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Computer-Aided Detection (CAD) of polyps in Computed Tomographic (CT) colonography is currently very
limited since a single database at each hospital/institution doesn’t provide sufficient data for training the
CAD system’s classification algorithm. To address this limitation, we propose to use multiple databases, (e.g.,
big data studies) to create multiple institution-wide databases using distributed computing technologies,
which we call smart colonography. Smart colonography may be built by a larger colonography database
networked through the participation of multiple institutions via distributed computing. The motivation
herein is to create a distributed database that increases the detection accuracy of CAD diagnosis by covering
many true-positive cases. Colonography data analysis is mutually accessible to increase the availability
of resources so that the knowledge of radiologists is enhanced. In this article, we propose a scalable and
efficient algorithm called Group Kernel Feature Analysis (GKFA), which can be applied to multiple cancer
databases so that the overall performance of CAD is improved. The key idea behind the proposed GKFA
method is to allow the feature space to be updated as the training proceeds with more data being fed from
other institutions into the algorithm. Experimental results show that GKFA achieves very good classification
accuracy.
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1. INTRODUCTION

The major concern in traditional medical screening is that it is a limited evaluation by a
physician who may diagnose patients based on that physician’s knowledge. In the case
of colon cancer, although many patients received conventional endoscopic screening,
an estimated 50,310 deaths (colon cancer is the second leading cause of cancer death
in the United States) are expected to occur in 2014 [American Cancer Society 2014].
For screening of colon cancer, Computed Tomographic (CT) colonography is emerging
as an attractive alternative to more invasive colonoscopy because it can find precursor
benign polyps that can be removed before cancer has had a chance to develop from
them [Levin et al. 2008; Yee et al. 2014]. Improvements that reduce diagnostic error
would go a long way toward making CT colonography a more acceptable technique for
colon examination. To be a clinically practical means of screening colon cancers, CT
colonography must be able to interpret a large number of images in a time-efficient
fashion, and it must facilitate the detection of polyps with high accuracy. Currently,
however, interpretation of CT colonography is handled by a limited number of special-
ists at individual hospitals/institutions, and reader performance for polyp detection
varies substantially [Rockey et al. 2005]. To overcome these difficulties while providing
accurate detection of polyps, Computer-Aided Detection (CAD) schemes are investi-
gated that semi-automatically detect suspicious lesions in CT colonography images
[Regge and Halligan 2013; Yoshida and Dachman 2005].

The state-of-the art of CAD is emerging as CT colonography gains popularity for
screening of colon cancer. Numerical schemes of image analysis have been developed
for individual institutions, where resources and training requirements determine the
number of training instances. Thus, if more training data are collected after the ini-
tial tumor model is computed, retraining of the model becomes imperative in order
to incorporate data from other institutions and to preserve or improve classification
accuracy [Yoshida and Nappi 2007]. Thus, we propose a new framework called dis-
tributed colonography, in which the colonography database at each institution may be
shared and/or uploaded to a common server. The CAD system at each institution can
be enhanced by incorporating new data from other institutions using the distributed
learning model proposed in this article.

The concept of distributed colonography using networked distributed databases has
been discussed in many classification applications, but not yet in the context of CAD
in CT colonography [Yoshida et al. 2012]. These existing studies showed that the over-
all classification performance for larger multiple databases was improved in practical
settings [Chang et al. 2008; Khan et al. 2013]. Rather than applying traditional tech-
niques of classification to a very limited number of patients, medical data from multiple
institutions can be explored.

The utilization of the proposed distributed colonography framework shown in Fig-
ure 1 requires a study to determine whether the overall performance is improved by
using multiple databases. The presented work is a first attempt at such a study. The
benefit for clinical practice is that different characteristics of CT colonography datasets,
which may not exist at a single institution, will be available. Thus, both the CAD algo-
rithm and clinicians can observe and utilize many of the potential cases in the proposed
distributed platform.

The primary focus of this article is to find effective ways to associate multiple
databases to represent statistical data characteristics. Few existing classification tech-
niques using distributed databases successfully handle big data structures. The new
classification method is expected to be capable of learning multiple large databases
specifically tailored to the big data of CT colonography. Thus, we propose composite
kernel feature analysis to deal with the effective compression of big data from multiple
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Fig. 1. Distributed colonography with distributed image databases for colon cancer diagnosis. The hosting
server collects and analyzes databases from different institutions and groups them into assembled databases,
and individual institutions can access them through various interfaces.

databases. The improvement in performance that could be obtained by employing the
proposed approach requires a very small additional investment in terms of resources,
infrastructure, and operational costs.

We propose Group Kernel Feature Analysis (GKFA) for distributed databases for the
group learning method. GKFA can efficiently differentiate polyps from false positives
and thus can be expected to improve detection performance. The key idea behind the
proposed GKFA method is to allow the feature space to be updated as the training
proceeds with more data being fed from other institutions into the algorithm. The fea-
ture space can be reconstructed by GKFA by grouping multiple databases. The feature
space is augmented with new features extracted from the new data, with the feature
space expanded if necessary. We present the first comparative study of these meth-
ods and show that the proposed GKFA outperforms existing nonlinear dimensionality
reduction methods when different databases for CT colonography become necessary.

The contribution of this study is that the proposed GKFA method works in distributed
CT colonography databases. These databases, acquired over a long period of time,
can sometimes be highly diverse, and each database is unique in nature; therefore,
obtaining a clear distinction among multiple databases is a very challenging task. There
is a chance of misinterpreting the database to be either homogeneous or heterogeneous
in nature while training the new incoming databases from many institutions. The
method was tested using real CT colonography data to show that the proposed GKFA
improves CAD performance while achieving a feature space that is comparably similar
to the feature space obtained by a separate learning method at each institution.

The rest of this article is organized as follows. Section 2 provides an introduction
to kernel methods and a brief review of the existing kernel-based feature extraction
method, Kernel Principal Component Analysis (KPCA). In Section 3, we discuss ho-
mogeneous and heterogeneous groupings of database subsets to deal with the huge
volume of incoming data. Section 4 describes the proposed GKFA for polyp candidates
from multiple databases, Section 5 evaluates the experimental results, and conclusions
are drawn in Section 6.
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2. KERNEL PRINCIPAL COMPONENT ANALYSIS (KPCA)

In the generic field of pattern recognition, there are many existing feature selection
methods for classifiers such as stepwise feature selection [Taimouri et al. 2011] and
manifold-based methods [Hu et al. 2004]. It is not certain if these existing methods
are effective when used in the proposed distributed CT colonography framework. The
effective application of group learning using multiple databases to nonlinear spaces
is undertaken using kernel-based methods. Kernel-based feature extraction methods
tend to perform better than non-kernel-based methods since the actual databases have
very nonlinear characteristics. Another issue under consideration is the approach used
to handle the larger sized databases obtained by combining multiple databases. Zheng
et al. [2005] proposed that the input data be divided into a few groups of similar size
and KPCA be applied to each group. A set of eigenvectors was obtained for each group,
and the final set of features was obtained by applying KPCA to a subset of these
eigenvectors. The application of KPCA is a promising method of compressing all the
databases and extracting the salient features (principal components) [Kivinen et al.
2004; Ozawa et al. 2008; Zhao et al. 2006; Li 2004; Kim 2007]. KPCA has already
shown computational effectiveness in many image processing applications and pattern
classification systems [Kim et al. 2003; Kim and Kim 2003; Hoegaerts et al. 2007; Chin
and Suter 2007].

For efficient feature analysis, the extraction of the salient features of a polyp is
essential because of the size and 3D nature of the polyp databases [Nappi and Yoshida
2002, 2003]. Moreover, the distribution of the image features of polyps is nonlinear.
The problem is how to select a nonlinear, positive-definite kernel K: RY x RY— R of an
integral operator in the d-dimensional space. The kernel K, which is a Hermitian and
positive semi-definite matrix, calculates the inner product between two finite sequences
of inputs {x; : i € n} and {xj : j € n}, defined as K := (K(x;, xj)) = (i).j) :
i, ] € n). Here, x is a gray-level CT image, n is the number of image databases, and
[]: RY — H denotes a nonlinear embedding (induced by K) into a possibly infinite
dimensional Hilbert space H. Some of the commonly used kernels are the Linear
Kernel, the Polynomial Kernel, the Gaussian Radial Basis Function (RBF) Kernel, the
Laplace RBF Kernel, the Sigmoid Kernel, and the ANOVA RB Kernel [Schélkopf and
Smola 2002].

Kernel selection is heavily dependent on data specifics. For instance, the linear
kernel is important in large, sparse data vectors, and it implements the simplest of all
kernels, whereas the Gaussian and Laplace RBFs are general-purpose kernels used
when prior knowledge about data is not available. The Gaussian kernel avoids the
sparse distribution, which is obtained when a high-degree polynomial kernel is used.
The polynomial kernel is widely used in image processing, while the ANOVA RBF is
usually adopted for regression tasks. A more thorough discussion of kernels can be
found in Scholkopf and Smola [2002], Frohlich et al. [2003], Chen [2003], Park and
Cho [2003], and Sadjadi [2008]. Our GKFA for CT colonographic images is a dynamic
extension of KPCA following Kim and Kim [2003], Kim et al. [2004], Hoegaerts et al.
[2007], Chin and Suter [2007], Jiang et al. [2006], and Jayawardhana et al. [2009].

KPCA uses a Mercer kernel to perform a linear principal component analysis of the
transformed image. Without loss of generality, we assume that the image of the data
has been centered so that its scatter matrix in S is given by S = =1 Ox)Ex)T .
The eigenvalues A; and eigenvectors ¢; are obtained by solving the following equation,
Ajej = Sej = ZIEin)Ex‘ )T ej = =1 < ej, [Ex;) > [Ex,). If K is an n xn Gram matrix,
with the element kij = < |J:dxi), [ix;)>, and aj = [aj1,aj2,...aj,] are the eigenvectors
associated with eigenvalues A;, then the dual eigenvalue problem equivalent to the
problem can be expressed as Aja; = Kaj.
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Fig. 2. The concept of Group Kernel Feature Analysis. The proposed criteria are to determine the nature of
database by (1) decomposition, (2) classification by heterogeneity, and (3) combination.

KPCA can now be presented as follows:

1. Compute the Gram matrix that contains the inner products between pairs of image
vectors.
2. Solve Ajaj; = Kaj to obtain the coefficient vectors aj for j =1,2,...,n.

3. The projection of a test point x € RY along the j-th eigenvector is <e;, Cdx)> =
=1aji< Xi), EX)> = 1ajik(x, X ).

This method implicitly contains an eigenvalue problem of rank n, so the computational
complexity of KPCA is O(n®). The total computational complexity is given by O(In2),
where 1 stands for the number of features to be extracted and n stands for the rank
of the Gram matrix K [Jiang et al. 2006; Jayawardhana et al. 2009]. Once the Gram
matrix is computed, we can apply these algorithms to our database to obtain a higher
dimensional feature space. This idea is discussed in the following sections.

3. KERNEL FEATURE ANALYSIS (KFA) FOR DISTRIBUTED DATABASES

Non-shareable data have not yet been addressed in any clinical applications of colonog-
raphy CAD. In the current environment, the problem is that each platform is indepen-
dently operated in a closed manner—that is, none of the CAD platforms contributes to
other CAD platforms. To avoid this limitation, the proposed distributed databases for
colonography attempt to make larger data-driven CAD more prominent through the
use of data aggregation. To handle data aggregation by synthesizing each platform, in-
stead of handling data independently, we herein propose a machine learning technique
called GKFA that adjusts the classification criteria by extending KPCA for distributed
colonography databases. We want to validate the performance of GKFA when applied
to a distributed database, specifically CT colonography.

As shown in Figure 2, we introduce the concept of training the algorithm by analyzing
the data received from other databases. Step 1 in Figure 2 illustrates the decomposition
of each database through KFA. Each database consists of several datasets. For example
Database 1 is decomposed into four datasets. We will describe Step 1 in Section 3.1 and
Step 2 in Section 3.2 to reconstruct each database using KFA. Specifically, Section 3.1
describes how to extract the data-dependent kernels for each database using KFA.
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In Section 3.2, we propose that each database be classified as either homogeneous or
heterogeneous by the proposed criteria so that each database can be decomposed into
a heterogeneous dataset. We will describe the details of Step 3 separately in Section 4
as GKFA.

3.1. Extract Data-Dependent Kernels Using KFA

We exploit the idea of the data-dependent kernel to select the most appropriate kernels
for a given database. Let {x;, x{}(i, j = 1,2,...,n) be n training samples of the given
d-dimensional data, and x; = {+1, —1} represents the class labels of the samples (i.e.,
the data are labeled true-positive representing x; = {+1}). A data-dependent kernel is
adopted using a composite form as follows: the kernel ki, for 1 € {1, 2, 3, 4} is formulated
as ki(xi, xj) = qx)qxj)pi(xi, xj), where x € RY, pi(x;, xj) is one kernel among four
chosen kernels. Here, q;(.) is the factor function, q;(x;) = ajg + zlalmkl(xi, aim), where
ki(xi, xj) and aj,, are the combination coefficient. In matrix form, we can write q; = Kja.,
where q = {qi(x1), qi(x2), ..., q1(x,)}T and K| is an n x(n+1) matrix defined as:

{ 1 k(xq,an) -+ ki (Xlsaln)]
1 ki (x2,a11) - ki (Xe, am)

K = (D

1 K (xo, a11) - ki (X, 21m)

Let the kernel matrices corresponding to kernels k;, and p; be K;, and P;. Therefore,
we can denote the data-dependent kernel matrix K; as K; = [qi(xi)qi(xj) pi(xi, Xj)]nxmt1)-
Defining Q; = {1, qi(x1), qi(x2), . .., qi(x,)}T, we obtain K; = Q;P; Q] . We decompose each
database by maximizing the Fisher scalar for our kernel optimization. The Fisher scalar
is used to measure the class separability J of the training data in the mapped feature
space. It is formulated as ] = tr (s, tr(E,.Bwl), where Sy, represents “between-class
scatter matrices,” and S, represents “within-class scatter matrices.”

Suppose that the training data are clustered; that is, the first n; data belong to one
class (class label equals —1), and the remaining ny data belong to the other class (class
label equals +1). Then, the basic kernel matrix P| can be partitioned to represent each

class shown as: | |
P, P
b ThPh @
Py Py
where P|,, P1,, Pj;, and P), are the submatrices of P; in the order of ny x ny, ny x ng,

ng X ni, ng X ng, respectively. According to Xiong et al. [2007], the class separability by
Fisher scalar can be expressed as J(a)) = a Mjai/a[ Njaj, where M; = KT B/K;, N; =

KiT W] Kl, and El El
[E]
(1] il/ n; 0 IIIPh/ n, 0
0

W = diag Pj;, Py — 1 | = | —P/n. (3)
Pyo/ 1, 0 P,/ 1,

To maximize J|(a;), the standard gradient approach is followed. If the matrix Ny; is
nonsingular, the optimal a; that maximizes J;(a;) is the eigenvector that corresponds
to the maximum eigenvalue of Mja; = A;Nja;. The criterion to select the best kernel
function is to find the kernel that produces thel,illargesigenvalue:

Ai- = argmax N, 7'M, (4)
1

Choosing the eigenvector that corresponds to the maximum eigenvalue can maximize
the Ji(a;) to achieve the optimum solution. Once we determine the eigenvectors (i.e.,
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the combination coefficients of all four different kernels), we now proceed to construct
q and Q to find the corresponding Gram matrices of kernel K.

The optimization of the data-dependent kernel k; consists in selecting the optimal
combination coefficient vector a; so that the class separability of the training data in
the mapped feature space is maximized. Once we have computed these Gram matrices,
we can find the optimum kernels for the given database. To do this, we arrange the
eigenvalues (that determined the combination coefficients) for all kernel functions in
descending order. The first kernel corresponding to the largest eigenvalue is used in the
construction of a composite kernel that is expected to yield the optimum classification
accuracy [Motai and Yoshida 2013]. If we apply one of the four kernels for the entire
database, we cannot achieve the desired classification performance.

3.2. Decomposition of Database through Data Association via Recursively
Updating Kernel Matrices

As shown in Step 2 of Figure 2, in each database, we apply the data association using
class separability as a measure to identify whether the data are either heterogeneous
or homogeneous. Obtaining a clear distinction between the heterogeneous and homo-
geneous data of each database is a very challenging task. The data acquired in clinical
trials can sometimes be highly diverse, and there is no concrete method to differenti-
ate between heterogeneous and homogeneous data. We would like to decompose each
database so that the decomposed database has homogeneous data characteristics. If
the data are homogeneous, then separability is improved; conversely, heterogeneous
data degrade the class separability ratio. Let us introduce a variable , which is the
ratio of class separabilities:

¢ = argmax(J/(a))/ J.(a))), %)

where J/(a)) = a/" M/a//a/T N/a/ denotes the class separability yielded by the most
dominant kernel, which is chosen from the four different kernels for the dataset, and
J/(a)) = a]T Mja/a/T Nja| is the class separability yielded by the most dominant kernel
for the entire database. Because of the properties of class separability, Equation (5)
can be rewritten as § = A,/ A, where A, corresponds to the most dominant eigenvalue
of in the maximization of Equation (4) under the kernel choice, given all clusters
noted as r clusters. The newly computed A is the latest eigenvalue of another r set
of “re-calculated” clusters. If ¢ is less than a threshold value 1, then the database is
heterogeneous; otherwise, it is homogeneous. If the data are homogeneous, we keep
the Gram matrix, as defined in Section 3.1. Conversely, if the data are heterogeneous,
we update the Gram matrix depending on the level of sub-dataset heterogeneity, as
described later.

We propose to quantify the data’s heterogeneity by introducing a criterion called the
Residue Factor by extending Equation (5) § = A/ A, into the Residue Factor r f, defined
as:

rf=(al —a,)-AJA,, (6)

where we use only the most dominant kernel for determining the Residue Factor. The
class separability of the most dominant kernel for the newly decomposed data is directly
dependent on both the maximum combination coefficient a/ (this is the maximum
combination coefficient of four different kernels), as well as the maximum eigenvalue
N.. Let us denote by a, the mean of the combination coefficients of all databases and
by a/ the most dominant kernel among the subsets of the newly decomposed database,
respectively. Using these values, we determine the type of update for the Gram matrix
by evaluating disparities between composite eigenvalues, iteratively.
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We observed that there exists a chance of misinterpreting heterogeneous data while
updating the newly clustered databases. Specifically, as shown in Figure 3, we consider
the two cases of the updates for small/large heterogeneous data as follows:

Case 1: Partially update for small heterogeneous data

Ifthe Residue Factor r f in Equation (6) is less than a threshold value n, then that means
the heterogeneous degree between the previous eigenvectors and the new eigenvectors
is relatively small. Hence, the dimensions of the Gram matrix have to remain constant.
We replace the trivial rows and columns of the dominant kernel Gram matrix with those
of the newly decomposed data. The trivial rows/columns are calculated by the minimum
difference vector. Since we assigned the decomposed data to one of the existing datasets,
we just compare the combination coefficient values of that class with the combination
coefficient of new decomposed data to yield the difference vectors that determine the
trivial combination vector to be replaced. This process is repeated for all the kernel
matrices.

The input matrices P, and Q/ should also be updated by removing rows and columns,
by applying the four steps shown in Figure 4.

In Step 1, we compute the individual residue factor r f corresponding to each dataset
and decompose one matrix corresponding to one database into kernel matrices for
several datasets. In Step 2, we choose the main kernel matrix among the datasets
by maximizing ¢. In Step 3, we search trivial elements in the rf vector in the main
kernel matrix according Equation (6) that minimizes rf. In Step 4, we substitute the
corresponding parts in the main kernel matrix with the calculated element of r f in the
other datasets. We compute Q/ = diag(a/). Hence, in the update for small heterogeneous

data, the Gram matrix can be given as K/ = Q/P/Q/T.
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Case 2: Update for large heterogeneous data

If the Residue Factor r f in Equation (6) is greater than a threshold value n, that means
the heterogeneous degree between the previous eigenvectors and the new eigenvectors
is relatively large. So, it is very important for us to retain this highly heterogeneous
data for efficient classification. Instead of replacing the trivial rows and columns of the
previous data, we simply retain them. Hence, the size of the Gram matrix is increased
by the size of the newly decomposed data. We already calculated the new combination
coefficient a, and input matrix P’ and Q" are the same as in Section 3.1. Then, the
kernel Gram matrix can be newly calculated as:

K" = QP/Q. (0

Once we have our kernel Gram matrices, we can determine the composite kernel that
gives us the optimum classification accuracy when the existing database is incorporated
with newly decomposed data.

We perform the entire algorithm to see if there is an improvement in the difference
of a « and a/ between the current and previous steps. If the heterogeneous degree is still
large, then the decomposed data has to be further reduced, and the recursive algorithm
described herein is performed again. This entire process is summarized in the flowchart
in Figure 5. This process is repeated until the Residue Factor finds an appropriate size
of data that would allow for all the decomposed datasets to be homogeneous. That
means the Residue Factor is expected to converge to zero by recursively updating
clusters:

Ed

lim arg(rf®) ~0 (8)
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After the training of the Gram matrix is finished to incorporate the heteroge-
neous’homogeneous features of the newly decomposed data, the KFA algorithm is
applied to the kernel Gram matrix. Obtaining a higher dimensional feature space for
the huge volume of data with greater classification power depends on how effectively
we update the Gram matrix. As the size of distributed databases increases, it is often
very important to re-evaluate and change the criteria established using an enhanced
algorithm to correctly train the big data. In the following section, we explore how the
re-clustered multiple databases must be aligned.

4. GROUP KERNEL FEATURE ANALYSIS (GKFA)

There is currently insufficent true cancer data in any single database to validate the
accuracy of CT colonography. Due to the limitations of training cases, few radiologists
have clinical access to the full variety of true-positive cases encountered in actual
clinic practices of CT colonography. Therefore, we propose combining the data from
several databases to improve classification by increasing available colon cancer cases
and the diversity of patients. There are as yet few data centers that render data into a
form that can be readily reused, shoulder curatorial responsibilities, or build new data
management tools and services.

In this section, as shown in Step 3 of Figure 2, we illustrate how to handle multiple
databases through GKFA.

4.1. Composite Kernel: Kernel Combinatory Optimization

In this section, we propose a composite kernel function to define the weighted sum of
the set of different optimized kernel functions, which corresponds to multiple clustered
databases. To obtain the optimum classification accuracy, we define the composite
kernel K5, (p), using a composite coefficient p, as

Ksom (P) =P, Q, P QL + p1,Q1, P, QL 9

where K} . (p) is a composite kernel obtained by combining two of the four basic kernel
functions (linear, polynomial, Gaussian RBF, and Laplace RBF). Thus, the number of
possible combinations is six: (‘21) = 41/(2! % 2!) = 6 cases, where s represents one of six
composite kernels. Through this approach, the relative contribution of a single kernel
to the composite kernel can be varied over the multiple databases by the value of
the composite coefficient p. Instead of using K as the kernel matrix, we use K: .(p).
According to Chang et al. [2008], this composite kernel matrix K$ . (p) satisfies Mercer’s
condition. Each term should be positive or zero; thus, the combined two terms in
Equation (9) are guaranteed for the semi-definiteness of the composite kernel.

The problem becomes how to determine this composite coefficient such that the
classification performance is optimized. To this end, we used the concept of kernel
alignment to determine the best ¢ = [p1, pi2], which gives optimum performace. The
alignment measure was proposed by Cristianini and Kandola [Cristianini et al. 2001] to
compute the adaptability of a kernel to the target data and provide a practical method
to optimize the kernel. It is defined as the normalized Frobenius inner product between
the kernel matrix and the target label matrix. The empirical alignment between kernel
ki and kernel kg with respect to the training set is given as:

Alky, ko) = (K1, Ko)p / 1K1 llg 1Kl (10)

where K; an-E o are the kernel m@ix for the training set using kernel function k; and
ko, IKillp = (K1, Ki)p, IKellp = (Ko, Ko)p. (Ky, Kg)p is the Frobenius inner product
between K; and Ks. If Ky = yy", then the empirical alignment between kernel K$
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and target vector y is:

m .mn s s
AKom Yy = Koom, ¥Y Keom Keom ¢ YY ¥y =Y Komy 1 K&, Koo ¢
(11)

If the kernel is well-adapted to the target information, separation of the data has
a low bound on the generalization error [Cristianini et al. 2001]. So, we can optimize
the kernel alignment by training data to improve the generalization performance on
the testing data. Let us consider the optimal composite kernel corresponding to Equa-
tion (9) as: K, () = 0,Q, P, Q| + 6,,Q, P, Q. We can change p to maximize the
empirical alignment between K$ () and the target vector yy' . Hence,
A H[E (L]
p= argp max A K(i)m’ ny

f

: (12)

—argmax|  pK,yy" n oK, . Pk, )

P 1=1 Lh=1 =1

([ |
@ =

= argmaxk Py n p11p12v1112J =argmax p' Up n’p' Vp , (13)

P 1=1 hi=1,ls=1 P

[

wherew = (Ki, yy" ), Vi, = (Kip, K,), Upyy = wugg Vi, = Vi, Vi, P = (/01 /Pr)- Let
the generalized Raleigh coefficient be J (p) = pTUp p' Vp. Therefore, we can obtain
by solving the generalized eigenvalue problem:

Up =dVp, (14)

where O denotes the eigenvalues of kernel alignment. Once we find this optimum
composite coefficient ¢, which will be the eigenvector corresponding to the maximum
eigenvalue 8, we can compute the composite data-dependent kernel matrix K (p)
according to Equation (9) by changing data clusters. That means that eigenvectors
p for Up = OV p provide the optimum coefficients for the composite kernel in Equ-
ation (9).

This composite kernel process provides an optimal data-dependent kernel. We can
now proceed with to train the multiple databases for the re-clustered database, as
described in the subsequent section.

4.2. Multiple Databases Using Composite Kernel

We extend Section 4.1 to multiple databases after the composite kernels have been
identified. Four basic kernels are considered to combine and represent the six Kcom(p)
shown in Figure 6: K. (p), KZ (p), K& (p), and K3 (p). We assign each database
(there are 19 databases in our colonography experiment described in Section 5) one

of six composite kernel cases. Database 1, for example, is labeled by kernel K} ,

Databases 8 and 9 use kernel K2 . Then we assemble the database according to the
kernel label.

To assemble the databases, we further optimize combining coefficients by assembling
databases. Our goal is to find a composite kernel that will best fit these newly assem-
bled databases Kg,,,,. Since the composite kernel with the coefficients was calculated
in Section 4.1 starting from Equation (9), the desired calculation of the assembled
databases utilizes the precalculated values K; . Let us define the newly calculated

group kernel K¢, by the weighted sum of the composite kernel previously calculated

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 58, Publication date: July 2015.



58:12 Y. Motai et al.

7 m
... ...

S.tep iA' I(emel
C ¥
Optimization

Step 3B: Multiple
Databases Using
Composite Kernel

Fig. 6. Group kernel feature analysis (GKFA). Steps 1 and 2 are the same as in Figure 2. Step 3 of Figure 2
is illustrated here for assembled databases through kernel choice in the composite kernel as in Section 4.1
(Kernel Combinatory Optimization) and Section 4.2 (Multiple Databases Using Composite Kernel).

| Step 1) combination of kernel functions Eq. (9) |
| Step 2) obtain by solvinl:g Eq. (14) |
| Step 3) find a composit: kernel for assembled databases Eq. (15)
| Step 4) estimate the opljmal by Eq. (16) |

Fig. 7. The overall GKFA steps for the newly assembled databases.

in Equation (14) in Section 4.1:

K oy Beroup) = Ba(Kion, (15)

g=1

where K;, ,, is the weighted sum of data- dependent kernel optimized by assembling
databases up to the number D,, representing K, .. Dg is defined as the total database
number assembled for grouping under the identical composite kernel K*y,,,,. We do not
directly calculate K gmup using Equation (15) since we already have calculated ¢ and d
corresponding to Kg,,, for the individual databases in Section 4.1. We would like to
estimate the optimal §, shown in Equation (15) by the weighted sum of eigenvectors
through the eigenvalues 0 previously calculated in Equation (14):

Poow = 8P S, (16)

g=1 g=1

where the value d, denotes the eigenvalues of the database g in Equation (14), cor-
responding to the individual database in Section 4.1. The newly grouped kernel, cor-
responding to the largest eigenvalue dg, is used in the construction of an assembled
database to yield the optimum classification accuracy. This entire process (detailed in
Sections 4.1 and 4.2) is summarized in the flowchart in Figure 7.
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Table |. Databases

# Patients Total # # Database Total #
Databases # TP patients # FP patients Patients #TP #FP  Database
1 5 30 35 12 155 167
2 3 29 32 5 217 222
3 3 10 13 7 213 220
4 3 27 30 5 206 211
5 7 35 42 12 196 208
6 3 25 28 6 198 204
7 3 24 27 6 208 214
8 1 28 29 4 200 204
9 3 17 20 8 190 198
10 3 22 25 7 198 205
11 4 23 27 8 181 189
12 3 29 32 4 191 195
13 2 11 13 8 208 216
14 3 27 30 5 188 193
15 3 15 18 7 147 154
16 3 5 8 8 221 229
17 3 12 15 7 169 176
18 2 25 27 12 169 181
19 2 11 13 5 183 188
Average 3.1 21.3 24.4 7.15 190.1 197.3

Rather than a single database, the proposed GKFA approach uses more than one
database to improve cancer classification performance, as shown in the experimental
results.

5. EXPERIMENTAL RESULTS
5.1. Cancer Databases

We evaluated the performance of the proposed GKFA based on a retrospectively es-
tablished database of clinical cases obtained from several multicenter screening CT
Colonography (CTC) trials [Pickhardt et al. 2003; Rockey et al. 2005; Regge et al.
2009]. The database consisted of 464 CTC cases that were obtained from a total of 19
medical centers in the United State and Europe. The current study was a post-analysis
of earlier clinical trial data conducted in compliance with Health Insurance Portabil-
ity and Accountability Act regulations and was approved by our institutional review
board.

Our previously developed CAD scheme [Yoshida and Nappi 2001; Nappi and Yoshida
2007; Yoshida et al. 2002] was applied to the CTC cases, which yielded a total of 3,774
detections (polyp candidates) consisting of 136 True-Positive (TP) detections and 3,638
False-Positive (FP) detections. The supine and prone CTC volumes of a patient were
treated as independent in the detection process. A Volume of Interest (VOI) of 963 pixels
was placed at each candidate to cover the entire region of the candidate. The collection
of the VOIs for all the candidates consisted of the databases used for the performance
evaluation as shown in Table I. We applied up to 40%-fold cross-validation for testing
with the training data.

The proposed statistical analysis by use of GKFA was applied to the databases in
Table I, which showed that the CTC data were highly biased toward FPs (the average
ratio between TP and FP is 1: 26.6) due to the limited number of TPs caused by an
asymptomatic patient cohort. The proposed statistical analysis using GKFA is expected
to compensate for the lack of TPs by incorporating the multiple databases.
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Table II. Eigenvalues of Four Kernels for Offline Databases

Databases The First Kernel The Second Kernel
1 Sigmoid Kernel Gauss Kernel
A=107,d =3.334*10"%, Offset = 0 A=393,0=0.7
2 Sigmoid Kernel Polynomial Kernel
A=31.6,d =2.223*10"%, Offset =0 A=2.41,d =35, Offset =0.1
3 Sigmoid Kernel Polynomial Kernel
A=96.7,d =1.010"7, Offset = 0 A=559,d=1,Offset =0.1
4 Sigmoid Kernel Linear Kernel
A=105,d=1.112%x10"%, Offset =0 A=921,d=3
5 Sigmoid Kernel Gauss Kernel
A =328, d=23.334*10"%, Offset = 0 AN=4.44,0=0.1
6 Sigmoid Kernel Gauss Kernel
A=80.1,d =2.223*10"4, Offset = 0 A=9.82,0=0.8
7 Sigmoid Kernel Linear Kernel
A =38.3,d=2.223*10"%, Offset =0 A=17.1,d=5
8 Sigmoid Kernel Gauss Kernel
A=127,d =5.556*107*, Offset =0 A=2831,0=0.1
9 Sigmoid Kernel Gauss Kernel
A=1359,d=1.112*10"*, Offset = 0 A=20.5,0=0.9
10 Sigmoid Kernel Linear Kernel
A=18.6,d =1.112*1074, Offset = 0 A=228,d=3
11 Sigmoid Kernel Gauss Kernel
N=52,d=2.223*10"% Offset =0 A=253,0=0.1
12 Sigmoid Kernel Gauss Kernel
A= 88.9,d=4.44510"%, Offset = 0 A=148,0=0.6
13 Sigmoid Kernel Gauss Kernel
A=40.8,d =2.223*10"%, Offset = 0 A=1.78,0=0.1
14 Polynomial Kernel Sigmoid Kernel
A=29.6,d =1, Offset = 0.1 A= 6.3,d =0.000001 offset =0
15 Sigmoid Kernel Gauss Kernel
A =280,d =3.334*10"%, Offset = 0 A=11.0,0=0.7
16 Sigmoid Kernel Gauss Kernel
AN=48.1,d =3.334*1074, Offset = 0 A=1.82,0=0.1
17 Sigmoid Kernel Polynomial Kernel
A=89.0,d =3.334%10"%, Offset =0 A= 1.28,d =7, Offset = 0.1
18 Sigmoid Kernel Gauss Kernel
A= 179,d =2.223*10~%, Offset = 0 A=138,0=0.1
19 Sigmoid Kernel Gauss Kernel

A= 46.2,d =3.334*10"%, Offset = 0

A=1.35,0=0.1

5.2. Optimal Selection of Data-Dependent Kernels

We used the method proposed in Section 3.1 to create four different data-dependent
kernels and select the kernel that best fit the data and achieved optimum classifi-
cation accuracy for each database. We determined the optimum kernel depending on
the eigenvalue that yielded maximum separability. The performance measure used to
evaluate the experimental results was defined as the ratio between the number of suc-
cessfully classified polyps and the total number of polyps. Table II lists the eigenvalues
A and parameters of four kernels for each database calculated in Equation (5).

Table IT shows the maximal eigenvalues corresponding to the data-dependent ker-
nels of an individual database. Among the four data-dependent kernels, the Sigmoid
kernel was observed to achieve the best performance for most databases except for
Database 14. The kernel with the maximum eigenvalue is highlighted for each database
in Table II.
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Table Ill. The Value of ¢ for Each of the Composite Kernels
Databases Two Most Dominant Kernels P1 P2 K-NN(k) Performance (%)

1 Sigmoid and Gauss 0.73  0.27 1 98.00
2 Sigmoid and Poly 0.27 0.73 8 90.00
3 Sigmoid and Poly 0.68 0.32 7 86.27
4 Sigmoid and Linear 0.94 0.06 3 94.23
5 Sigmoid and Gauss 0.30 0.70 1 92.16
6 Sigmoid and Gauss 0.72  0.28 1 97.78
7 Sigmoid and Linear 0.27 0.73 3 90.20
8 Sigmoid and Gauss 0.31  0.69 1 96.00
9 Sigmoid and Gauss 0.65 0.35 1 92.16
10 Sigmoid and Linear 0.27 0.73 1 92.00
11 Sigmoid and Gauss 0.28 0.72 1 98.04
12 Sigmoid and Gauss 0.24 0.76 3 94.12
13 Sigmoid and Gauss 0.27 0.73 3 92.16
14 Sigmoid and Poly 0.43  0.57 5 90.38
15 Sigmoid and Gauss 0.73  0.27 1 95.35
16 Sigmoid and Gauss 0.27 0.73 1 97.96
17 Sigmoid and Poly 0.31 0.69 1 91.84
18 Sigmoid and Gauss 0.74  0.26 1 94.00
19 Sigmoid and Gauss 0.27 0.73 4 90.91

5.3. Kernel Combinatory Optimization

Once we find the kernel that yields the optimum eigenvalue, we select the two largest
kernels to form the composite kernel. For example, for Database 1, we combined the Sig-
moid and Gauss kernels to form the composite kernel. We observed that each database
had different combinations for the composite kernels. We adopted the KFA algorithm
to obtain the feature vectors, and we classified them using the K-Nearest Neighbor
(K-NN) method with a metric of Euclidean distance. Table III shows how the two ker-
nel functions are combined according to the composite coefficients listed in the table.
These composite coefficients were obtained in Section 4.2. For all the databases, the
most dominant kernels kept varying, and the second most dominant kernel was the
Sigmoid kernel. As a result, the contribution of the Sigmoid kernel was lower when
compared to other kernels in forming a composite kernel.

5.4. Composite Kernel for Multiple Databases

We used the method proposed in Section 4.2 to obtain the group kernel by the weighted
sum of the composite kernels, then assembled 19 individual databases according to
kernel type. As for the Sigmoid and Gauss group kernel, we sorted 12 databases in
order as follows: A2 < A2 < N1 < A6 < A9 < A8 < AIZ < AL < A8 < AL < \I5 < 2D
then, they are divided into three assembled databases by maximal eigenvalue, as in
Equation (4). For each assembled database, we applied the GKFA method with the
K-NN classifier, and assembled database parameters.

Table IV shows the assembled databases by group kernel. Performance can be com-
pared with the values in Table III. Table IV shows that most databases can be cate-
gorized into the Sigmoid and Gauss group kernel. We divided 12 databases into three
assembled databases based on the order of eigenvalues. The classification performance
for combined databases is 98.49% on average, compared to the performance of KFA
with individual databases which is 95.22%. The second database assembled was the
Sigmoid and Poly group kernel. A classification rate of 95.33% was achieved, which
outperformed KFA with individual Databases 2, 3, 14, and 17 by an average of 89.62%.
The last database assembled was the Sigmoid and Linear group. We obtained a 97.35%
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Table IV. GKFA for Assembled Database

Database
Kernel Type Assembled First Kernel Second Kernel Performance (%)
Database9 Sigmoid Gauss
Databasel3 d=6.67"10"* 0=04
Databasel1 Offset = 0. P2 =0.51 97.54
Databasel6 p; =0.49
Databasel9 Sigmoid Gauss
Database6 d =8.89%10"* c=02
Sigmoid and Databasel2 Offset = 0. p2 =0.12 100.00
Gauss Databasel p; =1.00
Database8 Sigmoid Gauss
Databasel8 d=7.78*10"* 0=023
Databasel5 Offset = 0. P2 = 0.05 97.94
Databaseb p; =0.95
Database2 Sigmoid Linear
Sigmoid and Database3 d =3.34%107* d =3, Offset =
Poly Databasel4 Offset = 0. 0.1 95.33
Databasel7 p; =0.71 P2 =0.20
Database4 Sigmoid Linear
Sigmoid and Database7 d =3.34*10"* d=13
Linear Database10 Offset = 0. P2 = 0.12 97.35

p1 = 1.00

performance rate, which was 5.2% higher than KFA for Databases 4, 7, and 10. There-
fore, we can conclude from the comparison of Tables III and IV that classification
performance can be improved by using GKFA for the assembled databases over KFA
for a single database.

5.5. K-NN Classification Evaluation with ROC

We demonstrate the advantage of GKFA in terms of the Receiver Operating Char-
acteristic (ROC) by comparing GKFA for assembled databases to KFA for a single
database. We evaluated the classification accuracy shown in Table III and ROC using
the sensitivity and specificity criteria as statistical measures of performance. The True
Positive Rate (TPR) defines diagnostic test performance for classifying positive cases
correctly among all positive instances available during the test. The False Positive
Rate (FPR) determines how many incorrect positive results occur among all negative
samples available during the test [Fawcett 2006]:

True Positives (TP)

TPR =
R True Positives (TP) + False Negatives (FN)

(17)

B False Positives (FP)
~ False Positives (FP) 4+ True Negatives (TN)

The classification performance was evaluated by the Area Under the Curve (AUC) by
calculating the integral of the ROC plot in the range between 0 and 1. We used the
K-NN method as classifier with parameter k, according to the performance of TPR and
specificity with respect to the variable k in Figures 8, 9, and 10 and corresponding to
the kernel types of Table IV.

Figure 8 shows the ROC results for the Sigmoid and Gauss group kernels. We
compared the performance of assembled databases by AUC, with a single database
(Databases 9, 11, 13, and 16) in Figure 8(a), a single database (Databases 1, 6, 12, and
19) in Figure 8(b), and a single database (Databases 5, 8, 15, and 18) in Figure 8(c),
respectively. In Figure 8(a), GKFA for the assembled database outperformed the KFA

FPR

(18)
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Fig. 8. ROC with Sigmoid and Gauss Group kernel (a) comparison between assembled databases and
databases 9, 11, 13, and 16; (b) comparison between assembled databases and databases 1, 6, 12, and 19;
(c) comparison between assembled databases and databases 5, 8, 15, and 18.

for a single database by achieving a higher TPR and a lower FPR. In Figure 8(b), al-
though Database 1 had a smaller FPR, GKFA for the assembled database had a better
gradient. In Figure 8(c), the performance of GKFA for the assembled database was not
as good as KFA for Database 18, but it performed better than the other three databases
in terms of the ROC.
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Fig. 10. ROC with Sigmoid and Linear Group kernel.

Figure 9 shows that KFA with Database 17 had the best performance in ROC, and the
second best one was the performance of GKFA for the assembled database. Regarding
KFA for Databases 2, 3, and 14, FPR was a bit high, and, at the same time, TPR was
not good enough. In the Sigmoid and Poly group kernel experiment, GKFA for the
assembled databases was not the best one, but better than KFA for the rest of the
single databases.

In Figure 10, we see that GKFA for the assembled database outperformed KFA for
Databases 4, 7, and 10, although Database 10 had a small FPR, but the maximal TPR
only reached 0.58. On the other hand, GKFA for the assembled databases reached
0.98, although the FPR was bigger than for Database 10. In most cases, GKFA for the
assembled databases had the advantage over KFA by an average of 22.2% in TPR and
3.8% in FPR for a single database with respect to FPR and TPR from Figures 8, 9,
and 10.

5.6. Comparison of Results with Other Studies on Colonography

In this section, we compared results for the Sigmoid and Gauss group kernels for
four databases (Databases 1, 6, 12, and 19) and the assembled databases with differ-
ent classifiers, which include RBF Neural Networks (RNN), Back-propagation Neu-
ral Networks (BNN), Support Vector Machines (SVM), Decision Trees (DT), and the
K-NN method [Stork and Yom-Tov 2004]. Classification performance is shown in Ta-
ble V through a Matlab implementation, and the resulting ROC curves are shown in
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Table V. Comparison of Different Classification Methods

Classifier Method Classifier Parameters Performance (%)
RNN Number of iterations given 2,500 90.00
BNN Number of iterations given 1,500 82.11
SVM Gauss kernel, Gaussian width 0.001, slack 0.1 87.37
DT Incorrectly assigned samples at a node 10% 96.32
K-NN K=1 97.94
1 a
0.8
0.6 -
14
a
0.4 —+—RNN(AUC:0.82) |
—e—BNN(AUC:0.35)
§i5 —v— SVM(AUC:0.54)
k DT(AUC:0.89)
==~ KNN(AUC:0.99)
0 014 02 03 04 05 06
FPR
Fig. 11. Classification comparison with different methods.
Table VI. Classification Accuracy Compared to Other Methods
Studies Performance (%) Datasets Methods
Yoshida et al. [2001] 95.0 Colonic Polyps Shape Index
Yao et al. [2004] 91.8 Colonic Polyps Fuzzy Clustering and
Deformable Models
Nappi and Yoshida 95.0 Colonic Polyps Adaptive Density
[2007] Correction and Mapping
van Ravesteijn et al. 95.0 Colonic Polyps Logistic Regression
[2010]
Awad et al. [2010] 93.4 Colonic Polyps Weighted Proximal
Support Vector Machines
Cai et al. [2011] 94.6 Phantom and Colonic Mosaic Decomposition
Polyps
Multiple CTC 97.6 Colonic Polyps Group Kernel Feature

Analysis(GKFA)

Figure 11. In Table V, we see that the K-NN method yielded the best performance,
followed by DT, RNN, SVM, and BNN methods in descending order. Each classifier
is listed with its corresponding parameters. The construction of NN is a three-layer
network with a fixed-increment single-sample perceptron for BNN, and RNN has a
radial basis function in the middle layer.

In Figure 11, we also see that the assembled databases with the K-NN method
achieved the best performance, followed by DT with less TPR. Thus, we conclude
that the K-NN method was the most appropriate classifier for the distributed medical
imaging databases with GKFA in the experiment.

Other studies that investigated the classification of CTC showed comparable per-
formance [Yoshida and Nappi 2001; Yao et al. 2004; Nappi and Yoshida 2007; van
Ravesteijn et al. 2010; Awad et al. 2010; Cai et al. 2011], as shown in Table VI, along
with the classification performance based on the proposed GKFA method applied to
multiple CTC databases.

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 58, Publication date: July 2015.



58:20 Y. Motai et al.

—— KPCA
160 f| —@— KFA
—he— GKFA

Computation Time (sec)

0 500 1000 1500 2000 2500 3000 3500 4000
Data Size

Fig. 12. The computation time comparison among KPCA, KFA, and GKFA as data size increases.

Note that, in this comparison table, the CTC datasets were different from each other;
thus, a direct comparison of classification performance is not possible. However, the
fact that the proposed GKFA classification yielded an overall performance of 97.6% on
average with a standard deviation of 2.77% implies that the proposed classifier may
potentially outperform the previous classifiers.

This is the first study that demonstrates that multiple databases may improve clas-
sification performance. Future works propose to increase the size of databases and the
number of institutions and to extend the interface module in the CAD system.

5.7. Computational Speed and Scalability Evaluation of GKFA

The computational efficiency of the proposed GKFA method was evaluated by compar-
ing its runtime with KPCA and KFA for the selected datasets. The algorithms were
implemented in Matlab R2007b using the Statistical Pattern Recognition Toolbox for
the Gram matrix calculation and kernel projection. The processor was a 3.2GHz Intel®
Pentium 4 CPU with 3GB of RAM. Runtime was determined using the cputime com-
mand. For each algorithm, computation time increases with increasing training data
size (n), as expected. All three methods required the computation of a Gram matrix
whose size increases as the data size increased. The results from Figure 12 clearly indi-
cated that GKFA and KFA required more computational time than KPCA because the
composite data-dependent kernels needed further calculations of a Gram matrix and
optimization of coefficient parameters. These overhead computations were the main
causes of the increase in runtime.

Typically, overall scalability is estimated by computational complexity. If the KPCA
algorithm contains an eigenvalue problem of rank n, the computational complexity
of KPCA is O(n?). In addition, each resulting eigenvector is represented as a linear
combination of n terms; the | features depend on n image vectors of X,,. Thus, all data
contained in X, must be retained, which is computationally cumbersome and unac-
ceptable for our distributed applications. If the KFA algorithm contains an eigenvalue
problem of rank n, the computational complexity of KFA is expected to be O(n?). If the
GKFA algorithm contains a distributed problem of D, databases, the computational
complexity of GKFA is expected to be O(Dgn,?).
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6. CONCLUSION

In this article, we proposed a new framework for health informatics: computer-aided
detection of colonic polyps using distributed colonography, where distributed databases
from multiple institutions are considered for participation. We showed how to merge
the information-centric characteristics and node-centric physical world connectivity to
develop a smart healthcare system. This is the first pilot study on the evaluation of how
the proposed machine-supported diagnosis system can handle multiple colonography
databases.

The size of TPs is usually small at a single institution due to the screening nature of
the colonoscopies. The CAD algorithm and clinicians both can observe all the potential
cases in the proposed distributed platform. For handling multiple CTC databases,
GKFA was developed in this article. When GKFA was used with assembled databases,
it achieved an average improvement of 22.2% in TPR and 3.8% in FPR compared to
single databases. GKFA has the potential to be a core classifier in the distributed
computing framework for a CAD scheme, which will yield high detection performance
of polyps using multiple distributed databases. Successful development of CAD in
the distributed computing environment may advance the clinical implementation of
cancer screening and promote the early diagnosis of colon cancer. Such a CAD scheme
can make CTC a viable option for screening large patient populations, resulting in
early detection of colon cancer and leading to reduced mortality due to colon cancer.

APPENDIX

Acronym Definitions

CAD Computer-Aided Detection

NN Neural Network

GKFA Group Kernel Feature Analysis
ROC Receiver Operating Characteristics
CT Computed Tomography

KPCA Kernel Principal Component Analysis
RBF Radial Basis Function

KFA Kernel Feature Analysis

FP False Positive

TP True Positive

PCA Principal Component Analysis
VOI Volumes Of Interest

TPR True Positive Rate

FPR False Positive Rate

K-NN K-Nearest Neighbor

SVM Support Vector Machine

Symbol Definitions

Xj Input Data

Yi [T 1| Output Class Label

kij = Lx),[[0x;) | Element of Gram Matrix
K Kernel Gram Matrix
q(.) Factor Function

L Base Kernel Label
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ps =, Base Kernel

im Combination Coefficient

K Data-Dependent Kernel

Q Factor Function Matrix

Q Updated Ql Matrix

P! Base Kernel Matrix

pl Updated Pl.. Matrix

J Fisher Scalar

Str/ Swr Between-class / Within-class Scatter Matrices

A Eigenvalue of Fisher Scalar

A Largest Eigenvalue

3 Ratio of the Class Separability

rf Residue Factor

ny Number of Data for the r-th Cluster

Kiom (P) Composite Kernel

p Composite Coefficient

s One of Six Composite Kernels

Alky, ko) Empirical Alignment between Kernels k1 and k2

9] Eigenvalues of Kernel Alignment

o] Optimum Composite Coefficient

K3 Group Kernel

& Eigenvalues of the Database d

MC) Class Separability Yielded by the Most Dominant
Kernel for Dataset(subsets) of Database

T.(a)) Class Separability Yielded by the Most Dominant
Kernel for the Entire Database

a), Combination Coefficients of the Most Dominant
Kernel among the Subsets

\é_"* Mean of Combination Coefficients of All
Databases
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