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SUMMARY

An efficient method for tracking a target using a single Pan-Tilt-Zoom (PTZ) camera is proposed.
The proposed Scale-Invariant Optical Flow (SIOF) method estimates the motion of the target and
rotates the camera accordingly to keep the target at the center of the image. Also, SIOF estimates the
scale of the target and changes the focal length relatively to adjust the Field of View (FoV) and keep
the target appear in the same size in all captured frames. SIOF is a feature-based tracking method.
Feature points used are extracted and tracked using Optical Flow (OF) and Scale-Invariant Feature
Transform (SIFT). They are combined in groups and used to achieve robust tracking. The feature
points in these groups are used within a twist model to recover the 3D free motion of the target.
The merits of this proposed method are (i) building an efficient scale-invariant tracking method that
tracks the target and keep it in the FoV of the camera with the same size, and (ii) using tracking
with prediction and correction to speed up the PTZ control and achieve smooth camera control.
Experimental results were performed on online video streams and validated the efficiency of the
proposed method SIOF, comparing with OF, SIFT, and other tracking methods. The proposed SIOF
has around 36% less average tracking error and around 70% less tracking overshoot than OF.
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Definitions of Symbols

Pe.f The center OF feature point at frame f.

G Symmetric gradient matrix.

g Local image intensity gradient vector.

I1,J Image intensity maps.

w Radius of the circle window around KLT feature point.

€ Cost function minimizes the sum of the squares of intensity difference.

I, I,,and ], Derivatives of image intensity values along the x, y, and # dimensions respectively.

5 Displacement of a 2D point.

B Regularization constant, with which large values lead to a smoother flow.

V=T[u,v]T Optical flow vector.

qe, s SIFT feature point at frame f.

G, v,c,0) Gaussian function of image i, ¢; is a coefficient selected to get a fixed number of
convolved images per octave, o is the scale.

D(x,y,0) Difference of Gaussian.

L(u, v, ¢;, o) Gaussian-blurred images with coefficient c;o.

0(x,y) Orientation.

T(P) Transformation matrix.

R Rotation matrix.
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P 3D points.
ty Translation vector.
£ Motion twist.
S 3D rotation vector.
P 3D translation vector.
E =exp(§) Exponential function.
x,¥)or Feature point tracked with OF.
(x, ¥)siFT Feature point tracked with SIFT.
My Motion matrix at frame f.
r(f) Vector from the origin of the target frame to the point p, at frame f.
p(f) 2D center point at frame f.
w, and w,  Weights.
Ot p Scale of a keypointp at frame f.
r Vector of the scales of keypoints at frame f.
T Average of the ratio of scales between frames f — 1 and f.
Np Total number of matched keypoints.
A Focal length at frame f.
Xy State of the system at frame f.
X, Predicted state of the system at frame f.
E Transition matrix that describes the expected relationship between the current state

and the predicted state.

O, ¢ Predicted tilt at frame f.

0, ¢ Predicted pan at frame f.

Ay Predicted focal length at frame f.

O, comp Computed value using SIOF.

O f, meas Measured value using Polhemus motion estimator.

y Approximated marginal value

a and G; Intermediate parameters to calculate the marginal value y.

1. Introduction

Real-time tracking using a single Pan-Tilt-Zoom (PTZ) camera has many advantages in the field
of computer vision. Compared with traditional tracking with a fixed camera, PTZ camera-based
tracking has the potential to (i) increase the Field of View (FoV) by pan-tilt rotating and focal length
adjustment, and (ii) follow the target’s uncontrolled motion in dynamic environments. To achieve
these improvements, this paper proposes a tracking method, Scale-Invariant Optical Flow (SIOF) that
uses highly descriptive groups of feature points in a twists model to recover the motion and scale of
the target. The camera then rotates to track the target’s motion and adjust the focal length to preserve
its size.

There are many methods conducted to improve the scale-invariant property using feature tracking.
Scale-Invariant Feature Transform (SIFT) is one of the efficient methods for scale-invariant feature
tracking using highly distinctive features points.' The methods®? use tracking and matching using
SIFT feature points to align an image to its nearest neighbors in a large image dataset. Size-preserving
tracking methods using the existing structure-from-motion (SFM)* successfully achieve a scale-
invariant tracking. However, a big need arises to develop a single tracking system that can handle
dynamic motion scenarios and track larger transformations of the object movement. In our method,
we use two different feature trackers to take advantage of the matching criterion for each of them.
Also, we depend on a twist module that uses 3D feature points to generate the 6 degrees of freedom
required to control the camera motion.

The proposed tracking method establishes point correspondences of Optical Flow (OF) and SIFT
and recovers the 3D position, scale, and orientation of the target at every captured frame. Using
groups of different kinds of feature points allows us to obtain a semi-region-based tracking, which is
lightweight and can handle robust image transformations. We also use Kalman filter model to predict
the scale and motion of the target in the next frame and speed up the PTZ process. The contribution
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of this paper is twofold: First, we propose a scale-invariant tracking method that depends on an
advanced feature tracking criterion. Second, we use prediction and correction model to speed up the
PTZ control. Our overall proposed flow works as follows: The user selects a target area on the screen
using a pointing device. Feature points are detected on the selected area. The camera tracks the target
area to keep it in the FoV of the camera by rotating the camera in pan and tilt angles. The proposed
method adjusts the focal length of the camera to keep the target appearing with the same size.

The remainder of this paper is organized as follows. Section 2 presents a relevant study to our
topic. Section 3 shows the motion detection techniques discussed: OF and SIFT. Section 4 presents the
proposed tracking method and its use to control the camera’s PTZ operations. Section 5 presents the
method’s evaluation criteria. The proposed method’s ability and performance is tested and compared
with other methods in Section 6. Section 7 concludes the paper.

2. Relevant Study
We review some background studies related to our study. In Section 2.1, target tracking is reviewed.
Section 2.2 reviews the scale-invariant tracking.

2.1. Target tracking

Tracking of objects to keep them in the FoV with an optimal quality is an important problem.> Targets,
such as human body,"”!° can be tracked by a PTZ camera using different approaches, such as using
normal Kalman filter® or performing segmentation of main target from the background.!! Other
approaches used for target tracking are based on extended Kalman filter framework,'%!? quaternion
Kalman filter,'3 or Kalman filters through stereo vision.'* Optical flow is the distribution of apparent
velocities of brightness patterns’ motion in an image.'> One of the important methods used for
calculating OF is the Kanade-Lucas—Tomasi method (KLT).!*!8 KLT uses sparse feature point and
does not involve much computational cost, so it is considered good for online tracking environments.
H-Probabilistic Multi-Hypothesis Tracking (PMHT)!® derives a stable tracking algorithm that uses
the entire image as its input data avoiding peak picking and other data compression steps required to
produce traditional point measurements. It links a histogram interpretation of the intensity data to the
tracking method of PMHT. Mean Shift?” is used in tracking as in refs. [21-23], where it is used to find
the most probable target position in the current frame. Camshift is a method that combines the basic
Mean Shift algorithm with an adaptive region-sizing step. It is a video face-tracking method and used
in a perceptual user interface as in ref. [24]. Using multiple tracking concepts has been introduced in
several studies to compensate for the shortcomings of each other.?>:? In ref. [25], region fitting has
been combined with dense OF and SIFT. In ref. [26], groups of low-level features, such as interest
points, edges, and homogeneous and textured regions, are combined on a flexible and opportunistic
basis to sufficiently characterize an object and allow robust tracking.

Pan-tilt-zoom cameras are used in many applications. In ref. [27], a PTZ camera is used with an
omnidirectional imaging device for sensory tracking system to detect and track any moving object
within its 360° FoV. In ref. [28], an adaptive fuzzy particle filter (AFPF) method is adapted to use for
object tracking with a PTZ camera. In ref. [29], a constant-time image alignment algorithm based on
spherical projection and projection-invariant selective sampling using a PTZ camera is presented. In
ref. [30], video rate methods are used for zoom control during tracking to preserve the size of tracked
objects. In ref. [31], low-level reactive method that appears as part of repertoire of a skilled camera
operator is used based on probabilistic reasoning to minimize the chance of losing the target while
maximizing zoom level at the same time. Visual servo control methodology??33 is used as a tracking
method where multiple objects are kept in the FoV of a PTZ camera.** This is done using a set of
task functions developed to regulate the mean and variance of image features and achieve the desired
feature point velocities. In ref. [35], multiple PTZ cameras are used to infer relative positioning and
orientation. Table I summarizes the tracking methods related and compared in this study.

2.2. Scale-invariant tracking

A large amount of studies have been done to improve the scale-invariant property using feature
tracking. SIFT is one of the efficient methods for scale-invariant feature tracking using a range
of detectors.! SIFT relies on a Histogram of Gradients (HoG) to detect its highly distinctive
features. Scale-invariant features were used for vision-based mobile robot localization and mapping.
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Table I. Comparison of tracking methods.

Scale-invariant optical flow

Methods Procedure Advantages Disadvantages

OF>_18 The distribution of apparent Light weight, fast, and Not applicable for large
velocities of brightness large number of feature displacement,  large
patterns’ motion in an points. image transformation,
image. and scale change.

SIFT! Range of detectors SIFT Highly distinctive fea- Slow, high computations,
relies on a Histogram of tures, accurate match, descriptors are com-
Gradients to detect its and scale invariant. puted at alternative
highly distinctive features. locations.

SURF* Uses sums of 2D Haar Highly dtinctive features, Descriptors are computed
wavelet responses and accurate match, scale at alternative locations,
makes an efficient use of invariant, and faster which unlikely coin-
integral images. and robust to image cide with the features

transformation. used for tracking.

H-PMHT" Links a histogram inter- Stable and multi-target. Not applicable for large
pretation of the intensity displacement,  large
data with the tracking image transformation.
method of probabilistic and scale change.
multi-hypothesis tracking.

Proposed SIOF Establishes SIOF point cor- Highly distinctive fea- Not suitable for multitar-

respondences and recovers
the 3D position, scale, and

tures, accurate match,
scale invariant.

get tracking.

orientation of the target at
every frame.

SIFT-flow?? is a tracking and matching method which uses SIFT features to align an image to its
nearest neighbors in a large image corpus containing a variety of scenes. Some tracking methods*7-3
combined SIFT and mean shift for tracking.

Several studies are conducted to improve SIFT since it is computationally expensive and the perfect
scale invariance is difficult to be achieved in practice because of sampling artifacts, noise, and other
real-time challenges. A slight variation of the descriptor employing an irregular histogram grid has
been proposed to reduce the negative effect of scale error*® and increase feature-matching precision.
To get a better performance, authors in ref. [40] proposed a scale-invariant tracking method using
strong corner points in scale domain to track a smaller object in a better performance than SIFT.
Similar to SIFT, Speeded-Up Robust Features (SURF)*! is another scale- and rotation-invariant
feature tracking method that relies on the sums of 2D Haar wavelet responses and makes an efficient
use of integral images.

Different target-tracking and size-preserving techniques are proposed in the literature. In refs. [42,
43], the tracking method used depends on 3D tracking using twists and exponential maps. In ref. [25],
twists and exponential maps are used along with a combined region and feature-based 3D tracking.
In ref. [44], joint point feature correspondences and object appearance similarity are used. Yao et
al.* proposed a size-preserving tracking algorithm by applying the existing SFM method based on
the paraperspective projection model to achieve target scale estimation. The scale property of SIFT
feature points has been used in several applications such as visual homing. In ref. [23], a mobile
robot moves to a home position using SIFT keypoints extracted from omnidirectional images and
matched to a recorded set of keypoints at the Home location. Churchill and Vardy* present results
of real-time homing experiment using the scale difference field in panoramic images computed from
SIFT matches.

3. Motion Detection

We present the motion detection strategies used in our proposed method to detect the target motion.
Optical flow is described in Section 3.1 and SIFT is described in Section 3.2. In Section 3.3, the
interconnection between OF and SIFT as SIOF is discussed.
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Fig. 1. The geometric relation between frames f-1 and f. The point p. ;_; in f-I moved to a new location p, s
in f. This movement causes a displacement of (Ax, Ay). The tracking method controls the PTZ camera to rotate
in angles 6, and 6, to accommodate the target movement.

3.1. Optical flow

The KLT method'®!” is used to track feature points by finding their correspondences in a sequence
of frames. The KLT method finds image features at locations where the minimum eigenvalue of the
2 x 2 symmetric matrix G,

G= gg'dp.;,
w

is above some threshold, where g is the local image intensity gradient 2 x 1 vector: g =
[01/0x,01/0y]", and w is the radius of the circle window around the KLT feature point; p.. !
is the center point at frame f. Image locations which satisfy the above criterion are called “corners”
and are easily tracked. KLT finds feature correspondences by finding the displacement §(Ax, Ay)
that minimizes the sum of the squares of the intensity in the following cost function:

e= [Up(pes—8) —I—1(pe.r—)1dpe.s, (1

w

where I,_; and I are two image intensity maps that are adjacent in time for point p. i and p. s
respectively. Figure 1 shows the tracking process of point p, in two frames.

Smoothness in the flow is assumed over the whole image. The flow is formulated as a global
energy function that is then sought to be minimized. This function is given for 2D image streams as:

(3]
E=  [(Lu+ILyv+1)+ B (IVul® + IVv]*)]dxdy, 2

w

where I, I,, and I, are the derivatives of the image intensity values along the x, y, and ¢ dimensions
respectively. V = [u,v]” is the OF vector. The parameter B is a regularization constant. Large values
of B lead to a smoother flow.

3.2. Scale-invariant feature transform

Scale-invariant feature transform is a feature-based approach that is widely used in matching and
tracking applications.! SIFT features, defied by g/, are highly invariant to image scaling and rotation,
and partially invariant to illumination change and 3D camera viewpoint.

To find keypoints, the image is convolved with variable-scale Gaussian filters, and then the
difference of consecutive Gaussian-blurred images is taken. The maxima/minima of the Difference
of Gaussians (DoG) at different scales c;o are keypoints g, , where c is the point number and f is
the frame number. Let a DoG image be as D(x, y, 0):

D(x,y,0)=L(x,y,cioc) — L(x,y,cj0),= G(x,y,cio)*x I(x,y), 3)
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Fig. 2. Feature point tracking using OF and SIFT feature points. Features are tracked from frame f-1 to frame f
with OF feature point p. s and SIFT feature points g, ;.

where * is the convolution operation, I(x,y) is the original image, G(x, y, c;o) is the Gaussian
function, c; is the coefficient selected to get a fixed number of convolved images per octave, and
L(x, y, c;o) is the Gaussian-blurred images with coefficient ¢;. Each keypoint is assigned with one
or more orientations based on local image gradient directions. For an image sample L (x, y) at scale
o, the orientation 6(x, y) is:

( +1)— L D
ol XY ey
Oty =t e L1y ¥

The descriptor vectors for keypoints with locations, particular scales, and orientations make the
keypoints highly distinctive. Eight-bin-Histograms are built and each descriptor contains a 4 x 4
array of 16 histograms around the keypoint. This leads to a SIFT feature vector with (4 x 4 x 8 =
128) elements. This vector is normalized to enhance the invariance to changes in illumination.

3.3. Scale-invariant optical flow

We form higher-level feature points in our proposed SIOF method that uses the properties of
two feature points’ trackers. Using two feature trackers OF and SIFT helps in handling the
individual limitations of these methods. For example, OF using the KLT method cannot handle
large displacements and big image transformations such as illumination and scaling changes. SIFT
also cannot represent the real pixel location of a keypoint on the image. That is why we describe how
OF feature points and SIFT feature points can form SIOF groups that are used for frame-to-frame
matching. The following sections show how the characteristics of OF and SIFT feature trackers are
fused in the proposed SIOF method.

3.3.1. Feature point grouping. The proposed SIOF comprises two features sets of OF and SIFT to
form group features for the improvement of frame-to-frame correspondence matching. These group
features are fewer in number but more distinct in form.*® Group features ensure more accuracy by
avoiding the mismatches that may happen when using single tracking criterion.

Figure 2 shows OF/SIFT feature points grouping when tracking from frame f-/ to frame f. Optical
flow feature points p. r and SIFT feature points g, ¢ exist in both frames. Let the OF center point at
frame f-1 be p. r_1, and p. y is its correspondence at frame f. Let w be the radius of a search window
around p. r_;. In large displacement cases, the corresponding point p. s exists out of the search
window of radius w at frame f. In other wo@, the displacement 6(Ax, Ay) of p. r_; in the next

frame is larger than the radius of the window, Ax? 4+ Ay? > w. We find the SIFT points g, ;_; that
are the nearest neighbors to p. s_; and reside within the window w. If no SIFT feature points reside
within w, a search is conducted within 2w and so on until we find enough SIFT feature points (at least
three in this implementation). Thus, ¢, r_; will be selected if it maintains the following condition:

d(qp,r—1, Pe,f—1) <iw, i=12,..,s/w, )

where d(qp 1, pc,s—1) is the distance in pixels between g, i and p. y_; and s is the image size.
Optical flow and SIFT points within this specified window of radius iw are chosen to be used as one
feature group. In our implementation, the radius w is initially set to 10 pixels. SIOF feature groups
are denoted by k and are tracked from frame to frame through the frame sequence.
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3.3.2. Group matching using descriptor. After each group is formed from features, a representative
matching criterion for each group has been established. The matching criterion has a set of attributes
that distinguish each feature group from others. For OF feature points in group k, the attributes used
are the average image intensity maps 7%, as described in (1), and the average smoothness in the flow
assumed over group k represented a global energy function E ’;, as described in (2). For SIFT feature
points, the attributes used are the average orientation histograms with 8 bins in the feature points of
group k: 9_;5, as described in (4) and the mean RGB color of the same 16 subparts (;—S? in group k. The
orientation histograms and 16 RGB color part have been explained extensively in ref. [1]. The OF
and SIFT attributes lead to a high-level descriptor vector of each group k at frame f as follows:

-
k __ k nk 1k
Dy = Iy E; 05 ¢

To match between groups in subsequent frames, we seek a value of energy that minimizes the
following overall equation:

m & = =
E AD{; = kyl—ljlﬁ_lk—i— kyl f—E(;_lk
[ 353 ]

+ n 005, + -, dk (6)
k

where y; and y, are weights to adjust the significance of the effect of the minimizer of I' 'f‘ and E '; to

9_]12 and gb’ji. The weights y; and y; are calculated based on the desired significance of tracking. If the
matching criterion is desired to be based on OF matching criterion more than SIFT criterion (such
as the similarity of the average intensity maps), then the associated weight y 1 is assigned to a value
higher than the value of y2. If the desired matching criterion is SIFT matching criterion, then y2 is
assigned to a value higher than y 1. In our work, the values of both y 1 and y2 were assigned 0.5 to
give the same significance as that of the matching criteria. The representative criterion in (6) includes
the attributes of OF and SIFT feature points which improves the uniqueness for each feature group k.

Scale-invariant optical flow feature groups are tracked through the sequence of frames. The distance
measure d ’;_ 1,7 defined in (7) is used to find the displacement of SIOF feature group k between frames
Jf-1 and f. The location of correspondences is computed as minimum x and y coordinates that cause
the energy function E(A D*) to have a minimal value, plus the coordinates of the point on the upper
left corner of the grouped SIOF feature point k:

. . RET
df_l’fzargmm ADf +min(xy_yp, yr—1,p)- (7)
X,y

This finds location in the x and y directions of SIOF feature point kX when moving from frame f-/
to frame f. The new location of the feature group can be used in locating the individual OF feature
point locations in the sequence of frames.

3.3.3. Individual feature correspondences. After matching SIOF feature groups, the location of
individual OF feature points needs to be estimated and represented by real locations. The average
distance between p. ; and the nearby feature points is preserved since these are moving in one SIOF
feature group. The corresponding feature point p. ¢ in frame f'is estimated as follows:

ﬁc,f = Pc,f-1 + d;_l‘f» (8)

where d’;; 1, ¢ 1s defined in (7). In this case, SIFT feature points, which handle large displacements,
can keep OF feature points from being mismatched. These estimated individual OF feature points are
used in the next section to find PTZ values in each frame of the sequence. The following algorithm
summarizes the process of forming and tracking SIOF feature groups:
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SIOF algorithm
1. Let p., y—1 be a feature point at frame f-/

If Ax?+ Ay? > w,
select g, r—1 that are the nearest neighbors to p. r_1 so that
d(gp, r-1, Pe 1) <iw, i=1,2, .., s/w 9
2. Form the descriptor vector of SIOF feature group & at frame f as follows:

(2]

k k Fk gk 7k

Dy = Iy EL 05 ¢
Match between feature groups in subsequent frames by finding a value of energy that minimizes
the overall Eq. (6).

3. Estimate the displacement of SIOF feature groups:

k . B k .
dy_y ;= ar%Tm ADG +min(xs_1,p, Yr—1,p)- (10)

Find the real location of the corresponding individual OF feature points:

ﬁc,f = Pec,f—1 +d§_17f- (11)

4. Controlling PTZ Operations Using Proposed Scale-Invariant Optical Flow

We describe the process of controlling pan-tilt-zoom using SIOF tracker. Section 4.1 describes the
motion model using SIOF. Section 4.2 describes the PTZ operations controlled by the proposed
scale-invariant OF. Section 4.3 describes the prediction of PTZ operations using Kalman filter.

4.1. Motion model using scale-invariant optical flow
In this section, we present the tracking technique that is used to estimate change in the target motion,
scale, and position relative to the camera. Twist representation is adapted in this work for motion
modeling. This model uses feature correspondences from OF and SIFT as its input and then estimates
the rotation and translation of target at every captured frame. Figure 3 shows the feedback loop of
PTZ estimation procedure using SIOF.

The 3D rigid body motion can be a transformation matrix:

T(P)=RP +1,
where ¢ is the 3D translation vector and R is the rotation matrix. We use twist representation to
represent rigid body motions?-3%-33 as:
(] (]
£ = Q o
01530
[
0 —w3 Wy
where Q = | w3 0 —a)1J
—w; w; 0
and
(]
o= ¢gipme3 (12)

w; is a 3D unit vector in the direction of the rotation axis and ¢; determines the translation along the
rotation axis. The six parameters (¢;, ¢», ¢3, w1, wy, w3) correspond to the 6 degrees of freedom we
wish to estimate.
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s

— — 2
+ 1\[@ -85+ @t -5 &
The 3D correspondences in the current frame:
+ T
P, =M"[x-t, y-t,] (16)
v
argmin ¥ | M* xexp(§)[P 1]' —t||
4 D

(g17g2>g3,w1 ,602,603) +
=2

v
Pan-tilt estir;ation via (22): 700om estimation vial
=g+ + r
6. =6, +(w.Ay, W, X, ) 26): A, =T.A,
6, =6, +(W.Av, +w_.y.)

v

Predict the next frame values via (30)
0., =6 ., +(w, Ay + W, X))

0,.=06,  +(wW.Ahv, +w,.y), A; = F./if_] )

y, f

v
| Capture new frame f +1 |

Fig. 3. The feedback loop of PTZ estimation using SIOF starts with feature points extraction in f and detection
of 3D correspondences. PTZ estimation and prediction are next steps. Finally, a new frame f41 is captured and
the same process is conducted again.

The motion of the points p,(x,, y,) of the region R is described by the consecutive evaluation of
exponential functions of all involved twists using homogeneous coordinates:

| _[E]
x,y,z,l-:g XYleil. (13)

To estimate the parameters in &, we need to have the 2D points and their 3D correspondences that
exist on the edges of the region M. We obtain these correspondences from the feature interpolation
discussed in Section 4. The coordinates of 2D points are extracted by OF tracking at every frame.
To get the transformed 3D correspondences, we consider the SFM approach.*” In this approach, 2D
points are used to find the corresponding 3D points P and the recovered motion matrix M at every
frame f. According to SFM, we assume that the following relation holds:

py=MP +1, (14)

where p, is the coordinate of 2D points representing each feature group, and M: 2F x 3 is the 3D
motion matrix. The motion matrix can be written as M = [i;...ir|ji...jr], where iy and j are the
camera 3D orientation vectors.*” The 3D structure of the target can be computed at every frame
captured given the new camera coordinates, the horizontal and vertical translation. Using (14), the
3D points P of the target are estimated at frame f as follows:

P=M"(p,—1) 15)
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where *denote the matrix pseudo inverse. As p, = [xy]”, we subtract the translation in the x and y
directions of all feature points, so the 2D coordinates can be written as: [x, — #,y, — ty]T. Thus, the
3D points P in (15) can be written as follows:

[
P=M" X, —t,y,—1y . (16)

This provides the method of recovering the 3D correspondences P, given the motion matrix M and
coordinates of the feature points. Now we need a transformation T to apply to all points P such that
the total distance over all correspondences is minimized in the following least squares notation:

[
—t,

argmin (M ™ x  x, y, (17)
by substituting (16) in (17), we got
~
argmin  ||[MT xexp(,) P17~ —¢]l. (18)
&

p

Equation (18) states a nonlinear least squares problem that finds the transformation T to apply

for all points P. As stated in (12), é has the 6 degrees of freedom (¢y, ¢2, ¢3, w1, w2, w3) needed
for tracking. These six parameters and the highly descriptive SIFT feature points will be used in
Section 4.2 to control pan-tilt and zoom of the camera.

4.2. Pan-tilt and zoom using SIOF

Here we propose the method of controlling PTZ operations altogether based on SIOF as discussed
in Section 4.1. We present the control of pan-tilt angle in the following Section 4.2.1, and adjust the
focal length of the camera using the estimated motion by SIOF model in Section 4.2.2. Section 4.2.3
presents the use of Kalman filter in PTZ prediction.

4.2.1. Pan-tilt computation. Here we estimate the camera’s pan and tilt angles so that it can rotate
horizontally and vertically to track the target. The angle vector € is required to make image center
coincident with the target centroid.

[
0= 0,6, (19)

where 6, is the tilt angle, which is the rotational angle about the x-axis and 6, is the pan angle, which
is the rotational angle about the y-axis as illustrated in Fig. 1. Pan and tilt angles are measured based
on the location of the center of the image.

Let p. r denote the center point in frame f. The velocity of the center point p. is the first derivative
of the point p. ¢, which is given by

P(f)=wxr(f), (20)

where r(f) is the vector from the origin of the target frame to the point p. at frame f,

P(f) = X (pe.s(f) = Pe.p), 21

where P, ; is the 3D coordinate with 2D center point at frame f with z as the homogenous scaler. P, f
is the corresponding 3D point as expressed in Fig. 1.
Equation (21) can be written in homogeneous coordinates as described in (13), the resulting

equation can be written as follows:
(%] [ [ (]
P Q > p

0 = 0341 0 1

We use the recovered translation @ and point position p. ¢(x. r, yc, ) to determine pan-tilt angle
values. The weighted sum of translation and position of the center point at frame fis estimated in the
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way that the camera movement should respond to the translation of the object and be proportional to
the location of center of the target in the 2D frame. So we represent this weighted sum as follows:

9ny = Gx,f—l + (wyAgpy + wpxl:)7
Oy.r = by p—1 + (Wo g2 + wp ), (22)

where 6, ;_; and 6, _; are the pan and tilt angles in the previous frame f-I respectively; Ag; and A¢,
are the horizontal and vertical translations between frame f-/ and f respectively; and w, and wpare
the weights assigned to weighted sum to determine the contribution of the translation 0 and the center
point p. ¢(xc f, Ye,r) in the movement of the camera. These weights are computed experimentally
and their summation is 1. Each weight parameter is computed based on the desired contribution of
the translation of the object and its location to ensure having the target in the center of the image.
Thus, the pan and tilt angles are measured depending on the recovered translation and rotation in the
x- and y-axis directions.

Equation (22) shows the pan and tilt computation by calculating the position and displacement
of a moving target over time in every two consecutive frames. The values of the computed pan 6, ;
and tilt 0, ; are converted into integer form to be used in the command of controlling the camera
movement.

4.2.2. Focal length computation. The scale property in SIFT keypoints that exist in SIOF feature
groups are used to estimate the focal length of the camera. This is achieved by comparing the scales
of the keypoints in consequent frames. Let os_; , be the scale of a keypoint p in frame f-/, and let
I" s_1 be the vector of the scales of keypoints in frame f-7 in the sequence:

(]

Fy1= 0p 1105212010 - (23)

Similarly, I' s is a vector of scales in frame f:

(]

Ff: O'f710'f72--'0‘f’P (24)

when the keypoints in frame f-/ are matched to their correspondence keypoints in frame f, the scales
of the keypoints in both frames are compared. We take the average of the ratio of scales for the
matched keypoints between frames f-/ and f,

( | [Z]
Uf—l,p O—f’P Np, (25)
p=I

=
Il

where T is the average of the ratio of scales between frames f-1 and f and N is the total number
of matched keypoints in both the frames. When the target is moving closer to the camera, the scales
of the matched keypoints in frame f have higher values than the scales of the matched keypoints in
frame f-1, and according to (25), T' < 1. On the other hand, when the target is moving far away from
the camera, the scales of the matched keypoints in frame f have lower values than the scales of the
matched keypoints in frame f-1. Thus, the average ratio of scales will have a value larger than 1 (i.e.,
T > 1). The focal length is adjusted by zooming in or out to keep the object appear with the same
size as shown in (26),

Ap=Ths, (26)

where A ; is the focal length of the camera in frame f. Thus, (26) finds the focal length of the camera
at frame f'based on the keypoint scales and the focal length of camera at frame f-1.

4.2.3. PTZ prediction using Kalman filter. The proposed tracking algorithm uses Kalman filter
prediction to accelerate the tracking process. The predictions of the next values of pan-tilt and focal
length are accomplished altogether at the same time. The current values of pan-tilt and zoom are used
in calculating the next predicted values using the Kalman filter.
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Because the latency is roughly equivalent to the period of one control cycle, the state of the system
should be predicted by a control cycle in advance in order to resolve the latency issue. The state of
the system at frame f can be described by the vector X, given in (27), which consists of the target’s
position (x 7, yr, As) and displacement (Ax s, Ay, I' ) in the x—y plane,

El F
Xf = Xy Yy )\,f A)Cf Ayf Ff . 27
The predicted state X 7 is defined in (28) as
X; =EXf_1+wf, (28)

where E is the transition matrix that describes the expected relationship between the current and
future states. We use the traditional motion model in which the target’s velocity is assumed to remain
constant, so the future position can be described by the equation p; = pg + v.dt. In this scenario, dt
is the number of frames seperating consecutive control cycles.

We aim to predict the target image location in the next frame f and the zoom value that keeps
the target in the same size. The predicted parameters (x,, y,, A ;) can be obtained by providing the
values of the parameters (xy_;, ys_1, Ay_1) to the prediction module as follows:

Xp =Xfop+uo f-nAl,
Y; =Yf-1+ Vo j-nAt,
and A7 = sy, (29)

where £ is the finite window horizon used for prediction. The predicted values are used to generate
the desired camera angle motion 6, » and 6, , and focal length 1, so that we can calculate the camera
parameters for tracking at frame f as follows:

O p = b r—n + (WyAP; +wpx.),
05 5 =0y r-n+ WAy +wpy.),
and )\.} = F)"f—ha (30)

where (x, y. ) is the predicted center of image; and w, and w, are as described in (22). The correction
phase is accomplished after each predicted state to provide an optimal estimate of the current state
based on position and displacement measurements.

5. Method Evaluation Criteria

Here we present the evaluation criteria that we used to evaluate SIOF tracking method comparing
with other related methods. In Section 5.1, position estimation and tracking errors are presented.
In Section 5.2, we present the prediction overshoot analysis, and in Section 5.3, we discuss the
computational complexity and storage requirements.

5.1. Position estimation and tracking errors
The position and tracking errors determine the accuracy of estimating the target position, and thus the
tracking accuracy. Errors in PTZ estimation are considered tracking errors. These tracking errors are
measured quantitatively by computing the root mean square (RMS) errors of the difference between
the computed and measured values using the Polhemus Liberty motion estimator.*®

Equation (31) calculates the absolute difference between the computed and measured values at
frame f as erry, and the total RMS error as the total error for all frames F: erra:

erry = (®f,meas - ®f,meas)2’
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,

5 !
€I'Ttotal = = (®j‘,meas - ®j',meas)2 F, (31

where O fcomp corresponds to the values computed using SIOF and O £ yeqs corresponds to the
measured values. We use (31) to calculate position and PTZ tracking errors.

5.2. Tracking overshoot analysis

We also analyze the tracking overshoot for the predicted values. Overshoot is defined as the cases in
which the predicted value exceeds a certain marginal value. We derive marginal values based on the
estimate process of the uncertainty point estimators or predictors.*” We approximate marginal value
(y) through the total number of frames F as:

EIR ]

y=da 1+ fm1 Gsz.; F? (32)
where o is the standard deviation estimator, and G  is the Jacobian matrix of predicfed values with
respect to inputs. Let the absolute value of the measured parameter be 6 ;, and m = ;:1 6. Then

the values of o and G; are calculated as follows:

: =
a=7% (m—0;) F,
=1

where G = [\/Q_ll%ll ﬁlzelF].

The marginal value y is used to define upper and bounds of the ground truth measurement. The
bounds are defined by adding or subtracting the marginal value to/from the measured value. It is
considered an overshoot when the predicted values of pan-tilt-zoom exceed those of bounds. In the
experimental results in Section 6.5, the analysis of the prediction overshoot is presented.

5.3. Computational complexity and storage requirement

The computational and storage requirements of SIOF are dominated by the need to calculate PTZ
values at each frame f. For a tracking method having F frames and P feature points, the computational
complexity and storage requirements are calculated for OF, SIFT feature extraction, and SIOF.

The computational complexity of OF for one frame of size n x n is°°]: O(n?). The computational
complexity of SIFT for one frame of size n x n is>']: O(n*). The computational complexity of SIOF
for one frame of size n x n is the summation of OF and SIFT: O(n* + n?) = O(n*), given that SIOF
uses both OF and SIFT. The computational complexity of OF, SIFT, and SIOF is experimentally
measured and discussed in Section 6.7.

6. Experimental Results

We have conducted several experiments using the proposed SIOF on different video streams with
different objects moving with different speeds. Section 6.1 shows the scene specifications and motion
detection using SIOF described in Section 4.1. Section 6.2 shows the results of the PTZ tracking
described in Section 4.2. Section 6.3 shows a comparison of SIOF with OF and SIFT. Section 6.4
shows a tracking comparison of SIOF with OF and SIFT over different prediction intervals. Section 6.5
evaluates the tracking overshoot. Section 6.6 compares SIOF with other tracking methods. Section 6.7
evaluates the computational complexity of SIOF compared with other methods.

6.1. Scene specifications and motion detection

We applied the proposed tracking method on different online image streams captured by the PTZ
camera, Canon VB-C60. Those image streams were taken in the same place with the same lighting
conditions. Objects in the image streams were moving freely without position or speed constrains.
Figure 4 shows a single image from each image stream used. As can be seen, the image streams
contain textured objects with different colors.
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Fig. 4. Objects used in generating video streams: (a) “Building” as a polyhedron object of nearly flat faces and
straight edges, (b) “tiger” as an object of a rich texture, and (c) face as the relatively hardest object in this study.

()

Fig. 5. Feature points extraction for image streams: (a) building, (b) tiger, and (c) face. The images on the
left show OF feature points, while the images on the right show SIFT feature points. The feature points are
surrounded by a gray-shaded mask showing the selected region to track.

Figure 5 shows the feature points extracted on a selected area by user. The grayscale of the images
is used to increase the performance of the system. When the user selects a target area on the screen
on an object of interest, the keypoints are detected on the selected area. Then the camera tracks the
target area selected to keep the object in the FoV of camera. SIOF, which uses groups of OF and
SIFT feature points, is applied on the selected area to track the target. The images on the left show
the feature points tracked by OF and marked by “o0.” The images on the right show feature points
tracked by SIFT and marked by “+.” A shadow mask surrounds the feature points.

Table II shows the properties of the image streams in terms of the number of frames, the number
of feature points detected, the frame generation rate, and the frame size. Image streams were taken
with different object movement speeds: slow (30-50 mm/sec), moderate (50—70 mm/sec), and fast
(70-110 mm/sec). We used a PC of Intel Core 2 Duo 3.06 GHz CPU and 3-GB RAM. The frame rate
and image size were the same for all the image streams: 5 frames/sec as the frame rate and 320 x
240 pixels as image size. Each row in the table shows the average specifications of five experiments
conducted.
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Table II. Image streams properties.

1937

Image streams Speed AVG # frames AVG # features

Building Slow 1369 166
Mod 1150 165
Fast 1123 153

Tiger Slow 1631 247
Mod 1123 234
Fast 1220 231

Face Slow 1847 154
Mod 1221 134
Fast 1202 127
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Fig. 6. Tracking outcomes at different time stamps using/without using SIOF: (a) Movement of the target and its
position during tracking. (b) Scale of the target using/without using SIOF. Without using SIOF (dashed blue),
the scale of the object changes during movement compared with its value in the first frame of the sequence.
Using SIOF (red solid), the object is kept with the same size during tracking.

In Table II, the average number of frames for each type of image streams is shown. As seen, the
length of the streams varies from one dataset to another. For comparison, if two tracking methods
based on two datasets of different lengths are compared, we consider the length of the shorter dataset in
the comparison and discard the extra frames of the longer dataset. The proposed method accuracy was
tested and compared with other tracking methods by comparing its values with the values measured
using the Polhemus Liberty motion estimator.>> The Polhemus Liberty is an electromagnetic motion
tracker that tracks 6 degrees of freedom. It has sensors that are attached to the target to track its motion
with respect to the source. The Polhemus Liberty estimates the 3D position and the 3D motion of the
target at a frequency of up to 240 Hz. Regarding the average number of feature points, SIOF uses the
total number of feature points tracked using both OF and SIFT. All image streams were taken with
the same frame rates and frame size. For every tracking method, different datasets were taken with
fixing of all parameters such as motion path, speed, and position. Each tracking method is used
to estimate PTZ parameters and control the camera by rotating and/or adjusting the focal length
accordingly to track the target in real time.

6.2. PTZ tracking using SIOF

Here we show the experimental results of the SIOF tracking method. SIOF lets the camera track the
selected target using pan-tilt to keep the target in the FoV of camera. SIOF also controls zoom to
adjust the focal length to keep the object appear in the same size. Figure 6 shows one of the “tiger”
image streams during tracking using SIOF. The curves show the scale of the target while moving. The
scale indicates the size of the object at frame f compared with the size of the object at the first frame.
In this experiment, the target is carried and moved manually on a defined path of movement while the
camera is stationary. Figure 6(a) describes the path of movement. The numbered cubes indicate the
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Fig. 7. Position error estimation using SIOF: (a) X-position error, (b) Y-position error, and (c) Z-position error.
All errors are presented in percentage (error in the X-, Y-, or Z-direction divided by the total distance of the
movement in that direction).

positions of the target during tracking, which correspond to the images of the target in Fig. 6(b). In
this setting, two datasets have been taken. One dataset has been taken while the zoom function was
inactive and the other dataset has been taken while the zoom function was active. Since the object
was carried and moved manually, it is noted that the target has some rotation around its centroid in
the second dataset (when the zoom function was active). This caused no effect on the tracking result
or comparison.

As shown in Fig. 6(b), the tracking using SIOF controls the zoom operation of the camera. Using
SIOF, the system estimates the scale of the target in the first frame, then it adjusts the focal length to
keep its size the same throughout the tracking process. The scale of the target using SIOF is around
100% all over the tracking process, which means that the size of the target is kept about the same as
its size in the first frame.

Figure 7 shows the error of the target’s estimated position. Figure 7(a) shows the error in the
X-position of the target, Fig. 7(b) shows the error in the Y-position of the target, and Fig. 7(c) shows
the error in the Z-position of the target. These position errors are presented in percentage, which is
calculated by dividing the tracking error calculated as in (31) in either X, Y, or Z direction by the
distance that the object moved in that direction. The tracking error err, in (31) is calculated by
computing the absolute difference between the computed values and the measured values using the
Polhemus Liberty motion estimator. In this experiment, we used a selection of “building,” “tiger,”
and “face” image streams that were taken at a moderate speed.
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Fig. 8. Tracking errors using SIOF: (a) pan error, and (b) tilt error. Errors are measured in degrees, which is the
unit of camera rotation. Pan and tilt angles are measured and rounded to the nearest integer, so when comparing
pan-tilt angles between methods, error appears also as an integer.

As shown in Fig. 7, the average error of the estimated position in the X- and Y-positions of the
target do not exceed 1% for X- and Y-position errors. The maximum error also does not reach 2% for
the Z-position error. The error of the estimated position using SIOF is in general smaller in the X, Y
movement directions rather than in the Z movement direction in all the frames.

Figure 8 shows the tracking errors (err ) of the pan and tilt using SIOF. We use the same datasets
and error criterion as used in Fig. 7 to compare between the computed pan-tilt values and the measured
ones.

As shown in Fig. 8, the maximum tracking error of the pan and tilt angles is around 4° , except for
some few frames in the “building” image stream where it reached 6°. However, the average tracking
error did not exceed 2° in all directions. The motion scenarios of all targets was a free motion; it was
uncontrolled by a robot or any other device. Such kind of motion has lots of noise and is expected
to carry error measurements. The values of the estimated pan/tilt angles by the tracking method are
rounded off to the nearest integer. The algorithm increments each of the pan-tilt angles by 1° . The goal
of the camera rotation is to keep the object in the center of the FoV of the camera, so when the target
displacement shifts the target from the center of the FoV, the camera rotates by the estimated pan-tilt
angles. The movement of the camera is still smooth because of the active prediction function which
predicts the movement of the target in the next frame window and moves the camera accordingly to
overcome the hardware and computing delay, as discussed in Section 4.2.3.

Table III shows the quantitative average error erry, from five conducted experiments of the
estimated position in percentage, and pan-tilt error in degree for the three image streams as described
in (31). As shown in Table III, the average X- and Y-position errors in the three image streams are no
more than 0.5%. For the Z-position, the average error is a bit larger, reaching around 0.6%. Pan-tilt
angles have no more than 1° of error in average in the three image streams. This average error may
be acceptable in such a dynamic system with freely moving targets which requires the camera to
perform concurrent PTZ operations. In general, the SIOF average position error is 0.25% and the
average tracking error is 0.44° over the three image streams.
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Table III. Average error (err1) of position and tracking operations over the three image streams.

Position error (%) Tracking error (degree)
Streams Speed X Y Z Pan Tilt
Building Slow 0.0424 0.5037 0.280 0.393 0.358
Mod 0.0651 0.1804 0.285 0.663 0.972
Fast 0.1078 1.0163 0.356 1.021 1.750
Tiger Slow 0.0564 0.6082 0.291 1.003 0.3343
Mod 0.0754 0.2501 0.312 1.810 0.431
Fast 0.2088 1.0314 0.399 1.909 0.679
Face Slow 0.0490 0.5285 0.221 0.399 0.135
Mod 0.0721 0.1201 0.378 0.956 0.621
Fast 0.2451 1.0578 0.561 1.275 0.886
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Fig. 9. Position error using SIOF versus OF for: (a) X-position error, (b) Y-position error, and versus SIFT for
(c) Z-position error. All errors are presented in percentage (error in the X, Y, or Z direction divided by the total
distance of the movement in that direction).

6.3. PTZ tracking using SIOF versus OF and SIFT

Here we compare the SIOF tracking method with OF and SIFT in terms of the X-, Y-, and Z-position
estimation and PTZ tracking accuracy. Figure 9 shows the estimated error in the X- and Y- position
of the target using SIOF versus OF; and the estimated error in the Z-position of the target using
SIOF versus SIFT. Figure 9(a) shows the X-position error, Fig. 9(b) shows the Y-position error, and
Fig. 9(c) shows the Z-position error. We used one of the “building” image streams. The measured
position values are also measured using the Polhemus Liberty motion estimator.

As can be seen, Fig. 9 shows that the estimated position error in X- and Y- position of the target
using SIOF versus OF in (a) and (b) was almost the same. The error in the Y-direction was larger than
the error in the X-direction. One of the reasons for this is that the motion in the Y-direction was larger
than the motion along the X-direction. There are many factors that might be the cause of the relatively
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Fig. 10. Tracking error using SIOF versus OF for: (a) pan error, and (b) tilt error. All errors are presented in
degrees, which is the angle of pan-tilt movement. Pan-tilt measurement is estimated and rounded off to the
nearest integer, as the pan-tilt measurement sent by a command to PTZ camera should be an integer.

large Y-error compared with the X-error. A calibration error might be one of the factors. Also, since
we used an electromagnetic device to measure the ground truth, the tracking measurements might
be affected by the electromagnetic field in the work environment. Although we have avoided every
possible cause that might cause uncertainty in the device estimation, this is still a possible factor. In
Fig. 9, it can be observed that the position error rises along time. It is because the algorithm took the
initial frame as the only reference during the trial. Feature points are extracted in the first frame, then
they are tracked through the image sequence. The same behavior can be observed in Fig. 7.

Figure 10 shows the estimated tracking error in pan-tilt and using SIOF compared with OF using
one of the “tiger” image streams. Figure 10(a) shows the pan error using SIOF versus OF, Fig. 10(b)
shows the tilt angle error using SIOF versus OF.

As can be seen in Fig. 10, the estimated pan and tilt angle errors using SIOF are less than the pan
and tilt angle errors using OF. The error is high in OF because the estimation of X- and Y-movement
was not associated with zoom movement. Also, integer numbers for pan and tilt are used to control the
pan-tilt controls of the camera. Rounding the pan-tilt angles sometimes makes a difference between
the computed (OF and SIOF) and true measurements.

6.4. Tracking comparison over the prediction intervals using OF, SIFT, and SIOF

Here we apply the tracking method on different prediction intervals using Kalman filter. There exist
several time delay factors for PTZ command—execution such as rotation speed, re-focus time, and
stabilization time. Thus, we set the three representative horizon time windows of 100, 143, and 200
milliseconds (ms). For the next PTZ measurement, the horizontal time window specified is expected
to cover these mechanical displacement delays. We compare our proposed method SIOF with OF
and SIFT in terms of PTZ errors using these different horizon time windows, using (31) mentioned
in Section 5.1.

Table IV shows the average error erry, in the target’s position and pan-tilt-zoom compared
with the measured value across three prediction intervals for OF, SIFT, and SIOF. We used the
average values from “tiger” image streams for this study. To evaluate the position and tracking errors
quantitatively, the RMS error across all frames (err1) is computed as described in (31). As shown,
the error values for the X-Y position decrease when we use a longer prediction interval in OF, SIFT,
and SIOF. Regarding the position estimation error, SIOF has 21% smaller error value when the
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Table IV. Average error (err) of pan, tilt, and zoom across three horizon windows of finite prediction
intervals.

100 (ms) 143 (ms) 200 (ms)

Track error Track error Track error
Position error (%)  (degree)  Position error (%)  (degree)  Position error (%)  (degree)

X Y V4 Pan Tilt X Y Z Pan Tilt X Y Z Pan Tilt

OF 0.14 036 NA 197 092 0.10 033 NA 193 0.89 007 029 NA 1.89 0.86
SIFT NA NA 043 NA NA NA NA 038 NA NA NA NA 035 NA NA
SIOF 0.12 036 041 142 051 0.09 032 037 138 047 007 028 035 134 043

prediction interval used is 200 ms rather than 100 ms. Regarding the tracking error, SIOF has 8%
smaller error value when using 200 ms as the prediction interval rather than the prediction interval of
100 ms. Comparing with OF, SIOF has around 36% lower average tracking error value when using
200 ms as the prediction interval rather than OF.

6.5. Tracking overshoot

To evaluate the performance of overshoot for the predicted values, we used the derived marginal
value () in (32) in Section 5.2. The upper and bounds are defined by adding and subtracting the
marginal value to/from the measured value. This is to determine if the predicted outcomes exceed the
bounds and the percentage of overshoots over all the frames. Figure 11 shows the tracking overshoot
of the tracking estimation in degrees for pan and tilt angles’ estimation using one of the “tiger” image
streams. As you can see in Figs. 11(a) and (b), SIOF values exceed the upper and lower bounds
at some frames but it still has smaller overshoot compared with OF. In Figure 11(c), the Z-position
estimated using SIOF has smaller overshoot than the one estimated using SIFT. In the dataset selected
here, we almost got zero overshoot in the Z-estimated position.

Table V summarizes the overshoot percentage calculated for the three methods, i.e., OF, SIFT, and
SIOF. The percentage of overshoot represents the number of frames in which the computed value
exceeds the bounds, divided by the total number of frames in the image stream. As seen in Table
V, the average overshoot in pan and tilt is lower in SIOF than in OF by around 70%. Regarding the
Z-position, the overshoot that happened using SIOF is around 2% less than the overshoot happened
using SIFT. Regarding the Z-position estimation in SIOF, the use of feature groups, as introduced
in Section 3.3, allowed us to use the average scale across each feature group instead of using the
average scale of individual features. This gives more stable tracking behavior. Also, in SIOF the PTZ
operations are handled concurrently, which enables better tracking in SIOF than in SIFT, especially
in the cases when the target is moving across the X- and Y-axis while moving toward/away (from) the
camera. Thus, the overshoot percentage is lower using SIOF than using OF and SIFT, which enables
SIOF to handle large movements of the target and ensures an accurate tracking.

6.6. Comparative evaluation to other tracking methods (SURF and H-PMHT)
We further compare our tracking method with other alternative tracking methods: SURF*! and H-
PMHT! which are mentioned in Section 2. Figure 12 shows the tracking error in SIOF versus SURF,
and H-PMHT using one of the “face” image streams. We used the SURF functionalities provided
by OpenCV such as creating an object, detecting and matching keypoints, etc. These functionalities
have been used by our group to track a target using PTZ camera for comparison purposes. As seen in
Figs. 12(a) and (b), SIOF has the smallest error measurement compared with other methods regarding
pan and tilt errors. Regarding the zoom error in Fig. 12(c), all methods have almost similar error
measurements.

Table VI shows the quantitative comparison between the three tracking methods: (1) SURF, (2)
H-PMHT, and (3) SIOF. We compare these tracking methods in terms of the PTZ errors.

As can be seen in Table VI, SIOF has the smallest pan-tilt error measurements compared with
other three methods. Feature-based trackers, SURF and SIOF, are also compared in terms of zoom
error. Zoom error using SURF is slightly smaller than the one using SIOF. This may be due to its






