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Intelligent Forecasting Using Dead Reckoning
With Dynamic Errors

Cesar Barrios, Yuichi Motai, Senior Member, IEEE, and Dryver Huston

Abstract—A method for integrating, processing, and
analyzing sensing data from vehicle-mounted sensors for
intelligent forecasting and decision-making is introduced.
This dead reckoning with dynamic errors (DRWDEs) is
for a large-scale integration of distributed resources and
sensing data intervehicle collision avoidance system. This
sensor fusion algorithm is introduced to predict the future
trajectory of a vehicle. Current systems that predict a vehi-
cle’s future trajectory, necessary in a network of collision
avoidance systems, tend to have a lot of errors when the
vehicles are moving in a nonstraight path. Our system has
been designed with the objective of improving the estima-
tions during curves. To evaluate this system, our research
uses a Garmin 16HVS GPS sensor, an AutoEnginuity OBDII
ScanTool, and a Crossbow three-axis accelerometer. Using
Kalman filters (KFs), a dynamic noise covariance matrix
merged together with an interacting multiple models (IMMs)
system, our DRWDE produces the future position estima-
tion of where the vehicle will be 3 s later in time. The
ability to handle the change in noise, depending on unavail-
able sensor measurements, permits a flexibility to use any
type of sensor and still have the system run at the fastest
frequency available. Compared with a more common KF
implementation that runs at the rate of its slowest sensor
(1 Hz in our setup), our experimental results showed that
our DRWDE (running at 10 Hz) yielded more accurate pre-
dictions (25%-50% improvement) during abrupt changes in
the heading of the vehicle.

Index Terms—Collision avoidance, course correction,
dead reckoning, global positioning system, Kalman filters,
road vehicles, sensor fusion.

|. INTRODUCTION

ENSOR fusion and tracking techniques have potential
applications for the vehicle and the infrastructure as intro-
duced in [1], something we can appreciate from the indus-
trial sensing intelligence found in intelligent transport systems
(ITSs) area [2]. The overall function of ITS is to improve
decision-making, often in real time, improving the operation of
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the entire transport system. This can range from systems with
intelligent route planning implemented to avoid some specific
type of traffic from certain areas [3], to registering the posi-
tion of vehicle-borne sensors for infrastructure assessment [4],
to systems designed to prevent collisions between the users [5].
This research could fall under the latter category.

A collision avoidance system is only as good as its accuracy
in warning the driver—either human or automated. An accu-
rate system will minimize the number of false warnings, so the
driver takes them seriously. Designing the architecture of this
type of system involves using many sensors, for intelligent con-
trol and decision-making, and finding the right balance among
the number of sensors implemented, type, and their overall
contributions to the intelligent forecasting system.

There are mainly two types of designs for a collision avoid-
ance system. Self-sufficient systems are those that can obtain
enough information by themselves, such as those in [6]-[8].
Interactive systems are those that interact with the infrastruc-
ture or other vehicles to detect a dangerous scenario, such
as researched in [9]-[11], where their systems send spatial
information to nearby vehicles to judge the possibility of a
collision in the future. While self-sufficient systems are lim-
ited to line-of-sight detection, the interactive systems are not
limited by this but are more complex. Estimating the future
trajectory of a vehicle requires multiple sensors that need
to be merged together and put through a set of prediction
models.

Multisensor data fusion (MSDF) techniques are required to
combine and process data [12], [13]. This has been tradition-
ally performed by some form of Kalman [14] or Bayesian filters
[15]; however, in recent years, there has been a trend toward the
use of soft techniques such as fuzzy logic and artificial neural
networks [16], [17]. Furthermore, there can be two ways of set-
ting up an MSDF system: 1) centralized; or 2) decentralized. A
centralized approach suffices for most common scenarios where
the sensors are synchronous, but a decentralized approach is
convenient when the sensors should be treated independently
[18]-[22], as with asynchronous sensors.

In [23], the authors discuss the optimal asynchronous track
fusion algorithm (OATFA), which evolved from their earlier
research on an asynchronous/synchronous track fusion (ASTF)
[24]. They use the interacting multiple model (IMM) algo-
rithm, but replace the conventional Kalman filters (KFs) with
their OATFA. The OATFA treats each sensor separately, pass-
ing the output from each to a dedicated KF, departing from
the idea that the best way to fuse data is to deliver it all to a
central fusion engine. The paper’s IMM-OATFA results show
position estimation errors that are about half of conventional
IMM setups. However, as pointed out by the same authors in
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[25], all measurement data must be processed before the fusion
algorithm is executed. Similarly, the authors of [26] create asyn-
chronous holds, where, from a sequence of inputs sampled at a
slow sampling rate, it generates a continuous signal that may be
discretized at a high sampling rate. Despite the benefits of mak-
ing the asynchronous system into a synchronous one by using
these methods, restrictions are observed where, if for some rea-
son, a sensor is delayed in providing its data or is offline for a
few cycles, the whole system needs to wait.

In [27]-[29], the authors also look into problems of getting
measurements from multiple sensors, but they focus on mea-
surements being out-of-sequence and not on missing measure-
ments. Therefore, while this is a very important topic on some
scenarios, for the system that was used in this study, having all
the sensors being processed locally, it will be assumed that all
measurements are in the correct sequence, and there should not
be a reason for some of them getting out-of-sequence.

Another method to fuse asynchronous sensors is discussed
in [30]. In this paper, the authors synchronize the output of
the sensors by estimating the data of the slower sensors for the
time stamps where no data were available from them. Even
though the method used to estimate the unavailable readings
is very rudimentary (based only on the previous reading), this
idea allows the system to run at the fastest frequency of its
sensors. This difference, compared to the previously referenced
papers, allows the system to make any corrections as soon as
data are available, making its estimations more accurate in
some scenarios.

The contribution of this paper is a dead reckoning (DR) sys-
tem that runs at the frequency of its fastest sensor to update
its prediction as soon as a change is detected. The difference
from other DR implementations, subject to cumulative errors,
is that our dead reckoning with dynamic error (DRWDE) con-
tinually updates the noise covariance matrices when any sensor
remains offline by innovating a dynamic Q matrix in the KFs.
This constant modification of the true weight of each measure-
ment helps to counteract the cumulative error of the DR when
the measurements are estimated and not real.

[1. POSITION ESTIMATION TECHNIQUES

The KF [31] was first proposed in the 1960s and has been
shown to be a form of Bayesian filter [32]. From a series of
noisy measurements, the KF is capable of estimating the state
of the system in a two-step process: 1) correct; and 2) predict
[33]-[35].

The KF has a long history of accurately predicting future
states of a moving object and has been applied to many dif-
ferent fields [36]-[39], including transportation, which is why
it was chosen for this research. The elements of the state vec-
tor used (x) are: the position, velocity, and acceleration of the
vehicle; all available from the different sensors. Keep in mind
that the position (zv) and velocity (vv) components of the state
estimate have an x and y component to them (east—west and
north—south directions), and the acceleration (av) has an n and
¢t component to it (normal and tangential acceleration). So, the
state vector matrix will be X = (zx, zy, vz, vy, an, at).

The estimated error covariance (P) for the state estimate is
based on the relationships between each of the elements to the
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Fig. 1. Flowchart for the three KF in an IMM framework.

others. The error covariance matrix is a dataset that specifies
the estimated accuracy in the observation errors between all
possible pairs of vertical levels.

Together with P, the Jacobian matrix of the measurement
model (H), the measurement noise covariance (R), and with the
measurement noise (o, ), are used to calculate the Kalman gain
(K). Once the K is calculated, the system looks at the measured
data (Z) to identify the error of the predicted position obtained
from the dynamic models defined, and uses it to adjust P.

The IMM framework was used in this system [44], as shown
in Fig. 1. It can calculate the probability of success of each
model at every filter execution, providing combined solution
for the vehicle behavior [40]—-[42]. These probabilities are cal-
culated according to a Markov model for the transition between
maneuver states, as detailed in [43]. To implement the Markov
model, it is assumed that at each execution time, there is a prob-
ability p that the vehicle will make a transition from model
state i to state j.

Ill. DRWDE USING KFS

This system uses three different sensors: 1) a Garmin 16HVS
GPS receiver and Fugawi 3 GPS navigation software; 2) an
AutoEnginuity OBDII ScanTool (which obtains the veloc-
ity from the vehicle’s internal system); and 3) a Crossbow
three-axis accelerometer. This set of sensors offers data at
different rates (asynchronous) and also at the same rates (syn-
chronous); one measurement from two of the sensors overlap
(homogeneous) but most of them do not (heterogeneous). The
accelerometer measures normal and tangential acceleration
every tenth of a second, the ScanTool measures velocity every
1 s, and the GPS measures position, velocity, and heading every
1 s (timing precise).

A problem with some of the existing research, as mentioned
in Section 1, is that sensors can unexpectedly go offline and not
provide data when expected. The system in this study will need
to handle this without slowing down the running frequency of
the overall system and then wait for the sensor to come back
online. This in turn means that the system can run at the fre-
quency of its fastest sensor. If the system can continue to run
and handle the missing data, it will allow for a quicker correc-
tion of the estimation if a change occurs in the spatial movement
of the vehicle.

A. System Architecture

In this setup, the GPS sensor provides the location (s, sy),
the velocity (v), and the angle of direction (/3) using north as
the zero. Then the ScanTool sensor provides the velocity (v),
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Fig. 2. Flowchart of our DRWDE system.

and the accelerometer provides normal acceleration (a,,) and
tangential acceleration (a¢). The jerk j (acceleration change)
in this study’s equations is included as the factor responsible
for the noise in the measurements; therefore, the jerk term is
represented as the prediction noise (o,). The different linear
dynamic models to be used in the KF used in this research are
defined as follows.
1) Constant location (CL)

s(k) = s(k= 1) + oy,

3) Constant acceleration (CA)

s(k)y=s(k-1)+v(k- 1) Ak

- %a(k - 1) - (Ak)® + oy,
v(k)=v(k—1)4+a(k—- 1) Ak +0p,
a(k) =alk- 1)+ oy, .

In the flow of this setup (Fig. 2), when a sensor goes offline
and the data needed for the models are not present, e.g., veloc-
ity, the missing data are derived from the data obtained by the
remaining online sensors, making this estimation more accu-
rate than only using the offline previous reading of the sensor
to estimate what would be its current value. This is insuffi-
cient, however, as the longer a sensor remains offline, the more
noise is accumulated in the estimation of its value, which in turn
affects the overall prediction of the future spatial location of the
vehicle. To handle this properly, we have to modify dynamically
the noise covariance matrices.

B. Q Matrix in the KF

The process noise covariance (Q) of the KF is defined based
on the estimated prediction noise (o,). A simple approach is

made to estimate Q using an extensive dataset of common sce-
narios. For this system, because this research wanted to be
able to handle sensors going offline at any given time and for
any given period of time, an innovative method was devised
that makes the Q matrix dynamic, allowing the noise to vary
depending on the number of iterations the different variables
go through without getting an actual measurement from the
corresponding sensor.

1) Mathematical Framework for Improvement: A dis-
crete and dynamic linear system and measurement equation
can be generally expressed as shown below, where £ is the
current instance and k + 1 is the future instant for which the
data are being estimated. For the linear discrete system, z is the
state, I is the state transition function, and B is the control
input function. For the measurement equation, Z is the sen-
sor reading, H is the sensor function, and n is the sensor noise
covariance

Tyt = Fp - xp + By - ug + wy,

Ziw1 = Hyp1 " T + Npog1

Given the intermediate data for the instant ¢, between the
instances when all sensors are online (¢; and ¢;1), it is possible
to make a prediction for the instant {5, based on the data at
instant ¢5, which will most probably result in a better prediction
than if using the instant ¢;. There are two possible approaches
to handle the missing data when sensors are offline.

The first option is to fill in the missing measurements
with those of i, which is the prediction to the inter-
mediate instant. The risk for the minimal quadratic error
[45] is (& - E(z))" - M (2 - E(x)) + trace [MP], where M
is the {igfined positive matrix offfhe quadratic error, and
P=FE (2- E(z)) (&- E(x))" , with the corresponding
reduction in the actual measurements when sensors are
online.

The second option is to calculate, with the current data
obtained from the online sensors, the noise errors for the given
small time interval, and obtain a better approximation of the
missing measurements, with the goal of obtaining a better Q
covariance matrix.

In the first option, the error will generally be greater, hence
the interval is greater & and E(x). In the second option, there
may not always be a relationship that will yield a good estima-
tion, but experimental runs can help evaluate this approach to
determine if the estimation is indeed better.

As proven in Appendix I, a smaller trace of the O matrix
would suppose a general improvement in the covariance matrix
of the process, and therefore the resulting estimation. However,
if a sufficiently general cqmdition is refggjired, then there is a
need to study the matrix £ my1mj,, for each specific case,
where my, represents the status of a specific sensor at a given
instant.

To approximate the unknown magnitudes, if z =
(xox7 ..mn)t verifies that 2.1 =4; M=0,1,...,n— 1,
and x,, is the function we have for known measurements in the
intermediate instances, it is possible to approximate any x,, for
p=20,1,...,n— 1 through a Taylor polynomial as shown in
Appendix II.
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With the new data obtained from the online sensors, the
process can be repeated for the next intermediate instances
tk+1,tk+2, ..., which, in general, the error will continue to
increase as the time gap increases. The exact value of the errors
will be unknown in general, so this research will have to be
bounded through statistical estimations; even though, in reality,
the actual implementation, and not the theoretical validation of
the formulas, will determine if there is an improvement in the
estimations. For this, it must be taken into account that, due to
the cumulative error accumulated with each iteration, an exces-
sive number of iterations will be counterproductive, and will
make the estimations worse.

In the case that the function of the more frequent known
measurements , is not xy or x,, it will suffice to consider
on one hand (z...z,), and on the other hand (yo...¥ym) =
(2o ...Zm), and proceed with each group accordingly. If there
were more functions with known measurement data, in general,
the remaining would be estimated using the closest one, or one
of the closest ones.

2) Dynamic Process Noise Covariance (Q): In the case
when all the sensors are available, the formulas for the CA
models will depend on the location, velocity, and acceleration
measurements in a given instant, and also will depend on the
prediction noise o,. In this case, o, is based on the jerk (j),
which will have a variable and unknown value. Based on the
Lagrange form of the remainder of Taylor’s formula, there is a
value for j which will yield the exact measurements. Therefore,
to set an upper bound of the expected value (F), it suffices to
identify an upper bound for j, and calculate the corresponding
integrals to obtain each E. However, because in a real-time exe-
cution of the system all the values of j are not known ahead of
time, this research made it a moving range, so the system can
dynamically tune itself.

In summary, to determine Q = F [apag ], this research
starts by defining j; (acceleration change) as the least
upper bound (supremum) of the dataset collected so far, i.e.,
max{ Ijtk |7 |.7nk Ia |jtk— 1 |7 |jnk— 1 | s |jtk0 |7 |j7lk0 |} .

If the state vector defined in Section II-A and the Kalman
models defined in Section III-A are used, and if j,, is to the
right of j;, and for the CA model (3), z(k) = F'(k) z(k— 1) +
oy has

"1 Ak 1aw?] " jany!
zk)y=Lo 1 " Ak 1 atk-1)+l a2l @
00 1 J(Ak)

Furthermore, in this system, it will also take into account the
error in the estimations for location, velocity, and acceleration
when the sensor providing the corresponding value is offline,
and consider for how long it has been offline.

Now, given Mx{x) as the total measurement error of a vari-
able x such that in the step when all sensors are online m = 0,
and in the following m step(s), only the accelerometer sensor
is online. Because sensors can go offline independently of each
other, a different m is needed to identify each sensor: m; for
the GPS sensor, ms for the ScanTool sensor, and mgs for the
accelerometer.

Therefore, this research can now define Q for the CA model
as follows:

|
(v)2 M(va)! . (5)

Therefore, each of the process error elements in the Q
matrix can be derived. For thosition clements (x/y),

1|1
2

it is obtained that £ M?(s) < % ~ Jk-i with

=0
the details shown in Appendix III. Then, using a simi-
lar approach, it was found that for the velocity elements

03 1
(x/y) E M?(v) < 7@?4 jk-4» and, finally, for the
-
acceleration elements (n/t), it was derived E M? (a) <

1551

(Ak)? ji_ ;. Moreover, for the nonzero elements out-

=0
side of the diagonal, it was calculated that E [M (s-v)] =
(awe "EI

12 ‘ Jke- i+

1=

For a given tangential or normal acceleration, the locations
and velocities in the axis directions can be any; therefore, the
location and velocity variables are independent from the value
of the tangential or normal accelerations. Similarly, the tangen-
tial and normal accelerations are independent of each other.
Therefore, the expected value of those errors is zero, and the
final O matrix that will dynamically increase the corresponding
measurement error in relation to how long some sensors (m;)
have been offline (Ak) is defined as follows:

E[M(v-s)] <

Eb mAET 1
(@ame " Ak 2 0
36 Ji-i 12 Ji- i
i=0 i=0
s M ! o izt
—| (k) o (AK) : 0
12 . Je-¢ —a 0 Jh=i
1= 1=
2771 5
0 0 (Ak Jk-i
i=0

(6)

Using a similar approach as shown above, this research can
derive the dynamic Q matrix for the CV model as follows:

[ _ |
(k) 1a2 (arp "ET
4 .

2

o Wi 2 o A=
Qov = , migd1 il - (D
(AQk) aj-; (Ak)2 az-
i=0 i=0
Also, for the CL model
sp
QoL = (AR v, . ®)
i=0

These Q matrices will be used in the KF prediction step
to estimate the error covariance for each of the models. Also,
as shown in the Q matrices above, the moment a sensor
comes back online (m; = 0), the corresponding element in the
dynamic Q matrix can be reset to its minimum value.
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IV. EVALUATION CRITERIA

To verify the improvements of using the DRWDE, we will
implement and compare the results of the following setups:

1) synchronous sensors using a common KF + IMM imple-
mentation (GPS at 1 Hz, ScanTool at 1 Hz, and
accelerometer at 1 Hz);

2) asynchronous sensors using our dynamic DRWDE imple-
mentation (GPS at 1 Hz, ScanTool at 1 Hz, and
accelerometer at 10 Hz).

The first setup is to get the IMM working at 1 Hz, which will
only run when all sensors are online, therefore not really using
the dynamic part of the Q matrix.

The DRWDE setup is to increase the frequency of the system
to 10 Hz to try to take advantage of all the readings from the
accelerometer and try to correct the predictions sooner, instead
of having to wait for all sensors to come back online, as in this
first setup. This second setup uses the dynamic Q matrix tech-
nique described in Section III-B to account for the error in the
estimation of the data when some sensors are offline.

Using the above two setups helps to track improvements
to the overall trajectory prediction when the frequency of the
system increases along with the proper handling of the accumu-
lated error in the predictions. If this DRWDE is flexible enough
to handle all the different synchronous and asynchronous,
homogeneous and heterogeneous data from the sensors in use,
improvements should be seen on the predicted future locations,
and the system should be able to detect and correct a spatial
change in the vehicle much sooner than when the system is
forced to run at the speed of its slowest sensor.

The evaluation criteria will be based on comparing the actual
prediction errors for both the DRWDE and the IMM 1 Hz
systems against the true location data obtained from the GPS
receiver. Both systems will be run through the same trajectory,
and the results looked at in several different ways. First, this
research will look at the average prediction error for whole tra-
jectory, but then also separate the trajectory into straight lines,
smooth curves, and sharp curves, to better evaluate both sys-
tems in the different scenarios. This research will also select one
specific smooth curve and one specific sharp curve, and it will
look at those results in greater detail, using error histograms
and calculating root-mean-square (RMS) and mean absolute
percentage error (MAPE) values using the actual and predicted
position S of both systems

RMS =

V. EXPERIMENTAL PERFORMANCE OF THE DRWDE
SYSTEM

A. Dataset Characteristics

The dataset consists of measurements from the three sensors
while driving a vehicle for over 1 h. The trajectory followed is
shown in Fig. 3, where the vehicle followed the route marked
in red.

Chaffeeville
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Fig. 3. Map of overall trajectory in Mansfield City, CT (Google Maps).

For this experiment, the GPS sensor takes measurements
of the current geographical coordinates in degrees, heading in
degrees, and velocity in miles per hour every 1 s. These mea-
surements were converted to meters, radians, and meters per
second, respectively.

The ScanTool reads the measurements of the velocity deter-
mined by sensors coupled to the wheels of the vehicle in miles
per hour every 1 s. This measurement is more accurate than the
one obtained from the GPS, so it is used instead of the one from
the GPS (except when it is not available).

The last sensor used in this experiment is an accelerometer,
which takes measurements of the normal and tangential acceler-
ations in volts every 0.1 s. Using a calibration formula provided
by the manufacturer of the sensor, the conversion is units to
meters per second squared.

The trajectory selected for this research is shown in Fig. 3.
The selected route was selected to include straight and non-
straight paths, and also road types driven at different speeds,
such as highways, local routes, small streets, and even going
through town with several traffic lights and stop signs. This
dataset includes most possible scenarios a vehicle could be
traveling through.

To be able to create a useful dataset of the data recorded from
the trajectory shown in Fig. 3, this research had to create scripts
to map the values from the log file of each sensor to each other,
using the timestamp as the common reference between them. In
the end, a dataset was created with all the desired measurements
in columns, with all available readings in a row for each times-
tamp. Because only the accelerometer works at 10 Hz, many
of the rows only contain acceleration measurements, and this
is where the system comes into action and takes advantage of
these extra measurements. Table I shows the average and stan-
dard deviations of the data used, to take a general look at the
characteristics of the dataset worked with.

For this experiment, the focus was on predicting a trajectory
when the vehicle is going through curves, which are the more
problematic areas. To be able to evaluate this better, the dataset
of the whole trajectory was classified into straight lines, smooth
curves, and sharp curves. To determine whether a set of consec-
utive points in the trajectory was a curve or a straight line, the
change in the heading after a period of 2 s was observed; if it
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TABLE | TABLE Il
REPRESENTATIVE DATASETS AVERAGE PREDICTION ERROR
Distance Velocity ~ Acc.norm  Acc.tang DRWDE DRWDE IMM IHz IMM lHz

(m) (m/s) (m/s*) (m/s%) B3s) (559) (3s) (59)
Whole trajectory 16.34 15.20 —0.44 0.69 Whole 2712 Bt =044 364
£6.97 +5.86 £1.10 +0.58 trajectory +2.030 +3.237 +1.800 +3.193
Smooth curves 19.04 1766 -1.69 0.04 il 2511 203 ik 2857
£5.58 +4.97 £1.72 £0.53 smooth curves +1.925 +3.825 +1.737 +3.282
Sharp curves 10.59 9.36 037 1.19 All 3.236 5.063 4.456 5270
+6.84 +5.78 +1.34 £0.58 sharp curves +2.844 +3.175 +3.307 +3.003
- - - - Selected 3.051 5.892 3.212 5.483
Values represent median + standard deviation of all data points used. smooth curve +1.173 +3.200 +1.205 +3.124
Selected 2.277 4.210 4.090 5.093
© sharp curve +2.388 +1.442 +2.241 +2.981

Fig. 4. Map of selected turn for testing (Google Maps).

was more than 2°, then it was defined as a curve. Moreover, to
determine if the curve was a sharp one, the change had to be
greater than 10° ; otherwise, it was defined as a smooth curve.

Moreover, the system to estimate a future position of a vehi-
cle will be set up to determine where the vehicle will be 3 s later,
which is based on the average human reaction time of 1.5 s to
stop a vehicle [46]. In reality, this value would also need to
take into account the vehicle’s weight and speed to properly
determine minimum stopping time necessary.

Looking at Table I, it can be seen that the dataset used for this
experiment agrees with how a vehicle would be driven under
normal conditions. For example, the standard deviations are
not very different from each other for the distance and velocity
measured by the sensors, which is expected, as the values do not
change much from one point to the next for an average vehicle
driving on normal roads. The average for distance and veloc-
ity is smaller for the smooth curves than for the sharp curves,
which means that the vehicle’s speed is more constant through
the smooth curves than the sharp curves. The change in move-
ment for sharp curves agrees with how a vehicle would behave
in such a scenario, as it will usually have to slow down consid-
erably while turning and then accelerate again as the driver gets
a handle on the curve.

Since the main problem with trajectory estimation is during
curves based on research reviewed in Section I, this research
selected a specific curved scenario from Fig. 3 and use that
dataset to evaluate the DRWDE system and its performance.

The section of the trajectory shown in Fig. 4 was selected
because it has a sharp curve and then a smooth constant curve,
which should be a good scenario to test if the system can correct
its prediction when the vehicle enters the curve, and maintain
it through the whole curve. Sharper curves allow our dynamic
system to be tested properly as the curve ends up being very
short and does not allow a slower system to estimate a trajec-
tory during the actual turn if it lasts only a few seconds. The
“selected smooth curve” refers to the longer curve in Fig. 4

Values represent median prediction error in meters + standard deviation of all
data points used for both 3- and 5-s-ahead predictions.

(~30 s of data), and the “selected sharp curve” represents the
small curve (bottom left) shown in Fig. 4 as well (~ 10 s of
data).

The DRWDE setup for this experiment, as explained in
Section III, runs at the frequency of its fastest sensor (10 Hz),
and uses the dynamic matrices accounting for the accumulated
noise of the missing measurements. Moreover, as mentioned
in Section IV, data will be running through a common IMM
implementation (synchronous sensors) to be able to compare
results to the DRWDE setup.

Since the common IMM can only run at the frequency of its
slowest sensor, this research defined Ak to be 1 s (1 Hz), and,
because all sensors are available during each iteration of the
system, this setup does not utilize the dynamic portion of the O
matrix defined in section B.

Moreover, to properly compare this run to the 10 Hz run, it
cannot be assumed that the vehicle would move in a straight line
between each second, so ten intermediate points between each
second based on the dynamics of the vehicle were defined. This
allows us to more accurately compare both runs visually.

B. Evaluation of the Prediction Error

Following the evaluation criteria defined in Section IV, the
data recorded from the trajectory shown in Fig. 3 were executed
through both systems. The results for the overall trajectory,
all smooth and sharp curves, and the selected smooth and
sharp curves were recorded in Table II. Keep in mind that the
DRWDE is running at 10 Hz, where only the accelerometer can
provide a measurement at every system iteration, while the GPS
and ScanTool provide only one reading every ten iterations,
leaving it to our dynamic Q implementation to account for the
accumulated error in predicting these missing measurements.

Table IT shows the average prediction errors for both the
DRWDE run and the IMM 1 Hz run for broader scenarios as
well as for our selected curves. If the results of 3-s-ahead pre-
diction for the whole trajectory were observed, only a negligible
improvement was seen, as expected, since the number of sharp
curves in the whole trajectory is very small. Similarly, there is
almost no improvement if all smooth curves in the trajectory
were observed when compared to the IMM 1| Hz. However,
since the DRWDE was created to react quickly to changes, it
was observed that when taken into account all sharp curves,
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—— GPS
—— DRWDE

IMM 1Hz

Fig. 5. Comparison between actual path (GPS) and predicted paths by
both systems (DRWDE 10 Hz and IMM 1 Hz) for the selected curves.
Sharp curve between (1) and (2) and smooth curve between (2) and (3).
Direction of movement shown by arrow.

improvements to the 3-s-ahead estimation were seen that are
considerably greater for the DRWDE system (3.2 versus 4.5 m).

If now the focus is on the selected smooth and sharp curves
for the 3-s-ahead prediction, the result of the IMM run at 1 Hz
is shown in Fig. 5. The red-dotted line shows the predicted loca-
tion every second (red dots) and the intermediate points derived
in between each second (dotted line) to simply show visually
what may be happening in between each second.

Moreover, Table II shows results for 5-s-ahead predictions.
As expected, the earlier in time a position is predicted, the more
errors there will be as well as the less reliable to prediction is, as
shown by the larger standard deviation values for the estimation
errors.

Now, for the DRWDE run, Ak was defined to be 0.1 s,
which is the period of its fastest sensor (10 Hz). Since only the
accelerometer runs at 10 Hz, there will be many system itera-
tions where the other sensors will be offline, and this is where
the dynamic Q variance introduced in Section III-B comes into
play. The result of the DRWDE run at 10 Hz is also shown in
Fig. 5, as the blue solid line.

Fig. 5 displays the actual trajectory of the vehicle represented
by the GPS line, and then the predicted locations 3 s earlier
in time by both the IMM 1 Hz run and the DRWDE 10 Hz
run (prediction performance is shown later in Fig. 7). It can be
observed that both the 1 Hz and the 10 Hz runs behave some-
what similarly during the smooth curve; this is also represented
quantitatively in Table II.

The average error in the predicted locations during the
selected smooth curve is only slightly better for the DRWDE
(3.0 versus 3.2 m). The benefits are clearly seen in the selected
sharp curve, where the average error is much lower for the
DRWDE (2.3 versus 4.1 m). Looking at Fig. 5, it can be seen
that, as the vehicle enters the sharp curve (bottom left), the
slower system (red dotted line) is estimating its location to be
in more of a straight line, as the vehicle is traveling in a straight
line before taking the exit ramp (see Fig. 4). It can even be seen
that there are three red dots (each dot represents 1 s) before
the system realizes that the vehicle is turning and can adjust its
3-s-ahead prediction accordingly. Looking at the blue line rep-
resenting the DRWDE run, it can be seen that its line is a lot
closer to where the vehicle actually moves through 3 s later in
time. The DRWDE 10 Hz system is able to react and correct its
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Fig. 6. Frequency of each system’s 3-s-ahead prediction error. Top
(a) uses data from the whole trajectory; middle (b) only represents data
from all smooth curves; and bottom (c) represents data from all sharp
curves.

future prediction much quicker, using its dynamic covariance
matrices to take into account how long a measurement has not
been corrected by an actual sensor. As shown in Table II, in
the selected sharp curve, a difference of over 1.5 m in accuracy
between the two systems can be seen, which is a significant
improvement.

C. RMS and MAPE Error Distribution

A simple visualization of the error distribution for the “whole
trajectory,” “all smooth curves,” and “all sharp curves” predic-
tion errors is shown in Fig. 6. The charts have the individual
prediction errors categorized into groups, where group “0-1"
in the x-axis contains all the prediction errors that fall between
0 and 1 m, and the y-axis shows how frequently the errors fall
in each of the groups.

Looking at the histograms in Fig. 6, it can be observed how
the DRWDE system tends to be more often in the first groups,
which represent less prediction error. The taller the bars on a
given group means that more often the error falls in that error
group; therefore, the taller the blue bars on the smaller groups,
the more accurate the system is.

In Fig. 6(a), it can only be seen that the DRWDE outperform
the IMM 1 Hz by a small amount when looking at the overall
trajectory, and a larger difference when looking at the results for
all smooth curves in Fig. 6(b). However, when all sharp curves
in Fig. 6(c) is observed, a more distinct difference in the pre-
diction accuracy between the DRWDE and the IMM 1 Hz can
be seen. To analyze the results for selected smooth and sharp
curves specifically, as shown in Fig. 5, Fig. 7 was created.

Fig. 7(a) represents the error between the estimated future
distance the vehicle will travel in the following 3 s and the
actual distance traveled as recorded by the GPS sensor for the
selected smooth and sharp curves. Time zero in the figure is set
a few seconds before the vehicle enters the sharp curve shown
in Fig. 4. Right at the beginning of the sharp curve, the error
in the estimation is quite large for both systems, and that is
due because the vehicle is moving in a somewhat straight path,
so the estimated future position assumes that the vehicle will
continue to move in the same direction. As soon as the vehicle
enters the sharp curve, the first system to detect this change in
direction is the DRWDE 10 Hz, as expected, as it can detect this
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%@ [~—GPS = DRWDE - IMM1Hz| TABLE IV
£ = COMPUTATIONAL COMPLEXITY
o
2
[ tic/toc cputime Data Avg.
g (s) (s) points load
§ DRWDE 389.72 382.88 17,525 1.31
% IMM 1Hz 48.53 47.29 2,187 1.30
a Measurements taken on system running through the whole trajectory.
£ especially the accelerometer, the CPU times would be even
= larger.
qg) Table IV shows different MATLAB commands used to mea-
- sure CPU times for each of the systems. All two commands
o (tic/toc and cputime) measure actual CPU time used by the
MATLAB code, but this research is showing both to get a better

Time (s)

Fig. 7. Position error for a 3-s-ahead prediction during out selected
curves as shown in Fig. 5. Top (a) displays actual versus predicted dis-
tance traveled per second and bottom (b) displays rms error in each
prediction.

TABLE Il
MAPE
DRWDE IMM 1Hz
Whole trajectory 0.0589 0.0610
All smooth curves 0.0424 0.0417
All sharp curves 0.0987 0.0642
Selected smooth curve 0.0320 0.0333
Selected sharp curve 0.0325 0.0641

Values represent 3-s-ahead prediction errors.

change using the accelerometer, while the GPS is still offline.
Once the GPS sensor is back online, the 1 Hz system can also
detect this change and can correct its prediction. The upward
trend of the lines in Fig. 7 simply indicates that the vehicle is
slowly increasing its velocity and is covering more distance in
the same period of time (3 s). Only dots at each full second are
shown to be able to compare between the two systems.

For a different view of the kind of errors the DRWDE 10 Hz
system has, Fig. 7(b) was created, which shows the RMS error
between the estimated future location (3 s later) and the actual
location measured by the GPS. Table III shows the MAPE
prediction accuracy of this system for the different segment
types.

Looking at Fig. 6 and Table II, it can be concluded that
the DRWDE setup really stands out when abrupt changes
occur in the movement of the vehicle, and, only then, the
fast reaction time shows substantial improvements in the
prediction.

D. Computational Complexity

For completeness, it was also looked into how much of an
extra load it is to run the DRWDE system with the dynamic
noise matrices compared to the simpler approach of the 1 Hz
IMM system. Because the dataset had already been recorded,
only the processing time of the system itself was measured.
If taking into account the processing time of the sensors,

idea on the accuracy of the measurements. The column tic/toc
represents actual start/stop time of execution, while cputime
displays the actual CPU time in that was spent executing the
code. The system was run on a machine with a dual core
2.0 GHz CPU.

As expected, Table IV shows that the DRWDE 10 Hz sys-
tem requires a lot more processing power than the simpler IMM
1 Hz system. This is as expected, since the DRWDE system has
to handle close to 10 times more data points, and, therefore,
yields much longer CPU times. On the same token, if looking
at the last column, it can be observed that the average load times
for every record processed is almost the same for both systems,
which shows that the extra computational requirements of the
DRWDE’s dynamic error processing and measurement noise
matrices are not significant at all.

VI. CONCLUSION

The key contribution of this research’s DRWDE system is
the introduction of dynamic noise covariance matrix merged
together by an IMM. The longer a sensor remains offline, the
less accurate the overall prediction is, so the dynamic Q pre-
sented in Section III-B tells the system how true is the value
being used.

This DRWDE setup only had three sensors, of which only
one of them was running at 10 Hz. The accelerometer is very
sensitive to changes in the road, including road bumps; so, rely-
ing on this sensor to estimate the values of the other sensors
when they were offline had its challenges. However, looking
at Section V, it can be concluded that by properly handling
the accumulating error for missing measurements, running the
system at a higher frequency can yield better predictions, espe-
cially when abrupt changes occur. The key here was to be
able to accurately account for the accumulating error when
sensors go offline and remain offline for an unknown amount
of time.

An improvement to this system could be to add more
sensors running at high frequencies, for redundancy and
to minimize the times sensors are offline. Moreover, this
system could be combined with our previous researches
[47], [48], where the predicted location is compared against
geographical information system (GIS) to reduce false
predictions.
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