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Abstract—Cloud Colonography is proposed in this paper, using different types of cloud computing environments. The sizes of
the databases from the Computed Tomographic Colonography (CTC) screening tests among several hospitals are explored.
These networked databases are going to be available in the near future via cloud computing technologies. Associated Multiple
Databases (AMD) was developed in this study to handle multiple CTC databases. When AMD is used for assembling
databases, it can achieve very high classification accuracy. The proposed AMD has the potential to play as a core classifier tool
in the cloud computing framework. AMD for multiple institutions databases yields high detection performance of polyps using
Kernel principal component analysis (KPCA). Two cases in the proposed cloud platform are private and public. We adapted a
University cluster as a private platform, and Amazon Elastic Compute Cloud (EC2) as a public. The computation time, memory
usage, and running costs were compared using three respresentative databases between private and public cloud
environments. The proposed parallel processing modules improved the computation time, especially for the public cloud
enviroments. The successful development of a cloud computing environment that handles large amounts of data will make

Cloud Colonography feasible for a new health care service.

Index Terms— Cloud Service, Health Care, Computed Tomographic Colonography, Distributed Databases, Kernel Feature

Analysis, Group Learning, Cloud Computing.

1 INTRODUCTION

HE most prominent limiting factor pertaining to

widespread usage of the latest screening technology
as a replacement for traditional screening colonoscopy is
the limited supply of internal CTC images available at a
single medical institution. Such a limited supply of CTC
training images significantly constrains the accuracy of an
automated detection algorithm. Since many medical insti-
tutions employ a limited number of CTC specialists,
whose CTC image analysis skills vary widely [1],[2]. To
overcome these difficulties while providing a high-
detection performance of polyps, computer-aided detec-
tion (CAD) schemes are investigated that semi-
automatically detect suspicious lesions in CTC images [4].

CAD schemes have been developed for medical insti-
tutions (i.e. hospitals), where the number of training in-
stances used during automated diagnosis is determined
by resources and training requirements [5],[6],[8]-[10]. In
most clinical settings, if more training data are collected
after an initial tumor model is computed, retraining of the
model becomes imperative in order to incorporate the
newly-added data from the local institution, and to pre-
serve the classification accuracy [5],[6],[12],[13]. This clas-
sification accuracy may be proportionately related to the
amount of training data available, i.e, more training data
may yield a higher degree of classification. With this in
mind, we propose a new framework, called “Cloud Co-
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lonography”, where the colonography database at each
institution may be shared and/or uploaded to a single
composite database on a cloud server. The CAD system at
each institution can then be enhanced by incorporating
new data from other institutions through the use of the
distributed learning model proposed in this study.
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Fig. 1. This concept of cloud colonography with distributed image
databases for colon cancer diagnosis. The cloud server hosting will
collect distributed databases from different institutes and group them
by assembling database analysis with attributes.

The concept of collaborative cloud applications using
distributed databases has been discussed in [59]-[61], but
not yet in the context of CAD in Cloud Colonography,
meaning the presented work is a first attempt at such a
study. Therefore, the proposed Cloud Colonography
framework shown in Fig. 1 requires a comprehensive
study to determine whether the overall performance is
improved by using multiple databases. However, it is
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worth noting that, these existing studies showed that the
overall classification performance for larger multiple da-
tabases was improved in practical settings [54].

The primary contribution of this study is to develop
Cloud Colonography using Associated Multiple Data-
bases (AMD) to represent the statistical data characteris-
tics in both private and public clouds. The proposed
Cloud Colonography would be capable of learning mul-
tiple databases provided from multiple institutions. We
propose composite kernel feature analysis with multiple-
databases for this specific problem. Kernel feature analy-
sis is widely used for data compression, cluster-
ing/classification [58]. The improvement in performance
could be obtained by employing such efficient cloud-
computing approaches in terms of resources, infrastruc-
ture and operational costs. Comapred to other work [69]-
[72], the proposed AMD improved a computation time.
The database acquired over a long period of time can
sometimes be highly diverse. The prallelization in the
cloud enriments for multiple databases efficiently utilizes
the computational capabailty of public servers.

The rest of this paper is organized as follows. Section 2
provides an introduction to cloud environment and a
brief review of the existing feature extraction methods.
Section 3 describes the proposed AMD for Cloud Colon-
ography among multiple databases, Section 4 evaluates
the experimental results for classification performance,
Section 5 specifically accesses cloud computing perfor-
mance, while conclusions are drawn in Section 6.

2 CLouD ENVIRONMENTS

Cloud Colonography proposes new services using a plat-
form as a service (PaaS) model [60],[61]. Cloud Colon-
ography is a cloud computing platform for programming,
databases, and web servers. The clinical users access
Cloud Colonography via the proposed software on a
cloud platform without the cost and complexity of buying
and managing the underlying hardware and software
layers. Using existing PaaS platforms like Microsoft Az-
ure and Google App Engine, the underlying computer
and storage resources scale automatically to match appli-
cation demand so that the cloud user does not have to
allocate resources manually.

Section 2.1 evaluates the existing cloud environment
and effectiveness with respect to the proposed method.
Section 2.2 introduces the relevant cloud framework,
showing how the mathematical background on Kernel
principal component analysis (KPCA) are used for AMD.

2.1 Server Specifications of Cloud Platforms

The cloud vendor specification is shown in Table 1. In
addition to the private cloud environment using the in-
tranet, the public cloud vendors using the internet are
considered to implement the proposed Cloud Colonogra-

phy.
The leading commercial cloud hosting service, Ama-

zon, is chosen because of its superiority in performance as
listed in Table 1. Microsoft and IBM do not support
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TABLE 1
REPRESENTATIVE CLOUD VENDORS
Credit RAM
Vendors Ull\a/{ionlltehég;)) level per CPU APIs Supports
max (%) (GB)
Amazon [62] 99.95 30 0.615 REST, Java, IPE,
Command line
Microsoft 99.95 25 1.75 REST, Java, IDE,
[63] Command line
IBM [64] 99.00 10 2.00 REST
Private NA NA 64 -
Cloud [67]
Desktop PC NA NA 16 -

Matlab programming, yet. Therefore, we decided to
adopt Amazon as a public cloud platform for the imple-
mentation of Cloud Colonography. Private Cloud [67] is
a department cluster used for a private cloud platform,
and as a comparison, we added a desktop PC as well. The
effectiveness of Cloud Colonography mainly comes from
how many datasets are manageable and the computa-
tional capacity of those large datasets in the program-
ming. The proposed KPCA with AMD is a solution for
these main problems. In the next subsection, we will de-
scribe the mathematical background of KPCA in the
cloud environment.

2.2 Cloud Framework of KPCA for AMD

For efficient feature analysis, extraction of the salient fea-
tures of polyps is essential because of the huge data size
from many institutions and the 3D nature of the polyp
databases [4]. The desired method should allow for the
compression of such big data. Moreover, the distribution
of the image features of polyps is nonlinear [34]. To ad-
dress these problems, we adopt the kernel approaches
[58] in a cloud platform.

The key idea of kernel feature analysis is how to select
a nonlinear, positive-definite kernel K:R?xR¢2>R of an
integral operator in the d-dimensional space. The kernel
K, which is a Hermitian and positive semi-definite matrix,
calculates the inner product between two finite sequences
of inputs {xgien) and {xjjen), defined as
K:=(K(x;,x;))=(D(x;).D(x;) : i,j€n), where x is a grey-level
CTC image, n is the number of image database, and &: R*
—H denotes a nonlinear embedding (induced by K) into a
possibly infinite dimensional Hilbert space H as shown in
Fig. 2. A more thorough discussion of kernels can be
found in [28]. Our AMD module for CTC images is a dy-
namic extension of KPCA as follows:

Institutions Cloud Server

(% %) . (D(x;), P(x;))
i X
% e @ x—dx) .

D(x;)

Input space Hilbert space H

—_————

Fig. 2. An illustration of KPCA mathematical background. KPCA
calculates the eigenvectors and eigenvalues by analyzing the kernel
feature space of multiple institutions so that a cloud server can han-
dle larger datasets.
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KPCA uses a Mercer kernel [37] to perform a linear
principal component analysis of the transformed image.
Without loss of generality, we assume that the image of
the data has been centered so that its scatter matrix in S is
given by S5=)"-;D(x)(x;)D(x)". The eigenvalues }; and
eigenvectors ¢; are obtained by solving the following
equation, Ae=Se/=)"i-1P(x;))D(x;)Te=) "=1<e;, D (x;)>D(x;).If
K is an nxn Gram matrix, with the elements kj=<®(x;),
@(x))> and a=[a;;, ap, ...a;,] as the eigenvectors associated
with eigenvalues A, then the dual eigenvalue problem
equivalent to the problem can be expressed as follows:
/\]ﬂ]:Kaj.

A traditional KPCA can be extended into the cloud
framework as follows:

1. Compute the Gram matrix that contains the inner

products between pairs of image vectors.

2. Configure AMD by grouping datasets from mul-
tiple institutions.

3. Solve: Aia=Ka; to obtain the coefficient vectors g
forj=1,2,...,n.

4. The projection of a test point x€R“ along the j-th
eigenvector is <g, P (x)> =3 "1 <P (x;), D(x)>=> "1k (%, x;)

The above implicitly contains an eigenvalue problem
of rank 7, so the computational complexity of KPCA is
O(nd). Each resulting eigenvector can be expressed as a
linear combination of n terms. The total computational
complexity is given by O(In?) where [ stands for the num-
ber of features to be extracted and n stands for the rank of
the Gram matrix K [28],[33]. Once we have our Gram
matrix ready, we can apply these algorithms to our data-
base to obtain a higher dimensional feature space. This
cloud-based kernel framework will be discussed further
in the following sections.

3 AMD FoRr CLoUD COLONOGRAPHY

This section proposes the AMD method. Section 3.1
shows the overall concept of AMD for cloud environ-
ment, Section 3.2 explains more details on the design of
AMD, Section 3.3 shows the two implementation cases for
the selected public cloud environments, and Section 3.4
shows the proposed parallelization.

3.1 AMD Concept

As in Fig. 2, KPCA mentioned is executed for Cloud Co-
lonography by analyzing the images of polyps with non-
linear big feature space. We apply KPCA to both an indi-
vidual dataset and groups of datasets. KPCA can be used
in conjunction with AMD to synthesize individual data-
bases into larger composite databases as shown in Fig. 3.

The concept of AMD is to format distinct distributed
databases into a uniform larger database for the proposed
Cloud Colonography platform. AMD are expected to
solve the issues of nonlinearity and excessive data size so
that CAD classification can achieve optimal performance.
Specifically kernels handle nonlinear to linear projection,
and PCA handles data size reduction. The next subsec-
tion will describe how our proposed kernel framework
will be organized for AMD.

Colonography image datasets

TP/FP - Cancer/Non-Cancer

Fig. 3. A concept of AMD. The proposed kernel framework combines
the Cloud Colonography datasets by analyzing the images of polyps
with nonlinear big feature space.

3.2 Data Configulation of AMD

We adapt Community Cloud [62] for Cloud Colonogra-
phy to share infrastructure between several hospitals with
common CTC domains (data compliance and security,
HIPPA agreement, etc.). The costs are spread over fewer
users than a public cloud (but more than a private cloud),
so only some cost savings are expected.

DB #1 DB #2 DB #3 DB #10
Data2.A
Step 1: Split Datal.B Data2B Data3B o e o o
- Data3.C Data10.C
Step 2: Combine [~
Datal0.C Datal.B
Data3.B Data2.B
Step 3: Sort
Datal0.C ~, Datal.B
Data3.B Data2.B
Step 4: Merge
Data2 Data5 e o o o Data98
Data3  Data (Daass |

Fig. 4. Four representative steps of AMD. The proposed AMD con-
sists of the four main criteria to manage databases by 1) Split, 2)
Combine, 3) Sort, and 4) Merge.

Fig. 4 illustrates the AMD construction by analyzing the
data from other individual institutional databases
through the four representative steps. Step 1 splits each
database, Step 2 combines several databases, Step 3 sorts
the combined databases, and Step 4 merges the sorted
databases. We will explain individual steps as follows:

Step 1: Split
We split each database by maximizing the Fisher scalar

for kernel optimization [57]. The Fisher scalar is used to
measure the class separability | of the training data in the
mapped feature space. It is formulated as
J=trace(YSw)/ trace(Y1Sw), where Sy represents “between-
class scatter matrices”, and S.; represents “within-class
scatter matrices.” According to [35], the class separability
by Fisher scalar can be expressed using the basic kernel
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matrix P! (submatrices of Pii, P, P!, and P») as
];(a;)=azTM;a/a;TNza;,, where M=K/’B,K;, N=K,TWK;, and

1
Wzdiagplll’l)zlz)_[gll/n] |0 J B =[P“ m 10 J_Pl/n
0 P,/n, 0 P,, /n,

To maximize Ji(a;), the standard gradient approach is
followed. If the matrix Ny; is nonsingular, the optimal 4
which maximizes the Ji(a) is the eigenvector that corre-
sponds to the maximum eigenvalue of Mu=ANu;. The
criterion to select the best kernel function is to find the
kernel which produces the largest eigenvalue.

A, =arg mlax(Nl_'Ml)

Choosing the eigenvector which corresponds to the max-
imum eigenvalue can maximize the Ji(@) to achieve the
optimum solution. Once we determine the eigenvalues,
the eigenvectors associated with the selected eigenvalues
represent each split dataset.

Step 2: Combine
Alignment is used to measure the adaptability of a kernel

to the target data. Alignment provides a practical objec-
tive for kernel optimization whether datasets are similar
or not. The alignment measure is defined as a normalized
Frobenius inner product between the kernel matrix and
the target label matrix introduced by Cristianini et al. [45].
The empirical alignment between the two kernels with
respect to the training set S is given as:

FrOb(Kl»Kz) = <K1’K2>F /HKIHF HK2HF

where K; is the kernel matrix for the training set S.

< ‘ ’>F is the Frobenius inner product between K; and

K. It has been shown that if datasets chosen are well
aligned with the other datasets, these datasets are com-
bined.

Step 3: Sort
We use class separability as a measure to identify wheth-

er the combined data is configured correctly in the right
order. The separability within the combined datasets is
required to check how well the data is sorted. It can be
expressed as the ratio of separabilities:

&=J(a])/J.(a,) where J/(a]) denotes the class sep-
arability yielded by the most dominant kernel for the
composite data (i.e. new incoming data and the previous
offline data). J,(«,)is the class separability yielded by
the most dominant kernel for another dataset. Thus, rela-
tive separability can be rewritten as: £ = A,/ A, where
A corresponds to the most dominant eigenvalue of com-
posite data to be tested, and A- is the most dominant ei-
genvalue of the combined/entire data. Based on the com-
parison of relative separabilities, the relationships among
the combined datasets are finalized in the correct configu-
ration. In this sorting step, we reduce the data size by
ignoring the data with non-dominant eigenvalues.

Step 4: Merge

p =arg, max(Frob(p,k;,k;)) = arg max
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Finally, we consider merging the combined databases
from Step 3.

Among the kernels k;, i=1,2,..p, we will tune p to maximize
k(p) = 2”: pk  for the empirical alignment as follows:

(o s )
(Zak )z

PP
=argmax| —
, pUp

where

Y; :\/<Ki7y};>’vij :\/<IQ,KJ.>,UU =uu;, VY :"ivj’p:(\/;l’\/;z"'“/piv)

Let us introduce the generalized Raleigh coefficient,
which is given as: J(p)=p"Vp/ p'Up

We obtain p by solving the generalized eigenvalue
Vp=0Up where § denotes the eigenvalues. Once, we
find this optimum composite coefficient p, which will be
the eigenvector corresponding to maximum eigenvalue 6,
we can compute the composite data-dependent kernel
matrix. Since we have associated all cloud data, which
makes use of the data-dependent composite kernel start-
ing from Steps 1-3, we can proceed to recombine all the
institutions” data into small sets of merged databases,
shown in Fig. 4.

AMD algorithm
Step 1: Split each database by maximizing the Fisher scalar.

Step 2: Combine other datasets if the alignment measure of
datasets is high.

Step 3: Sort those combined datasets by class separability
as a measure to identify whether the combined data is con-
figured correctly in the right order.

Step 4: Merge the sorted cloud datasets from the institutions
by computing the maximum eigenvalue & for the composite
data-dependent kernel matrix, which represents the associat-
ed datasets for KPCA.

The big advantage of the proposed AMD algorithm is to
compress multiple datasets into the merged databases
with the bounded data size. These compressed databases
can be handled easier than the original databases, mean-
ing a reduction in computational time, memory, and run-
ning cost.

3.3 Implementation of AMD for Two Cloud Cases

AMD'’s four steps are implemented into the two platform
cases, private and public clouds, which are commercially
available. We will demonstrate how the proposed Cloud
Colonography is specifically adapted for this widespread
implementation.

Case 1: Private Cloud

The first specification of Cloud Colonography is listed in
Fig. 5. This figure shows the representative layered im-
plementation of the private cloud framework and its ar-
chitectural components. A single institution/hospital
handles the patient CTC datasets by a clinical IT staff or a
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third-party organization, and hosts them either internally 2.6 GHz for the private cloud. Other key specifications of
or externally. Self-run data centers/servers are generally these servers for Cloud Colonography are the hard disk
capital intensive, requiring allocations of space, hard- size of data storage and the RAM memory size.

e
0o

Clinical Users

CIC

ware, and environmental controls.
=
(@) (@]

TABLE 2

DESKTOP AND PRIVATE CLOUD SERVER HARDWARE SPECIFICATION

Platform Desktop Computer ~ Private Cloud Server
| [(Laverd) Secure Comecting] Name Dell Optiplex 9020 Dogwood
[ (Layer3) Radiology I Processor Intel i7 4790 AMD Opst]c;ron 6282
peice Desk Clock Speed 3.6GHz 2.6GHz
[{Layerl) CAD Processing/Decision-making} # processors 1 4
# cores 4 16
[(Layerl)AMD Monitoring/Management <+ L1 Cach 4x32KB Data 8x64KB Data
ache 4x32KB Instruction  16x16KB Instruction
Fig. 5. Cloud Colonography architecture in private cloud environ- L2 Cache 4x236KB 8x2MB
ment. The proposed Cloud Colonography consists of the four repre- L3 Cache 8SMB 2x8MB
zen}(ative Ia}yerfs frcim_ CITC based on CAD analysis to the service Processor Bus Soeed 5GT/s DMI 3200 MHz
esk reporting for clinical users. us Sp: 6.4GT/s HTL
RAM 16GB DDR3 64GB per CPU
Casel has a "layered architecture", with each layer adding Memory Bus Speed 1600MHz 1333 MHz
further value and complimentary functionality to the data Storage Technolo 7.2k RPM 10k RPM
input from the layer below, and providing the relevant ¢ o SATA 3Gbps SAS 6Gbps

output to the layer above. The solution architecture has
the following four representative layers:

(Layerl) AMD Monitoring/Management Layer: This
layer consists of various modules for CTC AMD, which
monitor the characteristics of CTC databases as described
in Section 3.2. These modules, as described in the AMD
algorithm, generate a salient feature space, compare exist-
ing datasets to new ones, and prepare shared datasets for
the next layer.

(Layer2) CAD Processing/Decision-making Layer: All
the CAD decision making from data collection of Layerl
is processed in this layer. This CAD processing includes
the detection of cancer, such as patient and cancer identi-
fication for the diagnosis.

(Layer3) Radiology Service Desk: This layer further ena-
bles us to summarize the outcomes to increase radiologi-
cal efficiency, such as visualization and annotation. These
outcomes of the Service Desk provide views, reporting,
administration, and operational support for practical and
clinical uses.

(Layer4) Secure Connecting Layer: Qualified client-server
applications are adapted for clinical users to assess Cloud
Colonography. This layer is designed to prevent eaves-
dropping and tampering. Upon the ID request, this layer
of the server switches the connection to Transport Layer
Security (TLS) using a protocol-specific mechanism.

The private cloud specification is shown in Table 2 for the
comparison of three representative platforms.

The computational performance is shown in Section 5,
to analyze the speed, memory, and running cost. The
private cloud server [67] has relatively large memory per
CPU, however the other specs of the personal desktop are
superior to the private cloud. The personal desktop has
the latest specification manufactured in 2014, and the pri-
vate cloud server is 2 years older. The key specification is
CPU clock speed; 3.6 GHz for the personal desktop, and

Case 2: Public Cloud

The Cloud computing is also extended into a distributed
set of servers that are running at different locations, while
still connected to a single network or hub service as
shown Fig. 6. Examples of this include distributed com-
puting platforms such as BOINC [65], which is a volun-
tarily shared resource that implements cloud computing
in the provisions model. A public cloud scenario is used
for cloud computing when the services are rendered over
a network that is open for multiple institutions/hospitals.
Rather than a single database being used, the proposed
AMD-based KPCA approach uses more than a single da-
tabase to improve the cancer classification performance as
shown in the experimental results.

Technically, there is little or no difference between the
public and private cloud architecture, however, security
consideration may be substantially different for services
(applications, storage, and other resources) that are made
available by a service provider for multiple institu-
tions/hospitals. Generally, public cloud services provide
a firewall, like an extended Layer4 of private cloud sce-
nario, to enhance a security barrier design, and to prevent
unauthorized or unwanted communications between
computer networks or hosts. We adopt known cloud in-
frastructure service companies, such as Amazon AWS
[62], Microsoft [63] and IBM [64] to operate the infrastruc-
ture at their data center for Cloud Colonography. The
hardware specification of Amazon is shown in Table 3.

The computational performance is shown in Section 5,
to analyze the speed, memory, and running cost for the
Amazon R3 instance servers. Amazon has relatively large
RAM and reasonable pricing shown in Table 3. We have
chosen Amazon because of MATLAB compatibility.
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TABLE 3
AMAZON REPRESENTATIVE SERVERS SPECIFICATION
Platform c3.xlarge c3.8xlarge r3.xlarge r3.8xlarge
p Intel Xeon Intel Xeon Intel Xeon Intel Xeon
FOCCSSOTNAME 52670 v2  E5-2670v2  E5-2670v2 E5-2670 v2
Clock Speed 2.5GHz 2.5GHz 2.5GHz 2.5GHz
# vCPU 4 4 4 32
# ECU 14 108 13 104
RAM 7.5GB 60GB 30.5GB 244GB
Hard Disk 80GBSSD 640GBSSD 80GBSSD 640GB SSD
Storage
Linux Instance $0.21/hr $1.68/hr $0.35/hr  $2.80/hr
Price
Processor Bus  8GT/s DMI 8GT/s DMI 8GT/s 8GT/s DMI
Speed DMI
Memory Bus 1866MHz  1866MHz  1866MHz 1866MHz
Speed
I0E 0Bk 30E

(Layera) Secure Connecting (Layer) Secure Conmecting
(Layer3) Radiology |

%
[ Service Desk | so

' [leeac ]
Wayert) AMD Wayert) RO

[(uavers) secure connecting |

{Layer3) Radiology | (Layer3) Radiology |
Sarvice Desk | rvice Desk
[(Layer2} CAD Processing/Decision-making | [tayerac

[ (Lavyerl) AMD

Fig. 6. An extension of AMD framework in public cloud scenario.

3.4 Parallelization of AMD

The parallelization programs for a public could server are
proposed to optimize KPCA using the MATLAB parallel
toolbox. The parallel modules consist of 1) data parallel-
ization of AMD, and 2) process parallelization of KPCA.
MATLAB distributed computing servers use MATLAB
job schedulers to distribute data and computational load
to the cloud nodes. Fig. 7 shows in [Modulel], large-
scaled CTC images are transformed into high-
dimensional image-based feature space with the form of
distributed array. In [Module2], those arrays are assigned
and independently processed by multiple cores of each
node. These two modules are fused by the head node in
Fig. 7, which optimistically arranges the number of cores
to the size of data array. To optimize the overall perfor-
mance, we need two criteria; 1) minimizing inter-node
data transmission for computational speed, and 2) mini-
mizing data storage for memory access requirement. The
proposed criteria are designed to optimize the computa-
tional independency between nodes. The proposed meth-
od allows us to maximize the computational resources of
elastic computing, which will reduce the computational
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time and required memory for the processing of pattern
recognition algorithms.

— — — ——
o L] L]
oo =] oo oo
m 1] m
..

Large-scaled Medical Images

MATLAB job schedulers ¥
[ (Modulel) spread data array J

[ (Module2) process scheduler

: W T

[ (Head node) optimization ]

Image
Image

Fig. 7. A proposed parallelization organization for cloud computing.

The proposed modules 1 and 2 are listed in the following
pseudo codes. These steps are designed to reduce the
computational time for the processing of pattern recogni-
tion algorithms.

MODULE 1 PSEUDO ALGORITHM

Data Parallelization
Input: new data, X,
Parameter: Worker Node Structure, {DX,S}
Output: Update Distributed Dataset, DX
Begin
1. Vectorize multi-dimensional input: V<X,
2. Sort vector dataset according to dimension index
3.  Slice Vas S: V«Reshape(V,S)
4. Append V{i} at the end of DX{i}
End

MODULE 2 PSEUDOALGORITHM

Training Process Parallelization
Input: Distributed Dataset
Parameter: Kernel parameter, Kernel Identifier
Output: Composite kernel Gram Matrix, Kernel Projector Model,
K., Classifier Model
Begin
1. Locate and Load Node Data, DX{i}. Keep data private
to the node.
2. Assign Node worker and Corresponding Data by data
index.
3. Initiate cloud controller
4. Compute intermediate gram matrix according to kernel
parameter
5. Terminate Cloud Controller
6.  Return intermediate gram matrix to Head Node
7. Allow Head Node to use kernel parameter to combine
intermediate gram matrix from individual workers and
construct final gram matrix
8. Associate Gram Matrix with Class label, y
9. Find Eigen Components of the Gram Matrix and use
Fisher Analysis to represent Eigen Vectors
10. Identify and Construct Kernel Projector Model, K.
11. Initiate cloud Controller
12.  Compute Kernel Projection using PCA
13. Terminate Cloud Controller
14. Compute Classifier Model
End
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The proposed head node is designed to integrate the two
parallelization algorithms. The following pseudo code
shows testing the data samples using the modules 1 and
2.

HEAD NODE TESTING ALGORITHM

Testing Process Parallelization
Input: Test Sample(s)
Parameter: Kernel Model, Kernel Projector Model
Output: Test decision Class
Begin
1. Use Data Parallelization Algorithm to distribute test
samples to the workers
2. Compute Kernel Projection of the test samples
3. Employ Classifier model to test class of the test sample
End

4 CLASSIFICATION EVALUATION OF CLOUD
COLONOGRAPHY

We evaluated the proposed cloud colonography in Sec-
tion 4.1 Databases with Classification Criteria, and in Sec-
tion 4.2 Classification Results.

4.1 Databases with Classification Criteria

We used several cloud settings, with a database consist-
ing of 464 CTC cases that were obtained from 19 institu-
tions/hospitals in the United States and Europe. Our pre-
viously developed CAD scheme [4],[55]-[57] was applied
to these CTC volumes, which yielded a total of 3,774 de-
tections (polyp candidates), consisting of 136 true positive
(TP) detections and 3,638 false positive (FP) detections.
Note that the supine and prone CTC volumes of a patient
were treated as independent in the detection process. A
volume of interest (VOI) of 963 pixels was placed at each
CTC candidate rather than the entire region of the CTC
candidate. The collection of the VOIs for all of the candi-
dates consisted of the databases used for the performance
evaluation a shown in Table 4.

TABLE 4
DATABASES
Data- # Patients Total # # Database Total #
bases TP AFP o Pa- gy g Data-
patients _ patients tients base
1 5 30 35 12 155 167
2 3 29 32 5 217 222
3 3 10 13 7 213 220
4 3 27 30 5 206 211
5 7 35 42 12 196 208
6 3 25 28 6 198 204
7 3 24 27 6 208 214
8 1 28 29 4 200 204
9 3 17 20 8 190 198
10 3 22 25 7 198 205
11 4 23 27 8 181 189
12 3 29 32 4 191 195
13 2 11 13 8 208 216
14 3 27 30 5 188 193
15 3 15 18 7 147 154
16 3 5 8 8 221 229
17 3 12 15 7 169 176
18 2 25 27 12 169 181
19 2 11 13 5 183 188
Average 3.1 21.3 244 7.15 190.1 197.3

We applied up to 40%-fold cross-variation for testing the
training data. Note that the training and testing data were
separated from the distinguished form. All the simula-
tions were executed in a MATLAB environment opti-
mized with the Parallel Computing Toolbox version [66].
The windows-operated desktop computing system fea-
tured an i7 processor with 3.6GHz clock speed, and 16GB
of DDR3 memory.

Table 4 lists each database used for the classification
results shown in Section 4.2 below. Using AMD, we con-
nected these databases into assembled databases via
cloud settings described in Section 3. The CAD classifica-
tion results mainly come from the choice of databases,
which means AMD chooses the databases used for as-
sembling.

Table 5 shows the results of KPCA shown in Section 2
and AMD shown in Section 3. To assemble the databases,
we applied KPCA to represent the databases. Using four
steps of AMD, for example, Sigmoid and Gauss kernel
functions represented the 12 databases (out of 19 data-
bases) into three assembling databases (9-13-11-16, 19-6-
121, 8-18-15-5) according to the order of the eigenvalue.
The second set of assembling databases was represented
by Sigmoid and Poly for databases (2-3-14-17). The last
assembling databases were Sigmoid and Linear group (4-

7-10). We used Table 5 for the classification results in
Section 4.2.
TABLE 5
AMD WITH KPCA FOR ASSEMBLED DATABASE
Kernel Datab:
erne ata a.se First kernel Second kernel
type assembling
Database9 Sigmoid
Gauss
Databasel3 d=6.67*10+ =04
Databasell Offset=0. _d 51
Databasel6 p1=0.49 e
Database19 Sigmoid
Sigmoid atabase gmot Gauss
i Database6 d=8.89*10+ 0.2
an 0 =0.
Database12 Offset=0.
Gauss 7, =0.12
Databasel p1=1.00
Database8 Sigmoid G
Databasel8  d=7.78*10+ ””{’)s;
0 =0.
Databasel5 Offset=0. —0.05
Database5 p1=0.95 P
Database2 Sigmoid
Sigmoid Li
BT Database3 d=3.34*10+ mear
and d =3, Offset=0.1
Pol Database1l4 Offset=0. 0.20
0 =0.
Y Databasel?7 p1=0.71 P2
Sigmoid
Sigmoid  Database4 d—;g;;llw Linear
and Database? o f].(‘et—O d=13
Linear ~ Databasel0 e 0=0.12
1 =1.00

We demonstrated the advantage of Cloud Colonogra-
phy in terms of the CAD classification performance in a
more specific way by introducing numerical criteria. We
evaluated the classification accuracy of CAD using Re-
ceiver Operating Characteristic (ROC) of the sensitivity
and specificity criteria as statistical measures of the per-
formance. The true positive rate (TPR) defines a diagnos-
tic test performance for classifying positive cases correctly

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TCC.2015.2481414, IEEE Transactions on Cloud Computing

among all positive instances available during the test. The
false positive rate (FPR) determines how many incorrect
positive results occur among all negative samples availa-
ble during the test as follows:

True Positives (TP)
True Positives (TP) + False Negatives (FN)

TPR =

False Positives (FP)
False Positives (FP)+ True Negatives (TN)

FPR =

We also evaluated alternative numerical values, Area
Under the Curves (AUC) by

AUC=Y" (FPR-FPR,JIPR

where Z is the number of discrete FPR;

The proposed statistical analysis by use of AMD was
applied to the multiple databases in Table 1, which
showed that the CTC data were highly biased toward FPs
(the average ratio between TP and FP is 1: 26.6) due to the
limited number of TPs caused by asymptomatic patient
cohort.

4.2 Classification Results
We used the K-NN method for Table 4 for classification
with the parameter k, accordingly to show the perfor-
mance of TPR and specificity with respect to the variable
k in ROC. We compared assembling databases perfor-

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

ited AUC performance for classification in handling the
AMD in all five different cloud environments shown in
Section 5. The ability to track changes using growing da-
tabase size was also verified by the results shown in the
following Section.

5 CLoub COMPUTING PERFORMANCE

We evaluated private and public cloud scenarios in
four aspects of the proposed design in Cloud Colonogra-
phy. These are examined in Section 5.1 how databases
are formed into AMD, Section 5.2 computational time,
Section 5.3 memory usage, Section 5.4 running cost, and
Section 5.5 parallelization.

5.1 Cloud Computing Setting with Cancer
Databases
Table 7 shows how databases are formed into AMD. Three
databases were generated from Table 4 for the analysis of
both private and public cloud environments. These three
datasets are a synthesis of the existing 19 databases by
merging them into the cloud server, thus, the classification
performance was equivalent to Section 4. These three gen-
erated databases are mainly used for the evaluation of cloud
computing.
TABLE 7
DATABASES FOR CLOUD COMPUTING ANALYSIS

mance, with a single database in Table 6. AMD for as- . Training Datasets Testing Datasets
sembling database outperformed the KPCA for a single bases | 4#Tp #FP  #Total (i/l[ZBe) 4TP  #FP  #Total (i/l[ZBe)
database by achieving a higher TPR and a lower FPR.
1 122 1289 1411 9524 14 157 171 1154
2 120 853 973 6568 16 110 126 851
TABLE 6 3 121 1071 1192 8046 15 133 148 999
CLASSIFICATION ACCURACY FOR ASSEMBLED DATABASE
- Total 363 3213 3576 24138 45 400 445 3004
Kernel Database Dataset size AUC Assembled
type assembling (MB) AUC 2
Database9 916 09% Raw Data
181 Database 1 []
Databasel3 988 0.95 0.99 % 16l Database 2 | |
Databasell 868 0.97 ' E Database 3
Database16 1064 0.97 3 “r 1
... Databasel9 780 0.38 9 12 1
Sigmoid ®
Database6 940 0.82 % 10} ]
and 0.99 2
Databasel2 900 0.93 5 | |
Gauss S 8
Databasel 780 0.97 2 ol |
Database$ 932 0.50 -
Database18 756 0.99 008 8 4 ]
Databasel5 696 0.79 ’ 2 1
Database5 960 0.85 00 1dOO 20‘00 30‘00 40‘00 50‘00 60‘00 70‘00 80‘00 90‘00 10000
, . Database2 1028 0.32 Original Dataset Size (MB)
Sigmoid
Database3 1036 0.12 . . . . . .
and Databaseld 876 0.87 0.85 Fig. 8. Data compression ratio for data size. The horizontal axis
Poly atabase : denotes the size of the data, and vertical axis denotes the com-
Databasel” 820 0.99 pressed data ratio.
Si id Database4 976 0.40 . . . .
gt arapase Fig. 8 shows the compressed data ratio (vertical axis) of
and Database? 251 017 097 the Cloud Colonography network as the total network
Linear  Databasel0 956 057 grapiy

data size (horizontal axis) increases. The three databases
for cloud environments are used to analyze how the pro-
posed method handles the enlarged data sizes. The data
compression ratio was defined as the size of the AMD
feature space versus the size of the raw data. As the data
size increased, the compressed data ratio was reduced.

These ROC results show the calculated AUC (vertical
axis) for the proposed method as the total network data
size (horizontal axis) increases (mostly FT data). These
figures show that Cloud Colonography with AMD exhib-
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Compared to the raw data, the three generated databases
worked well to maintain the size for the analysis over the
entire data size using AMD. The compression ratio re-
flects the corresponding decrease in heterogeneous to
homogenous data. In other words, a constant ratio with
increasing data size indicates an equal growth in both
heterogeneous and homogenous data, such as in the case
of raw data. The evaluation criteria for the experimental
datasets start from computational speed with varying
database sizes. These results have been fully-outlined in
the remaining sections below.

5.2 Computation Time

In this subsection, we analyzed the time required for
processing of Cloud Colonography with AMD. All the
experiments were implemented in MATLAB R2010a us-
ing the Statistical Pattern Recognition Toolbox for the
Gram matrix calculation and kernel projection. For pro-
cessing the large volume of data, private cloud environ-
ments were used. Run time was determined using the
cputime command, representing how significant compu-
tational savings were for each environment.

x 10° Training Gram Matrix Computation Time: Uncompressed Data

T T T T T T 3
+ Database 1:Amazon EC2

Database 1:Private Cloud

4.5} == Database 1:Desktop i
O  Database 2:Amazon EC2
4F Database 2:Private Cloud 1
a5k 7T Database 2:Desktop ]
: Database 3:Amazon EC2
’5’: 3t Database 3:Private Cloud 4
% Database 3:Desktop
£ 25 So |
=
2 4 1
1.5¢ B
1 Y
0.5} g B
P
-~ I I I I I I
200 400 600 800 1000 1200 1400
Number of Samples in Dataset
Fig. 9. Total training time required for Cloud Colonography with
AMD.

Fig. 9 shows the total computational time required for
growing network database sizes in the Private Cloud and
Desktop environment. The total training time was measured
for three uncompressed databases listed in Table 7. The total
training time was increased as the number of samples in-
creased. The difference between the Private Cloud and
Desktop was relatively small.

Fig. 10 shows the mean execution time for compressed
datasets. Compared to Fig. 9, the computation time was
much improved when the datasets were compressed.
The Private Cloud required more computation time than
the Desktop for all three data cases. The time difference
increased as the number of datasets increased. The dif-
ference was calculated by averaging three databases
shown in Table 8.

Table 8 shows the average of the total training time
and mean execution time shown in Figs. 9 and 10. These
values were calculated by averaging three databases for
each cloud environment.

Training Gram Matrix Computation Time: Compressed Data
+ Database 1:Amazon EC2
60 Database 1:Private Cloud Kl
------- Database 1:Desktop K
O Database 2:Amazon EC2 yd
s0r Database 2:Private Cloud e il
------- Database 2:Desktop %
40} Database 3:Amazon EC2 /
Database 3:Private Cloud /s
Database 3:Desktop K

30

Time(sec)

20

=
Y e

. . . . . .
200 400 600 800 1000 1200 1400
Number of Samples in Dataset

Fig. 10. Mean execution time for Cloud Colonography with AMD.

TABLE 8
AVERAGED TRAINING COMPUTATION TIME FOR THREE DATABASES

Cloud Ung;T?;:s;ed Compzzzzﬁ;d data
Desktop 1.4*105 12.3
Private Cloud 1.4 *105 14.6
Public Cloud 1.4*10° 13.9

Table 8 demonstrates that the computation time for the
private cloud was 18% larger than the desktop, means
that the desktop was 18%, on average, faster than the pri-
vate cloud. Based on the hardware specification in Table
2, the CPU speed of the desktop was 38% faster than the
private cloud. The difference of the computational time
between uncompressed and compressed datasets was
over 10* The big reduction of computational time was
achieved by the AMD due to the data compression. The
increased ratio of the computation time in Fig. 9 and Fig.
10 shows that the proposed method was computationally
efficient as the overall network database size increased.
Therefore, Cloud Colonography was better-suited to
handle long-term sequences in a practical manner. Our
computational speed for larger CTC databases is promis-
ing even if much larger datasets are used for the screen-
ings.
o Training Time from Gram Matrix

—— I‘:)atabase 1‘:Amazon écz ‘ ‘ ‘
Database 1:Private Cloud q
------- Database 1:Desktop

7}| —©— Database 2:Amazon EC2
Database 2:Private Cloud

B === Database 2:Desktop B
Database 3:Amazon EC2
5F Database 3:Private Cloud B

Database 3:Desktop

[ Private Cloud Times Scaled by 0.1

3 Amazon EC2 Times Scaled by .3

Total Computation Time (second)

. . . .
600 800 1000 1200 1400
Number of Data

Fig. 11. Computational time for Gram matrix in Cloud Colonography
with AMD.
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Fig. 11 selected the main module for the training time
to specifically calculate Gram Matrix in Cloud Colon-
ography with AMD. The calculation of Gram Matrix is
the key module to computer KPCA with comparison be-
tween the Desktop and private cloud. Fig. 11 also shows
that Desktop was faster than private cloud for all three
databases for the module of Gram matrix. The Private
Cloud required more computation time than the Desktop
for testing phase as well as shown in Table 9.

TABLE 9
AVERAGE TOTAL TESTING TIME PER SAMPLE

Desktop Private Public

Database Environment Cloud Cloud
(ms) (ms) (ms)

1 361 2851.4 983.1

2 263 2037.1 695.2

3 289.7 22329 775.3

5.3 Memory Usage

In this subsection, we examine the degree of memory us-
age in Cloud Colonography with AMD as the data size
changes. Fig. 12, shown below, illustrates the effect of
continuously increasing data size on the observed level of
memory usage in each of the three databases.

Memory Usage

12000 :
Database 1

Database 2 4
Database 3

11000

10000 (-

9000 -

8000 -

7000

6000 -

5000

4000

Memory Used by MATLAB (MB)

3000 -

2000

. . . . . .
200 400 600 800 1000 1200 1400
Number of Samples in Training Dataset

Fig. 12. Memory usage for Cloud Colonography with AMD.

Fig. 12 shows that the proposed framework required
more memory usage as the training sample increased in
size. There are no differences of memory usage among
cloud environments examined in this study. The degree
of memory usage was proportionally increased as the
training samples increased. We needed to develop more
efficient method of memory usage, as the database size
grew.

5.4 Running Cost

Cloud service providers typically charge based on usage of
memory, computation amount, storage, data transfer speed,
and subscription type of the service. The private cloud ser-
vice, as well as Desktop, was offered free of charge for this
research purpose, but this was not the case for the public
cloud. Thus we estimated the cost based on resource con-
sumption for the three databases used.

TABLE 10
COST COMPONENTS FOR PRIVATE CLOUD SERVICE

Cost Component Database I ~ Database 2 Database 3
Storage (GB) 12.3 8.9 10.7
Training Memory (MB) 12.2x10° 10.28 x10°  8.523x103
Testing Memory (MB) 212 x10° 1.61 x10° 1.81 x103
Training Processing (trillion
7 4 4

FLOPs) 90 36 648
Testing Processing (trillion

12. . .
FLOPs) 8 6.9 8.9

TABLE 11

COST COMPONENTS FOR PUBLIC CLOUD AMAZON EC2 (C3.8XLARGE)

Cost Component Database 1 Database 2  Database 3
Storage (GB) 12.3 8.9 10.7
Maxi Traini

I - raiing 145x10°  11.0x10°  12.9x10°
Memory (MB)
Maxi Testi

aximum - esing 216x10°  164x10°  1.85x10°
Memory (MB)
Approximated Marginal 9.056 4408 6.608

Cost

Tables 10 and 11 illustrate the total cost component of the
total storage data, memory, and processing in the cloud
for three different databases used in this study. The result
in previous sections, such as Fig. 12, showed that the total
cost for cloud data storage increased in proportion to the
total data stored on the cloud. As the size of the data
stored was increased, the training time was also in-
creased, which added to the total cost.

5.5 Parallelization

The proposed parallelization method described in Sec-
tion 3.4 was tested on both private and public cloud envi-
ronment. Computation time for large uncompressed uni-
fied Database (~25GiB) experienced ~100 fold improve-
ment. The summary of computation time for training
from uncompressed data was summarized in Table 12 for
private cloud, and in Table 13 for public cloud.

TABLE 12
TIME AND MEMORY USING PARALLELIZATION FOR PRIVATE CLOUD
Computation
Modul Maxi
oc.lu ¢ Worker Time Mean aximum
Environment Memory
(ms/sample)
Parallelizati 16 0.519 ~59GB
arallelization
32 0.271 ~63GB
Without I-
oupara 1 78.24 ~35GB
lelization

As shown in Tables 12 and 13, the computational time
was dramatically improved if the proposed paralleliza-
tion module was implemented. In the case of public
cloud, the cost was reduced by more than half. These
results demonstrate that our proposed parallelization is
effective for Cloud Colonography.
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TABLE 13
TIME AND COST USING PARALLELIZATION FOR PUBLIC CLOUD AMAZON
EC2 (C3.8XLARGE)

Computation
Modul oo
o .u e Node Worker Time Mean pproximate
Environment Cost
(ms/sample)
16 0504 $275
With llel-
i ;t'opara : 32 0.268 $2.05
1Zzation
4 64 0.145 $1.91
Without I-
ntion 1 1 76.82 $6.60
lelization

5.6 Comparison to Other Studies

The results were compared with existing most related
work [69]-[72]. The criteria were same as Tables 12 and 13
in Section 5.5. The node was defined as physically seper-
ated hardwares, while the worker was virtually separated
program running in the same physical environment. The
computation time reduction was calculated as a measure
of improvement because of the parallelization. The higher
time reduction indicated better performance.

TABLE 14
COMPARISIONS OF OTHER METHODS

vehod i
AMD (Public Cloud) 2(64) 99.81
AMD (Private Server) 1(32) 99.65
AMD (Private Server) 1(16) 99.34
MapReduce SVM [69] 1(4) 76.14
Distributed SVM Ensemble [70] 1(4) 91.67
Method 3 [71] 1(2) 81
Parallel Dynamic ANN [72] 1(2) 48.72

As seen in Table 14, the computation time was much
reduced for the proposed AMD, compared to other stud-
ies [69]-[72]. This comparision result validated the effi-
cient computational performance of AMD.

6 CONCLUSION

We proposed a new framework of Cloud Colonography,
using different types of cloud computing environments.
The databases from the CTC screening tests among sever-
al hospitals are going to be networked in the near future
via cloud computing technologies. The proposed method
called AMD was developed in this study for handling
multiple CTC databases. When AMD is used for assem-
bling databases, it can achieve almost 100% classification
accuracy. The proposed AMD has the potential to play as
a core classifier tool in the cloud computing framework
for a model-based CAD scheme, which will yield high
detection performance of polyps using KPCA for multiple
institutions databases. Two cases in the proposed cloud
platform are private and public. The public cloud per-
formed better than the private cloud in computation time,
but the memory usage was equivalent. The parallelization
was successful developed to reduce the speed and cost.
CTC based on CAD in the cloud computing environment
may advance the clinical implementation of cancer

screening and promote the early diagnosis of colon can-
cer.
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