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ARTICLE INFO ABSTRACT

Heterogeneous Data Analysis (HDA) is proposed to address a learning problem of medical image databases of
Computed Tomographic Colonography (CTC). The databases are generated from clinical CTC images using a
Computer-aided Detection (CAD) system, the goal of which is to aid radiologists' interpretation of CTC images
by providing highly accurate, machine-based detection of colonic polyps. We aim to achieve a high detection
accuracy in CAD in a clinically realistic context, in which additional CTC cases of new patients are added
regularly to an existing database. In this context, the CAD performance can be improved by exploiting the
heterogeneity information that is brought into the database through the addition of diverse and disparate
patient populations. In the HDA, several quantitative criteria of data compatibility are proposed for efficient
management of these online images. After an initial supervised offline learning phase, the proposed online
learning method decides whether the online data are heterogeneous or homogeneous. Our previously developed
Principal Composite Kernel Feature Analysis (PC-KFA) is applied to the online data, managed with HDA, for
iterative construction of a linear subspace of a high-dimensional feature space by maximizing the variance of the
non-linearly transformed samples. The experimental results showed that significant improvements in the data
compatibility were obtained when the online PC-KFA was used, based on an accuracy measure for long-term
sequential online datasets. The computational time is reduced by more than 93% in online training compared
with that of offline training.
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diagnostic performance on polyps varies substantially according to
their skill [5—-7]. Perceptual errors by radiologists are a major source of

1. Introduction

Colon cancer is the second leading cause of cancer deaths in the
United States. An estimated 50,310 deaths were expected to occur in
2014 [60]. Colon cancers develops from small adenomatous polyps that
arise on the inner colonic mucosa. Most polyps are benign when they
appear; however, some develop into cancer over time. Thus, early
detection of polyps through screening is a promising approach for
preventing death from colon cancer. Currently, the detection of polyps
is performed by mainly colonoscopy. However, in the screening
context, Computed Tomographic Colonography (CTC) [13-16], also
known as virtual colonoscopy, has been emerging as a promising non-
invasive alternative approach to invasive colonoscopy.

However, CTC-based colon cancer screening often requires a
lengthy (15-30 min) interpretation time by radiologists, and their

false-negative (missed) polyps in CTC examinations [56]. Computer-
aided Detection (CAD) for CTC refers to a computerized scheme that
detects colorectal neoplasms automatically in CTC data and reports
their locations to radiologists who make the final diagnostic decision.
Observer studies have shown that the use of CAD in CTC yields a
statistically significant improvement in detection sensitivity and
also reduces inter-observer variance [62]. Fig. 1 shows an example
of the user interface of a CAD system for interpretation of CTC images
[9-11].

Our goal in this study was to improve the performance of CAD in a
more realistic clinical context than that of observer studies, in which
additional CTC cases of new patients are added to an existing database
on a regular basis. Medical image datasets obtained at diagnostic
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Fig. 1. Example of the user interface of a CAD system for interpretation of CTC images [9].

facilities accumulate over long periods as the number of patients
increases. Adding these online datasets to update existing offline
datasets is frequently required in many medical applications including
CTC. In a large-scaled medical-image-based diagnosis such as the
screening of colon cancer by CTC, one of the major challenges is how to
process heterogeneous data that are generated when existing datasets
are combined with new datasets. The proposed solution is
Heterogeneous Data Analysis (HAD) for online CTC datasets with a
larger number of patients, and use of online kernel learning for
improvement of the performance of CAD. The concept of online
learning has been shown to be effective for non-linear and online data
analysis [18,19], and it is gaining popularity in the machine learning
community [20].

Kernel analysis has also been shown to be effective for medical
image analysis [21,22]. However, there has been little evidence as to
whether it is effective for automated detection of colonic polyps in
datasets with increasing size and heterogeneity. Recent success of
kernel methods is capitalizing on broad pattern classification problems
[1,21,23-25,63-65], especially in non-linear classification and cluster-
ing [26,27]. We previously developed a fast feature analysis technique
called Accelerated Kernel Feature Analysis (AKFA) [28], and we
extended it to Composite Kernel Analysis, called Principal Composite
Kernel Feature Analysis (PC-KFA) [1]. These methods map the
original, low-dimensional feature space into a higher-dimensional
feature space. Such a high-dimensional feature space is expected to
have a greater classification power than that of the original feature
space, as suggested by the Vapnik-Chervonenkis theory in [29,30]. The
PC-KFA method extracts texture-based features from the polyp candi-
dates generated by a shape-based CAD system. In this paper, we
propose a new online method, called online PC-KFA, which is
specifically designed for HDA.

The main contributions of this paper are the development of a
scale-free online learning framework that manages the diversity and
complexity of large image databases, and its application to the
improvement of the accuracy and speed of CAD systems in the
detection of polyps in clinical CTC datasets. We address several issues
such as data confidentiality and auditability as well as scalable storages
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to make larger data-driven CAD feasible.

The significance of the paper is that, to our knowledge, this is the
first study that deals with large online CTC data by incorporating online
learning. We develop a new solution for the problems of massive
expansion in scale, diversity, and complexity of CTC databases. The
data acquired over a long period of time can be highly diverse, and each
dataset is unique in nature. Thus, obtaining a clear distinction between
heterogeneous and homogeneous large online datasets is an important
but challenging task. The HDA is an effective framework for solving
this problem. The proposed online PC-KFA method can reevaluate and
change the criteria established during the training phase for the
algorithm to train the data correctly. This allows efficient differentia-
tion of polyps from false positive detections, and thus improve
detection performance of CAD for CTC.

The remainder of this paper is organized as follows. Section 2
provides an introduction and a brief review of the existing kernel-based
feature extraction methods, kernel selection, and PC-KFA for the
detection of polyps in the offline CTC data. Section 3 describes HDA
as a new analytical measure of homogeneity or heterogeneity of the
data. Section 4 discusses long-term online learning for large-size
incoming data and their segmentation procedures. Section 5 presents
the experimental results of the classification between polyps and false
positives, followed by conclusions in Section 6.

2. Kernel basics: a brief review

We briefly review existing Kernel Principal Component Analysis
(KPCA) [31-35] in Section 2.1. Kernel Selection is described in Section
2.2, our newly developed Kernel Adaptation of PC-KFA is described
briefly in Section 2.3, and our online machine learning CAD methods
for CTC is presented in Section 2.4.

2.1. Kpca
KPCA uses a Mercer kernel [36] to perform a linear principal

component analysis of the transformed image. The eigenvalues 4; and
eigenvectors ¢; are obtained by solving,



Y. Motai et al.

A= Seg= 3 D)D) e =

i=1

n

Y (g D)P(x),
1 M
where S is the scatter matrix, ®(x;) is the projection of x; into higher
dimensional space, in which dot product is given by the corresponding
kernel function. If K is a n x n Gram matrix where the elements
kij= (®(x;), P(x)) and a;=[41 G = du]’ are the eigenvectors
associated with eigenvalues, 1;, then the dual eigenvalue problem
equivalent to the problem can be expressed as follows: J;a; = Ka;.

The KPCA process can then be summarized as follows:

(1) Calculate the Gram matrix, K, using kernels, which contains the
inner products between pairs of image vectors.

(2) Use 4;a; = Ka; to get the coefficient vectors g; for j=1,2,...,n.

(3) The projection of a test point x € R ¢ along the ji’* eigenvector is:

n n
<€j, D (x)) = Z ﬂji<¢’(xi)a D(x)) = Z ajik(% Xi).
i=1 i=1 2

The above implicitly contains an eigenvalue problem of rank n;
thus, the computational complexity of KPCA is O(n®). In addition,
each resulting eigenvector is represented as a linear combination of n
terms.

The success of the KPCA largely depends on the choice of the kernel
used for constructing the Gram matrix [37-40]. Han also reported the
utility of KPCA and its derivatives in detecting molecular patterns of
cancer [58]. According to no free lunch theorem [41], there is no single
best kernel function in general; rather, the performance of a kernel
function depends on the applications as described in the following
section.

2.2. Kernel Selection

For efficient feature analysis, extraction of the salient features of
polyps is essential because of the large data size and the 3-D nature of
the polyps. Moreover, the distribution of the image features of polyps is
expected to be non-linear. The problem is how to select an ideal non-
linear operator. Some of the commonly used kernels are referred to as
Kernel 1 to Kernel 4 [42—-45] as follows: 1) Linear kernel, 2) Gaussian
Radial Basis Function (RBF) kernel, 3) Laplace RBF kernel, and 4)
Sigmoid kernel. Use of multiple kernels, instead of one, for better
detection of salient features is known to be effective [46]. For example,
in Ref. [47] the use of composite kernels in extracting interesting visual
features from images was successfully demonstrated.

We thus adopt a data-dependent kernel [28] to capture the
relationship among the data in the classification task by using the
composite form. This data-dependent composite kernel, k,., r =1, 2, 3
and 4, can be formulated as:

ky (xi» ;) = g, (x0)q, (%))p, (xi, 1)) 3

where, x € R4, p,.(x;, x;) is one kernel among 4 chosen kernels, and g(x;)
is a factor function, with the form: q,(x) = a0 + X | amko(xi, Xn),
where, ko (xi, xm) = exp(—||xi — xm|[?*/26%)and a,-,, are the combination
coefficient or the weighting coefficients. These two terms will be used
interchangeably throughout this article.

Let the kernel matrices corresponding to & (xi, xj) and p, (xi, xj) be
K,- and P,., respectively. We can express the data-dependent kernel
K,. as:

K. = [q.(x) q,(5) p(xi, X)]uxn (€))

Defining Q; as the diagonal matrix of elements {g; (1), ¢;(%2), -..,g; (X)) }»
we can express K- as: K, = Q,B.0,.

The criterion for selecting the best kernel function involves finding
the kernel that produces the largest eigenvalue [31-35]. Then, the
eigenvector corresponding to the maximum eigenvalue provides the
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optimum solution. Once we derive the eigenvectors, i.e., the combina-
tion coefficients of all 4 different kernels, we proceed to construct g,
(=Koa,(n)) and Q, to find the corresponding Gram matrices of these
kernels. Once we have these Gram matrices ready, we can find the
optimum kernels for the given dataset. To undertake this procedure, we
have to arrange the eigenvalues that determined the combination
coefficients for all kernel functions in a descending order.

Zheng et al. proposed a similar method for batch learning, in which
the input data were divided into a few groups of similar sizes, and
KPCA was applied to each group [19]. A set of eigenvectors was
obtained for each group and the final set of features was obtained by
application of KPCA to a subset of these eigenvectors. The application
of the online concept to Principal Component Analysis is often referred
to Incremental Principal Component Analysis [15,48—51], and it has
been shown to be computationally effective in many image processing
applications and pattern classification systems. Kernel based methods
are also used effectively for the application of online learning to non-
linear space [31-35].

2.3. Kernel adaptation of PC-KFA

Both offline and online data are used for a data-dependent
composite kernel. This extended framework has been developed, called
Principal Composite Kernel Feature Analysis (PC-KFA) [1]. Because we
have computed the Gram matrices for p most dominant kernels for the
composite data (offline plus online data), we now combine them to
yield the best classification performance. As defined in Section 2.2, we
can write the composite kernel for the new composite data:

K

comp

P
()= plo"P Q"

i=1

()

We determine the optimum composite coefficients that will yield
the best composite kernel. We can determine the composite coefficient
p' that will maximize the appropriate criterion. Once we know the
eigenvectors, i.e. combination coefficients of the composite training
data (offline data + online data), we can compute ¢’,- and hence Q’,- to
find out the 4 g matrices corresponding to the 4 different kernels. Now
the first p kernels corresponding to the first p eigenvalues (arranged in
descending order) will be used in the construction of a composite
kernel that will yield optimum classification accuracy. Before proceed-
ing to the construction of the composite kernel, we have to determine
whether our new data are homogeneous or heterogeneous and update
our Gram matrices accordingly.

2.4. Online machine learning methods used for CAD of CTC

Due to a high demand of computer-aided diagnosis in medical
images, both offline and online training algorithms are required for the
improvement of the performance of CAD systems. This is particularly
true in high-dimensional medical-image-based diagnosis, in which
specialists’ opinion for final diagnosis is required. Due to the increasing
need of safe and easy-to-tolerate method for screening of colorectal
cancer, virtual colonoscopy, a.k.a. CT colonography (CTC), is becoming
a popular non-invasive diagnostic procedure. Properly trained machine
learning methods can diagnose a suspicious CTC image and save cost
[1,2,4]. The amount of new CTC data added to the repository every day
is significantly increasing with advent of new technology [10,13,56].
Online learning is one of the most effective methods for incrementally
improving the performance of a classifier by use of new samples
available from the confidential repository of CAD cases collected in
hospitals throughout the world [18,19,48,49,66]. Researchers in both
medical and computing community are working on the improvement of
online learning of CAD for CTC and other imaging modalities. The
proposed algorithm aims to improve the aforementioned PC-KFA,
which showed high performance in the detection of polyps in CTC
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images with offline training [1], by adding an online training method
for big heterogeneous data.

3. HDA: heterogeneous vs. homogeneous quantification

To make CTC a viable option for screening of larger patient
populations as time passes, we propose HDA to handle online mass
data of clinical colon screening. In Section 3.1, the proposed Class
Separability is described for determining whether heterogeneous data
are acquired. In Section 3.2, another criterion of data heterogeneous
degree is described for PC-KFA.

3.1. Quantification of class separability for heterogeneous data

We use class separability as a measure to identify whether the data
are either heterogeneous or homogeneous. If the data are homoge-
neous, separability is high. However, the heterogeneous data degrades
the class separability. For restoring/improving the class separability,
PC-KFA needs feature space adjustment. Let us introduce a variable ¢
which is the ratio of the class separability of the composite online data
and the offline data. It can be expressed as: & = J'x(a',)/Jx(,), where
J'«(a',) denotes the class separability yielded by the most dominant
kernel for the composite data (i.e. new incoming data and the previous
offline data). J«(e,) is the class separability yielded by the most
dominant kernel for offline data. Thus separability can be rewritten
as: & = 1'4/Ax, where 1’y corresponds to the most dominant eigenvalue
of composite data (both offline and online), and A4 is the most
dominant eigenvalue of the 4 different kernels for the offline data. If
¢ is less than a threshold value n (e.g. one), then the incoming online
data are heterogeneous; otherwise, they are homogeneous. In the case
of homogeneous data (identified by &), we do not update the Gram
matrix. Instead we discard all of the new data that is homogeneous.
Hence, the updated Gram matrix can be given as, K" = Q,R.Q,. Here
K,"/denotes the updated value of K} (=0, F.Q,).

An advantage of the separability measure is that it can reduce the
size of gram matrix that determines the computational complexity. A
disadvantage of the separability measure is that it may be prone to
binary-classification problems. If the incoming data is homogeneous,
there is not much useful information that can be used for improving the
classification performance. However, the magnitude of the separability
may be useful for measuring the confidence of the classification.

3.2. Heterogeneous degree

If the new sequence of incoming data is heterogeneous, we update
our feature space. However, this update can be either incremental or
non-incremental. We propose a criterion called “Heterogeneous
Degree”, & = (@'—a)A'/A, to determine if the data are highly hetero-
geneous or less heterogeneous. Let us denote the mean of combination
coefficients @ for the most dominant kernel among the 4 kernels
available. The class separability of the most dominant kernel for the
“new” data denoted as “accent” is directly dependent on both the
combination coefficient “ @’ (from the optimum combination coeffi-
cient of 4 different kernels) as well as the maximum eigenvalue(s) 1'.
Fig. 2 shows the relationship between separability and the hetero-
geneous degree.

If the heterogeneous degree &' is less than 1 (Casel), then the
update is non-incremental. Hence, the dimensions of the Gram matrix
remain unchanged. The input matrices P’ and Q' are updated by
replacing the row and column corresponding to the index. Fig. 3
illustrates the overall flow of online data training.

If the heterogeneous degree &' is greater than 1 and less than n
(Case 2), this means that the difference between the previous eigen-
vectors and the new eigenvectors is large. Thus, it is very important to
retain these highly heterogeneous new data to improve the class
separability of the proposed algorithm. We simply retain them, and
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hence the size of the Gram matrix is incremented by the size of the new
data. In this case, the input matrices P'and Q' are same as in Section
2.2,

Obtaining a higher-dimensional feature space of the training data
with greater classification power depends on how effectively we are
updating the Gram matrix. Because construction of Gram matrix is the
crucial step for performing feature analysis, any redundant data
(homogeneous data) in the Gram matrix are unnecessary and can be
discarded. At the same time, data of a different nature (heterogeneous
data) should be preserved for further training of the algorithm. The
proposed method deals with the measures of heterogeneous degree and
separability together for improvement of the performance. These two
measures are correlated with kernel-alignment factor, which is a
defining metric of underlying composite feature analysis.

Once we have our kernel Gram matrices for Cases 1 and 2, we can
now determine the composite kernel that will give us the optimum
classification accuracy when the existing offline data are incorporated
with new online data. Because we have computed the Gram matrices
for p most dominant kernels for the composite data (offline plus online
data), we now combine them to yield the best classification perfor-
mance. As defined in Section 2.2, we can write the composite kernel for
the new composite data as shown in (5), K;;’mp w=xlp QP o,

Online PC-KFA incorporates HDA when the training properties of
the data change dynamically. This update procedure could be much
simpler in the presence of a unified kernel [52] for the existing class of
data. Extracting the optimum combination of kernels for composing a
complex kernel is challenging [53]. The real CTC dataset suffers from
the non-linear and diverse distributions among actual cancer datasets
used for CAD [23], especially when the size of the datasets increases. By
extending KPCA and kernel selection to address this data obstacle, we
introduce an adaptive kernel algorithm called PC-KFA [1] with a
composite kernel function that is defined as the weighted sum of the
set of different optimized kernel functions for the training datasets as
follows: Keomp(p) = X7 p,0;PQ; where the value of the composite
coefficient p; is a scalar value, and p is the number of kernels we
intend to combine in the training datasets. Through this approach, the
relative contribution of all of the kernels to the model can be varied
over the input space when the new datasets are added. Instead of using
K, as the old kernel matrix, we will useK_,, (p), which we call “kernel
adaptation”. According to [57], this composite kernel matrix K.om, (p)
satisfies Mercer's condition. Now the problem is how to determine this
composite coefficient j(=[p;, p,, ..,p,]) such that the classification
performance is optimized. To this end, we use the concept of a
“Kernel Factor” to determine the best j that gives the optimum
performance for both offline and online datasets.

It is efficient to perform online learning if each pattern is presented
in the limited storage space, thus PC-KFA with the use of HDA requires
little to no additional memory for storing of the patterns in the data, for
improving the data compatibility over a long period.

Heterogeneous

. Incremental update

Alignment

Case 1: Non-incremgntal update
Homogeneous

Heterogeneous Degree

Separability

Fig. 2. Criteria concept for homogeneous and heterogeneous online data.
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Fig. 3. Overall flow of online data training using HDA with PC-KFA.

4. Long-term sequential trajectories with re-evaluation

Data validation is described when CTC data are acquired “over a
long period of time”. When the proportion of online datasets is
dominant for the CAD system, CTC data can sometimes become highly
diverse. Section 4.1 describes the Alignment Factor for Auditing Large
Online Data, Section 4.2 describes Validation by Decomposing Online
Data into Small Subsets, and Section 4.3 describes Detecting Major
Changes from Longitudinal Studies.

4.1. Alignment factor for auditing large online data

The “alignment” measure was introduced for measuring the adapt-
ability of a kernel to the target data, and for providing a practical
objective for kernel optimization. The “alignment” measure, called
Alignment Factor (AF), is defined as a normalized Frobenius inner
product between the kernel matrix and the target label matrix. The
empirical alignment between kernel k; and kernel k» with respect to the
scatter matrix of the training set S is given as:
Frob(ky, k) = (Ki, K )r/|| K llr 1K |lF-

where, K; is the kernel matrix for the training data using kernel
function k;(K;, K;),. is the Frobenius inner product between K; and K,
and ||K; |lr = (K, Ki)F-

It has been shown that, if a chosen kernel is well aligned with the
other datasets, it does not change anything. If there exists a separation
of the data with a low bound on the generalization error [54], it would
be better to add one more kernel so that we can optimize the kernel
alignment based on training both offline and online dataset to improve
the generalization performance on further test datasets. Let us consider
the combination of kernel functions corresponding to [24] as:
k(p) = Zlepiki— where the kernels, k; (i=1, 2, ..., p), are known in
advance. Our purpose is to tune p to maximize the empirical alignment
between k (p) and the target vector y. Hence,

p= arg, max(Frob (p, ki,
<Zl‘piKi= I(j>

= arg max
Zj pjl(j P

P Vip
P Usp

kj)) = arg max “

, \/“<z,-p,-K,->,

(6)
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where u; = (K;, yy'), v = (K, K;), Uy =
p= [Jp—l, 7 \/p—,,]

Let the generalized Raleigh coefficient be given as:

iy, Vi = vivj,

J(p) = p"Vplp"Up @)

Therefore, we can obtain p by solving the generalized eigenvalue
problem Vp = §Up where 5 denotes the corresponding eigenvalue.
Once, we find this optimum composite coefficient p, which will be
the eigenvector corresponding to maximum eigenvalues, we can
compute the composite data-dependent kernel matrix Ko, (p).

We use the AF method to determine the optimum composite
coefficients that will yield the best composite kernel. AF can be
calculated as in Eq. (6). We can determine the composite coefficient
p' that will maximize the AF value as in Eq. (7) of the new generalized
Raleigh coefficient. We can obtain the value of j’, by solving the
generalized eigenvalue problem U"p’ = §'V")p’, where &' denotes the
eigenvalues. We choose a composite coefficient vector that is associated
with the maximum eigenvalue. Once we determine the best composite
coefficients, we can compute the composite kernel.

If the deviation of AF is huge, then the step size is reduced further
and the algorithm is computed again. This process is repeated until we
find an appropriate window size of the incoming data that allows the
proper classification of the homogeneous and heterogeneous data and
training results with reduced error. After the training of the Gram
matrix that incorporates the dynamic features of the new online data is
finished, the PC-KFA algorithm is applied to the kernel Gram matrix.
This entire process is summarized in the flow chart in Fig. 4.

The long sequential online datasets to the other existing online
datasets are tracked using AF for the kernel adaptability. We extend AF
of the normalized Frobenius inner product with the time sequential
index. If there is no compromise when we train the algorithm without
further modifications, then there is no need to break down the
incoming sequence of data into small windows or to change any
parameters in the previous setting. Let us denote the time index

1 ' . . .
" (Kj:,,np)r as the update of Gram matrix from the time index t to ¢ + 1,

and let '(K[:,'ml,) 0 be the updated the Gram matrix from time ‘0’ (i.e. from
the beginning) to the time index t. The AF can be given as
+1 +1 n' tepn' t 1+1 n' tepn'

(Frob(" (Klpny) ' (Klopy) ) and '(Frob (" (Kloyy) . '(Klipy) - Tn or-
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Fig. 4. Training of online datasets acquired over long-term sequences using Alignment
Factor.

der to avoid unnecessary complexity in notations, we simplify the Gram

. : [am : t+1
matrix notation  (K,,), into the term (Frob);. The proposed
criterion is to audit the erroneous training of the data by comparing
these AFs by checking the following conditions: “**(Frob), < {(Frob),.
Based on the comparison, the data are either decomposed or sent to the
Fig. 3 process in Section 3. The next subsection shows how the online
data is decomposed.

4.2. Validation by decomposing online data into small subsets

CTC data acquired “over a long period of time” can sometimes be
highly diverse, i.e. the portion of online datasets is dominant for the
CAD system. None of the existing methods are known to efficiently
validate large online CTC data [55]. To facilitate online training of long-
term sequential trajectories of CTC datasets, we validate whether
retention is required for a portion of the training data due to the size
of long sequential datasets. Thus, the challenge is to determine what
data to retain. Hence, we present an auditing way of validating the
incoming long sequential data as to either decompose or not, and
automatically updating the feature space over time accordingly.

Previously, we divided the new online data into equal-sized sub-
datasets, which we called d1, d2, d3 etc., where the size of each new
sub-dataset was equal to 1. We extend this restriction for the long
sequential datasets as heterogeneous or homogenous data by auditing
the class separability of each dataset to find the appropriate window
size for the incoming data and determine whether it is homogeneous or
heterogeneous data by using the updated criteria. Fig. 5 illustrates the
segmentation of the incoming online data into small equal subsets if
the incoming online data are heterogeneous. If the data are homo-
geneous, most of the data are redundant; thus, we simply discard these
homogeneous data, and we do not update any information from the
new subset on to the previous Gram matrix. Thus, the kernel Gram
matrix at time t+1 is the same as the previous one at time t. On the
contrary, if the data are heterogeneous, we update the Gram matrix
either incrementally or non-incrementally depending on the level of
heterogeneous degree of the online data.

The modified criterion for validating the degree of heterogeneity is
time-sequential class separability. The time-sequential class separabil-
ity decomposes the online data into small subsets (data up to time t and
dl1 data) by using:

), =D S G ®)

where, ""1(1}) , is the largest eigenvalue of the data (of the dominant
kernel) received from time t to t+1, and ‘(1) is the largest eigenvalue
of the dominant kernel calculated from time 0 to time t. If "*!(¢), is
greater than a new threshold value n‘ then the incoming data are
heterogeneous; otherwise, they are homogeneous. The threshold value
n defines the boundary condition between homogenous data and
heterogeneous data as well as type of updates of the Gram matrix.
The magnitude of n is both data and feature dependent, i.e., too small n
may prohibit any kinds of updates of the Gram matrix, and too high n
may allow the Gram matrix to grow beyond acceptable size.
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4.3. Detecting major changes from longitudinal studies

Major changes from longitudinal studies are analyzed by introdu-
cing another data compatibility measure, called Gap-in-data. The Gap-
in-data measures indicate whether data incompatibility for online time
sequential data sets may occur or not. If the Gap-in-data is high, these
data should be detected as a major change and reevaluated. During the
online training of long-term sequential trajectories, Heterogeneous
Degree &' in Section 3 brought two cases based on threshold values
such as n. We reevaluated this data measure ¢, by adjusting the
threshold value n, to detect the major change shown as Case 3 in Fig. 6.

By experimentally adjusting the threshold value n, the heteroge-
neous online data may be excluded because they contain too large Gap-
in-data to be compatible. In this case, kernel computation using such
online data is excluded. For determining the threshold value n is
relevant to Mean Square Error (MSE) values, defined as MSE = 1/tY, A;
[1]. All MSE values for heterogeneous datasets are re-evaluated for
detecting Gap-in-data. The threshold value n is determined empirically.

4.4. Data classification measure based on TP/FP accuracy

Accuracy is also used as a statistical measure of how well a binary
classification test correctly identifies that our medical images have
sufficient data quality. The accuracy is defined as the proportion of
True Positives (TP) and True Negatives (TN) in the entire database.
False Positive (FP) and False Negative (FN) are the counterpart of the
binary classification. TP is the case when CAD detects cancer in CTC
successfully, and TN is the case when CAD detects the absence of
cancer in CTC correctly. FP is the case when CAD incorrectly detects
cancer in CTC, and FN is the case when CAD does not detect cancer,
even though it actually exists. These are used to measure the effective-
ness with True Positive Ratio (TPR) and False Positive Ratio (FPR).
TPR is treated as CAD hit rate, and FPR is CAD fall-out:

P FP

TPR=————, FPR=————.
TP + FN FP+ TN

The classification accuracy and Mean Square Reconstruction Error
(MSRE) for the datasets are analyzed in Section 5. The classification
accuracy was calculated as

TP + TN
TP+ TN+ FN + FP~

Accuracy=

The MSRE in PC-KFA algorithm is calculated as the normalized
difference between the original feature space and the kernel mapped
feature space. Another data classification measure, the Receiver
Operating Characteristic Curve (ROC), is used for comparing FPR
versus TPR. The Area Under the Curve (AUC) is calculated as the
region under the ROC curve. The F-score expresses the effectiveness of
a binary classification test from the perspective of the class of interest,
which is typically useful for class imbalanced datasets. As shown in
Section 5.1, the numbers of samples from two classes are highly

Offline datasets Online datasets
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lReplace
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I
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Fig. 5. Online decomposition for heterogeneous sequences.
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Fig. 6. Detection of major change using heterogeneous degree.

imbalanced. In this context, the F-score is defined as,

2*precision*recall
F-score=———————,
precision + recall

TP _ 1P . .
TP and recall = ol The F-score is considered

as a more accurate evaluation of a binary classifier dealing with class
imbalanced data. Section 5 shows the CTC data classification with use
of all of these measures, including the computation time for PC-KFA
using the proposed HDA.

where precision =

5. Experimental results of data classification

The experimental results are organized as follows: In Section 5.1.,
cancer datasets from online medical images are described. In Section
5.2., the offline classification performance for PC-KFA is presented. In
Section 5.3., data decomposition for the new online sequences is
shown. In Section 5.4., a quantification of heterogeneous versus
homogeneous data is presented. In Section 5.5., data validation of
long-term sequence is described. Finally, the evaluation of computa-
tional time is presented in Section 5.6.

5.1. Cancer datasets from online medical images

The proposed HDA with PC-KFA was evaluated using CTC image
datasets of colonic polyps comprised of TP and FP polyps detected by
our existing CAD system [21,56,61]. We used CTC cases of 146 patients
who underwent a colon-cleansing regimen which was the same as that
of optical colonoscopy. These CTC cases were acquired by a total of
eight different models of single- and multi-detector CT scanners by use
of 1.25—5.0 mm collimations, a pitch of 1-2, reconstruction interval of
1.25-5.0 mm, and tube current of 50-200 mA. The patients were
followed by conventional optical colonoscopy, which served as the gold
standard for the presence of polyps. Among 464 CTC cases, 59 cases
were abnormal (having at least one polyp >6 mm in size), and 405
cases were normal (having no colonic polyps). Each patient was
scanned in both supine and prone positions; thus each CTC case
consisted of two reconstructed CTC volumes, resulting in 928 CTC

Table 1
True Positive and False Positive Distributions in Offline Datasets.

volumes with an effective voxel size of 0.5 mm. The volumes of interest
(VOIs) representing each polyp candidate have been calculated as
follows. First, the CAD scheme provided a segmented region for each
candidate, and the center of the VOI was placed at the center of mass of
the region. The size of the VOI was chosen so that the entire segmented
region was covered. The resampling was carried out to generate VOIs
with dimensions of 12x12x12 voxels for building Datasetl, which
consisted of 29 true polyps and 101 FPs. For the rest of the datasets,
the VOI was resampled to 16x16x16 voxels. The VOIs thus computed
comprised Dataset2, which consisted of 54 TPs and 660 FPs, Dataset3,
which consisted of 16 TPs and 925 FPs, and Dataset4, which consisted
of 11 TPs and 2250 FPs.

Table 1 shows the distribution of TPs and FPs in the offline training
and test sets of the colon polyp datasets. Instead of using cross
validation, we randomly divided the entire dataset into training and
test sets because they were highly imbalanced, i.e., the majority of
datasets were FPs, whereas few were TPs. We used these training and
test datasets for all of our experiments.

5.2. Offline classification performance for PC-KFA

We used the KPCA method described in Section 2 to create four
different data-dependent kernels and selected the kernel that best fitted
the offline CTC data listed in Table 1. We determined the optimum
kernel depending on the eigenvalue that produces maximum separ-
ability. Table 2 indicates the eigenvalues A and hyper-parameters of
four kernels for each dataset.

The kernel with the maximum eigenvalue are bold faced for each
offline dataset in Table 2. In Dataset1, for example, we combined RBF
and Laplace to form a composite kernel. We observed that different
composite kernels yielded the largest eigenvalue for different data-
bases. The composite coefficients of the two most dominant kernels are
listed in the last column. For the four datasets, the most dominant
kernel was the RBF kernel, whereas the second most dominant kernel
varied substantially and thus was undetermined.

The MSRE, accuracy and F-score for performance on offline test
datasets are shown in Table 3. Fig. 7 shows ROC curves for FPR versus

Data No. of Vectors in Training Set TP (96 No. of Vectors in Test Set TP (96
Total Total
TP FP Total TP FP Total
Dataset1 21 69 90 23.33 32 40 20.00
Dataset2 38 360 398 9.55 16 300 316 5.06
Dataset3 10 500 510 1.96 6 425 431 1.39
Dataset4 7 1050 1057 0.66 4 1200 1204 0.33
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Table 2
Eigenvalues of 4 kernels for offline datasets.
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Tablee 4
Size of online data at different time sequences.

Data Linear Poly RBF Laplace Combination
Datasetl  A=10.66 A=10.25 A= 14.13 A=12.41 RBF0.98

d=.2, Offset=2 o0 =4.12 0 =09 Laplace 0.14
Dataset2 A=102.08 2=105.91 A=116.64 A=80.57 RBF 0.72

d =1, Offset=4 0=5.29 0=3.5 Linear 0.25
Dataset3 A=57.65 A=51.35 A=74.55 A=30.23  RBF 0.98

d =1.4, Offset=1 0 =5.65 o =10 Linear 0.23
Dataset4 A=72.41 A=83.53 A=124.13 A=56.35 RBF 0.91

d =0.8, Offset=2 0o =4 g=25 Poly 0.18

Table 3

MSRE, accuracy and F-score of offline data classification.

Data MSRE of offline Classification accuracy of ~ F-score of offline
data with offline data with data with
Composite Kernel Composite Kernel (%) Composite Kernel
(%) (%)

Datasetl 1.0 90 71.38

Dataset2  9.64 94.62 58.27

Dataset3  6.25 98.61 15.56

Dataset4  14.03 99.67 66.94

TPR. From Table 3 and Fig. 7, we obtained a good classification
accuracy and ROC performance by using PC-KFA over all the offline
datasets. However, the F-scores are much lower than accuracy and
hence further improvement of the classifier is recommended. This
justifies the motivation for online learning as mentioned in Section 1.
All of the 4 CTC image datasets of colonic polyps were well detected by
using PC-KFA [1], and the largest Dataset4, for example, achieved
99.67% classification accuracy. In the next sections, we further
evaluated the results of this method based on an online HDA that
included heterogeneous large datasets of CTC images.

5.3. Data decomposition for the new online sequences

We followed Section 3 to tune the selection of appropriate kernels
when new online data became available. Table 4 shows such a new
online data stream called “Online Sequence ##”. Each of the data
sequences originates from the same original cumulated database.
However, they differed in the fraction of the initial training sets.
Dataset 1-4 corresponded to 0.5%, 5%, 10% and 20% of the main
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Fig. 7. The ROC curves and AUC values for offline data using PC-KFA.
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Data Online Online Online Online
Sequence #1 Sequence #2 Sequence #3 Sequence #4
Datasetl 3 TP, 12FP 3 TP, 12FP 3 TP, 12FP 3 TP, 12FP
Dataset2 7 TP, 85 FP 7 TP,85 FP 7 TP, 85 FP 7 TP, 85 FP
Dataset3 2 TP, 87 FP 2 TP, 87 FP 2 TP, 87 FP 2 TP, 87 FP
Dataset4 2 TP,126 FP 2 TP,126 FP 2 TP,126 FP 2 TP,126 FP

database used for initially labeled training. Each dataset was used
multiple times in a different order. The term “online data sequence”
was defined in Section 4.2, as shown in Fig. 8. This figure explains the
relationship of the dataset and data sequence corresponding to Table 4.

After we tentatively formed the input matrices for 4 different
kernels, we used Eq. (6) to find the dominant kernels for the new data
and the previous offline data. These results are summarized in Table 5.

Table 5 shows, using online data sequences, the dominant kernel
with the bold-face A as the largest eigenvalue. As seen in the online data
sequences, the eigenvalues calculated were gradually shifting, but
choice of the dominant kernels remained the same. Therefore PC-
KFA consistently maintained the choice of dominant (and second
dominant) kernels for updating data-dependent kernel matrices for
the computation of the composite kernel matrix. Under the screening
of large patient populations, due to the kernel representation, the
detection of colonic polyps was expected its stabilities by associating
existing data with newly acquired online sequences. We will evaluate
more HDA characteristics of long-term online data sequences in the
next subsection 5.5.

5.4. HDA: quantification of heterogeneous versus homogeneous data

After determining the two dominant kernels, the next step was to
update these data-dependent kernel matrices for the computation of
the composite kernel matrix. We imported the criterion in Section 3.2
to classify these new data into the 2 categories, “Homogeneous” and
“Heterogeneous.”

Table 6 shows that the majority of online data sequences was
homogeneous: the Gram matrix in this sequence was not updated to
save computation time. If the database was homogenous, we set the
data-dependent kernels as “No update”. However the HD determines
Case 1 as “Non-Incremental Update,” or Case 2 as “Incremental
Update,” for all the heterogeneous data sequences in Section 3.2.
Once we have the data-dependent kernel Gram matrices for 4 different
kernels, we can proceed to calculate the data-dependent composite
kernels for the new online data sequences based on the method
presented in Section 2.3.

Table 7 shows the composite kernel coefficients for the two most
dominant kernels. The metric MSE corresponds to the MSRE of the

Online dataset sequence
#1-1, #1-2, #1-3, #1-4

AR ’Ee

Online dataset sequence
#2-1, #2-2, #2-3, #2-4

T [l oo e o] [

Online dataset sequence
#3-1, #3-2, #3-3, #3-4

Do [ o] oo e To] T

) Online dataset sequence
Offline dataset #4 #4-1, #4-2, #4-3, #4-4
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Fig. 8. The online dataset sequences of Table 4.
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Table 5
Eigenvalues of 4 different Kernels (Linear, Poly, RBF, Laplace) with A for Online Data
Sequences.
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Table 7
Classification accuracy and MSE with composite kernels of online data sequences.

Data Online Online Sequence  Online Sequence  Online
Data Online Online Online Online Sequence #1 #2 #3 Sequence
Sequence #1  Sequence #2  Sequence #3  Sequence #4 #4

Datasetl] Linear  9.99 9.89 10.16 9.73 Datasetl MSE:0.43 sab sab sab

Poly 9.31 8.96 9.52 10.31 Accuracy:92.5

RBF 11.34 12.47 18.09 24.69 RBF:p;=0.99

Laplace 8.41 6.7 12.85 13.27 Linear:
Dataset2 Linear 129.44 84.97 95.63 109.02 p2=0.17

Poly 106.44 85.01° 96.27 109.61 Dataset2  sab MSE:14.50 sab

RBF 134.59 101.21 122.81 133.40 MSE:15.06 Accuracy:94.94

Laplace 90.76 38.49 84.12 115.78 Accuracy:93.99 RBF:p;=0.99
Dataset3 Linear 75.13 73.88 62.59 72.45 RBF:p;=0.93 Linear:p,=0.14

Poly 36.38 69.25 66.48" 83.39 Linear:p,=0.16

RBF 80.16 86.41 73.66 109.29 Dataset3  sab sab MSE:7.68 sab

Laplace 44.66 13.87 49.46 50.25 Accuracy:96.52
Dataset4 Linear  82.72 52.99" 69.43 98.64 RBF:p;=0.73

Poly 92.33 75.83 79.85 112.39 Poly: p,=0.32

RBF 132.47 103.25 144.59 157.27 Dataset4  sab MSE:15.63 sab sab

Laplace 38.67 43.26" 32.59 62.85 Accuracy:97.65

RBF:p1=0.90

" Indicates the eigenvalues after updating of the matrix according to the method Poly:p2=0.28

presented in Section 4.

online data sequences, which were calculated in Section 5. A smaller
MSRE signifies higher data reconstruction ability of PC-KFA. Table 7
also shows that the classification accuracy (how accurately the data
were determined) for the online data sequence was, on average, 95.12%
with variance 2.03%. This was comparable to the offline data perfor-
mance that yielded the classification accuracy of 95.72% with variance
4.39%. The results for all of the online data sequences were re-
evaluated using MSE as described in Section 4.3 for determining
whether Gap-in-data exists in the online sequences shown in a bold
font in Table 7. The large MSE values were shown in Dataset2 online
sequences #2, #3, and in Dataset4 online sequence #2, indicating that
auditing may have detected major changes. The next subsection shows
the re-evaluation results for a long-term sequential trajectory.

5.5. Data validation of long-term sequence

In this subsection, long-term sequential data were used for auditing
and validating online datasets. We performed online HDA with PC-
KFA for long-term sequential data that were much larger than those of
the online sequences analyzed in previous subsections. Fig. 9 shows
that data distribution of long-term sequential trajectories as an
evaluation of long-term online learning.

For the long-term sequential trajectory, the experimental dataset
was comprised of all of the available images that we accumulated. A
preset percentage of images was selected randomly from the dataset
and used for the offline training stage by use of PC-KFA. The rest of the
data were sequentially fed into the online HDA algorithm for evalua-
tion of the long-term sequential trajectory. The different ratios of
training data between online and offline were prepared as shown in
Fig. 9 from 0 to 9; for example, ‘5’ means that online data were 5 times
larger than offline datasets. Note that we had three different cases of

Table 6
Homogeneous and Heterogeneous Categories of Online Sequences with the data updates.

**“sab” indicates “Same as before”

offline data; thus, “Large Online Data” was large online data compared
to relatively small offline data. We analyzed how these ratios affect the
online learning performance for the AF, AUC, and classification
accuracy.

The AF was calculated using several long-term online sequences. If
there was no increase, we divided this online sequence of data into
small subsets by using the threshold value of online HDA with PC-KFA.

The results shown in Fig. 10 indicate that the AF was increased
when more data were used for training of the online HDA with PC-
KFA. As the ratio of the online to offline size increased, the AF
increased for all three small, medium, and large online data. Albeit
more diverse data were fed into the form of online sequences from
larger patients, the proposed online HDA with PC-KFA adapted itself,
as shown in the increase of the AF. Fig. 10 shows that the AF
consistently increased for long-term sequences of “large/medium/
small” online data using online HDA with PC-KFA even though
heterogeneous characteristics were affected as in the cases shown in
Tables 7, 8.

The online HDA with PC-KFA was evaluated based on the AUC for
the online long-term sequences. Fig. 11 shows that online PC-KFA
yielded an AUC performance similar to that of Fig. 7 for classification
in all three long-term sequences. The ability to track changes by using
long-term online sequences was also verified by the results shown in
Fig. 12.

Fig. 12 shows that the proposed online HDA with PC-KFA, which
handles very large online data over long-term sequences, performed
with a classification accuracy similar to that of the offline counterpart
shown in Table 3 in Section 5.2. After a finite number of sequences, the
classification performance of the online data sets approached to that of
the offline training data. This indicates that training of the subsequent

Data Online Sequence #1 Online Sequence #2 Online Sequence #3 Online Sequence #4
Datasetl Heterogeneous Homogeneous Homogeneous Homogeneous
Non-incremental
Dataset2 Homogeneous Heterogeneous Heterogeneous Homogeneous
Non-incremental Non-incremental
Dataset3 Homogeneous Homogeneous Heterogeneous Homogeneous
Non-incremental
Dataset4 Homogeneous Heterogeneous Homogeneous Homogeneous

Non-incremental
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Fig. 9. Long-term data sequence used for evaluation of online learning. The horizontal
axis denotes the ratio of number of online data to the number of offline data. The vertical
axis denotes the number of total data processed for training using online HDA with PC-
KFA. The three long sequences are labeled as ‘Large Online Data’, ‘Medium Online Data’,
and ‘Small Online Data’, which were used corresponding to offline training dataset sizes
of 750, 937, and 1250, respectively.

Alignment Factor (AF)
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Fig. 10. Alignment Factors (AF) for long-term sequences. The horizontal axis denotes
the progress of the online HDA (PC-KFA) with time (ratio of online to offline training).
The solid lines denote the mean of the observed AF value, and the dashed lines show the
range of observed AF.

online data sequence was advantageous over statistical offline learning.
Due to the reduced size of the kernel space, even though the data size
increased, the proposed online HDA with PC-KFA achieved a consis-
tent performance in classification accuracy.

The data auditing by validating the long-term sequence was eval-
uated by means of AF, AUC, and accuracy (shown in Figs. 10-12) to
show the degree of uniformity between offline and online datasets. The

Table 8
Online data sequence computation time.

Online data ~ Mean offline training time Mean online training time

(millisecond/sample) (millisecond/sample)
Large 884.34 85.95
Medium 936.65 59.99
Small 976.16 52.51
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Fig. 11. AUCs of ROC curves for three long-term sequences. The horizontal axis denotes
the progress of the online HDA (PC-KFA) with time (ratio of online to offline training).
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Fig. 12, Accuracy versus ratio of online data to offline data.

ratio of online to offline datasets are shown by three representative
colored plots as small, medium, and large online data. In general, small
online data performed with a higher accuracy and consistency in data-
contexts, compared to large online data. In datasets pooled from more
online data locales, if the ratio of online data is increased, these auditing
measures AF, AUC, and accuracy were all increased as if these online
and offline datasets were converted into a single merged dataset.

5.6. Evaluation of computation time

Finally, we analyzed the time required for the processing of HDA by
using online PC-KFA. All of the experiments were performed by
MATLAB R2010a using the Statistical Pattern Recognition Toolbox
for the Gram matrix calculation and kernel projection. For processing
of the large volume of data, an Intel® Core i7 with 3.40 GHz clock speed
was used along with a workstation containing 16 GB system memory.
The run time was determined by using the cputime command. Because
we do not consider all available online data after the initial offline
training, the proposed HDA is expected to yield some savings regarding
computation time.

Fig. 13 shows the total computation time in millisecond (sum of the
times for both offline and online) for the three long-term online
sequences of different sizes. The mean training time was computed
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Fig. 13. Computational time for online HDA with offline PC-KFA.

as the total training time divided by the number of processed samples.

Table 8 shows the individual means of offline and online training
from Fig. 13. Table 8 demonstrates that the computation time for
online training was much shorter than that for offline training; on
average, a spectacular 93% reduction of computation time per sample
was achieved. Fig. 13 also shows that the calculation of online training
was computationally efficient as the ratio of online to offline training
increased. Therefore, HDA using online PC-KFA was better-suited to
handle long-term sequences in a real-time manner. Our computation
speed for a larger CTC database was promising in making CTC an
acceptable technique for larger screening datasets.

5.7. Comparison between offline and online training

The comparison between offline and online data was evaluated in
Fig. 14. As in the case of three long term sequences discussed in Section
5.5, the data ratio between online and offline varied from O to 9, in
which 0 means offline datasets, and 9 means the majority of data is
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0.65
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Medium Online data
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Ratio of number of Online data to number of Offline data

0.5 {

Fig. 14. F-score between online versus offline data to evaluate the merit of online
learning. The horizontal axis shows the ratio of the number of online data to the number
of offline data. The vertical axis denotes the F-score to measure the classification
performance. The three long sequences are labeled as ‘Large Online Data’, ‘Medium
Online Data’ and ‘Small Online Data’, which corresponded to offline training datasets of
sizes of 750, 937, and 1250, respectively. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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online, i.e. the online trained dataset contains 9 times of the offline
trained data. The F-score was used for the evaluation criterion. Overall,
large online data (Red in Fig. 14) consistently demonstrates higher
improvement in performance compared to small online data (Blue in
Fig. 14). The large online data-set had a very small offline data set,
hence demonstrated very low F-score (~50%) for offline training. But
with increasing online training, this dataset (large online dataset,
marked red in Fig. 14) achieved the highest F-score, thus validating
the effectiveness of online training.

Table 9 shows the average F-scores shown in Fig. 14 for comparing
offline training and online training. Table 9 also shows the improve-
ment of F-scores over the different ratio of online datasets. Lager
online data improved F-scores consistently, which demonstrated the
merit of the proposed online training based on heterogeneous data.
This table validates that, even though offline data had a very low F-
score (49.5% in average), the large online data significantly improved
the metric with the improvement of 82%, compared to offline training.

The experimental results showed that the proposed online learning
continues to increase the classification performance metrics at various
magnitude. Our experiments showed that the amount of increment
varied randomly. If the data chunks fed to the algorithm is determi-
nistically controlled (i.e., preset sequence of data samples), the incre-
ment becomes predictable; this supports our claim regarding the data-
dependent performance. Table 10 shows a comparison between
estimated improvements achieved by state-of-the-art online learning
methods [18,49,66]. In these experiments, the improvements showed
non-decreasing relation with relative size of the online-trained data
and offline-trained data. Thus, in very high-dimensional and difficult-
to-learn data, online learning was shown to be more beneficial because
the new data come with new scenarios that are never experienced by
the learning machine. The results shown in Table 10 support this
observation because the CTC CAD data used in our experiments had a
high dimension (in the order of 10° features).

Ozawa et al. [49] tested their Chunk IPCA on several 2D image
datasets and text data, both of which are much lower in dimension. The
maximum achievable performance is likely to be lower, as shown in
Table 10. Kim et al.'s [18] and Langone et al.'s [66] examined the IPCA
and IKSC on a number of OCR images and short PM;, datasets,
respectively. The results shown in Table 10 support our claim that a
significant improvement can be obtained by the PC-KFA that under-
lines the proposed online training for big heterogeneous data.

Table 9
F-score for the three online trajectories and comparison of offline vs. online training.

Online data size F-Score (%)

Offline  300% Online ~ Maximum Improvement
Small online data sequence 71.9 75.4 18
Medium online data 67.6 79.9 25
sequence
Large online data sequence 49.5 66.5 82

Table 10
Comparison with other relevant methods.

Method Data Type Online-Offline Mean Improvement (%)
ratio

Proposed Online CTC CAD 1 0.9

KPCA
Proposed Online CTC CAD 3 2.1

KPCA
Chunk IPCA[49] 2D Image/ 1 0.2

Text

IKPCA[18] OCR 1 0.12
IKSC[66] PM,, 1 0.05
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6. Conclusions

This paper addresses the problems of adding online datasets to
existing offline datasets. To quantify the data compatibility, we
introduced measures specifically designed for online medical image
studies. We proposed an HDA to handle the long-term heterogeneous
trajectories of online data based on PC-KFA. We applied data depen-
dent composite kernels to clinical datasets of colonic polyps by
maximizing of a measure of class separability in the empirical feature
space of the datasets. The composite combination vector (i.e., weight
vector) for the most dominant kernels was determined by maximizing
the AF. We used the properties of heterogeneous degree to dynamically
adjust the changes in the heterogeneous data during the online
training. The advantages of the online method were to 1) achieve a
fast and efficient feature extraction for the detection of polyps on CTC
images, and 2) improve the performance of CAD when applied to large
datasets that are continuously expanded with additional CTC cases.
Experimental results showed that the online PC-KFA provided a
classification performance of online training data to that of the offline
training data. HDA applied to long-term data sequences in a model-
based CAD scheme yielded a high detection performance of polyps.
Future work to overcome the current limitation includes 1) improve-
ment of the results such as type-I errors, and 2) addition of more
datasets from heterogeneous data sources. Such an online framework
has the potential of making CTC a viable option for screening of a large
patient population, resulting in early detection of colon cancer, and
ultimately leading to reduced mortality due to colon cancer.
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