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Trajectory Estimations Using Smartphones
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Abstract—This paper investigates whether the smart-
phones’ built-in sensors can accurately predict future
trajectories for a possible implementation in a vehicle-
to-vehicle (V2V) and vehicle-to-infrastructure (V2I) system.
If smartphones could be used, vehicles without the V2V/V2I
technology could use them to tap into the V2V/V2l in-
frastructure and help to populate the gap of vehicles off
the V2V/V2l grid. To evaluate this, we set up a dead-
reckoning system that uses Kalman filters to predict the
future trajectory of a vehicle, information that could be used
in a V2V/V2| system to warn drivers if the trajectories of
vehicles will intersect at the same time. Then, we use a
vehicle with accelerometer, GPS, and speedometer sensors
mounted on it and evaluate its accuracy in predicting the
future trajectory. Afterward, we place a smartphone se-
curely on the vehicle’s dashboard, and we use its internal
accelerometer and GPS to feed the same dead reckoning
and Kalman filter setup to predict the future trajectory of the
vehicle. We end by comparing both results and evaluating
if a smartphone can achieve similar accuracy in predicting
the future trajectory of a vehicle. Our results show that
some smartphones could be used to predict a future posi-
tion, but the use of their accelerometer sensors introduces
some measurements that can be incorrectly interpreted as
spatial changes.

Index Terms—Dead reckoning, Kalman filter, position
estimation, smartphones, trajectory paths, vehicle-to-
infrastructure (V2I), vehicle-to-vehicle (V2V).

I. INTRODUCTION

HE overall function of intelligent transport systems is to

improve decision making, often in real time, improving
the operation of the entire transport system. This can go from
systems with intelligent route planning implemented to avoid
some specific type of traffic in certain areas [1], to keeping track
of the position of the vehicle for infrastructure assessment [2],
to systems designed to aid with the prevention of collisions be-
tween the vehicles [3], [4]. For this study, the research focuses
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Fig. 1. lllustration for V2V and V2I from [17].

on evaluating the use of smartphones as an intermediate step to
accelerate the implementation of vehicle-to-vehicle (V2V) and
vehicle-to-infrastructure (V2I), which could be used to prevent
collisions.

There are two main types of collision avoidance systems:
self-sufficient and interactive systems. Self-sufficient systems
are those that can obtain enough information from their own
sensors, such as those in [5]-[7], where they placed sensors
around the vehicle to maintain a safe following distance or
to detect vehicles in the surroundings. Interactive systems are
those that, as the name implies, interact with the infrastructure
and/or other vehicles, such as researched in [8]-[10], where
their systems send spatial information to nearby vehicles to es-
timate the probability of a future collision. While self-sufficient
systems are limited to line-of-sight detection, the interactive
systems account for scenarios farther ahead or even around
corners or intersections by predicting and communicating the
future estimated trajectories.

The V2V and V2I areas are being well researched these
days [11]-[17], as government is carefully evaluating the im-
plementation of new technologies to make our roads safer
(Fig. 1). In an article published on February 3, 2014, by the
United States Department of Transportation [18], the National
Highway Safety Administration announced its decision to be-
gin taking the next steps toward implementing V2V tech-
nology in all new cars and trucks, after years of research
and unprecedented coordination between industry and across
government.

When the steps toward implementing V2V technology are
defined, car and truck manufacturers will be mandated to enable
this in their new vehicles. The challenge faced is that, because
V2V relies on other vehicles nearby also supporting V2V tech-
nology, there will be a gap of many years when the V2V/V2I
will not be able to show its true potential in improving road
safety. In an article published by Forbes on March 14, 2013
[19], they calculated that the age of the average vehicle on the
road is at a record high of 10.8 years, which means that there
are vehicles on the roads that are 20 years old. Keeping this in
mind, it is a long time to wait to ensure full V2V/V2I reliability.
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The scientific contribution of this research includes the eval-
uation of using the smartphone to predict future trajectories
for a possible implementation as a temporary hook into the
V2V/V2I infrastructure in older vehicles. Allowing drivers of
older vehicles the possibility of taking advantage of this new
technology would not only benefit them, but it would also
benefit the rest of the V2V/V2I-enabled vehicles, as the number
of vehicles participating in the system would be much greater.
Smartphones are already being used in the transportation field,
and one example is the mobile application DriveWell, created
by Cambridge Mobile Telematics [20], where the smartphone’s
built-in sensors are used to provide a driver safety scoring and
tips on how to improve it.

Since this research wants to evaluate the use of a smart-
phone’s built-in sensors for a setup that could be used in a
V2V/V2I system, it will focus on the prediction of a vehicle’s
future trajectory and compare the results with the use of more
robust sensors mounted on a vehicle to predict the same future
trajectory. Given that multiple sensors will be used, some type
of sensor fusion will be needed to use the different measure-
ments in the prediction.

[I. SENSOR FUSION TECHNIQUES

Multisensor data fusion (MSDF) techniques are used in many
diverse fields, although most of the literature addresses the
fields of military target tracking or autonomous robotics [21].
MSDF is required to combine and process data, which has
been traditionally performed by some form of Kalman [22] or
Bayesian filters. Furthermore, there can be two ways of setting
up an MSDF system: centralized or decentralized. While a
centralized approach suffices for most common scenarios where
the sensors are synchronous, a decentralized approach is more
convenient when the sensors should be treated independently
[23]-[28], as with asynchronous sensors.

In [29], the authors discuss one solution that they have
developed: the optimal asynchronous track fusion algorithm
(OATFA), which evolved from their earlier research on an
asynchronous/synchronous track fusion [30]. They base their
technique in the interacting multiple model (IMM) algorithm,
but they replaced the conventional Kalman filters with their
OATFA (which contains several Kalman filters of its own).
The OATFA treats each sensor separately, passing the output
from each to a dedicated Kalman filter, departing from the
idea that the best way to fuse data is to deliver them all to
a central fusion engine. The results from the IMM-OATFA
show position estimation errors half of those of what the
conventional IMM produces. However, as pointed out by the
same authors in [31], all measurement data must be processed
before the fusion algorithm is executed. With a similar ap-
proach as the technique described previously, the authors of
[32] create asynchronous holds, where, from a sequence of
inputs sampled at a slow sampling rate, it generates a contin-
uous signal that may be discretized at a high sampling rate.
Despite the benefits of making the asynchronous system into
a synchronous one by using these methods, restrictions arise
where, for some reasons, a sensor is delayed in providing its
data or is offline for a few cycles. The whole system needs

Fig. 2. Smartphones securely mounted in the trunk of a hatchback
vehicle.

to wait, as it is designed to work with certain data at specific
rates.

To evaluate whether smartphones can properly estimate fu-
ture trajectories to be considered as an option to fill in the
V2V/V2I implementation gap, a system to estimate a future
position of a vehicle will be set up to determine where the
vehicle will be 3 s later, which is based on the average human
reaction time of 1.5 s to stop a vehicle [33]. Looking at 3 s
ahead of time was chosen as a reference point that is double the
reaction time of an average human being. In reality, this number
will probably vary in relation to the speed and the type of the
vehicle since a faster or heavier vehicle will need more time to
slow down, but it is taken as a reference point (Fig. 2).

IIl. POSITION ESTIMATION WITH KALMAN FILTERS

For this research, the core method chosen to estimate a future
position of a vehicle is the use of KF. The KF [34] was first
proposed in the 1960s, and it has been the most commonly
used technique in target tracking and robot navigation since.
The basic KF has been presented as a form of Bayesian filter
[35], which is an optimal estimator for linear Gaussian systems.
From a series of noisy measurements, the KF is capable of
estimating the state of the system in a two-step process: correct
and then predict [36]—[38].

The elements of this state vector (x) are the following: posi-
tion, velocity, and acceleration of the vehicle. The position (z,,)
and velocity (v, ) components of the state estimate have : and y
components to them (east-west and north-south directions), and
the acceleration (a, ) has n and ¢ components to it (normal and
tangential acceleration). Therefore, the full state vector matrix
willbe X = (24, Ty, Vg, Uy, an, a).

The estimated error covariance (P) for the state estimate is
based on the relationships between each of the elements to the
others. The error covariance matrix is a data set that specifies
the estimated accuracy in the observation errors between all
possible pairs of vertical levels.

Together with P, the Jacobian matrix of the measurement
model (H) and the measurement noise covariance (R), with the
measurement noise (o, ), are used to calculate the Kalman gain
(K). Once K is calculated, the system looks at the measured
data (Z) to identify the error of the predicted position and uses
it to adjust P.

The KF has a long history of accurately predicting the future
states of a moving target and has been applied to many different
fields [39]-[46], including transportation, which is why it was
selected for this research. Because one KF estimates the future
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Fig. 3. Flowchart for three KFs in an IMM framework.

position of a vehicle using one spatial movement model, there is
a need to set up several KFs to account for the different spatial
states in which the vehicle can be found. Having multiple KFs
running in parallel at the same time requires a framework that
can obtain one weighted answer.

This research opted for the use of IMM, which can calculate
the probability of success of each KF model at every filter
execution, providing a combined solution for the vehicle behav-
ior [47]-[50]. These probabilities are calculated according to a
Markov model for the transition between maneuver states, as
detailed in [51]. To implement the Markov model, it is assumed
that, at each execution time, there is a probability p* that the
vehicle will make the transition from model state 7 to state j.

In Johnson and Krishnamurthy’s paper [52], they describe the
IMM as a recursive suboptimal algorithm that consists of four
core steps, interacting with the KF steps as illustrated in Fig. 3.

The four-step IMM process starts with the calculation of the
mixing probabilities, which uses the transition matrix and
the previous iteration mode probabilities rix-1(7) to compute
the normalized mixing probabilities jux (i]j). The mixing prob-
abilities are recomputed each time the filter iterates before the
mixing step.

The second step uses the mixing probabilities, which are
used to compute new initial conditions for each of the n filters.
The initial state vectors are formed as the weighted average of
all of the filter state vectors from the previous iteration x;” .
The error covariance corresponding to each of the new state
vectors is computed as the weighted average of the previous
iteration error covariance’s conditioned with the spread of the
means (P;7 ).

The third step calculates mode matched filtering, using the

:?:Zj_ , and P,gfl, and the bank of n Kalman filters produces

outputs Z, the covariance matrix P,g, and the probability

density function f,,(zy) for each filter (n).

The fourth set of calculations begins once the new initial
conditions are computed; the filtering step generates a new state
vector, an error covariance, and a likelihood function for each of
the filter models. The probability update step then computes the
individual filter probability (1 (j)) as the normalized product
of the likelihood function and the corresponding mixing proba-
bility normalization factor.

The estimate and qlivlsrianc_e combination is used for output
purposes only j = i - 23; it is not part of the algo-
rithm recursions.

IV. POSITION ESTIMATION FRAMEWORK USING GPS
AND ACCELEROMETER SENSORS

For the evaluation of the use of smartphones to predict a
future position of a vehicle, only those sensors common across
all devices were selected, which, in this case, are the GPS and
accelerometer sensors. With the measurements obtained from
these sensors, the future position estimation is obtained.

In this setup, the GPS sensor provides the location (s, s),
the velocity (v), and the angle of direction (/5) using north as
the zero. Then, the accelerometer provides normal acceleration
(ay) and tangential acceleration (a;). The different models to
be used in this setup are defined as follows, which represents
the different spatial states the vehicle can be found in:

Constant Location Model (CL)
s(k) = s(k = 1) + o,
v(k) =0
a(k) =0
Constant Velocity Model (CV)
s(k) =s(k-1)+v(k- 1) Ak + oy,
v(k) =v(k = 1)+ op,
a(k) =0
Constant Acceleration Model (CA)
s(k)y=s(k-1)+v(k-1)-Ak

1
+5alk=1) - AK? + o,

v(k)=vk-1)4+alk- 1) Ak +op,
a(k) =a(k = 1)+ op, .

The aforementioned three KF models are used as part of an
IMM setup to merge each of the KF predictions and obtain one
single predicted position, as described in Section IV. When not
all sensor measurements are available to properly populate the
three KF models, the DR approach described in Section VI is
used to handle the asynchronous data.

V. MSDF SETUP

This research initially looks at predicting future positions
by running the IMM system at 1 Hz with all vehicle-mounted
(VM) sensors online in every iteration and then running it
at 10 Hz, where some sensors are offline and measurements
are missing in many of the iterations. A measurement could
be missing, either due to the sensor not being able to take
the measurement (system running at a faster frequency than
the sensor, malfunction, or no satellites in view for the GPS)
or due to the processing CPU not being able to read/write
fast enough. When a measurement is absent and the value is
needed for the models, the missing values are calculated from
the measurements obtained by the remaining sensors based on
previous real measurements, not estimations, when available.
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Fig. 4. Flowchart of the position estimation framework used by the VM

4P L

Fig. 5. (a) SP supporting V2V/V2l communication technology. (b) SP
needing an external device (black box) for communication.

In this research, because the system is running at the rate
of the accelerometer (10 Hz), the missing measurements come
from the GPS and ScanTool VM sensors which run at only
1 Hz. Instead of using previously estimated values for the
missing measurements, this setup uses the real measurements
obtained from the accelerometer and uses the following equa-
tions to derive the missing measurements:

v(k) =v(k—-1)+a(k) Ak
s(k)=s(k=1)+v(k-1) Ak + %a(k) - AR

Using this DR approach, as outlined in Fig. 4, predictions are
more accurate than waiting until all measurements are available
again or predicting these measurements the second time, using
only previously estimated values. Only when all measurements
are missing, which will be very unlikely, the system will use all
of the previously estimated values to feed the KF models and
obtain the new position estimation.

VI. CAR AND SMARTPHONE SENSOR SETUP
FOR A V2V/V2| SYSTEM

As described toward the end of Section II, this research will
estimate the future position of the vehicle 3 s away using the
framework described in Section IV, which is something that
could be shared with other vehicles (V2V) or with the in-
frastructure (V2I) as part of some collision avoidance systems.
As the communication standards are defined for the V2V and
V2I systems, smartphones will fall into one of the two different
categories as briefly illustrated in Fig. 5: 1) already supporting

the technology required for the communication or 2) needing
an external device, illustrated as a black box and connected via
USB/Bluetooth/Wi-Fi to manage the communication aspect.
This is briefly illustrated in Fig. 5. Since smartphones and
V2V/V2I are designed independently of each other, the use of
an external device (black box) is more likely to be the case to
enable smartphones to participate in a V2V/V2I system.

The VM sensors specifically set up for this specific task will
be used, like manufacturers will implement in their vehicles.
Smartphone (SP) sensors will also need to be evaluated when
used for position estimation to determine if they yield similar
results.

To properly evaluate if smartphones can be used in a
V2V/V2I system, this research plans to set a baseline by
running the VM measurements through the position estimation
framework defined in Section IV and to calculate the position
errors in the estimations by comparing them to the actual GPS
data. Once the baseline is established and a determination of
what are the amounts of prediction errors obtained, the individ-
ual SP measurements will be fed into the same position estima-
tion framework, and the error will be calculated in the position
estimations. This research can then proceed to compare the
results between the different sensors used and evaluate whether
the smartphones’ built-in sensors yield similar prediction errors
or not.

The setup on the VM sensors consists of a Garmin 16HVS
GPS receiver running at 1 Hz and a Crossbow three-axis
accelerometer running at 10 Hz. An AutoEnginuity ODBII
ScanTool (which obtains the velocity from the vehicle’s internal
system at 1 Hz) is also available, but it will not be used in this
evaluation because the smartphones that this research is using
do not have a way of connecting into the ODBII system. The
data from the sensors used are postprocessed from the different
log files recorded on an earlier date and matched based on time
stamps. Since these VM sensors were mounted on a van from
the University of Connecticut, they will be labeled as UConn
data throughout this research.

For the smartphones used in this evaluation, some were
selected from different manufacturers and at different price
ranges to identify if there is some limitation on which ones
can accurately predict the future trajectory of a vehicle. Also,
smartphones are used with different operating systems as well
to improve the evaluation experiment and take that into account
as well. They were mounted securely on the vehicle to ensure
that the accelerometer readings truly reflect the dynamics of the
vehicle. Because several smartphones were running at the same
time, they were mounted in the trunk, where they would still
have a clear view of the sky, as shown in Fig. 2, but a more
common implementation would be to mount only one of them
on the dashboard. Fig. 2 shows six smartphones, but one of
them did not record any GPS data so it had to be removed
from this experiment. The smartphones used in the evalua-
tion of accurately predicting future trajectories are listed in
Table 1.

All smartphones listed previously have a built-in accelerom-
eter sensor that can take measurements at 10 Hz, but no details
were found on their model or sensitivity. These smartphones
also have a built-in GPS sensor, and only very basic information
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TABLE |
SMARTPHONE SPECS

Rel. Base
Manufacturer Model oS Date Price
Alcatel OneTouch 908F Android 2.2 6/2011 $130
HTC Desire C Android 4.0  6/2012 $150
LG Lucid VS 840 Android 2.3 4/2012 $300
Apple iPhone 3GS i0S 5.1 6/2009 $199*
Apple iPhone 5 i0S 7.01 9/2012 $650

Details about these smartphones obtained from gsmarena.com.
* Subsidized price; this model could not be purchased without a contract,
so real price could be two or three times more.

Fig. 6. Map of the recorded route near the University of Connecticut.

was found about them. iPhone 5 has an A-GPS/GLONASS
sensor, while the other four smartphones do not have support
for GLONASS (Global Navigation Satellite System by the
Russians). Also, both Apple smartphones can take measure-
ments from the GPS sensor at 10 Hz, while the other three
smartphones can only take measurements at 1 Hz.

Some smartphones also have a three-axis gyro sensor and
a compass, which could be used as well to better estimate a
position of a vehicle, but to match more closely the sensors
mounted on the vehicle and have a more equal comparison, they
were not used in this experiment.

The measurements from the internal sensors of the iPhone
smartphones are recorded by running the SensorLog v1.4 appli-
cation written by Thomas. The sensors’ measurements on the
Android smartphones are recorded using the Data Recording
v1.0.2.0 application written by Wolf. The data used are labeled
by smartphone manufacturer, except where more than one
device per manufacturer, in which case the data were labeled
by model name.

To properly exercise the position estimation framework de-
scribed in Section IV, the route shown in Fig. 6 for this
evaluation was selected, which contains several curves (smooth
and sharp) and straight paths, driven at different speeds in the
larger and smaller roads. There were also some traffic lights on
the way and even a U-turn, providing also some stop and go
scenarios. The route driven, shown in Fig. 6, is approximately
44 km long and takes about 45 min to drive all of it.

VIl. EVALUATION CRITERIA

To evaluate whether smartphones can properly predict a
future trajectory and be considered as a possible solution to
fill in the V2V/V2I implementation gap, the position estimation
error between the VM sensors (UConn) and the SP sensors was
selected using the same KF models and IMM framework. To
start, the position estimation error between both setups will be
evaluated for the whole trajectory recorded. Also, since position
estimation errors tend to increase during nonstraight paths, this
research will also divide the trajectory recorded into smooth and
sharp curves. To determine whether a set of consecutive points
in the trajectory is a curve or a straight line, the change in the
heading (angle) between the current heading and the heading
2 s before was looked at; if more than 5°, then it was defined as
a curve. Moreover, to determine if the curve is a sharp one, the
change has to be greater than 20°; otherwise, it was defined as
a smooth curve.

To calculate the position estimation error in each step, this
research will compare the estimated position to the actual
position measured by the GPS 3 s later. This will allow a data
set of calculated errors to be built for the whole trajectory,
and then, it can be divided into the route sections described
in the previous paragraph. This research will look at average
prediction errors and root-mean-square (rms) prediction errors
to try to evaluate whether the sensors built into smartphones can
properly fill in the V2V/§ﬁl implementation gap

= (err, — errp-1)?
RMS = -~
(K k)

For this experiment, a tolerance of 10% from the position
estimation errors obtained from the VM sensors will be used;
therefore, if a smartphone yields more than 10% higher estima-
tion error than the VM sensors, then it will be concluded that
such a smartphone cannot properly predict a future trajectory
and hence could not be considered as a possible temporary
solution to fill in the V2V/V2I implementation gap.

VIll. EXPERIMENTAL EVALUATION

A. Data Set Characteristics

The characteristics of the complete recorded data set are
shown in Table II, where the mean and standard deviation for
the position difference between each second, velocity, normal
acceleration, and tangential acceleration are displayed.

Looking at Table II, it is quickly noticed that the values
between the distance and velocity columns are very similar,
as expected, because this research is measuring the position
change every 1 s. Also, as mentioned in Section VI, the UConn
data were obtained on an earlier date, so it can be seen that,
overall, the University of Connecticut van was driven a little
bit faster than the vehicle with the smartphones. Also, because
all five smartphones were in the same vehicle, their sensor
measurements should have been very similar, which is not
the case in several places. For example, for sharp curves, the
two iPhones seemed to be moving at a much faster speed
than the other three devices, while during straight paths, they
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TABLE 1l
REPRESENTATIVE DATA SETS

Device Distance Velocity Acc.norm Acc.tang

(m) (m/s) (m/s?) (mls?)
UConn 18.14+£8.99  17.9548.45 -0.17+0.58  0.61+0.60
= Alcatel 16.31£8.40  16.30+7.95 -0.12£0.73  0.66+0.95
33 HTC 16.21£8.24  16.29+8.01  -0.09+0.56  0.64+0.68
S f\i LG 16.79+£9.13  16.45+7.83  -0.18+0.58  0.61+0.64
= E iPhone3GS  16.5949.37  16.2147.96  -0.22+0.74  0.51+0.88
iPhone$ 16.2549.09  16.24+8.18  -0.11+0.79  0.62+0.82
UConn 19.43+£8.29  19.0248.14  -0.16+0.48  0.55+0.57
Alcatel 18.76+6.92  18.72+6.70  -0.12+0.72  0.64+0.95
%433 HTC 18.40+6.56  18.38+6.51  -0.10+0.54  0.62+0.57
K LG 18.98+7.74  18.42+6.65 -0.18+0.56  0.59+0.50
S % iPhone3GS  16.96+9.04  16.63+7.77 -0.20+0.74  0.50+0.88
iPhone5 16.23£9.24  16.23+8.29  -0.10+0.78  0.60+0.73
UConn 16.19£9.26  15.81+8.03  -0.29+0.89  0.74+0.63
Alcatel 14.66+£7.90  14.58+7.36  -0.11£0.75  0.73+0.98
§ g HTC 12.76+£8.32  12.9247.99  -0.07£0.64  0.78+0.91
S g LG 14.01£9.28  13.53+£7.65 -0.21+0.64  0.68+0.82
& O iPhone3GS  12.47+11.31  11.99£8.49  -0.34£0.70  0.58+0.87
iPhone5 17.99+6.64  17.86+5.83  -0.16+0.89  0.82+1.29
UConn 8.52+9.17 9.91£7.65  -0.10+0.89 1.01+0.68
., Alcatel 7.134£9.60 7.49+8.35  -0.16:0.79  0.63+0.88
% § HTC 5.2949.05 5.97+8.68  -0.07+0.64  0.59+0.94
53 LG 5.48+8.86 7.09+8.01  -0.16+0.66  0.59+1.03
iPhone3GS 16.30+12.13  13.50+£9.49  -0.15+1.05  0.70+0.89
iPhone5 12.00+£8.54  12.1848.54 -0.50+£1.04  0.62+1.58

Values represent median = standard deviation of all sensor measurements
collected by each device (~25000 data points).

seemed to be moving a little slower than the rest. The tangential
acceleration for all devices seems to be fairly consistent across
all devices, while the normal acceleration is not as consistent,
especially when smooth and sharp curves were observed, which
could imply that some sensors are more sensitive than others.

B. Position Estimation Setup

To set up the IMM, it is necessary to calculate the transition
probability matrix, so the GPS position measurements for the
whole trajectory shown in Fig. 6 were used. From this full GPS
log that contained multiple scenarios, it was determined which
transition occurs frame by frame by comparing the actual mea-
surements from the GPS to the smoothed measurements. The
smoothing of the data was done with a rolling window using
a combination of median smoothing, split the sequence, and
Hann’s sequence, which removed any abrupt changes from the
data. The type of spatial change, such as no change, a constant
change, and so on, determines each transition. Similarly, by
calculating the covariance of the differences in the measure-
ments to each other, the measurement noise covariance matrix
(R) was obtained. Finally, by calculating the covariance of the
differences in the measurements compared to their respective
2 and y components, the process covariance noise () for each
KF was obtained. From this type of information, calculating
the frequency the vehicle changes from one state to another, the
transition probability matrix is derived.

Next, each of the devices was run through the same IMM
system using the KF models described in Section IV, and for
each new measurement obtained from any of the sensors, the
system predicts the position of where the vehicle is going to be
3 s later in time.

TABLE Il
RMS PREDICTION ERROR (3 S AHEAD)

UConn at 1Hz UConn at 10Hz

Whole Trajectory 1.68 £3.21 1.29 £2.64
Straight Paths 1.27 £2.66 0.92 £1.65
Smooth Curves 2.60 £3.73 2.28 +4.87
Sharp Curves 3.43 +4.98 2.51 +4.36

Contains values representing median prediction error in
meters = standard deviation.

TABLE IV
RMS PREDICTION ERROR (3 S AHEAD)

UConn Alcatel HTC LG iPhone3GS  iPhone5
Whole 1.29 1.88 1.00 1.13 2.34 1.41
Trajectory +2.64  +2.62 +1.03 +£1.25 +3.00 +2.08
Straight 0.92 1.77 0.89 0.98 2.21 1.35
Paths +1.65 +2.56 +1.10 +£1.13 +2.81 +2.05
Smooth 2.28 1.89 0.97 1.07 349 1.86
Curves +4.87 £2.14 +0.97 +1.23 +4.02 +2.40
Sharp 2.51 2.11 1.21 1.43 4.78 2.13
Curves +436  +3.83 +1.23 +£1.59 +4.70 +2.05

Values representing median prediction error in meters == standard deviation
by all devices for trajectory shown in Fig. 6 (~25000 data points).

C. Evaluation of Position Estimation Error
by System Rate

This part of the experiment is to make sure that the system
defined in Section V, which runs at the rate of its fastest sensor,
yields better results than running the system at the rate of its
slowest sensor. First, the VM sensor’s data set (Uconn) is run
through the IMM system at the rate of 1 Hz when all sensors
are online at each iteration. Then, the same data set is run
through the same IMM system but running at 10 Hz, so now
missing values from offline sensors are calculated based on
measurements from online sensors using a DR approach. For
this part of the experiment, all of the VM sensors available were
used, including the AutoEnginuity ODBII ScanTool.

Accuracy in predicting where the vehicle will be 3 s later in
time is the factor to observe to be able to evaluate if running
the IMM system at the rate of its fastest sensor yields smaller
errors. Calculating the rms prediction error by comparing each
predicted position with each actual GPS measurement 3 s later
in time, Table III is compiled.

Taking a quick look at Table III, it can be observed that
the rms prediction errors for the system running at 10 Hz are
smaller than when the system is run at 1 Hz, especially during
curves. Even during straight paths, some improvements can be
observed because the system is detecting a change in the vehi-
cle’s speed faster and can accordingly recalculate its prediction.

D. Evaluation of Position Estimation Error by Device

Now that it is shown that running this research’s system at
the rate at the fastest sensor yields better predictions of future
positions, all smartphones are also run through this setup, and
their corresponding prediction errors are recorded in Table IV.
This table displays the rms distance between the predicted and
actual positions. This prediction error can only be calculated
when the time stamps between the predicted position and GPS
reading match. It is assumed that the GPS reading is correct,
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IMM Prediction Errors TABLE V
14F @ RMS PREDICTION ERROR (3 S AHEAD)
18f - ]
§ r T = UConn__Alcatel HTC LG iPhone3GS _iPhone5
g T E T T Whole 1.46 3.22 1.81 1.56 6.34 1.79
5LE= e B2 ] Trajectory +0.97  +3.64 +1.87 +£1.65 £6.95 £2.18
UConn  Alcatel HTC LG  iPhone3GS iPhoneb Straight 0.69 2.96 142 0.77 4.50 0.95
14f ) — Paths +0.53  +4.60 +2.11 058  +5.76 +0.74
g 121 i 1 Smooth 1.69 3.13 1.75 1.84 11.57 1.57
3 1g r _ . j T ] Curves 054 218 =143 213 =6792 +0.85
s el | T i1 Shamp 198 352 267 219 1473 2.69
= 4 — ‘ i i —] l:| 1 Curves £0.97  +3.81  £2.03 £126  £6.24 £3.12
= g I E] E E E —— | Values represent median prediction error in RMS meters =+ standard
UConn  Alcatel HTC LG  iPhone3GS iPhoneb deviation by all devices for the selected curve (~550 data points).
14F ¢ — ]
12r M—.— . _ o
18 . i ] largebox, indicating a very low level of agreement between the
6 ¢ | — i — g 1 predictions. Also, the lower the boxes to the z-axis, the smaller
3. El ’ : l I—T'—] ,;4 —+ — 1 the pr'ediction errors, so a small boyf closg to th.e x-axis, like the
0~0Gonn  Alcatel HTC LG iPhone3Gs iPhones HTC in sharp curves or the UConn in straight lines, represents a

Fig. 7. Prediction errors during (a) straight paths, (b) smooth curves,
and (c) sharp curves.

and it calculates the distance vector to the predicted position.
Then, the mean and standard deviation were calculated for all
of the calculated rms error vectors for the whole trajectory and
also for those classified by segment types.

As expected, the prediction error was less during straight
paths, and it increased during curves. Based on the values
recorded in Table IV, the prediction errors can double during
curves. Also, the prediction errors for smooth curves were
better than during the sharp curves, which makes sense because,
in a smooth curve, the vehicle is changing its heading less
abruptly than in a sharp curve, allowing the system more time
to recalculate and correct its next prediction.

This research also observed that the prediction error was not
the same between all devices, and sometimes, a device that has
a small prediction error in one segment type may not be as good
on a different segment type, making it hard to draw conclusions
from Table IV. In spite of these results, if one looks at the
percent deviation of prediction errors compared to the UConn
results, it can be narrowed down to the HTC and LG cellphones
having the smaller prediction errors overall and meeting the
tolerance of no more than 10% more error than obtained with
the UConn sensors.

Fig. 7 is another way of representing the prediction errors
for each of the devices in the different segment types. The
boxplots display the median value as the solid line dividing the
box in two, and then, the upper and lower halves of the boxes
represent the interquartiles, which together represent 50% of
the calculated prediction errors. The upper whisker indicates
that 75% of the errors fall below it, and the lower whisker
indicates the 25% marker. With this in mind, it can be seen
that, for the straight paths, except for the iPhone3GS, the boxes
are very short, which means that the prediction errors have a
high level of agreement. One can also see small boxes in the
smooth and sharp curves for the HTC and LG, so it can be
observed that their predictions are fairly consistent most of the
time, unlike the boxplot for the iPhone3GS where it is a very

very accurate prediction system. Again, looking at the boxplots
for the five smartphones, one can visually pick the HTC and LG
to be fairly good, then maybe Alcatel and iPhone$5, although it
looks like the iPhone5 is not as reliable as Alcatel during sharp
curves.

When looking at the iPhone3GS results, both in Table I'V and
Fig. 7, it can be observed that this device has prediction errors
much larger than the other devices. It seems that this device
has a problem, losing its signal quite often, introducing more
errors to what was assumed to be the “true” position. Looking
more into this topic, we have found several Apple discus-
sion forums (discussions.apple.com) where users have reported
very inaccurate GPS locations when using the iPhone3GS
running i0S5.

To look at a subset of the whole route shown in Fig. 6, a
couple of curves were selected, and the results represented in
a similar way but only for this small subset of the data set.
This selected segment of the route represents only 0.8 km (36%
straight path, 44% smooth curve, and 20% sharp curve), which
takes around 10 s to go through.

When looking at Table V, the first difference that might be
observed when comparing it to the results for the whole route
shown in Table IV is that the average prediction error for the
whole trajectory of the selected subset is different. In this case,
straight paths are a small percentage of the whole selected
subset, while smooth curves are the most abundant. For this
very specific set of curves, the UConn data are better than any
of the smartphones in all trajectory types. The LG device yields
the smallest prediction errors of all of the smartphones, which
are still within the selected 10% tolerance when comparing to
the UConn results. The next best devices seem to be the HTC
and iPhone5 smartphones, where, despite having prediction
errors over the 10% tolerance, their prediction errors are around
20% worse than the UConn results.

Another difference one can observe in Table V is that,
unlike the results in Table III, the HTC device did not seem
to perform as well in this selected set of curves than when
evaluated over the whole route. Even when looking at the
results for smooth and sharp curves, the HTC results were
always worse than the UConn prediction errors, which is not
the case when looking at the data in Table IV. In Table V,
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GPS vs. IMM Prediction 3 sec earlier

Longitude

Latitude

Fig. 8. Dotted blue lines represent GPS measurements, while solid
red lines represent IMM position predicted 3 s earlier for (a) UConn,
(b) Alcatel, (c) HTC, (d) LG, (e) iPhone3GS, and (f) iPhone5.

it seems that most smartphones performed worse than the
UConn setup in this set of curves. Since this is consistent
across all smartphones, it can be concluded that there was
something on the curves that affected the prediction, like bumps
or maybe unleveled pavement, especially over the sharp curve
section.

A visual representation of the prediction errors during the
small subset of curves previously mentioned is shown in Fig. 8,
where each predicted trajectory is compared to the actual GPS
position measured 3 s later. One can observe that, for some
devices, there is a smooth trajectory of predicted positions, like
those for the UConn and LG, closely followed by the HTC, but
it can also be observed that some other devices are constantly
correcting its predicted position drastically, causing all those
spikes during the curves. One positive thing of looking at the
predicted position errors as shown in Fig. 8 is that, despite
conclusions obtained from Table V that the iPhone5 was pre-
dicting a future position better than several of the other devices,
this research would not think that this is a reliable device after
looking at Fig. 8. Therefore, even though Fig. 8 cannot be used
by itself to draw some final conclusions, it is a very useful
addition to Table V.

An important lesson learned in this research was that the ac-
celerometer sensor could provide misleading information based
on road slopes. Table VI shows a data subset where velocity was
increasing but tangential acceleration was decreasing, implying
that the vehicle was slowing down. Looking at the data, it can
be observed that the vehicle was actually speeding up, and the
decrease on the tangential acceleration was actually because
the road was going up (altitude increase) and not because the
vehicle was slowing down.

IX. CONCLUSION

The built-in sensors of some smartphones were evaluated to
predict the future trajectory of a vehicle and their prediction

TABLE VI
MISLEADING ACCELEROMETER READINGS

Timestam Altitude Velocity Acc.tang
P (m) (mls) (m/s?)
33:17 117.93 18.06 -0.508
33:18 118.03 18.30 -0.593
33:19 118.12 18.53 -1.061
33:20 118.27 18.77 -1.168
33:21 118.80 19.07 -1.858
Misleading accelerometer measurements due to altitude
changes.

errors compared to those obtained by using VM sensors. The
results shown in Tables IV and V indicate that smartphones
yield similar or better prediction errors and could therefore be
used in older vehicles to participate in a V2V/V2I system. Al-
though smartphone price seemed to play a small role, the HTC
smartphone is one of the cheaper ones used in this experiment,
and it performed quite well in some scenarios. The more expen-
sive LG device yielded more reliable results in more, so price
could be a factor, but then, iPhone 5, being the most expensive
one, did not contribute well to the price factor. If the results of
the trajectory prediction errors for the whole trajectory driven
for this experiment (shown in Table V) are observed, it can
be concluded that all smartphones, except for the iPhone3GS,
yield prediction errors up to the 10% more than the UConn
errors. It can be observed that the results from the smartphones
perform, in most scenarios described in Table IV, even better
than the baseline set by the VM sensors (UConn), some even
almost 50% better. With these results, it can be safely concluded
that the smartphones’ sensor trajectory prediction accuracy is
sufficiently reliable to be considered for a temporary hook
to enable an older vehicle to participate in a V2V/V2I system.

Future research will include the use of other sensors found
in some of the smartphones used (gyroscope and magnetic
compass) to evaluate if they improve prediction of a vehicle’s
trajectory and how these predicted trajectories can fit into
collision avoidance systems.

REFERENCES

[1] V. Di Lecce and A. Amato, “Route planning and user interface for an
advanced intelligent transport system,” IET Intell. Transp. Syst., vol. 5,
no. 3, pp. 149-158, Sep. 2011.

[2] X. Xu, T. Xia, A. Venkatachalam, and D. Huston “The development of a
high speed ultrawideband ground penetrating radar for rebar detection,”
J. Eng. Mech., vol. 139, no. 3, pp. 272-285, Mar. 2013.

[3] T. Taleb, A. Benslimane, and K. B. Letaief, “Toward an effective risk-
conscious and collaborative vehicular collision avoidance system,” IEEE
Trans. Veh. Technol., vol. 59, no. 3, pp. 1474-1486, Mar. 2010.

[4] S. Lefevre, D. Vasquez, and C. Laugier, “A survey on motion prediction
and risk assessment for intelligent vehicles,” ROBOMECH J., vol. 1,
no. 1, pp. 1-14, Dec. 2014.

[5] F. Jimenez and J. E. Naranjo, “Improving the obstacle detection and

identification algorithms of a laserscanner-based collision avoidance sys-

tem,” Transp. Res. C, Emerging Technol., vol. 19, no. 4, pp. 658-672,

Aug. 2011.

R. Toledo-Moreo and M. A. Zamora-Izquierdo, “Collision avoidance sup-

port in roads with lateral and longitudinal maneuver prediction by fusing

GPS/IMU and digital maps,” Transp. Res. C, Emerging Technol., vol. 18,

no. 4, pp. 611-625, Aug. 2010.

C. Hakyoung, L. Ojeda, and J. Borenstein, “Accurate mobile robot dead-

reckoning with a precision-calibrated fiber-optic gyroscope,” IEEE Trans.

Robot. Autom., vol. 17, no. 1, pp. 80-84, Feb. 2001.

[6

—_

[7

—



BARRIOS et al.: TRAJECTORY ESTIMATIONS USING SMARTPHONES

7909

[8] R. Toledo-Moreo, M. Pinzolas-Prado, and J. M. Cano-Izquierdo, “Ma-
neuver prediction for road vehicles based on a neuro-fuzzy architecture
with a low-cost navigation unit,” IEEE Trans. Intell. Transp. Syst., vol. 11,
no. 2, pp. 498-504, Jun. 2010.

[9] J. Ueki, J. M. Y. Nakamura, Y. Horii, and H. Okada, “Development of
vehicular-collision avoidance support system by inter-vehicle commu-
nications,” in Proc. 59th IEEE Veh. Technol. Conf, May 2004, vol. 5,
pp. 2940-2945.

[10] Y. Wang, S. Wang, and M. Tan, “Path generation of autonomous approach
to a moving ship for unmanned vehicles,” IEEE Trans. Ind. Electron.,
vol. 62, no. 9, pp. 5619-5629, Sep. 2015.

[11] J.J. Blum and A. Eskandarian, “A reliable link-layer protocol for robust
and scalable intervehicle communications,” IEEE Trans. Intell. Transp.
Syst., vol. 8, no. 1, pp. 4-13, Mar. 2007.

[12] J. Wen-Long and W. Recker, “An analytical model of multihop con-
nectivity of inter-vehicle communication systems,” IEEE Trans. Wireless
Commun., vol. 9, no. 1, pp. 106—112, Jan. 2010.

[13] B. D. Chiara, F. Deflorio, and S. Diwan, “Assessing the effects of inter-
vehicle communication systems on road safety,” IET Intell. Transp. Syst.,
vol. 3, no. 2, pp. 225-235, Jun. 2009.

[14] S. Sohaib and D. K. C. So, “Asynchronous cooperative relaying for
vehicle-to-vehicle communications,” IEEE Trans. Commun., vol. 61,
no. 5, pp. 1732-1738, May 2013.

[15] M. Fogue et al., “Automatic accident detection: Assistance through com-
munication technologies and vehicles,” IEEE Veh. Technol. Mag., vol. 7,
no. 3, pp. 90-100, Sep. 2012.

[16] L. Chunhua, K. T. Chau, W. Diyun, and G. Shuang, “Opportuni-
ties and challenges of vehicle-to-home, vehicle-to-vehicle, and vehicle-
to-grid technologies,” Proc. IEEE, vol. 101, no. 11, pp. 2409-2427,
Nov. 2013.

[17] J. C. Ferreira, V. Monteiro, and J. L. Afonso, “Vehicle-to-anything appli-
cation (V2Anything App) for electric vehicles,” IEEE Trans. Ind. Infor-
mat., vol. 10, no. 3, pp. 1927-1937, Aug. 2014.

[18] D. Freidman, “V2V: Cars Communicating to Prevent Crashes,
Deaths, Injuries,” US Dept. Transp. (DOT), Washington, DC, USA,
Feb. 3, 2014. [Online]. Available: http://www.dot.gov/fastlane/v2v-cars-
communicating-prevent-crashes-deaths-injuries

[19] J. Gorselanv, “Cars That Can Last for 250,000 Miles (or More),” Forbes
Corp., New York, NY, USA, Mar. 14, 2013. [Online]. Available: http://
www.forbes.com/sites/jimgorzelany/2013/03/14/cars-that-can-last-for-
250000-miles/

[20] “Data Analytics and Processing,” Cambridge Mobile Telematics,
Cambridge, MA, USA, Aug. 2013. [Online]. Available: http://www.
cmtelematics.com/product/data-analytics

[21] R.C. Luo, C.C. Y., and K. L. Su, “Multisensor fusion and integration—
Approaches, applications, and future research directions,” IEEE Trans.
Sens., vol. 2, no. 2, pp. 107-119, Apr. 2002.

[22] J. B. Gao and C. J. Harris, “Some remarks on Kalman filters for the
multisensor fusion,” Inf. Fusion, vol. 3, no. 3, pp. 191-201, 2002.

[23] S. C. Felter, “An overview of decentralized Kalman filter techniques,” in
Proc. IEEE Southern Tier Tech. Conf.,, Apr. 1990, pp. 79-87.

[24] M. Hua, T. Bailey, P. Thompson, and H. Durrant-Whyte, “Decen-
tralised solutions to the cooperative multi-platform navigation problem,”
IEEE Trans. Aerosp. Electron. Syst., vol. 47, no. 2, pp. 1433-1449,
Apr. 2011.

[25] E. M. Nebot, M. Bozorg, and H. F. Durrant-Whyte, “Decentralized
architecture for asynchronous sensors,” Auton. Robots, vol. 6, no. 2,
pp. 147-164, Apr. 1999.

[26] M. Vallee, M. Merdan, W. Lepuschitz, and G. Koppensteiner, “Decentral-
ized reconfiguration of a flexible transportation system,” IEEE Trans. Ind.
Informat., vol. 7, no. 3, pp. 505-516, Aug. 2011.

[27] H. M. Wang, Q. Yin, and X. Xia, “Fast Kalman equalization for
time-frequency asynchronous cooperative relay networks with dis-
tributed space-time codes,” IEEE Trans. Veh. Technol., vol. 59, no. 9,
pp. 46514658, Nov. 2010.

[28] G. A. Watson, T. R. Rice, and A. T. Alouani, “An IMM architecture for
track fusion,” in Proc. Signal Process., Sens. Fusion, Target Recognit.,
2000, vol. IX, pp. 2-13.

[29] A. T. Alouani and T. R. Rice, “On optimal asynchronous track fu-
sion,” in Proc. Ist IEEE Australian Symp. Data Fusion, Nov. 1996,
pp. 147-152.

[30] G. A. Watson, T. R. Rice, and A. T. Alouani, “Optimal track fusion
with feedback for multiple asynchronous measurements,” in Proc. SPIE
Acquisition, Tracking Pointing, Apr. 2000, vol. XIV, pp. 20-33.

[31] M. W. Owen and S. C. Stubberud, “Interacting multiple model tracking
using a neural extended Kalman filter,” in Proc. IEEE Int. Joint Conf.
Neural Netw., 1999, vol. 4, pp. 2788-2791.

[32] J. Wang, S. Y. Chao, and A. M. Agogiono, “Validation and fusion of
longitudinal positioning sensors in AVCS,” in Proc. Amer. Control Conf.,
1999, vol. 3, pp. 2178-2182.

[33] M. Green, “How long does it take to stop? Methodological analysis
of driver perception-brake times,” Transp. Hum. Factors, vol. 2, no. 3,
pp- 195-216, Sep. 2000.

[34] R. Kalman, “A new approach to linear filtering and prediction problems,”
Trans. ASME, vol. 82, no. 1, pp. 34-45, Mar. 1960.

[35] Y.Ho and R. Lee, “A Bayesian approach to problems in stochastic estima-
tion and control,” IEEE Trans. Autom. Control, vol. 9, no. 4, pp. 333-339,
Oct. 1964.

[36] G. Welch and G. B., “An Introduction to the Kalman Filter,” Dept.
Comput. Sci., Chapel Hill, NC, USA, SIGGRAPH Course Notes, 2001.

[37] Y. Bar-Shalom and X. R. L. T. Kirubarajan, Estimation With Applications
to Tracking and Navigation. Hoboken, NJ, USA: Wiley, 2001.

[38] Y. Bar-Shalom and X. R. L., Estimation and Tracking: Principles,
Techniques and Software. Norwood, MA, USA: Artech House, 1993.

[39] S.Y. Chen, “Kalman filter for robot vision: A survey,” IEEE Trans. Ind.
Electron., vol. 9, no. 11, pp. 4409-4420, Nov. 2012.

[40] C.-L. Lin, Y.-M. Chang, C.-C. Hung, C.-D. Tu, and C.-Y. Chuang, “Po-
sition estimation and smooth tracking with a fuzzy-logic-based adaptive
strong tracking Kalman filter for capacitive touch panels,” IEEE Trans.
Ind. Electron., vol. 62, no. 8, pp. 5097-5108, Aug. 2015.

[41] M. H. Kim, S. Lee, and K. C. Lee, “Kalman predictive redundancy system
for fault tolerance of safety-critical systems,” IEEE Trans. Ind. Informat.,
vol. 6, no. 1, pp. 46-53, Feb. 2010.

[42] X.Xu, Z. Xiong, X. Sheng, J. Wu, and X. Zhu, “A new time synchroniza-
tion method for reducing quantization error accumulation over real-time
networks: Theory and experiments,” IEEE Trans. Ind. Informat., vol. 9,
no. 3, pp. 1659-1669, Aug. 2013.

[43] B. Aubert, J. Régnier, S. Caux, and D. Alejo, “Kalman-filter-based in-
dicator for online interturn short circuits detection in permanent-magnet
synchronous generators,” IEEE Trans. Ind. Electron., vol. 62, no. 3,
pp- 1921,1930, Mar. 2015.

[44] R. K. Singleton, E. G. Strangas, and S. Aviyente, “Extended Kalman
filtering for remaining-useful-life estimation of bearings,” IEEE Trans.
Ind. Electron., vol. 62, no. 3, pp. 1781-1791, Mar. 2015.

[45] C.F. Graetzel, B. J. Nelson, and S. N. Fry, “A dynamic region-of-interest
vision tracking system applied to the real-time wing kinematic analysis
of tethered drosophila,” IEEE Trans. Autom. Sci. Eng., vol. 7, no. 3,
pp. 463-473, Jul. 2010.

[46] F. Auger et al., “Industrial applications of the Kalman filter: A review,”
IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5458-5471, Dec. 2013.

[47] L.Hong, “Multirate interacting multiple model filtering for target tracking
using multirate models,” IEEE Trans. Autom. Control, vol. 44, no. 7,
pp- 1326-1340, Jul. 1999.

[48] E. Mazor, “Interacting multiple model methods in target tracking: A sur-
vey,” IEEE Trans. Aerosp. Electron. Syst., vol. 34, no. 1, pp. 103-123,
Jan. 1998.

[49] L. Wenling and J. Yingmin, “Location of mobile station with maneuvers
using an IMM-based cubature Kalman filter,” IEEE Trans. Ind. Electron.,
vol. 59, no. 11, pp. 4338-4348, Nov. 2012.

[50] S. J. Lee, Y. Motai, and H. Choi, “Tracking human motion with multi-
channel interacting multiple model,” IEEE Trans. Ind. Informat., vol. 9,
no. 3, pp. 1751-1763, Aug. 2013.

[51] H. A. P. Blom and Y. Bar-Shalom, “The interacting multiple model algo-
rithm for systems with Markovian switching coefficients,” IEEE Trans.
Autom. Control, vol. 33, no. 8, pp. 780-783, Aug. 1988.

[52] L. A. Johnson and V. K., “An improvement to the interactive multiple
model (IMM) algorithm,” IEEE Trans. Signal Process., vol. 49, no. 12,
pp- 2909-2923, Dec. 2001.

Cesar Barrios received the B.S. and M.S.
degrees in electrical engineering from the
New Jersey Institute of Technology, Newark,
NJ, USA, in 1999 and 2001, respectively, and
the Ph.D. degree in electrical engineering from
the University of Vermont, Burlington, VT, USA,
in 2014.

He has been with IBM since receiving the
B.S. degree in 1999. He first started in the
information technology field and then moved to
the IBM Semiconductor Research and Devel-
opment Center. He was with IBM Global Services, Morristown, NJ, in
2001-2003 and with IBM Microelectronics, Burlington, in 2003—2015.
Since 2015, he has been with GlobalFoundries, Burlington.



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 62, NO. 12, DECEMBER 2015

Yuichi Motai (M’01) received the B.Eng. de-
gree in instrumentation engineering from Keio
University, Tokyo, Japan, in 1991, the M.Eng.
degree in applied systems science from Kyoto
University, Kyoto, Japan, in 1993, and the Ph.D.
degree in electrical and computer engineer-
ing from Purdue University, West Lafayette, IN,
USA, in 2002.

He is currently an Associate Professor
of electrical and computer engineering with
Virginia Commonwealth University, Richmond,

Dryver Huston received the B.S. degree in
mechanical engineering from the University of
Pennsylvania, Philadelphia, PA, USA, in 1980
and the M.A. and Ph.D. degrees in civil en-
gineering from Princeton University, Princeton,
NJ, USA, in 1982 and 1986, respectively.

He is a Professor with the School of Engi-
neering, University of Vermont, Burlington, VT,
USA. His research interests include sensors,
structural health monitoring, and self-healing
systems.

VA, USA. His research interests include the broad area of sensory intel-
ligence, particularly in medical imaging, pattern recognition, computer
vision, and sensory-based robotics.



