two adjacent lines. The
line-angle vector representation of a trajectory ¢, of F' point
correspondencesis t, = ((I},0©}),..., (11,05 ?)). Inatra-
jectory of F' points, the number of lines [ equals F' — 1, while
the number of angles © equals F' — 2. This representation of
trajectories is defined for the purpose of clustering. The details
of two trajectories are shown in Fig. 2. Algorithm Ishows a
summary of the steps used for feature extraction and tracking.

Fig. 2. Two trajectories formed by tracking a sequence of 47 frames. Both tra-
jectories ¢, and ¢, are selected to be used in the reconstruction of the respiration
signal. The first two segments of both trajectories are illustrated.

Algorithm 1: Feature Extraction and Tracking

Step 1: Extract feature points p.,=(x;, ;) at pixel
locations equally spaced by a constant number of pixels.
Step 2: Track fecature points through a projection sequence
by finding the displacement d(Ax,Ay) that minimizes the
cost function: & = ‘[.[/(p -8)-J(p)dp, (1)

Step 3: Form trajectories /£, and represent them as a list of
line-angle vectors as: 1, =((/,',,®',,)....,(lf L0 2)).

TABLE II
TRAJECTORIES CLUSTERING METRICS

Metric Formula Description

|/< —k | The difference in the number of peaks £, and £, in
g = 2 9 (rajectories p and ¢ divided by the maximum number
“ o omaxf,.k}  of peaks. ky =l
7@ Avcrage measurcment value ol angles in trajectory p.
0 L P ©," is the angle existing between the lines /,* and /,*'"!
" -2 forming a peak in trajectory p.
Z:.v / The average number ol lincs I,,k between  every
r o= [ consecutive peaks in trajectory p, where n,* is the
P (n; -1 number of lines l,,k between two peaks in p.
min{r,,r,}  The ratio ol the average number of lines between
Prqg = max{r,r,} peaks in trajectories p and g: r, and ry. pp =1,

B. Shape-Based Trajectory Clustering

We cluster the trajectories resulting from tracking the fea-
ture points based on their motion behavior. Respiratory-induced
motion in the thorax and upper abdomen is quasiperiodic and
directed mainly in the superior—inferior direction (along the pa-
tient longitudinal axis). Thus, motion trajectories exhibiting this
oscillating behavior may imply respiration motion (i.e., thoracic
tissue areas). Other trajectories have only orbital motion due to
the scanner rotation (i.e., bony areas). In order to detect a true
respiration signal out of this mixed signal, we aim to minimize
the effect of the orbital trajectories and use only the ones with
the highest superior—inferior motion signals in the motion de-
tection process. The following three steps show the process of
trajectory clustering.

Step 1: A set of metrics for trajectory clustering is formu-
lated to describe the shape of trajectories. Table II describes the
set of metrics used and their formula. Those metrics compare
trajectories based on their shapes using the number of peaks in
each trajectory, angle measurements, and the average number of
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lines between peaks. A peak in a trajectory, as seen in Fig. 2, is
the point that has the largest y-coordinate within a breath cycle
(3-5 s). It is detected by traversing every trajectory to find the
points with the largest y-coordinate within a breath cycle.

Those metrics are combined in one similarity measure to ap-
ply to every pair of trajectories. This similarity measure detects
the similarity in the shape of trajectories and is insensitive to
their location in the projection and length in pixels. The fol-
lowing is the definition of the similarity measure that uses the
distance metrics defined in Table II

|
Oékp, !*2'
S(tpﬂfq):d— +/8p_®q ! J @
+ (1= ppq)

where ¢, and ¢, are two trajectories of the same length. d is the
maximum similarity possible between any two trajectories. a, (3,
and U are weights to adjust the significance of one metric to the
other metrics. All metrics are represented as ratio or normalized
difference. Each metric in (2) compares the pairs of trajectories
based on one specific aspect of each trajectory’s shape. The first
metric compares trajectories based on the number of peaks. The
second one compares the trajectories based on average angle
measurement between the lines forming the peaks. The third
one compares the trajectories based on the average number of
lines between each consecutive peak. Each metric has its own
influence on the result of similarity. The metrics are combined
in a weighted summation to determine the overall similarity be-
tween each pair of trajectories. Those metrics are also weighted
using three weighs (a, 8, and W) to increase or decrease the
influence of a specific metric on the overall similarity.

When each of the weights «, 3, and W is set to 1, the maximum
similarity possible d should be set to a numeric value that is equal
to or greater than 3 in order to have a positive overall similarity
S(ty,t,). If d is set to 3, the overall similarity measure S(¢,., t,)
will range from O (minimal similarity) to 3 (maximal similarity).
The weights can be adjusted to give more significance to one
metric than the other. For example, to emphasize on the average
angle difference, such that similar trajectories should have very
similar angles, 3 should be given a value greater than other
weights o and W, and the maximum similarity possible d should
be changed accordingly.

Step 2: The hierarchical agglomerative clustering method
[33], which is a type of hierarchical clustering, is used to classify
trajectories. The similarity is computed for every pair of trajec-
tories based on the similarity measure defined in (2). Clustering
is achieved by first finding the closest pairs of trajectories and
placing them into a cluster. The similarity between a single tra-
jectory and the new cluster is computed as the average similarity
between the single trajectory and all trajectories belonging to
the cluster. Then, the most similar pair of trajectories/clusters
is combined again in a new cluster until having two clusters
eventually. One cluster contains “breath-like oscillating” trajec-
tories and is denoted by 7;. The other one contains “orbital”
trajectories and is denoted by 7,. This clustering method is
meant to work on regular and irregular breathing patterns. Due
to the irregular breathing, trajectories may have “abnormal”

Fig. 3. Trajectories clustering in the projection images of range #250-300
of Patient 1 dataset. Red trajectories (cluster 73 ) show a motion similar to the
respiration motion, so they are selected to be used in the signal extraction. Green
trajectories (cluster 7}, ) show an orbital motion, so they are discarded.

shapes. Since the whole anatomy is affected by the same regu-
lar/irregular respiration motion, most of the oscillating trajecto-
ries will have similar motion behaviors and thus similar shapes.
So, they will be clustered in 7}, the cluster with breathing tra-
jectories, and the other cluster 7;, will contain either orbital or
nonbreathing trajectories. Fig. 3 shows an example of trajecto-
ries clustering using our method.

Step 3: The result of the clustering process has been evaluated
after the process of clustering is done. Two validation criteria
described in [34] are used in this study. The first criterion used
is the compactness of a cluster which measures the average
similarity of trajectories in a cluster. The compactness in cluster
T;, is computed as

)
Sy =

S(ti t;)/me 3)

i=1 j=i+1

where n; is the number of trajectories in 7. The standard de-
viation between trajectories in the same cluster 7}, is defined
as —

E0

R
(S(ti,tj) — S(,) /nb.

e
Lol

i=1 j=it+1

The second criterion used is the isolation. It measures the
separation of the two clusters by estimating the highest similar-
ity to a trajectory outside the cluster. The isolation of the two
clusters 7}, and T, is defined as

D(Tb, To) :max(S(ti’b, tjﬁo)), Vi: 1, ey Ny, j: 1, ey Ny

“

The smaller the similarity between clusters, the greater the
isolation. Algorithm 2 summarizes the steps of clustering.

C. Respiratory Motion Detection

For the detection of respiratory motion, we use 3-D motion
modeling of the selected trajectories. We follow the following
three steps to detect the respiratory motion.

Step 1: We group the subsequent projections into overlapping
arcs. An arc is defined as a sequence of projections captured
from a unique and continuous record of X-ray radiation. Projec-
tions are grouped into overlapping arcs because corresponding
feature points are not visible in all projections due to scanner
rotation. Overlapping the arcs allows for a breathing signal to
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Algorithm 2: Shape-based Trajectory Clustering

Step 1: Formulate a similarity measure and apply to every
pair of trajectories as in (2).

Step 2: Use hierarchical agglomerative clustering based on
(2) to cluster trajectories into two clusters 7, and 7.

Step 3: Validate clustering by computing compactness of
T, as in (3), and isolation of 7; and T, as in (4).

1 L] L} L L}
250 300 450 500 701
Projection number

Fig. 4. Grouping consecutive projection images into arcs. Patient # 1 dataset
images grouped into four arcs. Arc #1: 100-150, Arc #2: 100-300, Arc #3:
250-500, Arc #4: 450-701. The process is done manually.

Image

World coordinates

Fig. 5. Coordinate systems used in this method and one feature point tracked
in three frames f, f+1, and f42. Real world frame is represented by XYZ
coordinates and CBCT projection frame is represented by xy. Source orientation
is represented by the orientation vectors iy, j, and k.

be correlated between two arcs in this region without having the
same feature points in both arcs. The process of grouping projec-
tions into arcs is done manually based on their projection angle,
regardless of their contents and/or the breathing signal they may
carry. Projection grouping has no relation to the regularity or pe-
riodicity of breathing. The goal of grouping projections into arcs
is to overcome the problem of feature points that become invis-
ible because of the scanner rotation regardless of the breathing
status. Fig. 4 shows dataset groupings into overlapping arcs.
Step 2: We detect the 3-D motion of the lung in each arc using
the selected trajectories 7}, clustered in Section II-B. Fig. 5
shows the coordinate systems used in this study. This figure
shows one 2-D point tracking in three consecutive projection
frames. The z-coordinate displacement Ax corresponds to the
displacement caused by the orbital motion. Ay corresponds
to the craniocaudal (up-down) position of the lung. To detect
the 3-D motion of the lung, we use the structure-from-motion
technique [35]. The 2-D points p;, = (7 ,, ¥y ). of the set of
trajectories 7}, are filled in the measurement matrix W : 2F x P
as in (5). Then, the mean m and ny for each measurement type
is subtracted off from W to yield the registered measurement

matrix W* as

Z11 X1, p
[E]
T T T
W= F,1 F,P _ I.p 5)
Y Yi.p Yr.p

Yyr Ur P
Lip my

W* = —
Yt.p ny

(6)

To recover the 3-D motion, the registered measurement ma-
trix W* is decomposed by (SVD) into W* = U'D'V'T, The
respective motion matrix M’ is extracted as M’ = U'\/D’ and
the true value of the motion matrix M: 2F x 3 is recovered as
M = M'A, where A is a 3 x 3 matrix that satisfies the three
metrics constrains: |is|* = |j;|*,if -if =0, and i; = 1. The
motion matrix is defined as M = [ i1 ... 41 | j1...5¢ .

Step 3: We recover the 3-D rotation angles 0., 0,, and 0,
at every projection image from the motion matrix M. Entries
of motion matrix M for each projection are defined to equal
the first two rows of the arbitrary rotation matrix R(6.,0,.0,),
where

R(0..6,,0,) = R(6.) - R(0,) - R(0,)
ol

cosf; —sinfy cosfy 0 sinfy
:[ sinfl;  cosfy OJ [ 0 1 0
0 0 1 —sinfly 0 cosOy
[ 1 0 0 ]
X l 0 cosb, —sin9zJ
0 sinf, cosf,

where R(0.), R(0,), and R(0,) correspond to the rotation
matrgegs ab the Z-axis, Y-axis, and X-axis, respectively,
(So, iy jy ) asshown at the bottom of the next page.

The rotation angle 6, is interpreted as the gantry (orbital)
motion of the X-ray source around the patient. 8, is interpreted
as the rotation around the X-axis which is not our concern in
this study. €, is interpreted as the respiration signal because the
lung anatomy is seen by the X-ray source as rotating around the
Z-axis, as shown in Fig. 5. Algorithm 3 summarizes the steps
used for respiratory motion detection.

D. Projections Phase Sorting

To sort the projections into phases, we use the respiratory
signal . as the input of the phase sorting method. The following
steps show the process of breath phase sorting.

Step 1: The respiratory signal 6, extracted is smoothed before
phase sorting. Savitzky—Golay smoothing filter [36] is used to
clear out the noisy respiratory signal. The technique uses a
set of weighting coefficients (w_,, , w_y, 1, ..., Wy _1, Wy, ) to
carry out the smoothing operation. The use of these weights
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Algorithm 3: Respiratory Motion Detection

Step 1: Group consecutive projections into overlapping arcs
to overcome the problem of feature points’ invisibility.

Step 2: Detect the 3D motion of the lung in each arc. The
motion matrix found is: M =[i, ... i | j irl -
Step 3: Recover the 3D rotation angles 6,, 6,, and 6. at every
projection using M. The rotation angles are interpreted and
6. is chosen to represent the respiratory signal.

'® | end of exhale @ 2 early inhale O 3 middle of inhale’
'{4 end of inhale ® 5 carly exhale ® 6 middle nl"exl-i:‘zly'

-
(=]

[$]

Respiration signal
o

220 240 260
Projection number ( )

Fig. 6. Noisy (6 ), smoothed respiratory signal (6. ), and phase sorting into
six bins using the smoothed respiratory motion. The six colors in the oval
correspond to each bin as shown on top of the figure.

C is equivalent to fitting the data to a polynomial. Thus, the
smoothed data point 0, rat frame f is

=
wilyz f1i W (7

i=—m

ézﬁf =

i=—m

Fig. 6 shows the respiratory signal smoothing and breath
phase interpretation in one breath cycle.

Step 2: The smoothed respiratory signal 0. is used in recov-
ering breath phases. Let H(f) denote the breath phase. We sort
projections according to their breath phase by setting all peak
projections to a phase of “1”: H(f) = 1. The remaining projec-
tions between the two peaks are assigned to the other number
of phase bins wanted by taking the total number of projections
divided by the number of phases, and then sort the projections so
that each bin contains roughly the same number of projections.
Fig. 7 shows the breath phases extraction from the smoothed
respiratory signal 0, in multiple breath cycles.

Step 3: We measure the breath phase sorting quality by com-
paring the sorted projections using LIFT and the ground truth
signal. The phase shift, defined asAH ( f), is measured between
every corresponding phase “1” in both signals. The average
phase shift is estimated for each arc and is defined as

]
H = AH(f)/n( (8)

c=1

where n.is the number pfcycles. The standard deviation of
q—
Ve

phase shift is defined as L (H) - ﬁ)Q/nC. Also, the
breathing amplitude error is computed by dividing the average

(=]

A

pv]

AR

Respiratory signal
and Phases

%

260 270 280

290
Projection Number ( /)

Fig. 7. Breath phase sorting of the projections into six bins based on the
respiratory signal in multiple respiratory cycles. Projections are sorted into
phases based on the respiration signal 6. (dashed green). Phases H(f)
(solid blue) are interpreted as: 1 as the end of exhale, 2 as early inhale, 3
as middle of inhale, 4 as the end of inhale, 5 as early exhale, and 6 as middle of
exhale.

number of phase-shifted projections by the average number of
projections in each cycle as lows:

3

H (F/nc). ©))

III. EXPERIMENTAL RESULTS

Here, the experimental results of the proposed LIFT method
are presented and analyzed. Section ITI-A shows datasets’ spec-
ifications. Section III-B presents feature tracking and trajectory
selection. Section III-C discusses respiratory motion detection
and phase sorting. In Section III-D, the improved reliability and
applicability is discussed.

A. Dataset Specifications

Four datasets were used to validate LIFT. The first dataset
used has been taken under the following characteristics. The
imaging system used consists of a radiation source and a

Algorithm 4: Projection Sorting

Step 1: Smooth the noisy breath signal @7 using Savitzky
Golay filter by fitting the 8 values to a polynomial as (7).
Step 2: Recover breath phases H(f) [rom the smoothed
respiratory signal 4.

Step 3: Evaluate phase sorting by estimating the average
phase shift as (8) and the breath amplitude error as (9).

detector panel which orbit in the XZ plane around the fixed point
in space (which we will place at the world coordinate system ori-
gin). The actual distance of the source to origin is always fixed
1000 mm, and the virtual distance is also 1000 mm in this setup.
The detector center to origin is also fixed 536 mm. The system is
calibrated to provide a virtual image of known size at the origin
by calibrating the physical pixel size. With this calibration, the
virtual panel dimensions are 265.2 mm X 265.2 mm, and the
pixel size is 0.518 mm/pixel. Patient 2—4s’ datasets are simi-
lar, but acquired on a different vendor’s imaging system. The
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TABLE III
DATASET SPECIFICATIONS FOR MULTIPLE PATIENT DATASETS

Patient Number of Projection Pixel size Source-Origin
number projections size (pixcl)  (mm/pixel)  distance (mm)
1 701 512x 512 0518 1000
2 2396 768 x 1024 0.258 1000
3 2436 768 x 1024 0.258 1000
4 2300 768 x 1024 0.258 1000

Fig. 8. Feature points selection and tracking: (a) Feature points detected in
the first projection image of Arc 4 and trajectories through the arc. Yellow dots
show the extracted pixels and green lines show the trajectories. (b) Selected
trajectories that represent breathing in blue.

geometry is similar, but the virtual panel dimensions are
198.5 mm x 264.7 mm, and the pixel size is 0.258 mm/pixel. Pa-
tient 4’s dataset showed some irregular breathing patterns, while
patient 1-3’s datasets have generally regular breathing patterns.
The ground truth used for the datasets for patient 1 was the re-
sult of the diaphragm position-based method, while the ground
truth for patient 2—4s’ datasets was the internal markers trajec-
tories. Four markers were used in patient 2’s and patient 4’s
datasets and the averages of their trajectories through the pro-
jection images were estimated. One marker was used in patient
3’s dataset. Table III shows the specifications of the datasets
used in this study.

B. Feature Tracking and Trajectory Selection

Feature points were extracted in the first projection of the
sequence on locations equally spaced by a specific number of
pixels, 20 pixels in this experiment. Fig. 8 shows feature points
tracking in Arc 4 of patient 1’s dataset (between projection #250
and #500). The displacement shown is represented in pixels. In
(a), yellow dots show the extracted feature points and green lines
show the trajectories of those tracked points through the arc pro-
jections. The shape of the trajectories determines the motion of
the area in which those trajectories reside. For example, trajec-
tories residing in thoracic tissue regions tend to have a shape
similar to a respiration curve, while trajectories residing in bony
areas look like an orbital trajectory or unorganized shape. In (b),
selected trajectories of the tracked points are shown.

TABLE IV
AVERAGE COMPACTNESS AND ISOLATION OF THE CHOSEN CLUSTER OF
TRAJECTORIES IN MULTIPLE PATIENT DATASETS

Patient # AVG Compactness (3) AVG Isolation (4)
1 88.01 +10.19 43.20+9.27
2 86.24+12.53 47.53110.96
3 90.15 £9.84 45.14%7.67
4 85.14%9.54 42.52%11.86

The average optical flow displacement was 0.51 pixels in pa-
tient 1’s dataset, 0.37 pixels in patient 2’s dataset, 0.23 pixels in
patient 3’s dataset, and 49.5 in patient 4’s dataset. Our evalua-
tion of optical flow performance has been limited to a qualitative
judgment as [37] due to the lack of true displacement vectors.
The displacement vectors estimated for patient 1’s datasets in
arc 4 have an average horizontal displacement larger than the
vertical one. Those values were compared to Fig. 8 in which it
appeared that the horizontal motion was larger than the vertical
motion. Also, the results of the 3-D motion recovery, shown
in Section III-C, proved that the optical flow algorithm used
performed well and produced good results.

As previously mentioned, trajectories showing cyclical
superior—inferior motion representing respiratory motion were
selected according to the criteria followed in (2). Table IV
presents the compactness and isolation measures [see (3) and
(4)] applied to the resulting clusters in four patient datasets.
As shown, the average compactness of the selected trajectories
in the four patient datasets was around 87%, and the average
isolation was around 44%.

C. Respiratory Motion Detection and Phase Sorting

To model the 3-D motion of the lung, structure from mo-
tion is used as described in Section II-C. Fig. 9 shows the ex-
tracted respiratory signal in selected arcs. The respiratory signal
is the rotational angle about the Z-axis measured in degrees.
LIFT-based respiratory signal was compared to the diaphragm
position-based signal in (a) and to the marker-based signal in
(b)—(d). The X-axis of the figure corresponds to the projection
number, and the Y -axis corresponds to the degree of the rotation
at each projection.

As shown in Fig. 9, LIFT respiratory motion matches the
ground truth. To compare the accuracy of LIFT signal, we care
about how much horizontal shift exists between the peaks of
the signals extracted using LIFT and the ground truth. Smaller
shifts imply stronger correlation between the two signals. The
curves are scaled to have similar heights for comparison reasons.
The difference in the height or the location of the curves of the
different methods occurs due to the different surrogates used
to represent the respiratory motion (e.g., diaphragm position
versus rotational angle around the Z-axis). This difference has
no importance as this information is not used to phase sort the
projections.

Patient 1-3’s datasets generally represented regular breathing.
We anticipate that LIFT will be able to recover, or at least
identify, irregular breathing patterns, as it is able to recover
the actual 3-D motion through the sequence in any form, given
accurate 2-D trajectories. Similar methods have been used to
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Fig. 9. Modeled respiratory motion in the datasets of (a) patient 1, (b) patient
2, (c) patient 3, and (d) patient 4. Patient 4 had changes in period and amplitude
of breathing in this portion of the breathing trace, and the green rectangle shows
a particularly large change in amplitude. The respiratory motion is the modeled
3-D rotation around the Z-axis measured in degrees. Peaks in LIFT respiratory
signal and other methods are compared.

recover free-form 3-D motion [24]. In patient 4’s dataset, an
irregular portion of the breathing trace was detected using LIFT,
as shown in Fig. 9(d). A deep breath around projection 680 was
detected. This breath cycle is surrounded by a green rounded
rectangle.

Fig. 10 shows respiratory phase sorting in the four patients’
datasets as described in Section II-D. As shown, sorted pro-
jections using LIFT signal match the sorted projections using
the ground truth signal especially in (a), (c), and (d). The aver-
age phase shift using LIFT and ground truth was quantitatively
estimated as described in Section II-D.

Table V shows the quantitative accuracy of the breath phase
sorting of the respiratory signal extracted of patient 1 using LIFT
compared to the diaphragm position-based signal. We used the
average and standard deviation of phase shift as described in (8).
The phase shift between LIFT-based signal and the diaphragm-
based signal was big in the first arc compared to the other arcs.
This was because projection images in this arc have high contrast
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Fig. 10.  Extracted respiration phases when the number of bins is 6 in (a) patient
1, (b) patient 2, (c) patient 3, and (d) patient 4. The green rounded rectangle in
(d) corresponds to a cycle with large change in breathing amplitude. The X -axis
is the projection number and the Y -axis is respiration phases ranging from 1 to
6. Respiration phases match when the respiration signal matches.

TABLE V
ERROR IN BREATH PHASE SORTING FOR PATIENT 1

Arc # Frame# AVG + STD phase shift (8)
1 1-150 2.60+0.84
2 100-300 1.29+0.76
3 250-500 1.00+0.82
4 450-701 1.86+1.92

and the respiration signal extracted was less accurate compared
to the other arcs.

Table VI shows the quantitative measurement of phase shift
between LIFT respiratory signal and the ground truth signal
in all arcs for the four datasets. The criteria used for error
measurement are discussed in Section II-D. We used the av-
erage and standard deviation of phase shift as in (8) and the
average breathing amplitude error as in (9). As shown, the aver-
age phase shift measured in respiratory motion was around 1.68
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TABLE VI
AVERAGE ERROR IN BREATH PHASE SORTING IN MULTIPLE DATASETS

Patient # AVG phase shift (8§) AVG Breathing amplitude error (9)
1 1.68 +1.09 11.20+£7.27 %
2 3.04+1.52 15.96%7.98 %
3 1.25+0.83 7.19%4.77 %
4 1.14%1.05 8.35£7.96 %

compared to the diaphragm-based signal estimated in patient 1’s
dataset. Comparing to the internal marker-based signal, the aver-
age phase shift was 3.04 projections in patient 2, 1.25 in patient
3, and 1.14 in patient 4’s datasets. As the average breathing am-
plitude error was estimated using the average phase shift, patient
3’s case had the smallest error of 7.19% as an average, while
it is 15.96% in patient 2’s case. This shows that the computed
signal using LIFT correlates to the diaphragm position-based
signal in patient 1’s case and to the internal marker’s signal in
patient 3’s and patient 4’s cases more than patient 2’s case, if
LIFT is performed on the entire projection. One of the reasons
behind this is that the respiration signals extracted using mark-
ers may depend on the location of the markers. The respiration
signal derived using LIFT is the 3-D rotation, about the Z-axis,
of the lung tissues appearing in the raw CBCT projections. The
locations of the feature points used in extracting the respiration
signal affect the respiration signal extracted. Feature points in
the lower part of the lung close to the diaphragm showed a strong
oscillating motion more than the feature points in the upper part
or edges of the lung. As LIFT finds a global 3-D motion of the
flow intensity in the entire sequence, the effect of the stronger
motion in the lower part of the lung dominates.

In patient 2’s dataset, markers exist in the middle of the lung
close to the bronchioles. The average phase shift between LIFT
respiratory signal and markers’ signal was 3.04 £ 1.52 projec-
tions. When we extracted the signal from a region of interest
(ROI) surrounding the markers position, the phase shift was
1.64-1.9 projections which is less than the phase shift when ex-
tracting the respiratory motion from the entire projection. These
results demonstrate that there were phase differences between
different parts of the lung, and a single respiratory signal may
not be optimal to completely characterize breathing motion.
One advantage of LIFT is that it can be applied to a custom ROI
surrounding the part of the lung containing the tumor, allowing
more accurate characterization of the respiratory signal for this
region.

Also, we applied LIFT on the inferior portion of the CBCT
images that include the diaphragm. The average phase shift
between the respiration signal using LIFT and the diaphragm
position-based method was 1.1 & 0.57 projections in arc 1 of
patient 1’s dataset, which was less than the phase shift exclud-
ing the diaphragm area (2.60 & 0.84 projections). This result
demonstrates phase shifts in the anatomy at different supe-
rior/inferior locations in the lung, which implies breathing phase
obtained at the diaphragm may not be appropriate to represent
phase at other locations.

Fig. 11 shows the reconstructed 4DCBCT images for patient
2 using the FDK algorithm [38]. We used projections that were
sorted in the end of inhalation phase using the respiratory signal

(b2)

-4000-3000-2000- 1000 0 1000 2000 3000 4000

-4000-3000-2000-1000 0( 21800 2000 3000 4000 5000
C.

Fig. 11. Reconstructed 4DCBCT images of patient 2, sorted in the end of
inhalation phase using respiratory signal extracted using (al) and (a2) implanted
markers and (bl) and (b2) LIFT. (cl) Difference of the reconstructed images
between the axial images (al) and (bl). (c2) Difference of the reconstructed
images between the coronal images (a2) and (b2).

TABLE VII
ACQUIRED DATA RATIO IN LIFT COMPARED TO OTHER EXISTING METHODS

Method Samples Acquired data ratio (%)
Diaphragm Position [8],[11] Patient 1 100
Internal Markers [22], [23]  Patient 2: Marker 1, 2 100
Marker 3 72.9
Marker 4 70.0
Patient 3: Marker 1 49.9
Patient 4: Marker 1, 2 100
Marker 3 68.8
Marker 4 0
Proposed LIFT Patients 1-4 100

extracted by the implanted markers in (al) and(a2), and LIFT in
(bl) and (b2). The difference of the axial images (al) and (bl)
is shown in (c1) and difference of the coronal images (a2) and
(b2) is shown in (c2). As shown in (c1) and (c2), most of the
differences were not anatomical, but rather due to differences in
the streaking (view-aliasing) artifact due to too few projections.
Since each sorting algorithm selects slightly different projec-
tions for reconstruction, the streaks appear in different locations
in the two images.

D. Improved Reliability and Applicability

Here, we discuss the reliability and applicability of LIFT
comparing to the other standard methods. Table VII shows the
acquired data ratio using the diaphragm-based method [8], [11],
the implanted markers method [22], [23], and LIFT. The ac-
quired data ratio is the number of projections of the dataset
from which the method was able to extract the respiratory sig-
nal, divided by the total of number of projections.

As shown in Table VII, the diaphragm-based method ap-
plied to patient 1’s dataset was able to extract the respiratory
signal in all projections. For the internal markers method, some
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of markers were not visible in some of the dataset projections.
In patient 3’s case, only one marker was used and was visible
in around 50% of the projections, which prevented the respira-
tion signal from being extracted in the rest 50% of the dataset
projections. When having multiple markers implanted, visible
markers’ traces can be used as replacements to the invisible ones
such as in the cases of patients 2 and 4. As LIFT extracts the res-
piratory motion from the organ tissues of the lung in any CBCT
projection, it was able to generate a respiratory signal in 100%
of the projection sets of the four patients. These results showed
that LIFT was more reliable than the internal marker’s method
in terms of acquiring the respiration signal from projections.

The average time for running the entire LIFT procedure is
around 26 min on a set of 1000 projections (of approximately
550 x 650 pixels as the analysis region) using a PC of Intel Core
2 Duo 2.4-GHz CPU and 2 GB of RAM. Running speed can
be improved if LIFT is implemented on GPU with C++ plat-
form or on a multiprocessor computer using MATLAB parallel
processing. For implementation purposes, LIFT follows feature
tracking and 3-D reconstruction approach which is well known
and easy to implement. There are many freely available, op-
timized implementations that a developer can start from, such
as OpenCV for optical flow computation [39]. For 3-D mo-
tion reconstruction, we used Tomasi and Kanade method [35]
which is a mathematical approach consisting of well-described
series of linear algebra computations. Agglomerative hierarchi-
cal clustering is described in Mathworks [40]. Thus, LIFT can
be implemented and applied in the clinic for respiratory signal
extraction from CBCT projections.

IV. CONCLUSION

We proposed a novel method for respiratory motion extraction
and breath phase sorting using CBCT projections. Feature points
were extracted and tracked to form point trajectories. Trajecto-
ries with shapes similar to breathing curve were selected to be
used in the 3-D motion modeling module to recover the 3-D mo-
tion of the lung. The 3-D rotation around the Z-axis of the patient
represented the respiratory motion in this study and the CBCT
projections were then sorted according to the respiration signal.

Experimental results were conducted on datasets exhibiting
regular breathing and some irregular breathing patterns. The
respiratory motion extracted using LIFT was compared to the
ones extracted using other standard methods. An average phase
shift of 1.78 projections was estimated between LIFT-based
signal and marker-based signal, and of 1.68 projections between
LIFT-based signal and the diaphragm-based signal. The average
breathing amplitude error of LIFT compared to the diaphragm-
based method was 11.2%, while it is 10.68% compared to the
internal markers method. LIFT was able to extract the respiration
signal in all projections of all datasets without the dependence
on a particular anatomical structure (such as the diaphragm).
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