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Tracking Human Motion With Multichannel
Interacting Multiple Model

Suk Jin Lee, Student Member, IEEE, Yuichi Motai, Member, [EEE, and Hongsik Choi

Abstract—Tracking human motion with multiple body sensors
has the potential to promote a large number of applications such
as detecting patient motion, and monitoring for home-based
applications. With multiple sensors, the tracking system architec-
ture and data processing cannot perform the expected outcomes
because of the limitations of data association. For the collaborative
and intelligent applications of motion tracking (Polhemus Liberty
AC magnetic tracker), we propose a human motion tracking
system with multichannel interacting multiple model estimator
(MC-IMME). To figure out interactive relationships among dis-
tributed sensors, we used a Gaussian mixture model (GMM) for
clustering. With a collaborative grouping method based on GMM
and expectation-maximization algorithm for distributed sensors,
we can estimate the interactive relationship with multiple body
sensors and achieve the efficient target estimation to employ a
tracking relationship within a cluster. Using multiple models
with filter divergence, the proposed MC-IMME can achieve the
efficient estimation of the measurement and the velocity from
measured datasets of human sensory data. We have newly devel-
oped MC-IMME to improve overall performance with a Markov
switch probability and a proper grouping method. The experiment
results shows that the prediction overshoot error can be improved
on average by 19.31% by employing a tracking relationship.

Index Terms—Cluster number selection, expectation-maximiza-
tion (EM), Gaussian mixture model (GMM), interacting multiple
model, motion tracking.

I. INTRODUCTION

RACKING human motion with multiple body sensors

has the potential to improve the quality of human life
and to promote a large number of application areas such as
health care, medical monitoring, and sports medicine [1]-[3].
Tracking human motion with multiple body sensors has the
potential to promote a large number of applications of detecting
patient motion and monitoring human behavior for home-based
applications, e.g., smart television and gesture-based gaming.
The information provided by multiple body sensors are ex-
pected to be more accurate than the information provided by
a single sensor [2]-[4]. In multiple-sensory systems, however,
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Fig. 1. Prediction overshoot of IMME. This figure shows the position estima-
tion of benign motion for the human chest. The upper and lower bounds can be
derived from adding the marginal value to the measurement and subtracting the
marginal value from the measurement, respectively [26].

the tracking system architecture and data processing cannot
perform the expected outcomes because of the limitations of
data association [5]-[14]. As shown in Fig. 1, an individual
sensory system using interacting multiple model estimator
(IMME) shows the position estimates of benign motion for
the human chest. The typical problem showed in this figure
is that the prediction overshoots at the beginning of tracking
estimation can result in a significant prediction error. This
fact has motivated us to develop an appropriate method that
may reduce the initial prediction estimate error. We propose a
new method to reduce the initial prediction estimate error by
employing a tracking relationship of data association [15]-[25].

As a solution to prevent significant prediction overshoots
from initial estimate errors, we adopt multiple sensory systems
with a grouping method based on a Gaussian mixture model
(GMM) for clustering. Clustering is a method that divides
a set of distributed sensors into subsets so that distributed
sensors in the subset are executed in a similar way. A variety
of studies have been investigated on clustering methods based
on k-means, spectral clustering, or expectation-maximization
(EM) algorithm [1], [27]-[38]. However, a known limitation
of these clustering methods is that the number of clusters must
be predetermined and fixed. Recently, Bayesian nonparametric
methods with Dirichlet process mixture have become popular
to model the unknown density of the state and measurement
noise [39], [40]. However, because of the relatively small set of
samples, it will not adequately reflect the characteristics of the
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cluster structure [30]. For the time sequential datasets of dis-
tributed body sensors, we would like to add a prior distribution
on the cluster association probability [41], [42]. We refer to
this prior distribution as hyper-parameters [41]. Therefore, we
proposed a new collaborative grouping method for distributed
body sensors.

Multiple model (MM) may have multiple possible dynamic
models for multisensor systems with Markov model switches.
In such a hybrid system, the possible models make multiple sen-
sors supply the information about the interested variable and,
thus, are collaborative and complementary. The basic idea of all
MM approaches is that complicated target movements are made
up of random variations originating from basic (straight-line)
target motion. Due to the difficulty in representing this mo-
tion with a single model, MMs including potentially dynamic
models operate in a parallel way with Markov switch proba-
bility [15]. The proposed solution employs a tracking relation-
ship among distributed sensors by adding switching probability
for multiple models and clustering method to figure out the in-
teractive relation among the sensors. IMME algorithm can be
used to combine different filter models with improved control
of filter divergence. As a suboptimal hybrid filter [15]-[17],
IMME makes the overall filter recursive by modifying the ini-
tial state vector and covariance of each filter through a proba-
bility weighted mixing of all the model states and probabilities
[18]-[25].

The overall contribution of this paper is to minimize the
prediction overshoot originating from the initialization process
by the newly proposed multichannel IMME (MC-IMME)
algorithm with the interactive tracking estimation. MC-IMME
can estimate the object location as well as the velocity from
measured datasets using multiple sensory channels. For this
MC-IMME, we have extended the IMME to improve overall
performance by adding switching probability to represent the
conditional transition probability and a collaborative grouping
method to select a proper group number based on the given
dataset. The technical contributions of this paper are twofold.
First, we propose a group number selection method for dis-
tributed body sensors based on Dirichlet hyper-prior on the
cluster assignment probabilities. Second, we present a new pre-
diction method to reduce the initial estimate error by employing
a tracking relationship among distributed body sensors. For the
performance improvement, we added switching probability to
represent the conditional transition probability from a previous
channel state to a current channel state and a collaborative
transition probability to select a proper group number based on
the given datasets.

This paper is organized as follows. In Section II, the the-
oretical background for the proposed algorithm is briefly dis-
cussed. In Sections III and IV, the proposed grouping criteria
with distributed sensors placement based on EM algorithm and
the proposed estimate system design for distributed body sen-
sors are presented in detail, respectively. Section V presents and
discusses experimental results of proposed methods—grouping
methods and adaptive filter design. A summary of the perfor-
mance of the proposed method is presented in Section VI.
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II. BACKGROUND

A. Kalman Filter (KF)

The KF provides a general solution to the recursive min-
imized mean-square estimation problem within the class of
linear estimators [43], [44]. Use of the KF will minimize the
mean-squared error as long as the target dynamics and the
measurement noise are accurately modeled. Consider a dis-
crete-time linear dynamic system with additive white Gaussian
noise (AWGN) that models unpredictable disturbances. The
problem formulation of dynamic and the measurement equation
are

2(k+1) = F;(k)z(k) + Gi(k)u(k) + v (k)
z(k) =H;(k)x(k) + w;(k) (1

where x(k) is the n-dimensional state vector and w(k) is an
n-dimensional known vector (which is not used in our appli-
cation), the subscript 7 denotes quantities attributed to model
M;, and v(k) and w(k) are process noise and measurement
noise with the property of the zero-mean white Gaussian noise
with covariance, E[v(k)v(E)T] = Q(k) and E[w(k)w(k)T] =
R(k), respectively. The matrices F, G, H, @, and R are as-
sumed to be known and possibly time-varying, which means
that the system can be time-varying and the noise nonstationary.

The KF estimates a process by using a form of feedback
control, and the equations for the KF can be represented with
two groups: time update equations and measurement update
equations. The estimation algorithm starts with the initial es-
timate Z(0) of (0) and associated initial covariance P(0). The
problem formulation of the predicted state and the state predic-
tion covariance can be written as

Bk +1) = F(k)i(k) + G(k)u(k)
Plk+1) = F(k)P(k)F (k)" + Q(k). )

For the proposed MC-IMME, we use (1) and (2) with a different
model of filters, i.c., a constant velocity model and a constant
acceleration model.

B. Interacting MM Framework

MM algorithms can be divided into three generations: au-
tonomous multiple models (AMMs), cooperating multiple
models (CMMs), and variable structure multiple models
(VSMMs) [14], [15]. The AMM algorithm uses a fixed number
of motion models operating autonomously. The AMM output
estimate is typically computed as a weighted average of the
filter estimates. The CMM algorithm improves on AMM by
allowing the individual filters to cooperate. The VSMM algo-
rithm has a variable group of models cooperating with each
other. The VSMM algorithm can add or delete models based on
performance, eliminating poorly performing ones and adding
candidates for improved estimation [53], [54]. The well-known
IMME algorithm is part of the CMM generation [15].

The main feature of the interacting multiple model (IMM) is
the ability to estimate the state of a dynamic system with several
behavior models. For the IMM algorithm, we have implemented
two different models based on the KF: 1) a constant velocity
(CV) filter in which we use the direct discrete-time kinematic
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Fig. 2. IMME has a four-step process in a way that different state models are
combined into a single estimator to improve performance.

models and 2) a constant acceleration (CA) filter in which the
third-order state equation is used [23]-[25], [43], [45]-[47]. The
IMME is separated into four distinct steps: interaction, filtering,
mode probability update, and combination [43]. Fig. 2 depicts
a two-filter IMM estimator, where Z is the system state, P is
the filter estimate probability, z is the measurement data, and
{+ are mixing probabilities. Note that the previous state of each
model is reinitialized by the interaction stage each time the filter
iterates. In IMME, at time % the state estimate is computed under
each possible current model using CV or CA.

In Fig. 2, the mixing probability (u;;) represents the condi-
tional transition probability from state « to state j. With an ini-
tial state of each model (#*(k — 1)), a new filter state is com-
puted to estimate the mixed initial condition (7% (k — 1)) and
the associated covariance (P%(k — 1)) according to the mixing
probability. The above estimates and the covariance are used as
input to the likelihood update matched to A;(k), which uses the
measurement data (z(k)) to yield #:*(k) and P*(k). The likeli-
hood function (A;) corresponding to each model # is derived
from the mixed initial condition (2% (k — 1)) and the associated
covariance (P (k — 1)). After mode probability update based
on a likelihood function (A;), combination of the model-con-
ditioned estimates and covariance is computed for output pur-
poses with the mixing probability. For our distributed sensory
system of target estimation, each filter state of IMM is dedicated
for each sensor, and distributed target estimations independently
progress according to each IMME.

C. Cluster Number Selection Using GMM and EM Algorithm

For industrial applications of motion tracking, distributed
body sensors placed on a target surface with different positions
and angles can have specific correlation with others. This
means that distributed body sensors can cooperate with each
other within a group. Recently, several clustering algorithms
have been developed to partition the observations (L) into
several subsets (G) [27]-[38]. The most notable approaches
are a mean square error (MSE) clustering and a model-based
approach. The MSE clustering typically is performed by the
well-known %-means clustering. In general, £-means clustering
problem is N P-hard [27], so a number of heuristic algorithms
are generally used [33], [35], [36].

A model-based approach to deal with the clustering problem
consists of certain models, e.g., a Gaussian or a Poisson model
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for clusters and attempting to optimize the fit between the data
and the model. The most widely used clustering method of this
kind is a GMM [30]-[32]. In GMM, the joint probability density
that consists of the mixture of Gaussians ¢(z; m,, X, ), where
y = 1...G, should be solved [29], [30]. We assume a training
set of independent and identically distributed points sampled
from the mixture, and our task is to estimate the parameters,
i.e., prior probability (cv,), mean (m,), and covariance (X,)
of the clustering components (&) that maximize the log-likeli-
hood function (-) based on the EM algorithm [30], [32]. Given
an initial estimation (g, mg. Xg), EM algorithm calculates the
posterior probability p(y|z;) in E-step. Based on the estimated
result, we can calculate the prior probability (v, ), mean (m,),
and covariance (3,) for the next iteration, respectively, in the
following M-step [48]-[50].

The log-likelihood for the incomplete datasets in the EM al-
gorithm can never be decreased [51, Ch. 1.6], because the EM
algorithm iterates the computations E-step and M-step until the
convergence to a local maximum of the likelihood function.
This means that the consecutive log-likelihood functions mono-
tonically increase and could be very similar but not identical.
We define the discrepancy of consecutive values as the differ-
ence (A). Now, we can define the difference (A) as follows:

A(G) = 6(0,G)—6(0,G —1). 3)

Once we estimate the parameter © = {a,, my, Ey};}:p
we can find the optimal cluster number (G*) with the conven-
tional brute-force search algorithm by introducing A(G) that is
a log-likelihood function after parameter learning with the fol-
lowing equation: G* = argmin, A(G). In practice, we can set a
threshold (Ay,) that is almost closed to zero to save the redun-
dant iteration step. We can start with G = 2 for a first candidate
solution for the cluster number selection, estimate the set of fi-
nite mixture model parameter ©* = {ay,m;, ¥y }C,':l using
EM algorithms based on the sample data, and calculate A(G).
After checking whether a candidate (7 is an appropriate cluster
number for L, we can use the cluster number G as an appro-
priate cluster. The search algorithm based on the log-likelihood
function can only work in the static data model but cannot guar-
antee to work in the time sequential data because of the lack of
adaptive parameter for the time sequential data. Thus, it has the
following two limitations: 1) it can only work within limitation
of'the initial dataset and 2) it cannot guarantee the global optimal
based on the time sequential data because of the lack of adaptive
parameter for the time sequential data. To overcome such static
grouping limitations, we introduce distributed grouping using
the multichannel (MC) selection for the time sequence data of
distributed body sensors in Section I1I-A.

III. PROPOSED GROUPING CRITERIA WITH
DISTRIBUTED SENSORS

The motivation of this section is to prepare interactive re-
lationships among distributed sensory data for clustering, i.c.,
how to collaborate with distributed measurements to achieve
better performances compared to the single measurement. In
Section I1I-A, we will show how to initialize the hyper-param-
eter presenting a hypothetical prior probability for background
knowledge and can select the collaborative cluster number using
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EM iteration. In Section III-B, we will calculate switching prob-
ability representing the conditional transition probability from
channel ¢ to channel b within a cluster number.

A. Collaborative Grouping With Distributed Body Sensors

The cluster number selection using GMM works well in the
distributed means model as well as in the static data model. But
it only works within limitation of the initial dataset. The tracking
estimate system with distributed body sensors has time sequen-
tial data. That means the measured information from each sensor
can be changed depending on the applications from time to time.
To make the collaborative grouping system, we introduce some
background knowledge that can be presented as a hypothetical
prior probability (/3,) that we call a hyper-parameter [41], [42].
Suppose that v, (%) is an initial prior probability at time k. The
initial hyper-parameter 3, can be found as follows:

By(0) = klﬂ”noo (k).

“

In practice, we can get the hyper-parameter (/3,) using
sample training data instead of the infinite training data with
respect to time. After calculating the hyper-parameter with
sample training data using (4), the hyper-parameter (3, ) should
be adaptive with respect to time k. Please note that the hyper-pa-
rameter can be selected based on the global information of
sample data. This parameter is selected for corresponding to
the steady state. It can be accomplished using the switching
probability that will be explained in detail in Section IV-C. The
adaptive hyper-parameter can be increased or decreased based
on the current switching probability comparing to the previous
switching probability and can be calculated as follows:

By(k) = By(k —1) + Ap? (5)
where Ap? is the difference between the current switching
probability and the previous one. Au? can be calculated using
a switching probability at time k, i.e., p¥(k) indicating the
switching weight of group y. We will describe how to select the
difference (Ap¥) in detail in Section IV-D. After calculating
the adaptive hyper-parameter, the adaptive (ADT) posterior
probability papr(y|z;) is calculated at time % in E-step as
follows:

ol plzismy”, )+ 8, (k)

z@%<sz%+;@m

papt(ylz)(k) = (6)

Using the modified one, we can proceed to the M-step at time
k as follows:

L
(f+1) EZPADT ylz;)(k)
I
21 papT(Y]2)2; 1 L
m§t+1) (k) = 3 auL ZpADT(y|zj)zj
Z papt(ylz;) Tt
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(t+1)

L
1
Z (k) = a, L ;pADT(ij)

Y

X [(7J m (Hl))( m(”“l)) ] (7

We can estimate the ¢th iteration result of the adaptive pos-
terior probability papr(y|z;) at time k from (6). Based on the
modified result we can calculate the prior probability («, ), the
mean (m,, ), and the covariance (X, ) in the (¢ + 1)th iteration
for the collaborative grouping for time sequential data, respec-
tively, using (7). A local maximum at time %k can be selected
by iterating the above two steps. We can select the collabora-
tive cluster number (G 1) by introducing Aapr(G) that is
a log-likelihood function after parameter learning with the fol-
lowing equations:

G\pr = arg mén AapT(G)

Aapt(G) =6apT(0",G) — 6ADT(O",. G - 1)  (8)

where dopT 1s a log-likelihood function with the adaptive pos-
terior probability. Note that (3) is extended into (8) with the
hyper-parameter (3, ). Comparing with the previous algorithm,
the collaborative grouping with time sequential data can se-
lect local maxima at time & by iterating two steps: E-step and
M-step. We can select the global optimal from a series of local
maxima of time .

B. Estimated Parameters Used for IMME

Collaborative grouping with time sequence data can select
local maxima at time & using the difference (A) of the consec-
utive log-likelihood functions. We can set the difference (A)
of the consecutive log-likelihood functions as A(G*, k) with
respect to time k. To reduce the notation complexity, A(k) is
simply used for A(G*, k). Now we can use this A(k) for IMME
to estimate the MC estimates and covariance. As mentioned, the
log-likelihood function in each EM step cannot decrease [51].
This means that we can minimize the difference (A(k)) of the
consecutive log-likelihood functions with respect to time k be-
cause A(k) converges to zero over a period of time. Therefore,
we can find out the following relationship: A(k — 1) > A(k).
In the standard IMME, it is assumed that the mixing probability
density is a normal distribution all the time. Now we derive the
switching probability (jz,5,) for the estimated parameter from

mixing probability (). Since it is hard to get a1, (k — 1) di-
rectly, we used a tractable estimation o, (k — 1) + A(k — 1),
as follows:

pan(k— 1) = pi(k — 1)+ Ak — 1) 9)

where p;; is the mixing probability that represents the condi-
tional transition probability from state 4 to state j, and 44y, is the
switching probability that represents the conditional transition
probability from channel a to channel b. Note that we define
mixing probability (y;) as switching probability (zt.s,). This
means that our assumption is still valid in the switching proba-
bility, i.e., switching probability density follows a normal distri-
bution. The equality of (9) is true because the value of A(k— 1)
can be zero as k goes to infinity. We can use the right-hand side
of (9) to dynamically select the switching probability (zta1,) with
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Fig. 3. General block diagram for the proposed MC-IMME.

A(k). Equation (9) above provides us with a method to design
the filter for distributed sensors at the second stage, because the
switching probability can be adjusted more dynamically based
on A(k) in the second stage filter. We will explain how to esti-
mate the MC estimates and covariance using (9) in Section IV.

IV. MC-IMME: PROPOSED SYSTEM DESIGN

The proposed method with collaborative grouping for dis-
tributed sensory data can achieve the efficient target estimation
by using geometric relationships of target information emerging
from distributed measurements. Fig. 3 shows a general block
diagram to represent the relationship between the proposed
method (MC-IMME) and IMME.

In MC-IMME, grouping data can be used for target-tracking
estimation with IMME. Geometric information of distributed
measurements is used for the switching probability update in
the target estimation. Even though the proposed method needs
the initialization process that is the same as in the IMME pre-
diction, the interactive relationship with distributed sensors can
compensate for the prediction estimate error. For the interactive
tracking estimate, the proposed system design herein can be ex-
tended from Figs. 2—4.

A. MC Mixed Initial Condition and the Associated Covariance

Starting with an initial ZY(k — 1) for each channel ¢ in a
group y, new filter state is computed to estimate the mixed initial
condition and Kalman filter covariance matrices (10) according
to the relationships

B (k= 1) = SO a (k- 1) [ty G — 1)),

a=1
PO (= 1) = ST, (k - 1)]

a=1

< [PY(k— 1)+ DP(k—1)]  (10)
where ¥, is a switching probability presenting the relationship
between channel @ and channel b within the same group y. As
shown in Fig. 4, we have added the blue line indicating how the
difference (A(k)) in Stage 1 would be used for Stage 2. We de-
note r as the channel number of the group and DP?, (k — 1) as
an increment to the covariance matrix to account for the differ-
ence in the state estimates from channels a and b, expressed by
(30 — 1) — 7 (k — 1)] - w4k — 1) — 3 (k — 1)]T.

Note that the initial states of IMME are extended into (10)
incorporating with the switching probability and A(k — 1). We
have adopted the results of Section IIT on grouping criteria A(k)
of (9). The difference (A(k)) can be minimized with respect to
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time £, so we can adjust to estimate the filter state from a coarse
probability to a dense probability.

B. MC Likelihood Update

The above estimates and covariance are used as input
to the filter matched to MY(k), which uses z¥(k) to yield
2¥(k) and PY(k). The likelihood functions corresponding
to each channel are computed using the mixed initial con-
dition and the associated covariance matrix (10) as follows:
AY(k) = pl2(k)| M (k), 80 (k- 1), PY%(k— 1)), where y is a

group number and +(y) is the number of sensors for each group
y. To reduce the notation complexity,  is simply used for r(y).

C. Switching Probability Update

Given the likelihood function (A% (%)) corresponding to each
channel, the switching probability update is done as follows:

1
(k) =—A"(k)e,, y=1,...,G
Cy
1 r G
AY =~ g Y, ¢, = E AvYe, 11
r a=11 @ y=1 o (b

where AY is the likelihood function for a group ¥, ¢, is the sum-
marized normalization constant, r is the channel number of a
group 4, and G is the number of group. Equation (11) above pro-
vides the probability matrices used for combination of MC-con-
ditioned estimates and covariance in the next step. It can also
show us how to use these parameter results for collaborative
grouping criteria with multiple sensors.

D. Feedback From Switching Probability Update to Stage 1
for Grouping Criteria With Distributed Sensors

For the collaborative grouping, we introduced the adaptive
hyper-parameter (3, (k)) in Section III-A. The adaptive hyper-
parameter (3, (k) can be dynamically increased or decreased de-
pending on the weight of the channel. The weight of channel
can be represented as the switching probability. That means we
can use the switching probability (1Y (%)) as a reference to ad-
just the adaptive hyper-parameter as follows:

B(k) > B,(k=1) if (k) > p¥(k—1)
B, (k) =B, (k=1) if (k)= po(k—1)
B(k) <B,(k=1) if W) <p(k-1). (12)

If there is no change of the switching probability, 3, (k) is the
same as 3, (k—1). If the current switching probability is greater
than the previous one, (3,(k) could be increased; otherwise,
G,(k) could be decreased as shown in (12). Therefore, we can
calculate the difference (ApuY) between the current switching
probability and the previous one as follows:

Ap? =p? (k) — (k= 1). (13)

That means the adaptive hyper-parameter /3, (k) can be in-
creased or decreased based on the current switching probability
compared to the previous one. In Fig. 4, we have added the red
line indicating how the difference of the switching probability
in Stage 2 would be used for Stage 1.
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Fig. 4. System design for distributed body sensors has two stages. At the first stage, all of the distributed sensors are partitioned into the groups that have a tracking
relationship with each other. At the second stage, the interactive tracking estimate is performed for distributed groups.

TABLE 1
COMPARISON OF THE COMPUTATIONAL COMPLEXITY

Methods KF IMME MC-IMME
Complexity O(LxkxN*) O(LxkxT(N)) O(LxkxT(N))

E. Combination of MC Conditioned Estimates and Covariance

Combination of the MC conditioned estimates and covari-
ance is done according to the mixture equations

#(k) = > &y (k) [l (k)]
b=1

PY(k) =) [y ([P (k) + DPY (k)]

b=1

(14)

where yi?, is a switching probability presenting the relationship
between channel ¢ and channel b within the same group y, and
DP/ (k) as an increment to the covariance matrix to account
for the difference between the intermediate state and the state
estimate from model b, expressed by [z} (k) — 77 (k)] - [z} (k) —
(# (k)T

Note that the combination of the model-conditioned estimates
and covariance matrices in Fig. 2 is extended into (14) incorpo-
rating with the switching probability and A(k). As can be seen
in Section IV-A, we also have adopted the results of Section III
on grouping criteria A(k) of (9). In Fig. 4, the entire flow chart
illustrates the idea of MC-IMME proposed in this study. We
have added the blue line indicating how the difference (A (k%)) in
Stage 1 would be used for the IMME outcomes of Stage 2, corre-
sponding to (14). This combination is only for output purposes.

F. Computational Time

We have evaluated how much additional computational time
is required when we implement the proposed method by com-
paring it to the standard KF and the IMME method in Table I.

The computational complexity of the standard KF for the
upper bound is orders of growth N2, where N represents the
states estimated using KF derived by Karlsson et al. [44]. The
computational complexity can be increased as a linear function
of the sensor number (L) and time k. Accordingly, the asymp-
totic upper bound of KF is orders of growth L x k& x N3.

IMME extends the complexity by defining T(N) as the
asymptotic upper bound of recursive computation based on the
states estimated using IMME. In the IMME the computational
complexity is increased as a linear function of the independent
sensor number (I.). In addition, IMME needs recursive compu-
tation based on time k. Therefore, the asymptotic upper bound
for the worst-case running time of IMME is orders of growth
L x kx T(N) [52].

Let us define 7'(L) as a upper bound of iteration execution
time for k-means clustering based on L points. Har-Peled et
al. showed that the k-means heuristic needs orders of growth
L iterations for L points in the worst case [35]. In addition,
the adaptive grouping method needs to calculate the difference
(A 4p7(G)) of the consecutive log-likelihood functions based
on time sequential data (%) for the appropriate group number
selection. Therefore, the upper bound for the worst-case running
time of the adaptive grouping method is orders of growth L x
kx T(L).

MC-IMME uses the same recursive computation as IMME
with respect to the estimate states. This means that the running
time of stage 2 is the same as that of IMME. and MC-IMME
needs additional computation for the first stage to make
grouping. Suppose that the asymptotic upper bound of re-
cursive computation (1(N)) is equal to the upper bound of
iteration execution time for k-means clustering (7'(L)). Then,
the asymptotic upper bound for the computational complexity
of MC is orders of growth L x k x T(N), because both stages
1 and 2 have the same orders of growth L x & [52]. Please note
that IMME and MC-IMME have the identical computational
complexity since distributed sensory systems both have the
same channel number L and the same data length &.

V. EXPERIMENTAL RESULTS

The motivation of this section is to validate the proposed
MC-IMME with comprehensive experimental results. In
Section V-A, we will describe the target motions for the ex-
perimental tests (chest, head, and upper body). For each target
motion, the optimal cluster number based on the proposed
grouping method is selected follows in Section V-B, and
this selection number is further investigated in comparison
to grouping number methods using other clustering tech-
niques in Section V-C. The prediction accuracy of the proposed
MC-IMME is evaluated with the normalized root mean-squared
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TABLE 11
CHARACTERISTICS OF MOTION DATA WITH
SHORT LENGTH AND LONG LENGTH

[  Aesely N A

Motion Data Motion Type Speed (cmfsec) Recording Time (sec)
Chest_S Slow motion 0.64 - 0.87 20.72
Chest M Moderate motion 6,70 - 7.91 20.40
Chest V Violent motion  24.84 — 32.63 22.18
Chest C Complex motion 1.46 —32.54 105.8
Head S Slow motion 0.63-1.08 20.36
Head M Moderate motion  6.62 — 8.37 20.40
Head V Violent motion 16.07 - 67.70 21.43
Head C Complex motion  1.08 —66.16 104.05

Upper Body S Slow motion 0.68 —1.48 20.83
Upper Body M Moderate motion  3.64 — 28.08 20.64
Upper Body ¥V Violent motion 3848 — 118.18 21.03
Upper Body _C Complex motion  1.36 - 117.98 104.15

error (NRMSE) and the prediction overshoots, in Sections V-D
and V-E, respectively. We also show CPU time used for the
computational time in Section V-F.

A. Motion Data

We have used three kinds of motion data, i.e., chest motion,
head motion, and upper body motion. Motion data were col-
lected using a Polhemus Liberty ac magnetic, operating at 240
Hz for approximately 20 and 100 s.! Eight sensors were at-
tached on the target motion surface with the magnetic source
rigidly mounted approximately 25.4 cm from the sensors. Each
motion data was randomly selected based on the motion speed
for Monte Carlo analysis with four sets of motion data—the
first datasets for slow motion, the second datasets for moderate,
the third for the violent motion, and the fourth for the complex
motion including slow, moderate, and violent motions. For the
target estimation, the experimental tests have been conducted
based on repeated random sampling to compute their results for
Monte Carlo analysis. Each of the datasets was taken with great
care to limit target movement to the type based on Table II.

B. Collaborative Grouping Initialization

Before the efficient target tracking, the proposed collabora-
tive method needs to make the grouping for distributed sen-
sory data. The objective of this section is to find out the op-
timal group number with an adaptive hyper-parameter. First, we
need to find out the initial hyper-parameter (3, ) in Section V-B1
and then calculate the group number (&) based on the adaptive
(ADT) posterior probability papr(y|z;). Sections V-B2 and
V-B3 compared the difference (A) of the consecutive log-likeli-
hood functions between noncollaborative grouping method de-
scribed in Section II-B and collaborative grouping method de-
scribed in Section I1I-A.

1) Calculation of Hyper-Parameter ({3,): The objective of
this section is to calculate the initial hyper-parameter (3, ) with
potential group numbers. To find out the hyper-parameter, we

1[Online]. Available: http://www.polhemus.com/
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Fig. 5. Hyper-parameter values based on the motion data and group number.
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Fig. 6. The difference (A(()) of the consecutive log-likelihood with non-col-
laborative grouping.

iterate expectation and maximization steps with sample training
data (approximately a 2400-sample dataset) for each motion.
We increased the group number (') of the EM process from two
to seven to show all of the potential hyper-parameters. Please
note that we have eight sensory channels, so that we can show
all available group numbers.

Fig. 5 shows the hyper-parameters (3,, where y is a group
number) described in (4), based on the target motion data and
group number {G). Given in Fig. 5, we can notice that the higher
the group number, the bigger the iteration number; and the more
even the group distribution probabilities of a sample training
data, the smaller the iteration number.

2) Calculation of the Difference (A) of the Consecutive Log-
Likelihood With Noncollaborative Grouping: The objective of
this section is to find an optimal cluster number (G*) with the
consecutive log-likelihood functions (3) based on EM process.
Fig. 6 below shows the difference (A(G)) of the consecutive
log-likelihood functions, described in (3). For example, when
G = 2, we calculate all of the log-likelihood functions of EM
operations and then select the minimum as a representing value
in Fig. 6. We iterate the same procedure with different group
number (G = 2,...,7) in the three kinds of the motion data.
We expect to find out, as described in Section 11-B, the minimum
of A(G).

Given the results in Fig. 6, we may select the group number
G* for the three datasets: 2, 4, or 6 for Chest; 2 or 3 for Head;
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Fig. 7. Difference (A apT(G)) with collaborative grouping: (a) whole range
and (b) extended range.

and 2, 4, 5, or 6 for Upper Body. As the group numbers are
increased, the differences start to become drastically greater.

However, we cannot identify the least minimum number; for
example, it is hard to choose among 2, 4, 5, or 6 for Upper
Body. Therefore, in the next experiment, we will recalculate the
difference (AapT(G)) of the consecutive log-likelihood with
collaborative grouping.

3) Calculation of the Difference (A) of the Consecutive
Log-Likelihood With Collaborative Grouping: The objective
of this section is to find an optimal cluster number (G*)
using log-likelihood function with the adaptive posterior
probability (8). Based on the initial hyper-parameter (3,) of
Section V-B1), we can calculate the adaptive (ADT) posterior
probability papT(y|z;) and iterate E-step (6) and M-step (7)
with a specific group number (G).

Now we can show the difference (A op1(()) of the consec-
utive log-likelihood functions, described in (8) of Section III-A,
with the adaptive posterior probability in the three kinds of
the motion data. We applied (8) for the minimum value of
AapT(G). We iterate the same procedure with a different
group number (G = 2,...,7), as shown in Fig. 7.

In Fig. 7, we can select the group number G* for the three
datasets: 3 for Chest; 3 for Head; and 4 for Upper Body.
Compared with Figs. 6 and 7, it is clear that the collabora-
tive grouping provides more distinct difference AspT(G) of
grouping numbers; for example, while Fig. 6 had the candi-
dates of the group numbers 2, 4, 5, or 6 for Upper Body, Fig. 7
now identifies the minimum number 4 for Upper Body by
introducing the adaptive posterior probability.

C. Comparison of Grouping Number Methods Using Other
Clustering Techniques

To find out the best grouping numbers, we have evaluated
several clustering algorithms: k-means [33], spectral clustering
[37], [38], nonparametric Bayesian inference [55], and EM al-
gorithm [31]. To determine the quality of group number hypoth-
esis, we would like to show established metrics, i.c., Akaike’s
Information Criterion (AIC) that provides a measure of model
quality by simulating a statistical model for model selection
[56]. For this selection, we assume that the model errors are nor-
mally and independently distributed and that the variance of the
model errors is unknown but equal for them all.

Let n be the number of training observations. The formula
AIC can be expressed as a simple function of the residual sum
of squares (RSS), i.e., AIC = 2k +n[ln(RSS/n)], where & and
RSS are the number of parameters in the statistical model and
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TABLE IIT
COMPARISON OF GROUPING NUMBER METHODS WITH AIC VALUES

k-means Specujal Nonparal'netric EM algorithm
clustering Bayesian
G=2 7444 7411 7346 7404
G=3 7393 6328 6942 7379
Chest G=4 7608 6356 7523 7603
G=5 7824 6977 7383 7550
G= 7674 7365 7662 7680
G=7 7761 7177 7514 7497
G=2 6272 6272 6284 6256
G=3 6222 6314 5847 6220
Head G=4 6783 65()9 §5()0 6770
G=5 6677 6455 6337 6305
G=6 6427 6512 6325 6529
G=7 6711 6471 6402 6530
G=2 10874 10885 10760 10827
G=3 11043 10967 10645 10780
Upper G=4 10809 10874 10617 10448
Body G=5 10962 10928 10757 10928
G=6 10941 10987 10938 10987
G=7 11127 10901 10876 10861

the residual sum of squares (Z?':l, e%, ¢;: estimated residuals
for a candidate model), respectively [56, Ch. 2.2]. Given any
estimated models, the model with the minimum value of AIC is
the one to be preferred.

We set the number of training observations to n = 1000 for
all of the datasets. Table III shows the comparison of grouping
number methods with AIC values. We can notice that all of the
methods except the spectral clustering method have selected the
identical grouping numbers: ¢ = 3 for Chest datasets, G = 3
for Head datasets, and ¢ = 4 for Upper Body. Please note
that all of the grouping number methods have the minimum
AIC values for Chest (G = 3) and Upper Body (G = 4)
datasets. In Head datasets, there exists inconsistency among the
methods. That means head motion can be classified into dif-
ferent groups in the given datasets. For our tracking estimation,
we use grouping number ¢ = 3 for Head datasets because of
the minimum AIC value in the given results.

D. MC-IMME

Based on the group number (G*) chosen in the experiment in
Section V-B of the first stage, we can perform the target estima-
tion using MC-IMME of the second stage with respect to each
group.

1) Position Estimation: The comparison with the standard
KF is very hard to justify since many KF variations had been
proposed. Accordingly, we compare the performance of mo-
tion tracking estimation among particle filter [57], Ensemble KF
[58], IMME, and MC-IMME. Fig. 8 shows that MC-IMME can
estimate the target motion more accurately than other tracking
methods, particle filter, Ensemble KF, and IMME at the initial
stage.

In addition, we compare the accumulated position errors for
each channel across the entire measurement period among par-
ticle filter, Ensemble KF, IMME, and MC-IMME. Fig. 9 shows
that the accumulated position errors of particle filter, Ensemble
KF, and IMME are greater than those of MC-IMME for Head S
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Fig. 9. Comparison of accumulated position error of each channel for Head_S.

dataset for each sensor channel. We can notice that MC-IMME
outperforms IMME by 28.82% in the complex Head motion.

Table IV shows the overall performance of accumulated error
among the datasets listed in Table II. As shown in Table IV,
MC-IMME can show the improvement with comparison to par-
ticle filter and Ensemble KF. In addition, the proposed method
outperforms IMME around by 25.61%—-40.47% in the chest mo-
tion, 8.86%—52.87% in the head motion, and 42.94%—50.94%
in the aggressive motion. Please note that the proposed method
can achieve 50.94% improvement over IMME in the upper body
motion.

2) Prediction Time Horizon: For the prediction accuracy,
we changed the prediction time horizon. Here, prediction time
horizon is the term to represent the time interval window to
predict the future sensory signal. We would like to compare
the error performance with the various prediction time horizons
among particle filter, Ensemble KF, IMME, and MC-IMME in
Table V. For the comparison, we used a normalization that is the
normalized root mean squared error (NRMSE) between the pre-
dicted and actual signal over all the samples in the test datasets.

In Table V, the prediction accuracy of Chest S dataset in
the proposed MC-IMME was improved by 49.67% for particle
filter, 40.16% for Ensemble KF, and 36.10% for IMME of
the average prediction time horizon. We can notice that the
proposed method outperforms particle filter, Ensemble KF and
IMME in the other Chest motion datasets as well, even though
the average improvements were less than 17% with comparison
to IMME. The average improvements were 28.14% for particle
file, 18.55% for Ensemble KF, and 14.46% for IMME.

In the Head S dataset, the prediction accuracy was signifi-
cantly improved by 76.73% for particle filter, 74.39% for En-
semble KF, and 73.50% for IMME of the average prediction
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time horizon. Notice that the improvement of prediction accu-
racy for the proposed method maintained around 15% across
the prediction time horizons. In the other Head motion datasets,
the proposed method can improve other methods, even though
the average improvements were less than 5% in comparison to
IMME. The average improvements were 33.93% for particle
filter, 26.61% for Ensemble KF, and 23.54% for IMME.

In the Upper Body_S dataset, the prediction accuracy of the
proposed method was improved by 61.12% for particle filter,
55.30% for Ensemble KF and 52.95% for IMME of the av-
erage prediction time horizon. We can notice that the improve-
ment of MC-IMME maintained around 40% across the pre-
diction time horizons. We can also notice that the proposed
method outperforms particle filter for 28.72%, Ensemble KF
for 20.54%, and IMME for 17.33% of the average prediction
time horizon over all the datasets, even though the average im-
provements were less than 6.39% for Upper Body M, 3.90%
for Upper Body V, and 6.09 for Upper Body C in comparison
to IMME.

3) Effect of the Feedback/Forward Method: We would
like to show the advantage of the proposed feedback/forward
method by comparing the performance of velocity estimation
of MC-IMME with no feedback/forward versus feedback/for-
ward. We have evaluated the tracking performance of the
average velocity for the Chest V dataset in Fig. 10. We have
observed that the feedback/forward method slightly increases
the prediction accuracy of MC-IMME by 14%.

We show all nine datasets to compare the overall performance
of velocity error averaged among eight channels between no
feedback/forward versus feedback/forward. Table VI shows the
overall performance of velocity error among the datasets listed
in Table I1. Given in Table VI, feedback/forward method outper-
forms no feedback/forward method around 15%—37% for Chest
dataset, 20%—26% for Head dataset, and 14%—22% for Upper
Body dataset.

E. Prediction Overshoot

We define overshoot for cases in which the predicted output
exceeds a certain marginal value with confidence levels corre-
sponding to the tolerances [26]. The initialization process is an
essential step of KF-based target tracking. Unfortunately, this
process produces an unexpected prediction estimate error. To
compensate for the prediction estimate error, we used a mar-
ginal value to generate a 95% prediction interval for the mea-
surement prediction, so that we can define the upper bound and
the lower bound by adding the marginal value to the measure-
ment and subtracting the marginal value from the measurement,
respectively [26].

Fig. 11 shows the prediction overshoot comparison between
IMME and MC-IMME. We can notice that the prediction over-
shoot error with distributed sensory data was improved in the
average of 10.02% with slow motion, 12.47% with moderate
motion, 34.67% with violent motion, and 15.48% with complex
motion. Moreover, the total error of MC-IMME was decreased
by 18.16% in comparison with that of IMME.

Table VII shows the comparison of overshoot dataset sample
numbers between IMME and MC-IMME, where the second
column represents the average number of overshoot dataset
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TABLE IV
OVERALL PERFORMANCE OF ACCUMULATED ERROR AMONG THE DATASETS LISTED IN TABLE II
| Chest S Chest M Chest V. Chest C : Head S Head M Head V. Head C ' Body S Body M Body V. Body C
Min. 1 4.79 14.96 56.92 148.67 | 8.20 9.28 13.97 55.06 1 1092 11.94 120.45 279.50
PF Avg. 5.19 16.20 46.25 130.28 : 9.00 10.51 49.81 130.01 : 13.38 39.42 200.26 498.58
Max. 6.12 17.47 38.53 118.12 } 9.76 11.43 130.14 29495 . 1631 12548 636.21 1549.62
Min. 3.84 12.51 35.87 101.86 . 4.78 5.86 11.92 42.53 . 342 6.06 40.87 53.12
EnKF  Avg. | 424 13.75 43.59 119.02 |} 558 7.09 47.76 11695 | 5.88 31.98 192.69 459.23
Max. i 517 15.03 54.26 14419 1 634 8.00 128.08 283.61 . 8.81 118.05 543.79 1339.41
Min. 292 6.53 15.97 45.89 ¢ 249 232 9.28 2583 1 263 3.67 21.64 51.26
IMME  Avg. | 3.67 11.54 18.19 63.72 1 698 7.32 23.25 86.34 | 6.59 50.45 166.13 467.86
Max. 5.75 14.29 21.58 78.91 10.12 9.78 92.51 248.99 ' 9.75 120.24 261.89 847.67
MC- Min. 2.14 3.26 8.43 25.51 i 1.87 1.84 5.54 12.69 i 1.13 1.18 9.17 25.55
IMME  Ave ! 2.73 6.87 10.95 4044+ 329 4.38 2119 6146 379 24.75 108.87 352.93
Max. ; 3.87 10.31 12.39 4844 1 419 6.12 51.16 13433  7.89 87.95 181.78  623.37
(Unit: Accumulated error (cm))
TABLE V
ERROR PERFORMANCE AMONG PREDICTION TIME HORIZON
Window | Chest S Chest M Chest V. Chest C | Head S Head M Head V. Head C | Body S Body M Body V. Body C
100ms : 0.102 0.229 0.449 0.302 : 0.129 0.215 0.649 0.387 : 0.057 0.196 0.958 0.489
PF 200ms ' 0.190 0.521 0.508 0.469 ' 0.189 0.491 0.688 0.521 ' 0.092 0.300 1.000 0.557
300ms .« 0.274 0.590 0.498 0.504 . 0239 0.551 0.763 0.586 1 0.123 0.386 1.022 0.598
400ms : 0.338 0.623 0.529 0.548 1 0.285 0.582 0.695 0.592  0.149 0.504 0.963 0.631
100ms  0.086 0.153 0.412 0251 1 0.119 0.143 0.596 0.334 1 0.051 0.171 0.898 0.451
EnkF  200ms 0151 0.472 0.467 0417 1 0.173 0.446 0.631 0476 | 0.080 0.263 0.932 0.514
300ms | 0.231 0.544 0.459 0461 | 0217 0.505 0.708 0.535 . 0.107 0.327 0.944 0.553
400ms _: 0.294 0.567 0.479 0491 0255 0.533 0.646 0.578 & 0.128 0.431 0.892 0.575
100ms | 0.081 0.127 0.400 0243 | 0.116 0.119 0.579 0342 | 0.049 0.163 0.878 0.442
IMME  200ms i 0.138 0.455 0.454 0405 1 0.168 0.431 0.612 0485 1 0.076 0.250 0.909 0.497
300ms ! 0216 0.528 0.446 0451 ¢+ 0.209 0.489 0.690 0.531 ¢+ 0.102 0.307 0.918 0.521
400ms | 0.280 0.549 0.463 0473 | 0.245 0.516 0.629 0.570 1 0.121 0.407 0.869 0.553
100ms + 0.028 0.102 0.335 0.218 0.025 0.092 0.511 0.264 0.014 0.146 0.796 0.398
MC- 200ms | 0.085 0.440 0.452 0397 | 0.043 0.425 0.607 0462 | 0.033 0.235 0.898 0.476
IMME ~ 300ms | 0.167 0.505 0.443 0435 1 0.059 0.481 0.684 0.504 1 0.057 0.291 0.900 0.504
400ms ; 0.230 0.517 0.457 0451 . 0.075 0.504 0.623 0.546 . 0.073 0.391 0.842 0.538
(Unit: NRMSE value)
il Tl TABLE VI
L #ﬁm COMPARISON OF OVERALL VELOCITY ERROR AVERAGED AMONG 8 CHANNELS
a7 BETWEEN NO FEEDBACK/FORWARD VERSUS. FEEDBACK/FORWARD
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Fig. 10. Comparison of the velocity estimations of MC-IMME with no feed-
back/forward versus feedback/forward.

samples listed in Table II. The overall improvement in the be-
nign motion is around 10%, whereas the overall improvement
in the aggressive motion is over 20%. This means that dis-
tributed sensory data can reduce the prediction estimate error at
the beginning of target tracking. We may expect this prediction
accuracy to decrease for different datasets (e.g., including head
and chest motions) due to the lack of interactive relationships.
For our experimental tests, however, we have focused on the
human body motion including head and chest. That means our
experimental results can be generalized to the upper body.

F. Computational Time

Regarding CPU experimental time, we have evaluated the
overall performance of average CPU time used for the datasets
listed in Table II. We have collected the motion data using a
Polhemus Liberty ac magnetic tracker with eight sensors and

Datasets No feedback/forward Feedback/forward
Chest_S 0415 0.292
Chest M 0.335 0.211
Chest_V 0.605 0.514
Chest C 0.485 0.384
Head_S 1.527 1.168
Head M 1.386 1.014
Head V 1.517 1.201
Head C 1.497 1.212
Upper Body_S 2.012 1.550
Upper Body M 3.162 2.572
Upper Body V 3.999 3.404
Upper Body C 3.627 3.270

(Unit: co/sec)

then conducted the experimental test for the computational com-
plexity with offline. We have implemented the proposed method
with MATLAB language using a PC of Pentium core 2.4 GHz
with RAM 3.25 GB.

In Table VIII, we evaluated the individual dataset to com-
pare particle filter, Ensemble KF, and IMME methods with
MC-IMME. Table VIII shows the overall performance of CPU
time used among the datasets. For the comparison of the dif-
ferent target-tracking methods, we evaluated the computational
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Fig. 11. Prediction overshoot comparison between IMME and MC-IMME.
The prediction overshoot error can be improved with MC-IMME.

TABLE VII

PREDICTION OVERSHOOT COMPARISON LISTED IN TABLE 11

Average number of overshoot

Datasets dataset IMME/MC-IMME) Improvement (%)
Chest S 15.00/13.37 10.87
Chest M 15.25/13.12 13.97
Chest_V 26.00/12.75 50.96
Chest C 29.20/23.92 18.08
Head S 15.00/13.75 833
Head M 14.75/13.62 7.66
Head V 62.12/42.50 31.58
Head C 44.06/36.33 17.55
Upper Body S 15.00/13.37 10.87
Upper Body M 27.75/23.37 15.78
Upper Body V 99.62/78.25 21.45
Upper_Body C 79.10/70.53 10.83

TABLE VIII

(Unit: overshoot dataset #)

CPU TIME USED AMONG THE DATASETS

Datasets PF EnKF IMME MC-IMME
Chest 0.4135 0.563 0.957 0.802
Head 0.4055 (L5635 0.966 0.804

Upper Body 0.4155 0.582 0.974 0.829

(Unit: ms/sample numbers)

time calculating target-tracking estimate filters. This means
that we only counted the calculation time for particle filter,
Ensemble KF, and IMME operations with all the methods.
Note that MC-IMME can improve approximately 16% of the
average computational time in comparison with IMME, even
though it requires more than twice the computational time of
the particle filer and Ensemble KF, as shown in Table VIII.
An interesting result is that the proposed method can improve
the computational time over IMME. We think that the actual
difference for CPU time used in Table VIII mainly comes
from the simultaneous calculation of distributed sensory data
in MC-IMME. In IMME, it needs to calculate target-tracking
estimation individually, whereas MC-IMME can evaluate a
couple sets of target estimation simultaneously.

VI. CONCLUSION

In this paper, we have presented a new MC-IMME and
grouping criteria with distributed sensors placement. Our new
method has two main contributions to improve the traditional
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IMME-based target tracking. The first contribution is to com-
prehensively organize the distributed channel sensory process
by providing a collaborative grouping number with the given
datasets to achieve the efficient target estimation. The second
contribution is to add feedback/forward modules to import the
results from the first multiple channels grouping for interactive
tracking estimation to employ a tracking relationship with each
other.

The experiment results validated that we can identify a
proper group number with the collaborative grouping method
using hyper-parameter and the collaborative grouping method
can outperform the conventional target-tracking methods, e.g.,
particle filter, Ensemble KF, and IMME, by comparing the
prediction overshoot and the prediction accuracy of target
tracking with respect to the accumulated position error. We
have also evaluated that MC-IMME with feedback/forward
method can increase the prediction accuracy of MC-IMME
throughout the experiment results. The prediction overshoot
ratio at the beginning of target tracking can be improved in
the average of 19.31% with employing a tracking relationship
in this specific datasets. For the generalized extent of motion
tracking, more complicated motions and different sensory
positions are required. As a future research, this research work
may be extended with human pattern detection for markerless
tracking. For the real environment without any special markers
the proposed method should be integrated with human pattern
detection based on feature analysis.
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