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A Novel Method of Cone Beam CT Projection
Binning Based on Image Registration
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Abstract— Accurate sorting of beam projectionsis impor-
tant in 4D cone beam computed tomography (4D CBCT)
to improve the quality of the reconstructed 4D CBCT
image by removing motion-induced artifacts. We propose
image registration-based projection binning (IRPB), a novel
marker-less binning method for 4D CBCT projections, which
combines intensity-based feature point detection and tra-
jectory tracking using random sample consensus. IRPB
extracts breathing motion and phases by analyzing tissue
feature point trajectories. We conducted experiments with
two phantom and six patient datasets, including both reg-
ular and irregular respirations. In experiments, we com-
pared the performance of the proposed IRPB, Amsterdam
Shroud method (AS), Fourier transform-based method (FT),
and local intensity feature tracking method (LIFT). The
results showed that the average absolute phase shift of
IRPB was 3.74 projections and 0.48 projections less than
that of FT and LIFT, respectively. AS lost the most breath-
ing cycles in the respiration extraction for the five patient
datasets, so we could not compare the average absolute
phase shift between IRPB and AS. Based on the peak signal-
to-noise ratio (PSNR) of the reconstructed 4D CBCT images,
IRPB had 5.08, 1.05, and 2.90 dB larger PSNR than AS,
FT, and LIFT, respectively. The average Structure SIMilarity
Index (SSIM) of the 4D CBCT image reconstructed by IRPB,
AS, and LIFT were 0.87, 0.74, 0.84, and 0.70, respectively.
These results demonstrated that IRPB has superior perfor-
mance to the other standard methods.
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|. INTRODUCTION

UMORS in moving organs require dynamic imaging
techniques, such as four-dimensional Cone Beam Com-
puted Tomography (4D CBCT) [1]-[4], because respiratory
motion mainly causes inferior image quality, i.e., burry edges
and inaccurate shapes, for the tumor in thoracic and upper
abdominal regions [1], [5]-[9]. These dynamic techniques
are able to reduce the estimation error of the target tumor’s
location by compensating for respiratory motion on medical
images. 4D CBCT and other motion-compensated recon-
struction methods have been developed to overcome motion-
induced artifacts. Some of these methods are based on phase
binning [2]-[4], [9]-[12] and the others use respiration mod-
els to deform either the reconstructed volume or the back-
projection operation [13], [14]. The reconstructed image qual-
ity of all of these methods directly relies on the performance
of respiratory signal extraction because all of these techniques
require tagging raw data (e.g., radiographic projections) with
a respiratory phase or state [3]-[11], [13].
Previous methods to acquire respiratory phases used

one or more of the following approaches [11]: 1)
additional equipment [15]-[18], 2) positional changes
of a diaphragm [4], [9], [12], [19], and 3) projec-

tion [6], [20]-[22]. These three approaches are compared
in Table I.

First, additional equipment-based methods employ either
external or internal tools such as skin markers, abdom-
inal belts, spirometry, or radio-opaque markers [15]-[18].
To obtain breathing signals, the external source is attached
to the patient’s body and the internal source is implanted
near the tumor. Then, locational changes of these sources,
i.e., skin and radio-opaque markers, are tracked [15]-[18].
Measurement processes utilizing skin markers are relatively
simple but a supplementary task is required to correlate the
external marker and tumor motion [15]. The internal source
method is invasive and expensive [6], [15]. Implantation
of radio-opaque makers inside the patient’s body is inva-
sive, requires physician involvement, and can affect clinical
workflow.

Second, the diaphragm position-based methods observe
changes of the diaphragm on CBCT projections with the
assumption that the changes are related to respiration [4], [9],
[12], [19], [23]. Accordingly, the diaphragm region must be
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TABLE |
PREVIOUS BREATHING PHASE EXTRACTION METHODS
Method Procedure Limitation
Tracking external source, skin Correlation between external
Additional | markers attached on the body,

makers’ motion and tumor’s
movement, invasive setup
procedure, and expensive cost

equipment |or internal source, radio-opaque|
[15]-[18] | markers implanted near the
lesion

Projection view restriction that

Diaphragm Observing changes of the the Fl%aphragm shquld be always
[4], [91, diaphragm on images visible, correlation between
[12], [19] phrag g target tumor’s movement and the
diaphragm’s motion
Analyzing the intensity Restriction of the projection view
Profecti fluctuation, applying Principle and supplemental tasks
rojection - . . -
6], [20]- Component Analysis/Fourier depending on each patient:
[’22] Transform, or reconstructing | manual clustering of 4D CBCT

trajectories of tissue feature
points in 3D

projections as subsets and
signal/image processing

shown in all CBCT projections to estimate breathing motion.
However, some commonly used CBCT systems have a limited
longitudinal field of view [4], [9], [12], [19]. The method will
have poor accuracy if the target tumor and the diaphragm have
different respiratory motion patterns [6], [23].

Third, the projection-based methods include the Amsterdam
Shroud method (AS) [20], the Amsterdam Shroud image-based
Local Principal Component Analysis (LPCA) [22], the Fourier
Transform-based method (FT) [21], and Local Intensity Fea-
ture Tracking (LIFT) [6]. AS extracts the respiratory signal
from an Amsterdam Shroud image that consists of average
intensity values for each horizontal row of the CBCT projec-
tion. LPCA uses a Principal Component Analysis (PCA)-based
sliding window approach to obtain the breathing signal on the
Amsterdam Shroud image. The FT finds the breathing signal
by analyzing the CBCT projections based on Fourier trans-
form theory. LIFT allocates feature points that are distributed
uniformly on the 4D CBCT images, and breathing signals are
extracted by recreating three-dimensional (3D) movements of
each feature point from multiple images. A main advantage of
the projection-based methods is that they require only CBCT
projections to extract breathing phases, so they overcome
the limitation of the equipment-based methods (i.e., expen-
sive setup procedures). However, the existing projection-based
methods are restricted by the projection views, as they need to
set the Region Of Interest (ROI) in their process. Besides, they
contain supplemental tasks, such as manual clustering of the
4D CBCT projections as subsets and signal/image processing,
depending on each patient.

In this paper, we propose a novel CBCT projection bin-
ning method without the use of markers, called Image
Registration-based Projection Binning (IRPB), which is a
tissue feature-based approach. The proposed method selects
tissue feature points near the edge areas only based on
image intensity of adjacent pixels. The use of selective tissue
feature points can enhance the computational efficiency of
IRPB. Then, the trajectories of feature points are tracked by

applying an image registration algorithm, the RANdom SAm-
ple Consensus (RANSAC) [24]. From the obtained trajecto-
ries, respiratory phases are calculated via periodicity analysis
of transitional patterns of the feature point positions.

The contributions of this paper are twofold. First, IRPB
is expected to provide better image guidance for radia-
tion therapy. This is because IRPB provides higher quality
reconstructed 4D CBCT images compared to the existing
methods—AS, FT, and LIFT—by improving the accuracy of
the assigned breathing phases. Second, the proposed method
achieves automatic 4D CBCT projection binning, requiring no
internal or external marker and no restriction of the projection
views. We do not need to find the correlation between the
marker’s and tumor’s motion, we do not need to include the
diaphragm in every projection view, and we do not need any
manual or arbitrary process to detect breathing signals.

Il. IMAGE REGISTRATION-BASED PROJECTION BINNING

IRPB consists of the following three steps: A. intensity-
based feature point detection; B. feature point trajectory
tracking; and C. respiratory signal extraction and projection
binning. We describe these three steps in this section.

A. Intensity-Based Feature Point Detection

We adjust the image intensity values of the overall 4D
CBCT projection in advance to utilize the full scale of inten-
sity. We linearly scale the lowest 1% of image intensity values
to the new value, i.e., ‘0, and the highest 1% to ‘1, thus,
the contrast of the overall image increases. The image intensity
adjustment can be formulated as (Leuroff —10.01)/(h0.99 —10.01),
where /o o1 presents the lowest 1% of image intensity values,
hooo indicates the highest 1% of image intensity values,
and Icuroff is an image intensity array bounded by /o1 and
hogo (.e., loo1 < leuroff =< hoyy). This also allows all 4D
CBCT projections to have the identical intensity range of
the whole image by revising their contrast. Fig. 1 illustrates
the procedure of the proposed Intensity-based Feature Point
Detection (IFPD).

We assume that feature points related to breathing motion
are densely located in areas near edges on the 4D CBCT
projections, which was observed in the interim findings [6].
Therefore, we choose tissue feature points only near edges.
Selection of feature points is based on intensity variation
within a circular pixel mask determined based on Bresenham
circle [25]. In the mask, the number of pixels with intensi-
ties similar to the center pixel is calculated and denoted as
Intensity Similarity of Adjacent pixels (ISA). A center pixel
of the mask is determined to be a feature point depending
on ISA.

In Fig. 1, a circle is a mask covering adjacent pixels, a
symbol ‘4’ is a center pixel of the mask, a blue colored area
presents pixels with similar intensity to the center pixel, and
a red colored pixel is a selected feature point. The value of
ISA is computed as:

" o) =D {1 — H(I(a) — I(a)| — 1)}, (1)

a



PARK et al.: NOVEL METHOD OF CONE BEAM CT PROJECTION BINNING BASED ON IMAGE REGISTRATION 1735
: h Projection +1)th Projection (f+2)th Projection s
O Mask + Center pixel e ij=1 , ik -1 !_1 (fi2)th Proj Feature Point
o j raws s N R
Similar ;ntensny to F)z( ‘ Feature Point
center pixel p S S Matching
. =3
B Feature point E ‘ based on
Original4D CBCT  Intensity C/=(v7, vf) =, v ) RANSAC
Plﬂj?n Adjustment Group f: C/ and ;"

S 4 ! @

Detected Feature Points  Feature Point Detection based on ISA

Fig. 1. Intensity-based Feature Point Detection (IFPD): A pixel circle is a
mask covering adjacent pixels, a symbol ‘C is a center pixel of the mask,
a blue colored area presents pixels with similar intensities to the center
pixel, and a red colored pixel is a selected feature point.

where ag is the center pixel position, a is the position of an
adjacent pixel in the mask, I(-) is an intensity function, H(-) is
a unit step function, and 7 is an intensity difference threshold.
In (1), when all the pixels in a mask have the similar intensity
based on 7, the H term becomes ‘0’ and ISA is calculated as
the largest value, i.e., the total number of pixels in the mask .
This means that a center pixel is located far from the edge,
so the center pixel is discarded in the feature point selection.
Contrariwise, a center pixel near an edge has a smaller ISA
value than y, and it is chosen as a feature point.

As shown in (1), the feature point selection depends on
the intensity value I(-) and parameters—the mask radius r
and the intensity difference threshold z. It is possible to
determine the feature points by tuning the parameters without
an intensity adjustment. In this case, however, the parameters
should be set according to each patient/projection view since
it cannot be assured that every projection dataset has similar
intensity contrast. If we adjust the image contrast of any
projection dataset to a fixed range, then we do not need
to tune the parameters each time. An algorithm to seek the
optimal parameters can be another research topic. Thus, IFPD
includes an intensity adjustment to avoid manual tasks for
setting parameters for each operation.

Our goal is to select points that are likely to represent
respiration with as high a ratio as possible. Not only do these
targeted points include edges, but they are also located in the
region near edges as assumed above. In the proposed IFPD,
the mask radius r determines the number and the range of
feature points. The larger r selects more feature points in
a wider range. An appropriate choice for the mask radius r
boosts the efficiency and performance of the binning method.
The previous optical flow-based binning methods [26] require
substantial computation for uniformly distributed points: track-
ing their locational changes over projections and extracting
respiratory motion. However, the proposed method reduces
the amount of computation for binning by selecting feature
points locally according to r. In addition, a suitable choice

SI Direction: Superior-Inferior Direction
----- Feature Point Trajectory — Estimated Respiratory Signal |

g
e

Proj ec'ti.(;;l
Group f Number
Feature Point Trajectory Tracking in Each Projection Group

Trajectory Variation
(SI Direction)

Fig. 2. Feature point trajectory tracking: corresponding feature point
matching C}‘ by RANSAC [24], and tracking feature point trajectory tfin
three consecutive projections, where fis a projection number, and /is an
index for trajectories in fth, (fC 1)th, and (fC 2)th projections.

of r increases the rate of the breathing motion-related feature
points among all of the selected points, as well as contribute
to improved accuracy performance of binning.

B. Feature Point Trajectory Tracking

The trajectory chase of the detected feature points requires
identifying corresponding feature points and tracking their
locational changes over sequential 4D CBCT projections. The
problem is that an identical feature point may not exist in
all 4D CBCT projections, because each 4D CBCT image is
projected from different views due to the scanner rotation.
To overcome this problem, we can use image registration
methods to acquire feature point trajectories. The image regis-
tration aligns images with the same scene taken from different
views or at different times, and has been widely used in
medical imaging [3], [24], [27]-[29].

We apply one of the image registration methods,
RANSAC [24], to track the locational changes of feature
points in consecutive 4D CBCT images, and call this new
method Trajectory Tracking using RANSAC (TTR). RANSAC
has shown precise point-matching performance by iterating
error correction and minimizing outliers, and many studies
have proven its robustness [29]-[32]. To discover the periodic
nature of breathing motion more effectively, we solely focus
on Superior-Inferior (SI) coordinates of the feature points. The
identified correspondence presents only the locational change
of the feature point between two consecutive projections,
but it does not clearly expose respiration-related regularity.
As aforementioned, it is not always possible to find a trajectory
connected from the first to the last projection because the
identical feature point does not appear in every projection.
The previous 4D CBCT projection binning method, LIFT [6],
arbitrarily groups 701 4D CBCT projections into four portions,
each with a different number of projections—Groupl and
Group2 with 150 projections; Group3 with 250 projections;
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Fig. 3. Respiratory signal extraction and projection binning: classification of the respiratory motion-related trajectory Tg using PCA [33], smoothing
and scaling a discrete derivative raw signal s, obtained from Tg, signal refinement for respiratory signal Sresp extraction, and breathing phase
assignment according to sresp by Eq. (2)-(6). Here, g,f represents a signal scaled to [~ 1, 1] according to peak values of s, for all projections, frpn
represents a projection number corresponding to a peak value of sf,aw and SC(g,aW), and fpp represents a projection number corresponding to a

peak value of s,or and Sresp.

and Group4 with 251 projections—in order to track trajectories
in each group belonging to the limited range of the shooting
angles. Manually and arbitrarily selected, each group has an
overlap of 50 projections [6].

To avoid manual and arbitrary grouping, we find the loca-
tional changes of feature points that are common to at least
three consecutive projections. As shown in Fig. 2, we specif-
ically find common corresponding feature points in the fth
and (f + 1)th projections denoted as le = (vif , vif +1) and
those in the (f + 1)th and (f + 2)th projections denoted
as ij o (vjf +1, vjf +2). Afterwards, the matched feature

point sets between adjacent le and C/*! are determined

as trajectories T = {tl.f|ul.erl = U}C-H}, where tl.f is the

ith trajectory in the fth projection, defined as tl.f = (tif 1

tl{ 25 tl{;). Then, the breathing signal is extracted by using the

three projection-long connected trajectories tl.f of such featured
points.

C. Respiratory Signal Extraction and Projection Binning

Breathing signal extraction from the feature point trajec-
tories influences the accuracy performance of 4D CBCT
projection binning. In practice, not all tracked trajectories show
a breath-like oscillating pattern, even if we consider the SI
direction only. At some feature points that are not relevant
to respiration, the trajectories occur due to movement of the
x-ray source orbiting the patient during scanning, which is
useless for extracting respiration patterns. For example, some
of the selected feature points, such as the points near the
apex of lungs, move toward SI direction over time. They
may create non-periodic horizontal trajectories. To estimate a
patient’s respiration, we need to filter out the orbital motion-
related trajectories. It is better that the overall feature point tra-
jectories include enough breathing motion-related trajectories
such that every projection has at least one respiratory motion-
related trajectory. Furthermore, reliable classification of the
orbital motion-related trajectories facilitates precise extraction
of breathing signals.

To exclude the orbital motion-related trajectories, we ana-
lyzed patterns of the feature point trajectories by using
PCA [33], one of the commonly used statistical data analysis
tools. PCA transforms a dataset with a large number of interre-
lated variables to an uncorrelated set of variables. The criteria
used for PCA, i.e., the input for PCA, consists of the angle
sz and the trajectory vector Bl.f for each trajectory tl.f , that are
assumed to be involved in respiration behaviors. As shown in

Fig. 3, @lf is the included angle among three points on each

trajectory tif , and the trajectory vector Bif is determined by

the first and the last (i.e., the third) points on each trajectory
tif . Then, a respiratory motion-related trajectory set, Tr over
three consecutive projections, is discriminated by PCA.

The three projection-long trajectories Tr are pieces of
the patient’s breathing signal distributed over the 4D CBCT
projections, so we need to analyze a common tendency with
the periodicity among them. We cannot derive the respiration
signal by simply averaging Tr because trajectories are located
at different positions, and each projection has a different num-
ber of trajectories. To overcome these limitations, we analyzed
a discrete derivative raw signal sﬂ;w i.e., the average of the
discrete derivatives of the trajectories for a projection number
variable:

()
f

i = .

f f

where ti/ is the discrete derivative of tif , defined as tl./ =
(ti{Z_tt{Cl’ ti{3'ti{2)'

Noise is reduced by smoothing srfaw with a Savitzky—
Golay (SG) filter [34], and we represent the discrete derivative
raw signal s;,,, after applying the SG filter as S5O (s,4,) as
shown in Fig. 3. In principle, the discrete derivative of the
trajectory is similar to a sinusoidal function, which becomes
‘0’ at both ends of a breathing cycle, i.e., end inhalation
and end exhalation. These ends correspond to the peaks of
the trajectory. The discrete derivative of the trajectory has
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its peaks and valleys corresponding to the mid phases of
either inhalation or exhalation. Therefore, it is possible to
distinguish each breathing cycle by searching either points
with ‘0’ value or local maxima/minima. In reality, however,
a discrete derivative function may show irregular non-smooth
behavior and further refinement may be required. For precise
identification of the breathing cycle, we refine s,f;w into the
peak-prominent signal with clear curves, using a cubic spline
interpolation [35]:

s¢ (8raw)
n(fp)—1

=2 |

f fpt +bt(f fpl) +Ci(f_fpi)+di],
3)

where g,4, represents a signal scaled to [—1, 1] according
to peak values of SSG(s,.aw) for all projections, and fp;
indicates the projection number corresponding to the ith peak
value (i.e., ‘-1” or ‘1°). The peak values are the local max-
ima/minima of S36(s,,,,) that are either greater/smaller than
their neighboring values. Their projection numbers are defined
as fpi. In (3), a;, b;, ¢;, and d; are the cubic polynomial

coefficients:
fl f i+1
1 raw — &ra tpi | thpi
a; = 3 [ rau-) e +gra1:n +gra1:n+1
(fpi+1_fpi) Toivr = fpi
fu' fu
b — 1 grt;w-H Sraw _2g fpi g/fp:+1
' fpi+l _fpi fpi+1 fpz Sraw raw
p i 'fpi
Ci = grt;wandd = grglw- 4

S€(graw) from S5O (s.q4y) is considered as an amplified
variation of TR, so we can compute the refined signal s,.r
of Tr by the cumulative sum of Sc(gmw) as follows:

f
sty =D SE (graw). (5)
i=1

We repeat (3) for the refined signal s,.r to obtain a peak-
prominent respiratory signal s,.sp. With projection number
corresponding to peak values f), the respiratory phase of 4D
CBCT projection f is defined as:

¢ (f - fpn)
P R I GO i
(f) lrfpn+2 - fpn

where c is the number of breathing phases, and f},,, and fp,12
are projection numbers corresponding to the beginning and the
end of the {(n 4 1)/2}th breathing cycle, respectively. Based
on P(f), 4D CBCT projections are sorted into each phase bin
before their reconstruction.

—‘a Son < f < fpnt2, (6)

IIl. EXPERIMENTAL RESULTS

We used a PC with Inter Core i7-6790 CPU 3.60GHz
CPU and 16GB RAM in the experiment. The descriptions of
experimental datasets are given in the following subsection A.
The experimental results of the proposed IFPD, TTR, and the
breathing phase assignment are presented in subsection B, C,
and D, respectively.

TABLE Il
PATIENT DATASETS

Patient # # of Projec.tion size Cp?igalr:it;j Phase binning ground
projections (pixel) (mm/pixel) truth

1 701 512 x512 0.518 Diaphragm

2 2369 1024 x 768 0.388 Marker

3 2413 1024 x 768 0.388 Diaphragm and Marker
4 2386 1024 x 768 0.388 Marker

5 2460 1024 x 768 0.388 Diaphragm and Marker
6 2447 1024 x 768 0.388 Diaphragm and Marker

A. Experimental Datasets

1) Phantom Datasets: 4D extended Cardiac-Torso (XCAT)
phantom datasets used for validation of the proposed method
offer a virtual model of the human torso with cardiac and
respiratory motions, used in many previous studies [36]. The
size of the generated phantom model was 256 x 256 x 201
voxels. We produced a regular breathing phantom dataset with
5 s of respiration and an irregular phantom dataset with 5 s and
2.5 s long breathing durations. To get the 4D CBCT images of
the phantom datasets, the Reconstruction ToolKit (RTK) was
used [37]. The size of the created 4D CBCT projections are
256 x 256 pixels. We set the detector panel size as 256 mm x
256 mm, and the distance between the source and the detector
was 1500 mm. In addition, the distance between the source
and the object was 1100 mm. The full scan was conducted
with a single 360° gantry rotation, and 720 projections were
created with 0.5° angle increments. Projections were sorted
into six respiratory phase bins.

2) Patient Datasets: 4D CBCT datasets of six subjects
were collected from Virginia Commonwealth University
Massey Cancer Center under an institution review board
approved study after patients provided informed consent
and were enrolled on the study. The Patientl dataset was
acquired on an Elekta (Elekta, Inc., Crawley, UK) Syn-
ergy XVI R4.0 system, and the remaining datasets on
a Varian (Varian Medical Systems, Inc. Palo Alto, CA)
OBI v1.3 system.

In the Patient]1 dataset, the distance between the source and
the origin was 1000 mm, the distance between the detector
and the origin was 536 mm, and the panel size was 400 mm
x 400 mm (calibrated to 265.2 mm x 265.2 mm at scan
isocenter). As shown in Table II, the projection size was
512 x 512 pixels, the number of projections was 701, and
the calibrated projection pixel size (at scan isocenter) was
0.518 mm/pixel. The scan was acquired with 120 kVp and
1.6 mAs per projection. In Patient2 to Patient6 datasets, the
distance between the detector and the origin was 500 mm,
the projection size was 1024 x 768 pixels, and the cali-
brated projection pixel size was 0.388 mm/pixel. The scan
was acquired with 125 kVp and 4.0 mAs per projection.
As shown in Table II, the numbers of projections in the
Patient2 to Patient6 datasets were 2131, 2461, 2176, 2171, and
2198, respectively. Patient2 to Patient6 had fiducial markers
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Fig. 4. Intensity adjustment result of the 340th projection of the
Patient2 dataset.

implanted in or near the primary tumor that were segmented
and extracted from each projection. The SI marker motion was
converted into a respiratory signal.

3) Ground Truth: Theoretically, no ground truth exists to
evaluate the extracted breathing signal because different
regions of the lungs such as upper lung, lower lung, and
regions near the heart may not exhibit the same motion.
We implemented diaphragm position-based and marker-based
phase projection binning methods as surrogates for the ground
truth for phase binning. Henceforth, we will use the term
“Ground Truth Surrogate (GTS)” to refer to “phase binning
ground truth” in this paper. For two phantom datasets and
Patientl dataset, the markers were not used, so their GTS
used the diaphragm location-based method only. For Patient3,
Patient5, and Patient6 datasets, the markers were used as
well as their projections covered the diaphragm area. Accord-
ingly, both diaphragm position-based and marker-based meth-
ods were GTS for Patient3, Patient5, and Patient6 datasets.
GTS for Patient2 and Patient4 datasets used the marker-
based method only because the markers were present but the
diaphragm did not appear in the projections.

B. Intensity-Based Feature Point Detection

We adjusted the image intensity values of the overall 4D
CBCT projections as explained in Section II-A. To verify the
effect of intensity adjustment in the image with outliers such
as a high-density marker, we present the intensity adjustment
results of the 340th projection of Patient2 dataset in Fig. 4.
We randomly selected the Patient2 dataset from the patient
datasets including markers in their projections. The area where
the marker appeared was enlarged for better visibility in Fig. 4.

As shown in Fig. 4, the entire contrast of the projection
got sharper so the high-density marker became brighter by
the intensity adjustment. Average intensity values of the
overall original projection and the overall intensity-adjusted
projection were 0.30 and 0.44 with an intensity range of
[0, 1], respectively. Thus, the intensity adjustment increased
the overall intensity of the 340th projection of the
Patient2 dataset. Table III shows the average intensity before
and after intensity adjustment. As shown in Table II1, the aver-
age intensity values of the two phantom datasets that have the
obvious contrast were decreased by the intensity adjustment.

TABLE llI
AVERAGE INTENSITY

Dataset Original intensity Adjusted intensity
AVG=STD| Range |AVG+STD| Range

Phantoml 0.61+0.03 [0, 1] 0.55+0.09 [0, 1]
Phantom2 0.61+0.03 [0, 1] 0.55+0.09 [0, 1]
Patient! 0.68+0.09 | [0,0.96] | 0.70+0.09 [0, 1]
Patient2 (with markers) | 0.32+0.03 | [0, 0.82] | 0.44+0.06 [0, 1]
Patient3 (with markers) | 0.45+0.04 |[0.08, 0.94]| 0.51+0.03 [0, 1]
Patient4 (with markers) | 0.43+0.02 |[0.15, 0.78]| 0.51£0.05 [0, 1]
Patient5 (with markers) | 0.34+0.03 | [0.12, 1] | 0.42+0.02 [0, 1]
Patient6 (with markers) | 0.41+0.02 |[0.14, 0.92]| 0.55+0.05 [0, 1]

3 ‘

(e)
‘
()

Fig. 5. Results of intensity-based feature point detection according to
the mask radius r: the 500th projection of the Patient4 dataset (a)-(e)with
and (f)-(j) without image intensity adjustment. Image intensity values of

the projections in (a)-(e) were adjusted to saturate 1% of each projection
as its low and high intensities.

(@ (b) (©) (d)
® (2 () @

However, the average intensity values of six patient datasets
with/without markers increased after the intensity adjustment.

The results of the proposed IFPD from Patient4 dataset are
shown in Fig. 5. We empirically set the intensity difference
threshold 7 as ‘0.07°. To demonstrate the roles of the mask
radius r and the prior intensity adjustment, we provide the
results according to the different conditions: We applied a
different r of ‘1 to 5° for each column of Fig. 5, and we present
results with intensity adjustment in Fig. 5(a)-(e) and results
without intensity adjustment in Fig. 5(f)-(j). Here, we excluded
the border of the entire image including a striking contrast
from the search space because points selected over the image
border degraded the performance as well as raised computation
in tracking.

As shown in Fig. 5, IFPD selected points covering the
edge areas where relatively large intensity variance appeared.
A smaller r selected less feature points as illustrated in Fig. 5,
and every pixel was chosen as the feature point when r
equaled 78. We obtained insufficient feature points without
intensity adjustment as illustrated in Fig. 5(f)-(j). This is
because the original 4D CBCT projections of Patient4 dataset
did not have a stark contrast. Therefore, the experimental
results showed that the extracted feature points depended on
the radius r and the prior process for intensity adjustment.
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TABLE IV = 100 T T T T T T T T
COMPARISON OF NUMBER OF FEATURE POINT MATCHES s X X % X X X
2 80
IFPD SUSAN [38] SIFT [39] S 60 ® IFPD A X
Dataset | AVG + AVG + AVG + g X SUSAN
STD Range STD Range STD Range § 40 A SIFFT X
279.21£17 10.00+3.0 S 20
Phantom1 222 [41,959](0.02£0.24| [0, 4] 4 [4,22] £, . I\ . a ° .
Phantom? 266.46+17 [45,959] |0.01£0.67| [0,6] |9.85£2.79| [4,19] Phantom1Phantom?2 Patient] Patient2 Patient3 Patient4 Patient5 Patient6
4.28 Dataset
. 1956.2
Patient] i165569 178 [58, 8957]|1.28+4.84| [0,48] |7.15£7.84| [0, 67] Fig. 6. Projection loss in terms of the trajectories for the two phantom
1731 68 and six patient datasets: the ratio of projections with no feature point
Patient2 i1534 79 [16,9486]|0.31+1.11| [0, 15] [8.16£3.67| [0,23] matched to its correspondence in the next projection in the two phantom
51 2'0 and six patient datasets.
Patient3 : [0, 1334]|0.25+£0.93| [0,7] |[3.24+2.62| [0, 18]
+134.38 kL
patient4 | 97840 110, 42481 |0.07:046| [0,4] [0.81£121] [0,9] = "}
+780.36 | P ’ o ’ = -;
=1
Patient5 9925'1fli57 (34, 4316]/1.79:1.79] [0, 5] 14'8313'4 [5,29] \ \
. 1616.43+2|  [39, 10.53+5.0
Patient6 478,95 12663] 1.19+£2.29| [0, 29] 3 [0, 32]
(a) (b

We conducted the rest of the experiments with the mask
radius r of ‘1 to 5. When r was ‘5, the experiment could
not continue due to insufficient computer memory, and the
performance of IRPB was inferior when r was less than
‘4. Therefore, we applied intensity adjustments and chose
the mask radius r of ‘4’ considering the computer memory
limitations.

For the performance evaluation of the proposed IFPD,
we compared it with Smallest Univalue Segment Assimilating
Nucleus algorithm (SUSAN) [38] and Scale Invariant Feature
Transform algorithm (SIFT) [39]. SUSAN is based on image
intensity and yields the points satisfying the condition of
the lowest univalue segment assimilating nucleus value [38].
SIFT is one of well-known algorithms in computer vision that
detects local image features in applications of image stitching,
video tracking, and various computer vision applications [39].
Table IV represents the number of feature point matches
in IFPD, SUSAN, and SIFT. We compared the number of
matches instead of feature points, because the chosen feature
point with no correspondence in the adjacent projection is
useless for trajectory tracking.

Table I'V shows that the proposed IFPD had more matched
feature points per projection than SUSAN and SIFT in the
two phantom and the six patient datasets. Whereas SUSAN
and SIFT had the maximum number of matches per projection
of 1.79 and 14.89, respectively, the minimum number of the
matches per projection in IFPD was 131.20. The experimental
results showed that SUSAN and SIFT chose insufficient fea-
ture points with their matches per projection. This is because
SUSAN and SIFT were designed for non-medical images that
contain objects with definite borders. Without modification of
SUSAN and SIFT, there is a limitation to use them for the
relatively unclear CBCT projections. In the proposed method,
we narrow down the initially selected feature points to the
feature points with their matches in the adjacent projections
then finally to the breathing motion-related points only. Thus,
the small number of feature point matches is likely to lead to
the difficulty of tracking their fully connected trajectory over
all of the projections.

Fig. 7.
and the 372nd projections of the phantom1 dataset and (b) between the
212th and 213th projection of the Patient1 dataset.

Corresponding feature point matches: (a) between the 371st

A comparison of projection loss in terms of the trajectories
between IFPD, SUSAN, and SIFT is shown in Fig. 6. Fig. 6
shows the ratio of projections with one feature point matched
to its correspondence in the next projection. The average
projection loss ratio of IFPD, SUSAN, and SIFT were 1.11%,
81.47%, and 8.92%, respectively. In other words, we cannot
track an average of 81.47% of the trajectories with SUSAN.

If we can select one point that has its correspondences at
every CBCT projection, and at the same time, its trajectory
reveals the desired breathing pattern, there would be no
relation between the number of the matches and the accuracy
result of the respiration extraction. However, we could not
acquire a single trajectory connected over the entire CBCT
projections with our experimental datasets. Moreover, some
of the matches have orbital patterns, not breathing patterns.
The next step of IRPB, ie., TTR, gets rid of the orbital
motion-related trajectories formed by some of the matches
we obtained. Consequentially, some of the matches of IFPD,
SUSAN, and SIFT might be excluded and cause more pro-
jection losses. Therefore, we cannot expect to extract precise
respiratory signal embracing all projections using SUSAN and
SIFT.

C. Trajectory Tracking Using Random Sample
Consensus

The first step for the proposed TTR is to find matches of
corresponding points in consecutive projections. Not every
selected feature point has correspondence in the prior and
posterior projections, because each projection was taken from
the different rotation angle of the scanner and the image
intensity is affected by the patient’s movements. Fig. 7 presents
matching results of the proposed TTR.

Fig. 7(a) illustrates corresponding feature point matches
between the 371st and the 372nd projections of Phan-
toml dataset, and Fig. 7(b) presents corresponding feature
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Fig. 8.  Three projection-long feature point trajectory T of: (a) the
phantom1 and (b) Patient3 datasets: T contains breathing motion-related
TR and orbital motion related trajectories, where the y-axis represents
the Sl direction.

point matches between the 212th and the 213th projections
of the Patientl dataset. In Fig. 7, red and green markers
are detected feature points by IFPD; yellow lines are fea-
ture point matches including inliers and outliers; and blue
markers connected with yellow lines are inliers of the feature
point matches in the two consecutive projections. As shown
in Fig. 7, we discarded the outliers of the feature point
matches from the trajectory candidates. Fig. 8(a) and Fig. 8(b)
present three projection-long feature point trajectories T of
Phantom1 and Patient3 datasets, respectively. As mentioned
above, we considered the SI direction only for trajectory vari-
ation. Among detected trajectories in Fig. 8, some trajectories
showed correlation with respiratory motion, but the others
represented orbital motion.

In addition, Fig. 9 illustrates the number of the feature
point trajectories T/ compared to their corresponding feature
point matches le . In Fig. 9, a blue line is the number of

the corresponding feature point matches c/ ; a red line is the
number of the feature point trajectories T/ ; and gray vertical
lines in Fig. 9(a), (b), (e), and (f) indicate where projection
loss occurred. As shown in Fig. 9, the feature point trajectories
of Phantoml and Phantom2 datasets had ‘1’ (0.14%) and
‘8" (1.11%) projection losses, respectively. The projection
loss for the trajectories of Patient3 and Patient4 datasets
were respectively ‘90” (3.73%) and ‘106’ (4.45%). There
was no projection loss in the Patientl, Patient2, Patient,
and Patient6 datasets. Nearby feature point trajectories can
compensate for the intermittent losses unless projection losses
are successive. Therefore, the projection losses in Phantoml,
Phantom2, Patient3, and Patient4 datasets are negligible.
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Fig. 9. Comparison of the number of corresponding feature point
matches C and feature point trajectory T from: (a) phantom1, (b) phan-
tom2, (c) I-J’atient1, (d) Patient2, (e) Patient3, (f) Patient4, (g) Patient5,
and (h) Patient6 datasets.

Furthermore, the projections near the lateral views, e.g., x-ray
gantry angle close to 90° and 270° , include less corresponding
feature point matches and trajectories than other projections
do, as shown in Fig. 9. In the lateral view, the overlapped
lungs decrease the contrast on the image, and this results in
less feature points because they are selected by IFPD based
on their image intensity difference.

D. Respiratory Signal Extraction and Projection Binning

From the detected feature point trajectories, it is difficult to
discover the patterns relevant to breathing variation. There-
fore, we identified trajectories involved in respiration and
the extracted respiratory pattern as described in Section II.
Fig. 10(a) and (b) depict respiratory motion-related trajectories
and the respiratory signal of Phantom1 and Patient3 datasets,
respectively. In Fig. 10, red lines are the respiratory motion-
related trajectories TR, and the green line is the respiratory
signal s,¢5p acquired by (3) and (5). Here, we already excluded
orbital motion-related trajectories by applying PCA [33].
As explained above, the criterion for 4D CBCT binning is the
projection number corresponding to the start and the end of
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Fig. 10. Respiratory motion-related trajectories and respiratory signal
of (a) the phantom1 and (b) Patient3 datasets.

the breathing cycle, not an amplitude of the respiratory signal.
Unlike the feature point trajectories T, the respiratory motion-
related trajectories Tr in Fig. 10 (a) exposed a periodic pattern
marked with a black dashed circle.

Fig. 11 shows a comparison of the assigned breathing phases
P(f) by IRPB, AS, and FT. Particularly, we utilized FT using
the phase information of the CBCT projection intensities.
In Fig. 11, a blue dotted line is the result of the diaphragm
position-based method, a green dash-dot line is the result of
the marker-based method, a red line is the result of IRPB,
a purple line is the result of AS, and a magenta line is
the result of FT. In addition, we implemented AS and FT
using RTK [37] and MATLAB. For better visibility of phase
assignment, we partially presented the breathing phases with a
250-projection window for two phantom datasets in Fig. 11(a)
and (b) and a 150-projection window for six patient datasets
in Fig. 11(c)-(h).

According to the results, IRPB, AS, and FT allocated
breathing phases close to GTS—the diaphragm position-
based and marker-based methods—as shown in Fig. 11(a)-(c).
However, IRPB far outperformed AS and FT in breathing
phase assignment for Patient2 to Patient6 datasets as shown in
Fig. 11(c)-(h). The cyan rectangles in Fig. 11(b), (f) and (g)
indicate noticeably irregular breathing. IRPB could set nearly
precise breathing phases for both abnormally short (Fig. 11(b))
and long (Fig. 11(f)) breathing, but AS and FT could assign

TABLE V
PSNR AND SSIM oF RECONSTRUCTED 4D CBCT IMAGES BY IRPB,
AS, FT, AND LIFT

Method Dataset GTS Phase shift (projections)
Phantom1 Diaphragm 3.54+2.78
Phantom2 Diaphragm 3.56+£2.60
Patientl Diaphragm 1.20+£0.79
Patient2 Marker 1.22+1.30
Patient3 Diaphragm 2.67+1.41
IRPB Marker 244+1.24
Patient4 Marker 1.56+1.24
. Diaphragm 1.90+1.10
Patient3 Marker 170+ 1.06
. Diaphragm 2.33+£1.00
Patient6 Marker 1.7840.67
Phantom1 Diaphragm 2.00+£1.12
AS [20] Phantom2 Diaphragm 2.89+£2.52
Patient] Diaphragm 0.30+0.48
Phantom1 Diaphragm 0.67+0.50
Phantom2 Diaphragm 1.56+3.21
Patientl Diaphragm 0.70+0.48
FT [21] - : .

Patient4 Marker 9.00+2.65
. Diaphragm 5.90+0.32
Patient3 Marker 5.70£0.67
. Diaphragm 8.67+1.32
Patient6 Marker 8.11+1.17

LIFT [6] Patientl Marker 1.68 £1.09[6]

them for irregular breathing in Fig. 11(b) only. For the area
marked as the cyan rectangle in Fig. 11(g), IRPB, AS, and FT
could not set breathing phases accurately.

Interestingly, the length of irregular breath was estimated
differently between the diaphragm position-based method and
the markers-based method. For instance, in the enlarged
cyan rectangle of Fig. 11(g), whereas the length of observed
irregular breath was three cycles for the diaphragm position-
based method, it was five cycles for the marker-based method.
We believe this difference was because the fiducial markers
were implanted near the heart in PatientS and thus affected by
cardiac motion.

Table V compares the average absolute phase shift produced
by IRPB, AS, FT, and LIFT. The average absolute phase shift
was calculated as:

P for) = 3|7 = sl mec? (1) = P (Firs) = 1.
i=l

where f' and féT ¢ are the projection numbers assigned as
Phasel in the ith breathing cycle by IRPB, AS, FT, and
LIFT, and the diaphragm position-based/marker-based method,
respectively, and n. is the total number of breathing cycles.
IRPB, the diaphragm position-based method, and the
marker-based methods extracted different numbers of respi-
ratory cycles due to noticeably irregular breathing and the
influence of other organs’ movement as shown in Fig. 11(g).
Therefore, we excluded those cycles in computation of the
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Fig. 11. Breathing phase comparison between IRPB, AS, and FT: (a) phantom1, (b) phantom2, (c) Patient1, (d) Patient2, (e) Patient3, (f) Patient4,

(g) Patient5, and (h) Patient6 datasets.

Diaphragm

Fig. 12. Comparison of reconstructed 4D CBCT images: (a) the Patient5

Marker

(b)

dataset for Phase6 by the diaphragm position-based method, the marker-

based method, IRPB, AS, and FT, and (b) the Patient2 dataset for Phase3 by the marker-based method and LIFT.

average absolute phase shift. AS and FT failed to assign
proper breathing phases for most of the breathing cycles of the
Patient2 to Patient6 datasets and Patient2 dataset, respectively,
as shown in Fig. 11, so we computed the average absolute
phase shift of two phantom and Patient]l datasets for AS
and two phantom, Patientl, and Patient3 to Patient6 datasets
for FT. In addition, we could compare IRPB and LIFT for
the Patient]l dataset since it was also used in the experiment
of [6].

As shown in Table V, the average absolute phase shift
of IRPB for the diaphragm position-based method was
2.41 projections in all datasets (2.53 projections except
Patient2 dataset) and that for the marker-based method was
1.74 projections in all datasets (1.87 projections except
Patient2 dataset). AS had the average absolute phase shift

of 1.73 projections for the diaphragm position-based method
in two phantom and Patient]l datasets. The average absolute
phase shift of FT was 4.58 projections for the diaphragm
position-based method and 8.14 projections for the marker-
based method, in all datasets except Patient2 dataset. For
Patientl, IRPB, AS, and FT showed slightly better perfor-
mance with the average absolute phase shift of 1.20, 0.30,
and 0.70 projections for the diaphragm position-based method,
respectively, whereas LIFT had the average absolute phase
shift of 1.68 projections for the diaphragm position-based
method.

Fig. 12 shows the comparison of reconstructed 4D CBCT
images: PatientS dataset for Phase6 by the diaphragm
position-based method, the marker-based method, IRPB,
AS, and FT, and Patient2 dataset [6] for Phase3 by the
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TABLE VI
COMPARISON OF AVERAGE ABSOLUTE PHASE SHIFT

Reconstructed 4D CBCT images PSNR (dB) SSIM

IRPB and Diaphragm 31.13 0.87

AS [20] and Diaphragm 24.59 0.74

. FT [21] and Diaphragm 28.38 0.84
Fig. 12(a)

IRPB and Marker 28.57 0.86

AS [20] and Marker 24.96 0.74

FT [21] and Marker 29.23 0.84

Fig. 12(b) LIFT [6] and Marker 26.95 0.70

marker-based method and LIFT. We used the Feldkamp,
Davis, and Kress algorithm [40] for the reconstruction.
The reconstructed image size was 512 x 512 x 100 pix-
els, and the spacing was 0.88 mm for left-right and
anterior-posterior directions and 2 mm for SI direction.
In addition, we set the intensity range of the reconstructed
images to Hounsfield units. In Fig. 12, the bright streaking
artifact, i.e., view-aliasing artifact, appears due to the insuffi-
cient number of projections used for 4D CBCT reconstruction
compared to the total projections.

As illustrated in Fig. 12, the reconstructed 4D CBCT image
by AS contained blurry boundaries near moving organs—the
heart, vessels near the heart, and diaphragm—and significant
streaking artifacts. Contrariwise, the reconstructed 4D CBCT
image via IRPB, FT, and LIFT shows comparable image
quality to that via the marker-based/diaphragm position-based
method, manually implemented as GTS, as shown in Fig. 12.
In addition, the reconstructed 4D CBCT image by FT seems
more clear than the other images by IRPB, AS and LIFT,
but the heart and vessel shapes on the reconstructed 4D
CBCT image by FT are somewhat different from the images
by GTS. As the result of the assigned breathing phases
(Fig. 11(g)), FT nearly sorted the projections in even cycles,
so the view-aliasing artifact does not appear on the recon-
structed 4D CBCT image via FT as much as the other
images in Fig. 12. However, FT showed constant phase shifts,
which led to the inaccurate heart and vessel shapes on the
reconstructed 4D CBCT image.

In Table VI, we numerically evaluated the quality of
the reconstructed 4D CBCT images of Fig. 12, by using
Peak Signal-to-Noise Ratio (PSNR) and Structure SIMilarity
Index (SSIM), commonly used as image quality metrics [41].
PSNR is computed as PSNR = 20 logo(MAX/MSE), where
MAX is the maximum intensity value, and MSE is the mean
square error between the reconstructed 4D CBCT images by
IRPB, AS, FT, LIFT, and GTS—either the diaphragm position-
based or marker-based method. SSIM is calculated as [41]:

(zlux,uy + C]) (zaxy + C2)

SSIM (x,y) = ,
(,u% + w3 +C1) (sz +07 +C2)

where x and y indicate the reconstructed 4D CBCT image by
IRPB, AS, FT, LIFT, and GTS, respectively, and pu, uy, oy,
oy, and oy, are means, variances, and covariance of x and y,
respectively. In SSIM, C1 and C, denote stabilization constants
calculated as C; = (K{MAX)? and C» = (KoM AX)?, where

Fig. 18. Tumor on the reconstructed 4D CBCT image.

Ki; <« 1 and K; <« 1. Here, we set Ki as 0.1 and K, as 0.3
according to Image Processing Toolbox of MATLAB.

As shown in Table VI, IRPB had larger PSNR and SSIM
than AS and FT when GTS was the diaphragm position-based
method. When GTS was the marker-based method, FT showed
the greatest PSNR and IRPB had the largest SSIM. In other
words, IRPB was superior to AS and comparable to FT in
terms of the image quality. LIFT had the smallest SSIM results
among IRPB, AS, FT, and LIFT. Based on Table VI, we could
conclude that IRPB showed outstanding performance in the
quality of the reconstructed 4D CBCT images, compared to
AS, FT, and LIFT.

Fig. 13 compares reconstructed 4D CBCT images from the
same image slice containing a tumor. The data was taken from
the Patient5 dataset shown in Fig. 12(a). We magnified the
area containing the tumor and increased the image contrast
to compare the reconstructed tumor shapes, as shown in the
insets within red boundaries in Fig. 13.

The tumor shape reconstructed using IRPB was similar
with that generated by the marker-based/diaphragm position-
based method. AS and FT had slightly distorted tumor shapes
in the reconstructed 4D CBCT images resulting from inac-
curate projection sorting. The tumor boundary was blurry
for all five methods including GTS, as shown in Fig. 13.
The blurry boundary is a disadvantage of the phase binning
approach. Breathing motion-induced artifacts would be mini-
mized in the reconstructed 4D CBCT images if the number of
projections and breathing phases were sufficiently large. Thus,
increasing the number of the phase bins may further decrease
the motion-induced artifacts in the reconstructed 4D CBCT
images.

In summary, the experimental results indicate that the pro-
posed IFPD is robust for 4D CBCT projections that can-
not capture the object clearly, unlike images used in many
other simulations of computer vision. In our experiments,
IFPD selected sufficient tissue feature points to track them
over entire projections, but the existing intensity-based point
selection approaches, SUSAN and SIFT, did not. Selection of
the insufficient feature points was directly connected to the
breathing phase shift. Moreover, IRPB resulted in outstanding
image quality in comparison of the reconstructed 4D CBCT
images by AS, FT, and LIFT.

We measured the computation time of the proposed method
from the beginning of IFPD to the end of phase binning.
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The computation time for the proposed method was 4 hours
and 24 minutes for Phantom1 dataset. We speculate on three
possible solutions to reduce the computation time for IRPB
down to minutes: First, we developed our programing code
using Image Processing Toolbox of MATLAB for research
purposes. Programming optimization on a faster platform than
MATLAB such as OpenCV, C, or C++ is expected to shorten
the computing time. Second, a machine with a GPU and
parallel computing allows much faster IRPB processing than
one with a CPU. The GPU memory specification also affects
the computation time. Third, another solution is to apply IRPB
to a ROI of the projection, instead of the entire projection. The
computation time would depend on the size of the ROL

As mentioned above, the phase shift result of the marker-
based method did not match the result of the diaphragm
position-based method. This indicates that the diaphragm
position-based method may not yield the precise tumor shape
and clear tumor boundary on the reconstructed 4D CBCT
images, depending on the tumor location. For example,
the tumor near the diaphragm had similar motion with the
diaphragm, and the tumor near the heart moved with both car-
diac and respiratory motion. In the experiments, we extracted
the breathing signal based on the dominant intensity features
of the entire image of each 4D CBCT projection. Accordingly,
IRPB has a potential limitation that its accuracy performance
depends on the tumor location. Nevertheless, the need and
risks of invasive implantation of the makers may be avoided by
using IRPB. Setting the ROI to enclose the tumor in IRPB may
result in a clearly delineated tumor in the reconstructed 4D
CBCT image although other areas like the diaphragm might
remain blurry.

IV. CONCLUSION

In this study, we introduced IRPB, the new marker-less 4D
CBCT projection binning method, which combines IFPD’s
selection of tissue feature points using image intensity and
TTR tracking the feature points by RANSAC algorithm. IRPB
extracts the breathing motion and phases via periodicity analy-
sis of feature point trajectories. In experiments, an average
absolute phase shift of IRPB for GTS, i.e., the diaphragm
location-based and the marker-based methods, was 2.05 pro-
jections and 6.27 projections less than that of FT, respectively.
IRPB had an average absolute phase shift 0.48 projections
less than LIFT under the same conditions. In comparison of
average PSNR from the reconstructed 4D CBCT images, IRPB
had 5.08 dB, 1.05 dB, and 2.90 dB greater PSNR average
than AS, FT, and LIFT, respectively. An average SSIM of
the 4D CBCT image reconstructed by IRPB was 0.13, 0.03,
and 0.17 larger than that by AS, FT, and LIFT, respectively.
These results regarding PSNR and SSIM demonstrate that
IRPB achieved a higher quality of the reconstructed 4D CBCT
images compared to the other methods we tested.

IRPB achieved automatic 4D CBCT projection binning
without any manual/arbitrary process, additional equipment,
restriction of the projection view, or supplemental signal/image
processing depending on each patient. However, there are
still remaining limitations such as computation time, memory

requirements during processing, and accuracy performance.
Many image registration methods introduced for computer
vision have not been applied to respiratory signal extraction
and 4D CBCT reconstruction methods yet. Therefore, our
future work will involve modification, application, and evalua-
tion of existing image registration algorithms for more precise
respiratory signal extraction and 4D CBCT reconstruction.
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