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Smart Anomaly Prediction in Nonstationary CT
Colonography Screening

Yuichi Motai, Senior Member, IEEE, Dingkun Ma, and Hiroyuki Yoshida, Member, IEEE

Abstract—To enhance the quality of economically effi-
cient healthcare, we propose a preventive planning ser-
vice for next-generation screening based on a longitudi-
nal prediction. This newly proposed framework may bring
important advancements in prevention by identifying the
early stages of cancer, which will help in further diagnoses
and initial treatment planning. The preventive service may
also solve the obstacles of cost and availability of scan-
ners in screening. For nonstationary medical data, anomaly
detection is the key problem in the prediction of cancer
staging. To address anomaly detection in a huge stream of
databases, we applied a composite kernel to the prediction
of cancer staging for the first time. The proposed longi-
tudinal analysis of composite kernels (LACK) is designhed
for the prediction of anomaly status and cancer stage for
further diagnosis and the future likelihood of cancer stage
progression. The prediction error of LACK is relatively small
even if the prediction is made far ahead of time. The com-
putation time for nonstationary learning is reduced by 33%
compared with stationary learning.

Index Terms—Anomaly detection, computed tomo-
graphic colonography, healthcare systems, kernel feature
analysis, longitudinal prediction, nonstationary datasets.

NOMENCLATURE
Terminologies:
AKFA  Accelerated kernel feature analysis.
APH Area of pixel histogram.
AUC Area under the curve.
CAD Computer-aided diagnosis.
KFA Kernel feature analysis.
KPCA  Kernel principal component analysis.
LACK  Longitudinal analysis of composite kernels.
LMKL  Localized multiple kernel learning.
NRMSE Normalized root-mean-square error.
PCA Principal component analysis.
RBF Radial basis function.
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ROC Receiver operating characteristic.

SVM Support vector machine.

TPR True positive rate.
VOI Volumes of interest.

Formulas:

T; Input data

Yi Output class label.

kij = (®(z;), (x;)) Element of the Gram matrix.

K Kernel Gram matrix.

a(.) Factor function.

l Base kernel label.

ot} Combination coefficient.

K Data-dependent kernel.

Q Factor function matrix.

Qr Updated @); matrix.

B Base kernel matrix.

Py Updated P,.. matrix.

J Class separability.

Spr Between-class scatter matrices.

Sur Within-class scatter matrices.

r Number of class.

v Eigenvalue.

A Largest eigenvalue.

13 Ratio of the class separability.

Komp(P) Composite kernel.

p Composite coefficient.

] One of four composite kernels.

A(ky, ko) Empirical alignment between kernels
k‘l and k‘z .

) Eigenvalues.

p Optimum composite coefficient.

od Eigenvalues of the Database d.

Ji(al) Class separability yielded by the most
dominant kernel for dataset(subsets) of
database.

Jo(a) Class separability yielded by the
most dominant kernel for the “entire”
database.

al, Combination coefficients of dominant
kernel.

Qs Mean of combination coefficients of all
database.

|. INTRODUCTION

NOMALY detection has long been an obstacle in the de-
A tection of cancer. The current state-of-the-art diagnosis
techniques still fail to identify the important transitional cases
over longitudinal patient datasets [1]. Anomaly detection in
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nonstationary medical data is critical for the diagnoses of
changes in staging, and thus for decision making in the treat-
ment of cancer [2]. In CT colonography (also known as virtual
colonoscopy), for example, it has long been desired to improve
performance of CAD [9] in differentiating polyps from false-
positive (FP) detections based on longitudinal data [6]. The
diagnostic accuracy of the CT colonography can be improved,
if the proposed anomaly detection in CAD can determine how
much or when the next CT colonography is needed to maintain
a high diagnostic accuracy [3]. The main problem pertinent to
nonstationary CT colonography datasets is how to detect and
predict anomaly cases or changes in the data streams over time.
Thus, the purpose of this study is to detect anomalous cases
based on a clinical longitudinal CT colonography datasets.

As for terminology, we call the data “normal” when they
regenerate the existing data class. Conversely, the data are
“anomalous” when the class is degenerated with nonstation-
ary data. In detecting whether a polyp is normal or anomalous
using the proposed algorithms, it is important to understand the
data acquired “over a long period of time” can often be highly
diverse and suffer from numerical errors, and each dataset is
unique in nature. Therefore, obtaining a clear distinction be-
tween “normal” and “anomalous” large nonstationary datasets
is a highly challenging task [7], [10]. Thus, the specific aims
for anomaly detection in this study are 1) to introduce the cri-
teria for classifying polyps as normal or anomalous, and 2) to
predict the consistent progress of the anomaly in the dynamic
nonstationary environment. Nonstationary cancer data in real
world are highly nonlinear and unbalanced, and underlying dis-
tribution changes over time [8]. We seek to improve automated
classification and prediction performance of the CAD systems
in a more realistic setting, in which CT colonography datasets of
new patients are added to a preestablished database on a regular
basis [5].

To address the problems of nonstationary, nonlinear, and un-
balanced datasets, various methods on pattern classification [14]
have been proposed. Historically, time-varying pattern recogni-
tion techniques such as time-varying perceptrons, were pro-
posed [25]. Detecting and adapting classifiers to the changes in
the underlying data distributions are active areas of research.
A few examples of these methods are multiple kernel learn-
ing (MKL) and incremental PCA [10]. Effective applications of
online learning to nonlinear space have been investigated us-
ing kernel-based methods [11], [12]. However, the drawback of
these methods is the lack of “prediction of future event/steam.” If
the batch of data in the underlying dynamic distribution changes
over time, the time-variant pattern analysis is preferred.

In this study, we propose a new nonstationary learning tech-
nique called LACK, which substantially extends the following
stationary learning techniques: AKFA [13] and principal com-
posite kernel feature analysis (PC-KFA) [19]. The key technique
in our approach is to construct a composite kernel from data-
dependent kernels [19]. The composite kernel modifies itself to
optimize the choice of the kernel. To reduce the weakness of
traditional composite kernel methods, we develop nonstation-
ary data associations using LACK to correspond with anomaly
datasets of nonstationary cases.

Anomaly prediction Longitudinal studies

Spread
to other
organs

Fig. 1. Conceptual illustration of colorectal cancer staging. The degree
of cancer progress is indexed by stages 01V, corresponding to the size
of the tumor from 5 mm to a few centimeters [2].

The contribution of this paper is that the proposed LACK
method yields high detection and prediction accuracy in the
change of cancer staging. The proposed LACK algorithm is ap-
plied to the improvement of the performance of a CAD scheme
in the detection of polyps from the clinical CT colonography
database. The performance evaluation includes the accuracies
of the detection and prediction of anomalies and the overall
computing cost, in order to determine whether LACK can be a
light-weighted module of nonstationary prediction.

The remainder of this paper is organized as follows. In
Section II, we extend our stationary kernel method to nonsta-
tionary kernel method to accommodate normal and anomalous
cases. In Section III, we describe how the LACK method de-
tects and predicts the status of “normal” or “anomalous” from
the incoming dataset. The experimental results of longitudinal
prediction are described in Section IV, and Section V presents
the conclusions.

II. LONGITUDINAL NONSTATIONARY DATA WITH
ANOMALY/NORMAL DETECTION

In this section, we first define nonstationary data in com-
parison with stationary data for the target application in
Section II-A. Then, we explore class separability based on the
nonstationary longitudinal data in Section II-B and composite
kernel for nonstationary data in Section II-C.

A. Stationary Versus Nonstationary Data for Kernel
Learning

The success of the kernel learning method depends on the
successful construction of the Gram matrix [19]. More specifi-
cally, the key learning element is to design a problem-specific
kernel function. In the target application of longitudinal analysis
of nonstationary CT colonography data, Table I lists the primary
distinction between stationary and nonstationary data.

Nonstationary data, the third column in Table I, highlights a
longitudinal extension of stationary data analysis for the pre-
dictive cancer staging. The nonstationary data are flexible, with
varying size of data, used for iterative updates during the predic-
tion stage. Even if the size of data increases over the examination
period, the nonstationary data should be handled by appropri-
ately extracting dominant features in a custom representation.
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TABLE |
COMPARISON BETWEEN STATIONARY AND NONSTATIONARY DATA

Characteristics Stationary Nonstationary

Size Fixed
Representation Noniteration

merit Open loop, speed
CT colonography  Existing application

Dynamic

Iteratively update
Closed loop, flexibility
Longitudinal extension

A new criterion for training the nonstationary longitudinal
data has been desired for a solid mathematical representation
using kernel methods. For efficient feature analysis of nonsta-
tionary dataset, extraction of the salient features of polyps is
essential because of the incremental size and nonlinear nature
of the polyp datasets. The problem is how to select such an ideal
nonlinear positive-definite kernel operator: k : R? x R — R
of an integral operator, where d is the data dimension of feature
space. Some of the commonly used kernels are linear, polyno-
mial, Gaussian RBF, and Laplace RBF.

Kernel selection substantially depends on the nonstationary
data characteristics. For example, the linear kernel is important
for large sparse data vectors, and it implements the simplest
of all kernels, whereas the Gaussian and Laplace RBFs are
general-purpose kernels used when prior knowledge about data
is not available. The Gaussian kernel avoids the sparse distri-
bution caused by the high-degree polynomial kernel in large
feature space. The nonstationary data may include a wide va-
riety of characteristics in the incoming data stream. For these
reasons, we are developing advanced composite methods with
data-dependent kernel customization. Our new kernel feature
analysis for nonstationary longitudinal CT colonography is an
extension of the following methods: KPCA or AKFA [13], and
PC-KFA [19].

Let the data-dependent kernel matrix K, for r =1,2,3,4
correspond to

k(xivxj) (K, = [<QT (xi)TqT (xj)>p7‘ (mi?xj)]n,xn (M

where {z;,x; }(i,7 = 1,2,...,n) are n training samples of sta-
tionary and nonstationary datasets. The diagonal matrix of factor
elements {q, (z1), g (x2),...q (x,)} is calculated to a factor
matrix ();, and the elements of p, (z;, xj) are chosen among the
four common kernels to form P, [14]. Now, we can express (1)
as K, = Q. P.Q,.

A composite kernel function is defined as the weighted sum
of the set of different optimized kernel functions using the PCA
[13], [19]. To obtain the optimum detection accuracy, we define
the composite kernel as

Kcomp(p) = Pi Q?-PZQZ (2)

i=1
where the value of the composite coefficient p; is a scalar value,
and p is the number of kernels we intend to combine. This
composite kernel matrix K omp, (p) satisfies Mercer’s condition
[15]. The criteria for selecting the dominant kernel are to select
the largest eigenvalues corresponding to the kernel Gram matrix

Kcomp(p>'

Among the incoming nonstationary datasets, there is a chance
that the data may cause problems during cancer detection and
prediction. To handle these potential complications of nonsta-
tionary datasets, we adopt the notion of “normal” or “anoma-
lous” to make the algorithm robust [16]. The key idea of the
detection of normal/anomaly is to allow the feature space to be
updated appropriately as the training proceeds with more data
being fed into the nonstationary algorithm, described in the next
subsection.

B. Class Separability Based on the Nonstationary
Longitudinal Data

We propose “class separability” as a measure to identify
whether the nonstationary data are anomaly or normal. The class
separability is expected to be maximized so that the training data
can be separately clustered. The traditional measure to represent
the class separability .J of the training data is formulated as

J= tr Sy / tr
T T

a

Swr 3)

where S, represents “between-class scatter matrices” and
S, represents “within-class scatter matrices” known as Fisher
scalar [24]. Suppose that the training data are grouped accord-
ing to their class labels, such that the first n; data belong
to one class, and the remaining n, data belong to the other
class (n; + ny = n). Then, the basic kernel matrix P, can be
partitioned as P, = [P}, Ply; Py, P,], where r =1,2,3,4
represents the four kernels, and the size of the submatrices
Py, Py, Py, and Py, are ng X ny, ng X ng, ny X ng, and
ng X ng respectively. According to [18], the class separability
in (3) can be expressed as

T
(&% MOI’OQ’
J(oy) = 4
(Oé ) QZM)rar ( )
where My, = K{ By, Ko, and Ny, = K{ Wy, Ky
L pr -
L pr, 0 1
B — niy . — P
or 0 Py, n-1"
|
. r T o %Pfl 0
Wo, = diag(piy, phos -y Dhy) — ™M 0 %Pf?

The maximized method of each class separability is derived in
[19]. Let us introduce a variable £, which is the ratio of the class
separability of the composite (both stationary and nonstationary)
data and the stationary data. It can be expressed as

§=J(a;)/ . (ar) Q)

where J. (/) denotes the class separability yielded by the most
dominant kernel (which is chosen from the four different ker-
nels) for the composite data (i.e. new incoming data and the
previous stationary data), and J.(a ) is the class separability
yielded by the most dominant kernel for stationary data. Be-
cause of the properties of class separability, (5) can be rewritten
as& = A /A, where A/, corresponds to the most dominant eigen-
value of composite data (both stationary and nonstationary), and
A, 1s the most dominant eigenvalue of the four different kernels
for the stationary data. If £ is less than a threshold value 1.0,
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Stationary
data .= ‘arl|ar2| |ar(minA)| |arn| Size of data: n
Non-stationary -
data ’arllaﬂl |ar(mmA)| Iamla ISIZC of data: n+1
Updated non- "
stationary %= 10112 - O] -0 replaces the
data i minimum difference
m r combination vector
Qr(minA)
e |arl|ar2| | | |arn| Size of data: n
Fig. 2. Update of combination vector for Case 1: Minor Anomaly. The

trivial rows and columns of the previous Gram matrix with those of the
new data are replaced as follows a, (mina) < o

then the incoming nonstationary data are anomaly; otherwise,
these are normal.

1) Normal nonstationary data: In the case of normal data,
we do not update the Gram matrix. Instead, we discard all
the data that are normal. Hence, the updated Gram matrix
can be given as K ,?' = Q,P.Q,, where n’ is the number
of nonstationary incoming data.

2) Anomaly nonstationary data: If the new batch of incom-
ing data is anomaly, we update our feature space based
on the anomaly degree in the relationship between 7 and
¢ through empirical experimental setting. The second
threshold value 7 determines whether the kernel update is
Case 1: Minor Anomaly, or Case 2: Significant Anomaly.
The procedures outlined in these two cases of anomaly
help to refine the kernel reconstruction by adjusting the
trajectories of the incoming nonstationary datasets.

The class separability of the most dominant kernel for the new
data is directly dependent on both the maximum combination
coefficient of four different kernels and the maximum eigenvalue
AL. Let us denote «, as the mean of combination coefficients
prospectively, and o, for the most dominant kernel among the
four kernels available. Using these values, we update the Gram
Matrix for eigenrepresentation.

Case 1: Minor Anomaly: Under the case of minor anomaly
if n < & (< 1), the dimensions of the Gram matrix remain con-
stant. We search for small trivial elements in the Gram matrix
and then replace the trivial rows and columns of the previous
Gram matrix with those of the new data by calculating the min-
imum difference vectors minA as the trivial one. We compare
and replace the combination coefficient values of stationary data
with the combination coefficient of the new incoming data, as
shown in Fig. 2. This process is repeated for all the kernel
matrices. The input matrices P’ and @’ are updated by remov-
ing the row and column corresponding to the index of o, mina
and replacing it with the row and column corresponding to the
index «.. Then the new input matrix P can be written as
P”, = [P/] - [Pv(/mlllA 1: (n,+1))] - [R'(l:n,rmiHA]-

After we compute «; , we can compute Q"
diag(a). Hence, in the update of minor anomaly data, the
Gram matrix can be given as K = Q" P Q"'

Case 2: Significant Anomaly: When the similarity between the
previous eigenvectors and the new eigenvectors is very small,

as Qn_

Stationary data Initial non-stationary data
kr(xi’xj) J(ar) Kram k (x !x ) J (a ) I{
[ |

k2
| Training of first online batch of data |

Significant Anomal

Minor Anomal

Data dependent kernels
Case1: K'= Q,P,Q
!

COmposite kernel

KL,(0)= Y AQR'Q

Fig. 3. Training of first nonstationary dataset using two cases to
iteratively update composite kernels. Anomaly or normal detection is
conducted using the proposed criterion.

Data dependent kernels

Data dependent kernel
Case2: K'=QPQ,

K’ =QPQ,

e.g., (0 <) £ <m, it is very important for us to retain these
new data, which are highly anomalous, for efficient detection.
Therefore, instead of replacing the trivial rows and columns of
the previous data, we simply retain them, and thus, the size
of the Gram matrix is increased by the size of the new data.
In this case, since we have already calculated the new combi-
nation coefficient ., input matrix P’ and @' as same as be-
fore, the kernel Gram matrix can be given as K" = Q" P'Q".
These two anomaly cases and normal cases are represented
in Fig. 3.

C. Composite Kernel for Nonstationary Data

Once we have our kernel Gram matrices, we can now de-
termine the composite kernel that gives us the optimum de-
tection accuracy when the existing stationary data are incor-
porated with new nonstationary data. For the case of normal,
minor anomaly, and significant anomaly, the identical process
is executed, as shown in Fig. 3. Using Gram matrices for the
(p)-most dominant kernels for the composite data (station-
ary plus nonstationary data), we now combine them to yield
the best detection performance using AKFA [13]. We have
written the c.{posne kernel for the new composite data as:
K, ("Omp( i1 p.Q" P Q" where the composite coeffi-
cient set p is the collection of combination coefficients p;, and
p is the number of kernels we intend to combine.

D. Comparison of Relevant Kernel Methods

Composite kernel methods are derived from the principle of
theoretical approximation error bounds with respect to the kernel
selection problem, e.g., Jaakkola—Haussler bound [22], radius-
margin bound [23], kernel linear discriminant analysis [24],
consistent dictionary learning [17], and online extreme [21].
Table II lists some comparative methods among the relevant
composite kernel methods.
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c -IC-)ABLE I best composite kernel [18]. Let our new label vector be
OMPARISON AMONG COMPOSITE KERNEL METHODS . . ; T
y!. The alignment factor is defined as A’ (k”'/,y"/(y"'/) )=
T ’ ’ ’ n'
n n T 1 1
Method Name Principle Advantages/Disadvantages ((y ) K Y )/ (Tl ”K ”F ) We can determine the composite

Leave-one-out error
Gradient of bound

Jaakkola—Haussler bound
Radius-margin bound

Kernel linear discriminant analysis
Consistent dictionary learning
Online extreme

Loose approximations
Optimal parameters
Nonliner kernel trick Complicated discriminant
Sparse-code matrix Adaptive label prediction
Recursive least-squares  Adaptive filtering

Large Dataset

Data Seq. 3

Data Seq. 4 Data Seq. 4

Data Seq. 3

Data Seq. 4

Data Seq. 4 Data Seq. 3

Divide the new online data

into equal sized datasets
I }

Data Seq. 3 Data Seg. 4
Data Seq. 4 §| Data Seq. 3
Data Seq. 3 Normal
Data Seq. 3
Data Seq. 3 Data Seq. 4 Data Seq.
Data Seq. 4 || Data Seq. 4 Anomaly

Dataset 2 Dataset 3 Dataset 4

Dataset 1

Fig. 4. Conceptual illustration of the division of a large nonstationary
dataset into several small subsets of equal size. A large dataset is clus-
tered into small subsets of datasets, for example, 1 — 2 — 3 — 4, in order
to make the size feasible for the time sequence.

[ll. LONGITUDINAL SEQUENTIAL TRAJECTORIES FOR
ANOMALY DETECTION AND PREDICTION

We examine how to handle the nonstationary data over a
long period of time. When the longitudinal trajectory is consid-
ered, the “long-term” sequential change is evaluated according
to the criteria with the anomaly degree. The nonstationary data
are suffering from the large memory size and are required to
accommodate a stream or batches of data whose underlying
distribution changes over time. To divide the long-term nonsta-
tionary data into smaller subsets, each of which is considered
one at a time, we may treat small datasets as anomaly or normal
data by checking the alignment of each dataset.

The following subsections first defines alignment factor in
Section III-A by comparing existing nonstationary data so that
the long-term data can be divided into subsegmented data. Then,
we readdress the class separability for the long-term nonstation-
ary data in Section III-B.

A. Nonstationary Small Chunks Datasets

Let us consider a small subset of data to find the appropriate
window size for the incoming data and determine whether it is
normal or anomaly data. Fig. 4 illustrates the segmentation of
the incoming nonstationary data into small equal datasets [. Each
dataset consists of individual data sequences in Fig. 4. All new
sets of data are processed sequentially but not simultaneously.

We introduce here “alignment factor” method to deter-
mine the optimum composite coefficients that yield the

coefficient that maximizee gnment factor aows:
[ [E] - Eifd

[;/ _ argp/max A/ p/7 kn’7 yn’(yn/)
1)U

W)V,

(6)

= arg, max

n' _ n' n' (o n'\ T n' _ . n',n n' _ ,n _
where u = (K", y/' (y;') ), Ujj =ujuy, Vi =v =

(K, Kf’) Consider the new generalized Raleigh coefficient
o= () U p) /() U™ p). We choose a composite coef-
ficient vector that is associated with the maximum eigenvalue
[14]. Once we know the eigenvectors, i.e., combination coeffi-
cients of the composite data (both stationary and nonstationary),
we can compute ¢" and hence @, to find out the four Gram
matrices corresponding to the four different kernels by using
K" = Q' P'Q". Now, the first p kernels corresponding to the
first p eigenvalues (arranged in the descending order) are used
in the construction of a composite kernel that yields optimum
detection accuracy.

In order to determine whether or not the algorithm has been
correctly trained, we make use of the alignment factor as well.
Let us denote ! (K, Z,’gmp) . as the update of Gram matrix from
time ¢ to ¢ + 1, and let ' (K, g‘;mp) , be the updated Gram matrix
from time “0” (i.e., from the beginning till one last step) to
time ¢. Similarly, the matrix **!(y,), indicates the update of
the output matrix from time ¢ to ¢ + 1, and *(y,), indicates
the update of output matrix till time ¢. The alignment factor of
[t,t + 1] and [0, ] can be given as ™! (A’(kf};mp, Yn', yg))f and

t(A/(k?(;mp7 Yn's y;{))(]’ reSpeCtiVely:

A Komps Yy 9n ), <A klomps Yoy g (D)

If the variation in the alignment factor exists, the incoming
nonstationary data are determined as too large, i.e., the align-
ment factor of the incoming data is larger than the average of
the alignment factor [0, ¢]. In order to correctly train, the nonsta-
tionary data are divided into small chunks. The division stops if
the new alignment factor is satisfied (7).

B. Class Separability Based on the Long-Term
Nonstationary Longitudinal Data

Let us consider the new d1 data that have been derived
from nonstationary small chunks datasets above. The input
matrix at the current state, i.e., at time (¢+ 1), should be
D (pr'y, = [1(P"), Pa]. Similarly, at time (¢ + 1), accord-
ing to (4), calculate ('"*1)(B4l),, (DAL, D (ME),,
and (1) (NG!),. The class separability of the composite data
(data up to time ¢ and d1 data) can be given as

T
! (O‘gl )t *Hl(M(()jrl )s *Hl(agl )t

T
F ) D, o),

Therefore, 1) (&), =HD(AL), /1 (As)y, where (FD (A1), is
the largest eigenvalue of the data (of the dominant kernel)

t+1(Jdl(Olr))t _ (8)
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Data till time .
t(ardl)0:| (0,1)0 I’(OC,.7)0 | [t(arz’gfm)ol |t(arz?m)0| | (040 |
Updated non-stationary data at time (7+/):

Erd (ar ) = |r(ar| )o Ir(am)n | lt r'zltgA)Ol |t(ar‘:?: (a

- . di dl
o', replaces minimum difference l (o, (I))t I | a, (I))t |
combination vector a,

Size of data t,0("(01,, ), |"(0t,0)o |- [ @), |- [ @), |- |"(@,,)o]

Fig. 5. Update of combination vector for Case 1: Minor Anomaly at
time ¢ + 1 for longitudinal sequential trajectories. The data sequence
with time index is evaluated for replacing the previous Gram matrix by
the new time sequential datasets.

received from time ¢ to (¢ + 1), and ' (1,),, is the largest eigen-
value of the dominant kernel calculated from time O to time
t, i.e., till the previous step. We test whether this subdataset
d1 is either anomalous or normal. If (“+1) (¢ ); is greater than a
new threshold value 7/, then the incoming data are anomalous;
otherwise, these are normal.

Case 1: Minor Anomaly: If the data d1 are anomaly, then we
decide whether these are highly or less anomaly by comparing
¢ and 7/'. Under case 1, we find out and replace the trivial rows
and columns in the dataset from the previous step and update
them with the corresponding rows and columns from the new
dataset d1. The combination coefficients in the previous step
corresponding to the minimum of this difference are replaced by
the corresponding vectors in the present step. This is represented
in Fig. 5.

Fig. 5 shows the minor anomaly update of combination vector
at time ¢ + 1. Similarly, update “*1)(P""), and 1 (Qr"),
and compute the new Gram matrix. Now, after determining the
data-dependent kernels for d1 data, we determine the composite
kernel using (7). This case is summarized in the following steps:

Minor Anomaly Case

Step 1: Decide whether the data d1 are minor anomaly or not.
,',]/ S é—d,l (S 1)

Step 2: Find out and replace the trivial rows and columns
in the dataset from the previous step and update them with the
corresponding rows and columns from the new dataset d1 by
t+1(Ad1) z‘+1(adl) t(ark)o

Step 3: Update ! (P77 ), and ’“(Q” ), to compute the new
Gram matrix {1 (Kn ) t+1(Qn ) g t1 (Pn’)t g tt1 (Q:l/)f

Step 4: Determme tomposne kernel as

t+1(K(7:lomp t+l Kn ) )Lng img

Case 2: Szgmﬁcant Anomaly If the data are significant
anomaly, we append the data so as to preserve the diverse in-
formation that may be used to classify the next incoming chunk
of nonstationary data, i.e., d2 as either anomaly or normal. The
data-dependent kernel for highly anomaly d2 data can now give
the matrices with the increased size as

:t-H(Q;?Z)t *t-H(P;iQ)t *H—I(Q?Q)t- (9)

The remainder of the entire algorithm is summarized in the
following steps.
Significant Anomaly Case

TR,

Step 1: Append the data to preserve the diverse information
to classify the next incoming chunk of online data. Compute
“ar'), =11 (), 1(Q)), = diag("H (o)) =
t+l(Qd2) t+1(Pn ), t+l(Pd2)r )
r T [
Step 2: Update the data-dependent kernel as

PR ) =" QU+  (PE), Q).

Step  3: Find composite kernel that yields op-
tm detection  accuracy  as t“(Kglomp( ), =
[ pi (Hl(K:’ )t)](‘nu+l)><(‘m)+l)‘

C. Anomaly Prediction of Long-Time Sequential
Trajectories

K -step prediction uses the existing data sequence to predict
the next k-step value using the ARMA model, in which only the
output estimates are used, and the uncertainty induced by each
successive prediction is not accounted for. In order to avoid this
limitation, we propose the framework of “predictive LACK” by
extending the composite kernels for the k-step in ahead of time
index, i.e., (t + k), instead of one step of (¢ + 1).

The anomaly prediction in a clinical application is for cancer
staging, which is given by a number ranging from 0 to IV, with
IV having more progression, as shown in Fig. 1. The cancer stage
often takes into account the size of a tumor; however, several
other factors are also concerned with the stage of the cancer, such
as whether it has invaded adjacent organs, how many lymph
nodes it has metastasized to, and whether it has spread into
distant organs. Staging of cancer is the most important predictor
of survival, and cancer treatment is primarily determined by
staging.

The stage of a cancer is used for the quantitative values for
prediction using LACK. We extend the anomaly degree evalu-
ated by the kernel Gram matrix into the cancer staging for the
prediction framework that describes whether it has spread to
distant organs. LACK adapts to the staging of cancer, the most
important predictor of survival, so that cancer treatment plan-
ning can be determined by the predicted stage of cancer. The
proposed framework, called predictive LACK, consists of the
following five steps:

Predictive LACK:

Step 1: Regroup the datasets for applying stationary compos-
ite kernel matrix algorithm:

o (i, ;) = @[ i) (25)p: (2, 25),

Kcomp(@z Z‘):1 Pi@DiQi, and
S=(tr( . Ser)Ntr( . Sur))-

Step 2: Apply alignment factors to determine whether to di-
vide datasets into small subsets:

f+1(A,(kLomp7 Yn's Un )) , (A,(k‘(nomp Yn's yg; ))07

*(t+l) A\/[rll (f+l) Odd]

H_l(‘]dl (ar))t = (f,+1)((¥7‘,”))? *(t+1)((N21:( ))z K« (t+ 1)E(};g1)>; °

Step 3: Calculate LACK for sequences of time horizontal
window, starting from 1 to k:

tH(Kﬁ’/)t:t (Qn/)o ! (P",)

t+l)<

r t(Qn,)U

Step 4: Compute @lnel matrix reconstruction accuracy us-
ing MErr = (1/n) _,, A;,with composite kernel matrix to
convert the k-composited matrix value to the synthesized mea-
surement value.
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Step 5: Find out the cancer stage corresponding to the syn-
thesized measurement data.

[V. ANOMALY DETECTION AND PREDICTION RESULTS

The performance of the anomaly detection method in
Section IT was evaluated using CT colonography image datasets
of colonic polyps that consisted of true positives (TPs) and FPs
detected by our CAD system [5]. We evaluate Cancer Datasets
in Sections IV-A, anomaly detection for the nonstationary
data in Section IV-B, time horizontal prediction for risk factor
analysis of anomaly long-time sequential trajectories in Sec-
tion I'V-C, and computational time for complexity evaluation in
Section IV-D.

A. Cancer Datasets

The retrospective data collection and analyses carried out
in this study were approved by the institutional review board
at our institution. All patient records/information and image
data were anonymized and deidentified prior to the analyses
in this study. For the stationary experiment, we collected CT
colonography data of 146 patients who had undergone a standard
cathartic bowel-cleansing regimen for CT colonoscopy. Each
patient was scanned in both supine and prone positions, resulting
in a total of 292 CT data. The ground truth (locations and sizes
of true polyps in CT colonography images) for the evaluation
was established by expert radiologists with reading experience
on > 500 cases reference to colonoscopy and histology reports.
The VOIs representing each polyp candidate were obtained as
follows: The CAD scheme provided a segmented region for
each candidate. The center of a VOI was placed at the center
of mass of the region. The size of the VOI was chosen so that
the entire region of the polyp was covered. Resampling was
carried out using VOIs with dimensions of 12 x 12 x 12 voxels
to build Stationary Setl, which consisted of 29 true polyps and
101 FPs. For the rest of the datasets, the VOI was resampled to
16 x 16 x 16 voxels. The VOIs computed were Stationary Setl
(29 TPs and 101 FPs), Set2 (54 TPs and 660 FPs), Set3 (16 TPs
and 925 FPs), and Set4 (11 TPs and 2250 FPs).

For a nonstationary experiment, we used a large dataset that
had a total of 3749 CT images. These data were acquired by he-
lical single-slice or multislice CT scanners, with collimation of
0.5 mm, a reconstruction interval of 0.5 mm, X-ray tube currents
of 50 — 260 mA, and voltages of 120 — 140 kVp. The in-plane
pixel size was 0.5 mm, the CT image matrix size was 512 x 512,
and these images were used to form one dataset. As shown in
Table III, we divided the datasets into four groups. There were
368 normal cases and 54 abnormal cases with colonoscopy-
confirmed polyps.

Table IIT shows the arrangement of stationary training and
testing sets: Stationary Setl, Set2, Set3, and Set4, as well as
the nonstationary training and anomaly test sets: Nonstationary
Setl, Set2, and Set3. Instead of using the cross validation, we
randomly divided the entire datasets into a training and a test
set. We kept each testing set for each dataset for the entire
experiment.

TABLE llI
ARRANGEMENT OF DATASETS

No. of Vectors ~ Total

in Testing Set

No. of Vectors Total

in Training Set

Datasets

TP FP TP FP
Stationary Setl 21 69 90 8 32 40
Stationary Set2 38 360 398 16 300 316
Stationary Set3 10 500 510 6 425 431
Stationary Set4 7 1050 1057 4 1200 1204
Nonstationary Setl 15 403 418 19 500 519
Nonstationary Set2 20 503 423 28 600 628

Nonstationary Set3 25 706 731 29 900 929

TABLE IV
VALUE OF /s FOR EACH COMPOSITE KERNEL

Reconstruction
Error %

Datasets Two Dominant Kernels Linear Combination

Stationary Set] ~ RBF and Laplace pl =0.98,p2=0.14 1.00

Stationary Set2 ~ RBF and Polynomial pl =0.72,p2 =0.25 9.64
Stationary Set3 ~ RBF and Linear pl =0.98,p2 =0.23 6.25
Stationary Set4 ~ RBF and Polynomial pl=10.91,p2 =0.18 14.03

For evaluation of the performance in the detection of cancer
(TP and FP rates), we used the method proposed in Section II to
create four different data-dependent kernels, selected the kernel
that best fit the data, and gave optimum detection accuracy for
the stationary data. We determined the optimum kernel depend-
ing on the eigenvalue that yielded maximum separability. Based
on the order of eigenvalues, we selected the two largest kernels
to form the composite kernel. Taking Datasetl as an example,
we combined RBF and Laplace to form the composite kernel.
We observed that each database had different combinations of
composite kernels. The composite coefficients for the two most
dominant kernels are listed in Table IV.

Table IV shows how the two kernel functions are combined
based on the composite coefficients. These composite coeffi-
cients were obtained using (2) in Section II. Among all of the
datasets, the most dominant kernel was the RBF kernel, whereas
the second most dominant kernel kept varying. As a result, the
contribution of the RBF kernel was higher than that of the other
kernels in forming a composite kernel. The reconstruction error
is also shown in Table IV by calculating E,,; = ||®; — ®/||°.
Here, the reconstruction error represents the difference between
the raw data and the value yielded by the linear combination
of two dominant composite kernels with linear combination. A
small reconstruction error indicates that the two dominant ker-
nels represent the original datasets well. Fig. 6 shows the ROC
curves for the stationary datasets. As shown in Table IV and
Fig. 6, a good classification performance was obtained over all
of the four stationary datasets. In particular, the AUCs for four
datasets were improved by 25% compared with an earlier study
[13], [19].

Table V shows that the proposed LACK had a comparable
classification accuracy for the four datasets. All the results indi-
cate that the proposed LACK was very competitive with other
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Fig. 6.  ROC curves and the AUC values for the stationary datasets.

TABLE V
TRADITIONAL STATIONARY LEARNING OF COMPOSITE KERNELS

Datasets SimpleMKL [24] LMKL [20] LACK

Stationary Setl 99.13 99.13 100

Stationary Set2 95.13 91.35 94.94

Stationary Set3 84.91 86.49 86.49

Stationary Set4 95.56 95.56 96.77
TABLE VI

EIGENVALUES X OF 4 DIFFERENT KERNELS FOR NONSTATIONARY DATA
SEQUENCES §1-{10 FOR THE BASE NONSTATIONARY SETS #1-£3

Datasets  Kernel 41 g2 #3 #4445 #6 47 £8 49 {10
Non Linear 189 843 257 11.8 31.6 149 278 19 293 168
stationary ~ Poly 183 8.41 24.8 9.59 285 132 24.1 144 285 162
Setl RBF 205 876 28.7 943 30.1 163 255 14.1 279 133

Laplace 11.7 74 245 114 279 14 232 17.8 21.8 148
Non Linear 323 626 391 7.24 9.78 9.13 4.1 7.02 9.71 743
stationary ~ Poly  3.17 6.08 4.79 7.61 9.17 8.09 4.79 7.81 9.78 8.81
Set2 RBF 354 641 497 792 102 921 628 8.06 109 8.89

Laplace 2.8 534 358 6.23 897 7.26 3.85 6.37 829 6.69
Non Linear 21.3 34.8 18.8 22.1 25 359 241 24.1 241 2738
stationary ~ Poly 337 43.6 19.3 22.8 26.1 37.1 258 279 28.6 29.6
Set3 RBF 341 457 203 247 289 386 28 287 29.1 30.6

Laplace 21.8 209 17.4 20.8 183 29.7 21.8 215 168 23.1

generic kernel learning methods. It is also known that CAD is
application specific, and thus, application of a generic machine
learning algorithm to a CAD may not work well or achieve a
satisfactory performance.

B. Anomaly Detection for the Nonstationary Data

We evaluated the proposed LACK in Section II to tune the
selection of appropriate kernels when new nonstationary data
become available. We divided the dataset equally into [ sets (e.g.,
ten sets) to form the nonstationary data stream in Table VI, which
shows the size of different nonstationary batches of data for each
colon cancer dataset. Note that data sequences of [ nonstationary

TABLE VII
ANOMALY DETECTION WITH CLASSIFICATION ACCURACY AND AUC FOR
NONSTATIONARY DATA SEQUENCES £1—£10 FOR THE BASE
NONSTATIONARY SETS f1—43

Datasets Item 11 42 #3 44 45 46 47 £8 49 10
Non Update N N M N N S M N S M

stationary Accuracy 93.7 93.7 94.1 94.1 94.1 925 946 946 98.7 914
Setl AUC  87.2 87.2 89.3 89.3 89.3 88.6 89.1 89.1 90.1 85.7
Non Update N N N N M S S M M N

stationary Accuracy 97.2 97.2 972 972 98.1 979 969 98 925 925
Set2 AUC 942 942 942 942 94.1 938 95 93.7 88.6 88.6
Non Update N M N N N N M N S M

stationary Accuracy 94.6 95.3 953 93.8 93.8 93.8 92.6 92.6 985 91.6
Set3 AUC  89.6 91.2 912 879 879 879 91.8 91.8 94.1 87.4

N indicates Normal, M indicates Minor Anomaly, and S indicates Significant Anomaly.

subsets were generated from 3010 larger sequences with 600
anomaly and 2410 normal data sequences. Each nonstationary
dataset was randomly divided into subsets. For example, the
first sampled nonstationary dataset had 960 subsets; this was
used for [ small datasets (each dataset with 20 anomaly versus
76 normal data sequences). Others had another 1000 and 1050
in the total of three nonstationary datasets. After we tentatively
formed the input matrices for four different kernels, we found
the dominant kernels for the new data and the previous stationary
data. These results are summarized in Table VI, in which the
kernel with the maximum eigenvalue is highlighted for each
nonstationary dataset in Table VI. We can see that the RBF
kernel was always the most dominant kernel in all datasets, and
the second dominant kernel kept varying.

Table VII shows the results of detection of anomaly status
using the proposed criterion of class separability £ = A, /A, (5).
In Section II, there were three statuses of the anomaly identifica-
tion: normal (N), minor anomaly, (M), and significant anomaly
(S), corresponding to the degree of anomaly. The classification
performance was similar to stationary datasets. Each sequence
for LACK was cascaded into one long sequence for the next ex-
periment of large nonstationary sequential dataset. The anomaly
detection performance was relatively high and is thus potentially
useful for a preclinical setting of patients’ diagnosis.

C. Time Horizontal Prediction for Risk Factor Analysis of
Anomaly Long-Time Sequential Trajectories

We evaluated the predictive performance based on the
anomaly trajectories, with the time horizontal transition of ear-
lier low cancer stage (mostly called normal case) to the later
higher cancer stage, using all long-time nonstationary sequen-
tial datasets in Table III. Note that, in this subsection, a large
nonstationary dataset is much longer than the nonstationary
datasets described previously. We adapted APH for assigning
each cancer stage from 0O to III [3]. Using transition of the longi-
tudinal sequential datasets, we applied anomaly detection to the
entire nonstationary sequential datasets transient from normal to
anomaly among cancer stage index O—III. The posttest probabil-
ity of APH was reconfigured to determine the chances that the
patient had a disease. This synthesized measure incorporates the
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Fig. 7. Cancer stage of long-time sequence trajectories using (a)

k-step prediction and (b) predictive LACK. When the horizontal time
window increased 1, 5, 10, 50, 100 ahead of the time of data sequence,
the predicted values were off from actual cancer stage value. (a) K -step
and (b) predictive LACK performed much better than K -step under the
larger prediction time frame, £ = 50 or 100.

disease prevalence, the patient pool, specific patient risk factors
(pretest odds), and information about the diagnostic test itself
(the likelihood ratio) [6]. Fig. 7 shows the variable of time hor-
izontal window, starting from each frame up to 3613 frames
to analyze the risk of cancer stages. The representative size of
the horizontal time window was set to predict cancer stages in
advance. For example, in Fig. 7, these predicted window sizes
k were 1,5, 10, 50, and 100 time index for the predicted values.
The prediction window size k = 1 overlapped with the actual
stage for both the k-step prediction method and the LACK pre-
diction method. The k-step prediction of Fig. 7(a) shows larger
error than LACK prediction of Fig. 7(b), especially when the
predicted window size was 50 and 100.

These prediction results of Fig. 7 are summarized in
Table VIII. The algorithms of k-step and the proposed LACK
prediction were applied to all 3613 data sequences, which in-
cluded a finite number of sequences called low cancer stage
(I-II) and high cancer stage (II-III). For the comparison of pre-
diction performance, a normalized metric was used, i.e., the
NRMSE between the predicted cancer stage and the defined
cancer stage. NRMSE is defined as a square root of the vari-
ance, known as the standard error between predicted cancer

Horizontal Window Low Cancer High Cancer Entire Cancer
Time Size Stages (I-1T) Stages (II-1IT) Stages
k-step 1 0.0029 0.006 0.0067
k-step 5 0.0294 0.0603 0.0671
k-stepl0 0.066 0.1356 0.1508
k-step 50 0.4125 0.8534 0.9478
k-step 100 1.0157 2.1205 2.3509
LACK step 1 0.1041 0.0904 0.098
LACK step 5 0.2777 0.4935 0.3934
LACK step 10 0.3348 0.686 0.5286
LACK step 50 0.5004 1.0387 0.7981
LACK step 100 0.7169 1.4919 1.1458
TABLE IX

COMPUTATIONAL TIME (MILLISECOND) OF EACH MODULE

Datasets Kernel Cancer Normal Anomaly
Selection  Classification  Detection  Prediction
Stationary Setl 5.7 0.81 NA NA
Stationary Set2 31.9 4.1 NA NA
Stationary Set3 43.2 4.9 NA NA
Stationary Set4 63.4 6.1 NA NA
Nonstationary Setl 19.8 2 0.62 0.61
Nonstationary Set2 223 2.1 0.71 0.72
Nonstationary Set3 30.1 24 1.09 1.08
Average 30.9 32 0.8 0.8

stage and actual ones. The metric is dimensionless so that it can
make it possible to compare variable prediction accuracy with
different time intervals. Fig. 7 and Table VIII show that NRMSE
of II-1IT was larger than NRMSE of I-II. The traditional k-step
and proposed LACK prediction methods were both efficient in
handling nonstationary data over small window-size sequences
with modest NRMSE. The prediction performance of the long
prediction time window size (50, 100) indicated that the predic-
tion of the subsequent larger cancer stages of data using LACK
was advantageous over a longer prediction horizontal window
size. As shown in Table VIII, the proposed LACK outperformed
the k-step prediction method as the horizontal time window size
approached 100. This means average prediction error of LACK
was relatively small even if the prediction was far ahead of
time. The long-term prediction is, in general, preferable, since
long-term analysis is clinically valuable to predict cancer stage.

D. Computational Time for Complexity Evaluation

Table IX shows the computational cost of the proposed LACK
over all four stationary and three nonstationary data without dis-
carding it. In Table IX, the following four representative mod-
ules on LACK are listed: “Kernel Selection” indicates Section II
for the results of Table IV, as well as “Cancer Classification”
and “Anomaly Detection”. “Anomaly Prediction” indicates
Section III for the results of Fig. 7. We used a PC with an
Intel 17 3.16-GHz CPU and 16-GB RAM. Table IX shows
that, for the average of all seven different types of datasets, the
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module of Kernel Selection along with stationary sets 2, 3, 4 re-
sulted in the highest computational load with an average of 30.9
ms among the four modules. The time reduction of nonstation-
ary learning was 33.3% less than stationary learning. Thus, our
proposed LACK computationally was very efficient for nonsta-
tionary learning. When adding anomaly detection and predic-
tion, the overall computing cost did not change much due to the
light modules.

V. CONCLUSION

This paper has proposed a novel method of detection and
prediction of colon cancer staging from the long-time anomaly
trajectories of nonstationary datasets using stationary training
data. This method, called LACK, was designed to be faster
and used a more efficient feature extraction algorithm than the
previously developed KPCA method. The polyp classification
experiment showed that LACK provided equivalent classifica-
tion performance in nonstationary data compared to that of the
stationary data. The k-step extension of LACK has the potential
to predict the cancer staging index and yields high detection per-
formance regarding the status of anomalies. Such an effective
predictive scheme makes CT colonography a viable option for
cancer staging analysis. The benefits of LACK include the abil-
ity to calculate the future likelihood of cancer stage progress and
anomaly status, which may be deployed for the further diagnosis
and treatment planning with a specific period and frequency.
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