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Abstract—This paper proposes the multicolumn RBF
network (MCRN) as a method to improve the accuracy and
speed of a traditional radial basis function network (RBFN).
The RBFN, as a fully connected artificial neural network (ANN),
suffers from costly kernel inner-product calculations due to the
use of many instances as the centers of hidden units. This issue is
not critical for small datasets, as adding more hidden units will
not burden the computation time. However, for larger datasets,
the RBFN requires many hidden units with several kernel
computations to generalize the problem. The MCRN mechanism
is constructed based on dividing a dataset into smaller subsets
using the k-d tree algorithm. N resultant subsets are considered
as separate training datasets to train N individual RBFNs.
Those small RBFNs are stacked in parallel and bulged into
the MCRN structure during testing. The MCRN is considered
as a well-developed and easy-to-use parallel structure, because
each individual ANN has been trained on its own subsets and
is completely separate from the other ANNs. This parallelized
structure reduces the testing time compared with that of a single
but larger RBFN, which cannot be easily parallelized due to
its fully connected structure. Small informative subsets provide
the MCRN with a regional experience to specify the problem
instead of generalizing it. The MCRN has been tested on many
benchmark datasets and has shown better accuracy and great
improvements in training and testing times compared with a
single RBFN. The MCRN also shows good results compared with
those of some machine learning techniques, such as the support
vector machine and k-nearest neighbors.

Index Terms—Deep neural network, k-d tree, k-nearest
neighbors (KNNs), kernel, radial basis function
networks (RBFNs).

I. INTRODUCTION

HILE the radial basis function network (RBFN) shows

good performance for many complex problems in
classification, it still suffers from an excessive amount of
computations and slow convergence, particularly for large
datasets [1]. Selecting the best centers for Gaussian hidden
units will be more difficult and time-consuming due to kernel
inner products. Yu et al. [2] suggested the incremental selec-
tion of hidden units through their error correction (ErrCor)
algorithm as a way to reduce the computation time. ErrCor is
a good method of selecting the most violating input vector as a
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new hidden unit center incrementally until convergence. This
method has a fast and good start when designing an RBFN,
but the process is delayed exponentially when the number of
selected hidden units is increased.

This paper presents the multicolumn RBF network (MCRN)
as a method to improve the accuracy and timing results of the
RBFN using a multicolumn deep technique. Small pretrained
RBFNs are deployed in a parallel structure. Those RBFNs are
pretrained on portions of a dataset individually. During testing,
a small number of individual artificial neural networks (ANN5s)
are selected using the k-nearest neighbors (KNNs) technique.
Only the selected ANNSs contribute to an averaged output. The
MCRN has shorter training and testing time requirements com-
pared with those of the RBFN and shows improved accuracy
compared with the RBFN, support vector machine (SVM),
and KNN.

Although the ErrCor algorithm [2] shows good results in
speeding up the training convergence of the RBFN compared
with other training algorithms, an excessive amount of com-
putations are required. The ErrCor continuously inserts one
hidden unit into the hidden layer each time until convergence
while using the entire dataset in each step of the training
phase to calculate the root mean square error (RMSE). The
violated vector is chosen as the new hidden unit center and is
removed from the training dataset. Inner product calculations
become more difficult for the next round of selecting a
new violated vector due to the increased number of hidden
units. The process is initially fast and efficient, but the
training time increases exponentially as the number of hidden
units increases. In contrast, ErrCor shows good performance
compared with other fast algorithms with respect to testing
time. This superior performance is obvious for the RBFN,
because selecting the most violating input vectors as hidden
units gives the ANN a wide distribution to generalize the
solution instead of randomly selecting hidden units. Moreover,
ErrCor guarantees fewer hidden units by intelligently selecting
important Gaussian centers. Having fewer units decreases the
inner-kernel products and thus decreases the testing time.
However, the ErrCor structure is difficult to deploy in a
parallel environment. However, parallelism, if it could be
applied, the system performance would improve dramatically.
Our approach solves the critical problem of delays, primarily
through the use of a parallel structure to increase the training
and testing speed and improve the accuracy. It also decreases
the use of hidden units at each RBFN by decreasing the
number of training dataset instances. This will decrease the
inner products as well.

Using a parallel-structured ANN as a deep technique shows
superior results compared with the traditional ANN [3], [4].
The use of a smaller subset of data speeds up the process
of selecting hidden units and decreases the number of hidden
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units. While this superiority is true during training, this tech-
nique is more feasible during the testing. Fewer computations
and a parallelized structure speeds up the entire process [5].
Each individual ANN can be considered as a specialist ANN
for any input vector that belongs to its subset. The results
are considerably more accurate when regional training is
performed.

This paper is novel in that the MCRN introduces a solution
to RBFN processing delays and large computational prob-
lems by: 1) using a well-developed and easy-to-use parallel
structure and 2) using fewer hidden units per ANN and less
dataset instances to train ANNs. The MCRN divides the entire
dataset into small but informative subsets individually. The
MCRN uses those subsets to train N individual ANNs. Those
individual ANNs are stacked in parallel. They consider test
instances that are under their responsibility, i.e., instances
under their subset space. The MCRN is considered an ideal
way to transition from a single-structured learning to a deep
and parallel learning mechanism due to the separation of
individual ANNs. The MCRN consists of three consecutive
stages: the input subset selector, N—individual ANNs, and
the output combiner. During testing, when a new instance is
presented, the input subset selector box calculates the KNNs
to that input. Each k neighbor belongs to a subset of the entire
dataset, which is used to train individual ANNs. Only those
k ANNs are executed. The output combiner averages their
results to obtain the single elected output.

The remainder of this paper is organized as follows. The
relevant studies are discussed in Section II. Section III presents
the proposed deep kernel neural network in detail. Section IV
presents and discusses the experimental results of the pro-
posed methods. The conclusion of this paper is presented
in Section V.

II. RELEVANT STUDIES ON THE RBFN AND DEEP
NEURAL NETWORKS

Due to the good performance exhibited by the RBFN
and the greater problem solving involved with deep ANNS,
researchers have attempted to enhance the RBFN and find
different ways to apply it to deep learning.

A. RBFNs With Hidden Layer Kernels

Many researchers have shown that the RBFN can yield good
results compared with other ANN techniques. They manipu-
lated the RBFN in different ways to improve its performance.
Their works were based on modifying the parameters of hid-
den units’ radial basis functions, such as the centers or width,
or even suggesting different Gaussian functions. Some other
researchers focused on keeping parameters unchanged while
speeding up the training process by finding ways to minimize
the number of hidden units, which means minimizing the inner
kernel products.

Kaminski and Strumillo [1] worked on optimizing the
computations for training the RBFN. They used standard
Gram-Schmidt orthonormalization to calculate weights by
transforming the RBF kernel functions into orthonormal func-
tions. The method showed good accuracy compared with
traditional RBFNs.
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TABLE I
IMPROVING RBFN RESULTS

Modification method Purpose Studies
Using Gram-Schmidt . .

orthonormalization. To optimize computations [1]
Modifying RBE center and 14 conduct hidden unit selection  [61-[9]
Updating using LM To improve centers’ position, [10]
algorithm. width and weight

Compa}ct two-step To optimize computations [11]
extension procedure.

Incremental RBF training. To decrease the number of hidden 2]

units

Panchapakesan et al. [6] studied the effect of moving centers
of the RBFN and how to obtain smaller errors while fine-
tuning the positions of the center. Bruzzone and Prieto [7] used
a supervised technique for RBFN classifiers. Their technique
considers the class memberships of training samples to select
the centers and widths of the kernel functions associated
with the hidden units of an RBFN. Mao and Huang [8]
selected the hidden layer units of the RBFN based on the
data structure preservation criterion, and Bors and Pitas [9]
proposed what is the median radial basis function (MRBF)
algorithm. The MRBF employs the marginal median for kernel
location estimation and the median of the absolute deviations
for scale parameter estimation.

Xie et al. [10] proposed an improved second-order algo-
rithm (ISO) to train the RBFN. The ISO is used for adjusting
centers, width, and weights. They updated the parameters of
the RBF using the Levenberg—Marquardt algorithm.

Arif and Vela [11] noted the computational problem that
arises in certain applications after training due to executing
through a kernel of the size of the training set. Thus, they
proposed a compact two-step extension procedure to resolve
this issue. The extension exploits the universal approximation
capabilities of generalized RBFNs to approximate and replace
the projections onto the empirical kernel map used during
execution.

Yu et al. [2] proposed an offline algorithm for incrementally
constructing and training RBFN. In their work, the maximum
violating vector from training instances is added as a new
hidden unit to the RBFN structure at each iteration of the
ErrCor algorithm. This vector, which represents the highest
peak of the error surface, is eliminated from the training
dataset. This process is repeated until convergence. The results
demonstrate that the ErrCor algorithm can design a compact
RBFN compared with other RBF algorithms.

Table I shows different ways of improving the results of the
RBEN from different studies.

This paper uses the ErrCor algorithm suggested in [2] to
train individual RBFNs by incrementally inserting a single
hidden unit at a time and calculating the RMSE until the
required tolerance is reached.

B. Deep Learning With ANN Techniques

Deep ANNs have been proven to be able to implement
functions of higher complexity, which are able to address more
difficult problems than shallow ANNs [12]. Szymanski and
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McCane [13] compared a shallow ANN architecture with a
deep ANN architecture. They showed that depth is an effective
encoder of repeating patterns in the data and that deep ANNs
can generalize and perform better than shallow ANNs.

Different implementations have been suggested to define
the word “deep” in the ANN world. Implementations are
performed using different ANN structures and connec-
tion ideas. Some studies considered using the convolu-
tional neural network (CNN). Many researchers used the
deep belief ANN (DBN) based on the restricted Boltzmann
machine (RBM), whereas some considered a deep ANN to be
one large ANN with many hidden layers and/or many hidden
units, and others used a multicolumn structure as their deep
structure.

Krizhevsky et al. [14] trained a large deep CNN to classify
high-resolution images. Shuiwang et al. [15] developed a 3-D
CNN to recognize human actions in real-world environment
videos.

In 2006, Hinton and Salakhutdinov [16] proposed a
deep learning architecture called the DBN for autoencoder
neural networks using the RBM structure. In the same year,
Hinton et al. [17] used a network with three hidden layers
to implement the DBN using the RBM structure. Wong and
Sun [18] proposed a new feature extraction method called
regularized deep fisher mapping (RDFM), which learns an
explicit mapping from a sample space to a feature space using
a deep ANN. Stuhlsatz et al. [19] suggested an approach for
the feature extraction method called generalized discriminant
analysis using a deep learning ANN (GerDA DNN). In their
work, they used the RBM as an unsupervised preoptimization
for the ANN structure. Salakhutdinov et al. [20] introduced
a hierarchal-deep model as a new deep learning ANN model.
They demonstrated how a hierarchical Dirichlet process can
learn prior over the activities of the top-level features in a deep
RBM. Bu et al. [21] proposed a multilevel 3-D shape feature
extraction framework using deep learning. Their deep learning
structure is based on a DBN, which consists of multistage
RBM models.

Chen and Salman [22] proposed a novel deep neural archi-
tecture for learning speaker-specific characteristics. They used
an unsupervised multilayer feed forward ANN based on a deep
autoencoder architecture.

Van De Steeg et al. [23] used a multilayer perceptron ANN
with enlarged hidden layers and hidden units as their deep
structure to solve the Tic-Tac-Toe 3-D game problem. Their
deep structure with integrated pattern detectors outperforms
smaller ANN structures.

Shao et al. [3] proposed multispectral neural networks to
learn features from multicolumn deep ANNs. Their results
indicated that spectrally embedding deep ANNs exhibit a
lower error rate compared with a single deep neural network.
Ciresan et al. [4] used the concept of a multicolumn deep
ANN to improve image classification. Their work is based
on gathering and averaging many parallel ANN outputs.
Mall et al. [24] also used the concept of dividing a large
dataset into sparse subsets using KNN. They used the fast
and unique representative subset selection technique to obtain
the points from different dense subsets. Those selected points

TABLE I
SUMMARY OF DEEP LEARNING TECHNIQUES

Method Deep Structure Studies

CNN Multi-stage feed forward ANN. [14], [15]

Deep belief ANN ~ RBM ANN. [16]-[21]

DNA Multi feed forward hidden Layers. [22]

Single ANN En.largc hidden layers and hidden [23]

units.

Multi-column

ANN Parallel ANNs. [31, [4], [24]
Fig. 1. ANN with [ inputs, # RBF units, and a single output.

are mapped into the original dataset to capture the intrinsic
cluster structure present in the data. Those clusters contribute
to the overall classifier output.

Table II provides a summary of research that used deep
learning as a technique through different methods of imple-
mentation.

Some studies have used ensemble learning to divide the
dataset into smaller subsets to reduce the difficulty of large-
scale data [24], [25]. The consideration of a small subset
may either speed up the overall learning process or yield
better results. In this paper, the general concept of deep
learning is based on the multicolumn method of distributing
parallel ANNs, and the datasets are divided using the k-d tree
algorithm.

III. MULTICOLUMN RBF NETWORK

This section is organized as follows. In Section III-A, a brief
discussion of the RBFN is provided. Section III-B presents
how the dataset is divided into subsets using the k-d tree
algorithm. The MCRN structure and mechanism are described
in detail in Section II.

A. Radial Basis Function ANN

Fig. 1 shows the standard internal structure of the RBFN. It
consists of three layers: input, hidden, and output layers. The
input layer has I units, denoted as x = [x1,x2..., X, ...x1].
The hidden layer has H RBF units, represented by 0 =
[61,6,...,64,...84]. The output layer has a single unit, y.
Each hidden unit % is calculated using the kernel function of
RBF units [1], [2] as followliI

NENE
On

B (x) = exp ey
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Fig. 2. 2-D radial basis function with center ¢;, and width 0j,. 6, (xP) is the
output of neuron 2 when input vector xP is applied.

where ¢, and 0, are the center and width of unit %, respec-
tively, and the operation (400 the Euclidean norm.

Fig. 2 shows a 2-D radial basis function that represents how
each hidden unit % calculates 6, for a new input x”, where p
is the pattern number.

The ANN output is calculated by solving the following
linear equation:

w0, (X) 2
h=0

y:

where wy, represents the weight between the ~ hidden unit and
the single output unit; wo represents the bias weight between
an input 6 = 1 and the output unit for simplicity. The output
equation shown in (2) has a linear function that sums all of
the products from the previous layer and displays it as a single
output [2].

The RBFN is trained offline with a training set {x”, y5 },
p=1,...P, where P is the number of training set pairs and
ya is the desired output. e,(w) in (3) is the error between the
desired output y and network output y(x”) when applying
the input x” to the ANN as follows:

yh = y(x?) 3)

where w is the matrix of all RBFN weights.
The performance criterion used to measure the convergence
of the network is the RM E(w) expressed as

ep(w) =

E(w)= = [ep(w))2. “
The network hidden weights are calculated by solving a set
of P linear equations

vy =
h=0

wiBh(xp). &)

Using matrix notation, the solution of (5) is
w=Q"yq (6)

where yq is the vector of the desired output, and Q* € R#*?
is the pseudoinverse matrix of all H hidden unit functions 6
throughout all P desired outputs.
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The center ¢;, of the 4 hidden RBF unit is selected from
input vectors x such that ¢;, C x. An efficient goal is to select
the fewest vectors that perfectly generalize the problem.

It is not easy to determine which center should be selected or
how many hidden units are needed to obtain the best RMSE.
Considerable research has been conducted to improve RBF
training [2], [1], [6]-[10]. However, the method used in this
paper is to select the maximum violating input vector to be
the center of the new RBF hidden unit [2], as sl%(l)wn in (7)

x?, W? = argmax(|e,(w)]) . @)

xP

Ch+1 =

Those new centers are incrementally inserted into the
RBFN structure at each epoch using the incremental insertion
method [2]. In this method, the error cost function, E(w), is
calculated at each epoch, and the maximum violating input
vector will be inserted into the RBFN hidden layer as the new
hidden unit center. This vector will be removed from the
training dataset for the next epoch. The hidden layer of the
RBFN increases by one unit upon an epoch. The process of
selecting and inserting new units continues until the RMSE
value converges toward a tolerance goal.

B. Subsets and the k-d Tree Algorithm

Better RBFN performance might be achieved by increasing
the number of hidden units and/or hidden layers. The number
of hidden units in an RBFN depends on the number of training
dataset vectors selected. Increasing the number of hidden units
will improve the network performance. More kernel func-
tions will increase the smoothness of the separation surface,
which will make instances more separable. Unfortunately,
computation of those inserted kernels will be more difficult
and time-consuming. Excessive computations and wasteful
memory use occur repeatedly each time a new hidden unit
is inserted until a satisfactory tolerance is achieved. Even
with such compelling results, the resultant RBFN may become
a large-structured ANN, which leads to high computational
operations during testing.

In this paper, the number of selected hidden units is reduced
by dividing the input space of the training dataset into subsets
based on their overall dataset density. By overall density, we
refer to the ratio of certain class instances to all instances in
a specific region. Each subset will be a stand-alone training
dataset for individual ANNs, as shown in Section III-B.

The concept of chopping a multidimensional training set is
based on the k-d tree algorithm [26], which is used to divide
a large dataset into small subsets. The k-d tree algorithm pre-
vents zero-data subsets and ensures a well-distributed training
set for each subset. Only a few features are used in the k-d
tree chopping process. Those chopping features are selected
such that the resultant subsets will have a sufficient number of
instances to train an ANN and have the same density as the
original dataset density to ensure consistent behavior. For sim-
plicity and explanation purposes, consider the input space R’
to be R? with a two-class classification problem. Thus, x con-
sists of only three features x, x2, and x3, and each instance
has a single output y. A random example of an entire space
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Fig. 3. Example of a dataset with three features x1, xp, and x3. Each instance
has a single output y.

Fig. 4. Example of dividing the entire dataset based on the median of each
dimension using k-d tree algorithm.

with 3-D features is shown in Fig. 3 with a two-label state
(1 is represented as crosses, and — 1 is represented as circles).

The k-d tree algorithm [26] considers all data as unlabeled
data. It uses the median of each dimension to chop the training
dataset into two subsets with approximately equal density.
Fig. 4 shows the steps of chopping the entire dataset into small
regions.

First, the k-d tree algorithm measures the median X; of x
values of all data x in the entire space R. Then, the k-d tree
chops R into two regions R; and Rp based on X, as shown
in

Ry =
Ry, =

{WeR:x <}
{W eR:x> X} ®)

The next step is to individually divide each region
(R; and Ry) into two smaller regions based on the medians
(X21 and Xp7) of the second dimension x;. The result is four
smaller regions Ri; and Rjp and Ry; and Rjp, as shown

in (9)
Ri1 = {% € Ry|x2 < X21}
Ri2 = {¥& € Ri|x2 > %21}
Ry1 = {¥& € Ry|x2 < i}
Ry = {¥% € Ry|xp > X2} &)

In the same manner, the generated regions are divided
by their own medians X31, X32, X33, and X34 based on the

XB 084

5y —24

S1 o4

5. Example of dividing an entire into N subsets

{51,852, -y Sny - s SN}

space

third parameter values x3. Division can start over with the x
dimension until N regions are generated. Those N regions
define N subsets as S = {s1,s2,...,81,...,8N}, which are
divided with nearly equal density, as shown in Fig. 5.

Generally, each subset is bounded by inequalities based on
the surrounding medians, as shown in (10)

s1= {W& € R|(x1 S %1) A (x2S F21)A(x3 S £31)}
52 = {W& € R|(x1 = X1) A(x2 > X21)A(x3 S X32)}
sy = {W& € R|(x1 > %1) A(x2 S X22) A(x3> %33)}. (10)

Each chopping action in any dimension duplicates the num-
ber of subsets. The number of total subsets is N = 2‘;’, where
& represents how many divisions are made in all dimensions.

The k-d tree algorithm ensures that there are sufficient and
well-distributed data at each subset. Division is also limited
by the size of the training dataset. A small-sized dataset may
result in scarce data at each subset S. A less informative
dataset produces a poorly trained ANN. Therefore, this issue
must be considered, and the number of subsets N should
be selected carefully. In other words, the k-d tree algorithm
chops the dataset into subsets with no information regarding
the labels of the instances, and the density condition keeps
the distribution of the subsets near the density of the original
dataset.

Each individual subset n is used as a separate dataset to train
a corresponding n ANN using RBFN structures. Small margins
can be added from neighboring subsets to increase the learning
information, as shown in Fig. 6. Although small margins will
merely increase the number of training dataset instances for
each individual ANN, it will provide more informative data
to ensure a well-trained ANN. The ANN has insufficient
information regarding the instances that lay on the borders of
the subset. Adding instances beyond the border to the training
dataset will give the ANN a good generalization to respond
to border instances. Those added instances will only be used
for training purposes.

The process of chopping the dataset into an N subset and
using those subsets to train N corresponding individual ANNs
is further explained in Algorithm 1.
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6
SyNeighbors’ margin :
L5y
0 o
Fig. 6. Adding small margins from each adjacent neighbor to the current
subset SN.

Algorithm 1 Dividing the Data Set Into N Subsets and
Training Them
1: Input: { = (number of chopping process), {x,ys} =
(training dataset), (M DL: ANN training model)
2: Output: = 28x MDL trained structure of individual
ANNE.
3: N = 2% (number of resultant subsets and ANNS)
4: Compute original dataset density B
5: for chop = 1to §

6: for subset = 1 to (2€"°P — 1)

7. Find each feature median x;

8: Compute average density 8; for chopped subsets
9: Select feature i with minimum |B;— B

10: Chop along median x; dataset into two subsets.
11: end for

12: end for

13: for subset = 1 to N
14: Train M DL(subset) using -

{x, ya} € {subset + Neibghbors margin}
15: end for

C. MCRN Method

All trained ANNSs are gathered and stacked in a multicolumn
structure, named the MCRN structure, as shown in Fig. 7.
Once a new testing data vector X is applied, the input subset
selector will forward X to the appropriate ANNs. Each one
of the selected k ANNs gives its own output y; to the
output combiner, which will calculate the single output y, as
explained in the steps detailed in the following.

1) Input Subset Selector: When a test input vector X is
presented, only k ANNs are selected based on the KNN
algorithm. By determining the Euclidean distance between the
new testing data X and all training datasets x”, only the k
nearest points with the £ smallest Euclidean distances dj are
chosen, as in (11). Those k points belong to k subsets, as
shown in Fig. 8

=

|
£
d; = IPi]?(E— xP[))= 1}11]?( _— I%,l - xlpg

Y
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Fig. 7. Internal structure of the MCRN with the input subset selector,
N individual ANNs and the output combiner.

LT ® y=-1
< i ! S 4 y=+1
i 1 A new test input, X
<+—> Selected neighbors
unselected neighbors

Fig. 8. Selecting k subsets, and hence, k neural networks, based on the KNN
algorithm.

where dy, = {d1, da, ..., d}; di is the kth minimum Euclidean
distance between new testing point X and the kth training point
x?”; X; is the ith value of vector X, and xip is the ith value in
the pth pattern of vector x.

Based on the k nearest points, there are only k selected
subsets &:; hence, only k& ANNs are selected to be executed

as follows:

Yp, 5n C S, x5 €5,,xF = argmin@— xP[1] (12)

o Lk

a(:

where & is the kth selected subsets from all S subsets.

2) Individual ANNs : Each test input X has k selected RBFN
output results. Those ANNs work individually in parallel to
produce k results yg; therefore, (2) becomes (13) for each k
ANN

Fe= owiB (R) W
h=0

13)

The resultant output of each k selected ANNSs is i, which
gives the decision of those ANNs for a given input X.

3) Output Combiner: Only k ANNs are selected; the
remaining N — k ANNs are not used for each new entry X. The
outputs of those k ANNS, yi, contribute to the overall output
decision y. The overall MCRN output y is calculated based on
the average sum of all k outputs, as in (14). In classification
problems, the real value output y should be hard limited to



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HOORI AND MOTAI: MULTICOLUMN RBF NETWORK

give the 1 and — 1 class values

NE

y= - Ji

X . (14)

In fact, this equation stllmworks as a single large
RBFN compared with y = h= Owheh( x) shown in (2).
Equation (2) has a linear relation between kernels 6,(x) and
output y through the weights wy,. Altl@gh that is true, the
relation can also be held for y; = h= Owhe (X) shown
in (13), which has the same linear relation for each k selected
ANNS.

To prove that the MCRN total output y still has a linear
relation with weights, substituting y; from (13) into (14) yields

1 E o
y= - w8, (X).
i=1h=0

15)

Assume a vector Y;(X) to be all hidden layer kernels of all
k ANNs, as shown
W (¥)= 6, (%), j=1+h+Hx(i-1).
Now also consider the vector U; representing all weights
between hidden units and outputs for all k& ANNs to be

1, .
Uj=;wh, =1+h+ Hx (i—1).
Therefore, (15) becomes
e[ )
y= Wi (%), (16)
j=1

which represents a single large RBFN with input X and
output y. Compared with (2), (16) works the same manner,
regardless of how many ANNs are inside or how many ANNs
are selected.

IV. EXPERIMENTAL EVALUATION

This section is organized as follows. In Section IV-A, the
characteristics of used datasets and the criteria of using them
are explained. Section IV-B presents RBFN results for those
datasets. Section IV-C presents results of applying the k-d
tree algorithm to each dataset to prepare small subsets for
individual training. Section I'V-D discusses MCRN results after
plugging trained individual ANNs. Section IV-E compares
MCRN versus RBFN speed during training and testing. In
Section IV-F, MCRN results are compared with other well-
known classifiers.

A. Data and Criteria

In this paper, the RBFN and MCRN are tested using the
different benchmark UCI datasets [27] shown in Table III.
The variety of parameters that each dataset has increases
the difficulty of training the ANN. A larger training dataset
requires additional computations and hidden units. For sim-
plicity, the Letter dataset is trained and tested with a single
output letter “A”. Considering a 26-output MIMO system
is equivalent to considering 26 MISO systems. The Urban

TABLE III
DATASET PARAMETERS

Dataset Features Classes Total Training
name instances /Testing

Iris 4 3 150 120/30
Glass-1d 9 2 214 170/44
Seeds 7 3 210 168/42
Liver 5 2 341 306/35
Wisconsin 9 2 699 560/139
Thyroid 21 3 7200 5760/1440
Hepatitis 19 2 155 124/31
Ionosphere 34 2 351 280/71
Urban 148 9% 675 168/507
Occupancy 5 2 10808 8143/2665
Satimage 36 6 6435 4435/2000
Letter 16 26* 20000 16000/4000

*A single output is used: only ‘asphalt’ for the Urban dataset and only
letter ‘A’ for the Letter dataset.

TABLE IV
RESULTS OF TESTING A SINGLE RBFN

Dataset Tolerance Hidden units Accuracy Recall
Iris 0.0001 91 93.3 90
Glass-Id 0.0001 145 81.8 66.7
Seeds 0.0001 126 89.7 85.4
Liver 0.01 274 65.7 60
Wisconsin 0.0001 324 91.4 90.6
Thyroid 0.01 3790 96.4 94.2
Hepatitis 0.0001 95 87.1 88.5
Ionosphere  0.0001 108 91.6 100
Urban 0.01 71 90.9 48.3
Occupancy  0.01 38 97 92.6
Satimage 0.02 500 95.5 87.1
Letter 0.0001 1510 97.1 100

dataset [28], [29] has nine different classes, which represent
the land-cover objects in an urban area. We use only the
‘asphalt’ class in our experiments. The Occupancy dataset is
obtained from time-stamped pictures that were taken every
minute [30].

The datasets in Table III are listed in ascending order from
lower to higher memory use. Those datasets are diverse both in
the number of features and/or the number of instances. Some
datasets, such as Thyroid, Hepatitis, Ionosphere, Satimage,
and Letter, have many features, while others, such as the
Thyroid, Occupancy, Satimage, and Letter datasets, have many
instances. Each dataset is divided into a training set and testing
set, as shown in Table III. Some datasets are divided with an
approximated ratio (80% for training and 20% for testing),
whereas the Urban, Satimage, and Occupancy datasets are
originally separated.

B. Traditional RBFN Training

The RBFNSs in this paper are trained based on incremental
insertions of the most violating input vectors until convergence
is achieved [2]. For each dataset, the RMSE is calculated at
each step until it meets a tolerance value, which is set as
a goal to stop the learning process, as shown in Table IV.
Table IV shows each dataset with the number of hidden units
in each RBFN structure after tolerance is achieved. It also
shows the accuracy and recall results for each dataset.
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Fig. 9. Comparison of the RBFN results for accuracy, recall, and hidden

units/dataset instances for each dataset.

The overall results demonstrate the good performance of the
RBEN structure. Those results are achieved by incrementally
inserting training set instances as the centers of added hidden
units. This insertion means the kernel inner products will be
increased. For a small dataset, adding new hidden units will
not overly burden computations. For example, with the Iris
dataset, 91 hidden units out of 120 training dataset instances
represent 75.8% of the used instances as hidden units. This
large ratio is still considered acceptable because the inner
products of 120 input vectors by 91 hidden units will not take
a long time or occupy a considerable amount of storage.

The difficulty increases when using larger datasets, such
as Thyroid, Letter, and Satimage. Each training insertion step
requires several computations and high memory usage. With
such a large dataset, even a small ratio of hidden units and
instances requires many computations. For instance, 1510
hidden units out of 16 000 training instances are used with
the Letter dataset, equating to a ratio of 9.4%, which is
considerably smaller than the Iris ratio. Moreover, increasing
the number of hidden units will affect not only the train-
ing time but also the testing time. The problem of inner-
product computations is still present for each testing instance.
Moreover, a neat and light RBFN structure is as important as
good results. To improve the RBFN, one must consider two
important challenges: how to decrease the number of hidden
units and how to obtain better results. These issues will be
addressed throughout this paper.

Fig. 9 shows how many hidden units are used compared to
the number of overall training instances for each dataset as
well as a bar plot for the accuracy and recall results obtained
using these RBFN structures for each dataset.

The high hidden units/instances ratios shown in Fig. 9 for
small datasets, such as Iris, Glass-Id, Seeds and Liver, indicate
that the RBFN requires considerable information (training set
instances) to reach a reasonable tolerance with good accuracy
and recall results. However, lower ratios for Occupancy, Letter,
or Satimage are sufficient to achieve the required tolerance
with good performance. Although small ratios are considered
good, the large number of hidden units requires many compu-
tations to calculate the kernel inner products of each hidden
unit and all training set instances.

A fair comparison between the RBFN and MCRN results is
achieved by using the same conditions and same training set

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE V
EFFECT OF DIVIDING DATASETS INTO SUBSETS IN TERMS OF DENSITY

Dataset Original Average Minimum  Maximum
Experiment Datas.et Subs.et Subs.et Subs.et
Density* Density Density Density

Iris-2%* 333 27.1 11.6 42.6
Iris-4** 333 329 0 70.9
Glass-1d-2 229 247 21.1 28.4
Glass-1d-4 229 27.7 9.7 52.6
Seeds-2** 32.7 27.8 18.3 39.3
Seeds-4** 32.7 339 14.3 51.2
Liver-2 41.5 434 40 46.8
Liver-4 41.5 40 35.2 42.8
Wisconsin-2 65.7 61.9 453 78.5
Wisconsin-4 65.7 56.9 21.5 93
Wisconsin-8 65.7 49.3 19.4 97.7
Thyroid-2** 25 2.3 1.7 29
Thyroid-4** 2.5 2 1.1 3.2
Thyroid-8** 2.5 2.2 0 4.4
Hepatitis-2 21.8 21.1 15.2 26.9
Hepatitis-4 21.8 10.8 0 27.5
Ionosphere-2 63.2 70.5 63.2 77.9
Ionosphere-4 63.2 70 56.7 82.9
Urban-2 8.3 7.1 6.3 7.9
Urban-4 8.3 8 4.8 10.7
Occupancy-2 21.2 19.9 11.5 28.4
Occupancy-4 21.2 19.9 15.2 29.6
Satimage-2** 24.2 27.3 24.2 30.5
Satimage-4**  24.2 26.5 14.9 35.4
Letter-2 3.9 3.7 34 4
Letter-4 39 3.6 2 5.1
Letter-8 3.9 3.9 1.5 6.6

* Density is the ratio of the positive labels in the training set.
**For simplicity purpose, the density results are shown for the first class
only, while the training is performed for all classes.

instances, as shown in Sections IV-C-IV-F. The accuracy and
speed are used as key factors to compare the results.

C. Applying the k-d Tree Algorithm to the Datasets

To prepare a dataset for the MCRN, each training set is
divided into semi-equal subsets using the k-d tree algorithm.
A set of data is chopped in a specific dimension (i.e., feature)
based on the median value of that feature. Many experimental
cases are made to divide each dataset, as shown in Table V.
Each experiment name has a dataset name followed by a
hyphen and numerical value. The numerical value represents
how many subsets are used in that experiment. For example,
Thyroid-8 represents the original training set of Thyroid
divided into 8 subsets. The results in Table V show the effect
of dividing original datasets into subsets in terms of density.
Here, density is the ratio of the number of the 1 class to the
number of all classes in a training dataset.

The results in Table V show that a preferable chopping is
considered when the average of the density of the resultant
subsets is slightly affected by division. This shows that the
resultant subsets have adequate information to train a small
ANN. Small margins are added to each subset from its
neighbor subsets. This guarantees a more regional generalized
training for individual ANNS to avoid the risk of intermittent
training of those instances, particularly on boundaries between
subsets.

Each experiment shows that the original density value
differs slightly from the average density value, whereas the
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Fig. 10. Variation in dataset density due to the division of each dataset into
two and four subsets for each experiment.

TABLE VI
RESULTS OF TESTING THE MCRN FOR EACH EXPERIMENT IN TABLE V

Maximum Chopping k Accuracy  Recall
Dataset Hidden units ~ Features in
Experiment  among N sequence
subsets*

Iris-2 76 4 5 944 93.1
Iris-4 62 3,1 3 978 96.7
Glass-1d-2 113 2 5 841 85.7
Glass-1d-4 103 2,7 1 864 87.5
Seeds-2 87 6 7 889 86.8
Seeds-4 67 6,2 7 913 89.7
Liver-2 224 3 1 714 69.2
Liver-4 155 6,5 1 68.6 61.5
Wisconsin-2 323 5 7 95 95.6
Wisconsin-4 204 2,6 3 971 97.8
Wisconsin-8 164 2,6,2 5 971 98.9
Thyroid-2 3701 18 1 957 92.5
Thyroid-4 3341 18,1 5 963 94

Thyroid-8 2871 18,19,12 7 96.5 93.9
Hepatitis-2 44 17 1 96.8 100
Hepatitis-4 46 17,1 5 96.8 100
Ionosphere-2 150 8 3 93 100
Ionosphere-4 109 8,3 3 91.6 100
Urban-2 58 44 3 927 66.7
Urban-4 41 4476 3 929 66.7
Occupancy-2 49 5 1 97.6 95

Occupancy-4 38 5,2 1 932 95

Satimage-2 300 34 5 959 89.4
Satimage-4 240 34,14 7 957 88.8
Letter-2 500 12 3 96.6 100
Letter-4 501 12,10 1 965 100
Letter-8 431 12,10,11 1 964 100

*Maximum number of hidden units is good indicator of how big the
individual ANN is because all other ANNs are less time consuming.

minimum or maximum values differ considerably from the
original density, as shown in Fig. 10. Each dataset is chopped
as previously explained in Section II-B. The sequence of
chopping features is shown in Table VI. At each chopping
step, the best feature to use is the one that shows the best
matching between the average subsets’ density and original
density. The difference in density is greater in small datasets
because division is limited by the number of features and
instances, as shown for Iris-2 and Iris-4. The resultant density
is less affected in large-scale datasets, such as Thyroid-2,
Thyroid-4, Thyroid-8, Urban-2, Urban-4, Occupancy-2,

Occupancy-4, Letter-2, Letter-4, and Letter-8. In some cases,
such as Iris-4, Thyroid-8, and Hepatitis-4, the minimum subset
densities are zero. Each one of those zero-density subsets
has training instances with single-labeled values. Therefore,
training an RBFN for such subset will result in a small RBFN
structure with few hidden units. With such single-class cases,
one can use a simple mathematic relation to represent the
subset functionality. However, to maintain the generality of
this paper, we keep the RBFN training as our choice, even for
such straightforward cases.

D. MCRN Results

Each experiment in Table V has N subsets, and each
subset is used to train an individual ANN using the RBFN
training method. Thus, each experiment has N trained indi-
vidual ANNs. During training, the same RBFN conditions in
Table IV, such as tolerance and training set instances, are kept
to guarantee consistency while comparing the results.

After training, resultant N individual RBFNs are stacked
in parallel in the MCRN structure, as shown in Fig. 7; this is
done for each experiment in Table V separately. During testing
time, the input subset selector selects the KNN vectors. Those
selected vectors belong to k subsets. Those k subsets are used
to train k individual ANNs. The results of applying the test
input to those k ANNs are combined and averaged by the
output combiner. The number of k should be odd to break the
tie and should be between 1 and 7. The MCRN results for
each experiment are shown in Table VL.

The results show that the maximum number of hidden
units for the new individual ANNs is less than that of the
RBFN shown in Table IV for all experiments, except the
Ionosphere and Occupancy datasets. The MCRN accuracy and
recall results are better than those of the RBFN. Some results,
such as those for Thyroid and Letter, have no improvement
but are still considered good because dividing the one large
ANN into two or more sub-ANNs will increase the process in
a parallel environment. The MCRN outperforms the RBFN in
many cases, such as for Iris, Glass-1d, Seeds, Liver, Wisconsin,
Ionosphere, Hepatitis, Satimage, and Urban.

The promising results shown in Table VI suggest that the
MCRN can yield comparable or better results than the RBFN
in many experimental cases. There are many inner products
overall in individual ANNSs, but those inner products are only
in k selected ANNs. This means that the MCRN has fewer
overall inner computations than the RBFN. The number of
hidden units for each individual ANN is less than the number
of its subset instances. The maximum number of hidden units
is equal to the subsets instances in the worst case. During
the testing phase, the MCRN selects k individual ANNs, and
other N — k ANNs are inactive for this specific test input
vector. Each individual ANN is executed in a single processor
in the parallel environment. In this case, the delay in the
execution time is the delay caused by the largest individual
ANN, which is considerably lower than the fully connected
traditional RBFN time. Furthermore, all the k neighbors may
lay in the same subset. In this special case, the test instance is
solely affected by the ANN that was trained using this subset.
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Fig. 11. Percentage comparisons for the MCRN (two subsets) and MCRN
(four subsets) over the RBFN for each dataset according to (a) training time
improvement, (b) testing time improvement, and (c) reduction in number of
hidden units per ANN.

At that moment, this ANN will be the only fired one, and
there will be no need for an average sum. This will reduce the
testing time in such special case.

Each experiment has its own conditions; selecting the best
k neighbors depends on how the instances are distributed and
how many subsets are generated from the chopping process.
Any odd number of k will break any tie in a decision
and will yield good results. However, the best result using
different values of k is reported in our experiments. Good
results and smaller ANNSs tip the scale for the MCRN over
the RBFN. Moreover, those small ANNs can be parallelized
during training and testing, which further improve the overall
performance, whereas the RBFN cannot be parallelized as
easily as the MCRN, because the RBFN has a fully connected
internal structure.

E. Speed Comparison

One important goal in ANN classification problems is
increasing the speed of the MCRN in the training and testing

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE VII
COMPARISON OF THE ACCURACY RESULTS OF THE MCRN WITH OTHER
CLASSIFIERS
Dataset SVM KNN RBFN MCRN Improved
(k=3) %
Iris 91.1 95.6 933 97.8 22
Glass-Id 95.5 88.6 81.8 86.4 9.1
Seeds 88.9 90.5 89.7 91.3 0.8
Liver 57.1 60 65.7 71.4 5.7
Wisconsin 95.7 96.4 91.4 97.1 0.7
Thyroid 95.9 96.3 96.4 96.5 0.1
Hepatitis 87.1 90.3 87.1 96.8 6.5
Tonosphere 84.5 90.1 91.6 93 1.4
Urban 91.1 90.5 91.9 92.9 1.0
Occupancy  97.9 95.9 97 97.6 -0.3
Satimage 93.9 96.5 95.5 95.9 -0.6
Letter 99.3 99.9 97.1 96.6 -3.3

process. Both the RBFN and the MCRN are implemented
using a Windows 7 64-b platform with an Intel core i7
processor and 16 GB of RAM. The individual ANNs of the
MCRN are executed using the parallelism feature of MATLAB
2015. Fig. 11 shows the percentage improvement in training,
testing, and hidden units for each dataset using the RBFN and
MCRN experiments.

Fig. 11(a) shows noticeable improvements in training time
using the MCRN compared with the RBEN for all datasets. As
more division occurs in datasets, the training time decreases
further, because fewer computations are needed in terms of the
inner products for each individual ANN compared with a large
RBFN. The RBFN suffers from excessive computations during
training due to its large hidden layer. Each hidden unit must
compute an inner product for all the training dataset instances.
In contrast, small structures of individual ANNs and fewer
training subsets reduce the training delay of the MCRN.

In offline classification problems, training is conducted only
once. Thereafter, the training time is no longer as important
as the testing time. The testing time is considerably more
important because trained ANNs are plugged into an online
environment to classify every new testing entry in real time.
The improvements in testing time in Fig. 11(b) show that
the MCRN outperforms the RBFN in the majority of cases.
However, the RBFN outperforms the MCRN in certain cases,
such as Thyroid, Letter, and Satimage. The MCRN testing
time, Tiest, requires three stages of delay: the input subset
selector time, Tiss, the individual ANN time, TiNNs, and the
output combiner time, Ty, as in (17). The first and last stages
cannot be parallelized in the same manner as the middle stage.
Toc is considered extremely small compared with Tiss and
Tinns and can be neglected, because T,. only averages k
ANN outputs. Tiss is the time required to calculate the KINNs,
which is also the time used to calculate the distances between
the new testing instance and all training instances. Tiss is
smaller than Tinns for small datasets. These calculations
become more difficult and time consuming when considering
large-scale datasets, and Tiss will have a negative effect on
the timing calculations. Nonetheless, the MCRN still exhibits
good performance and speed improvement in the majority of
cases

Tiest = Tiss + Tinns + Toc. )
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TABLE VIII
NOTATION DEFINITION

Symbol Meaning
B Original dataset density.
Bi Subsets’ average density.
¢, and gy, Center and width of an RBF, respectively.
d Set of k minimum distances between new input and
k P training vectors.
d the 4-th minimum Euclidean distance between new
k testing point X and the k-th training point x?.
e, (W) Error between p-th desired output and the output of
4 ANN when applying the test input.
E(w) Sum square error of all P sets.
H Number of hidden layer units.
1 Number of input layer units.
k Number of nearest neighbors, number of selected
ANNSs.
MDL ANN training model.
N Number of Individual ANNs, Number of subsets.
P Number of training set patterns.
Qt pseudo inverse matrix of all H hidden units.
Regions results from chopping whole space in the
R, ,R, 1S Test
first dimension x;.
Ri1,R15, Regions results from chopping whole space in first
R,1, Ry, dimension x; and then in second dimension x;.
Set of all s subsets.
Su “;2' »Sn Subsets of original dataset.
) SN
S k-th selected subset from all S subsets.
Ttest ANN testing time.
Tiss Input subset selector delay time.
Tinns Individual ANNs delay time.
Toc Output combiner delay time.
W, Weight between the hidden unit h and the output y.
Wo Bias weight with input 6, =1 to the output y.
w Weight matrix of ANN.
x? Training input vector of the p-th training dataset.
X New testing input.
X Input vector.
X; i-th element of input vector X.
X1 Median of x;values in x; dimension.
X, and X,  Medians of x,values in x, dimension.
;zi' *32:%33 \edians of xsvalues in x5 dimension.
y Single ANN output.
Vda Vector of desired output.
y: Desired output of the p-th training dataset.
Vi resultant output of each k selected ANNGs.
I3 Number of divisions in all dimensions.
6,(x) h-th hidden unit RBF.
0 Hidden unit vector.

Fig. 11 shows that the MCRN has a shorter training time and
fewer hidden units for the Letter dataset; however, the testing
time is longer than that for the RBFN. For the Ionosphere
dataset, the MCRN has more hidden units than the RBFN, but
the MCRN training and testing times are considerably shorter.
Although the MCRN has shorter training and testing times for
the Occupancy dataset, the maximum number of hidden units
is higher. For all other datasets, the MCRN outperforms the
RBFN in terms of training time, testing time, and number of
hidden units.

The runtime complexity of a traditional RBFN network
is O(I x H). Therefore, the process time increases with
increases in the number of input vector features, I, and/or the
number of the hidden units, H. In contrast, the MCRN runtime

TABLE IX
ACRONYMS DEFINITIONS

Symbol Meaning
ANN Artificial Neural Network
CNN Convolutional Neural Network
DBN Deep Belief ANN
DNA novel deep neural architecture
ErrCor Error correction algorithm
ISO improved second order algorithm
k-d tree k-dimension tree algorithm
KNN k-nearest neighbors
LM Levenberg-Marquardt algorithm
MCRN Multi-Column RBF Network
MIMO Multi Input Multi Output system
MISO Multi Input Multi Single system
MRBF median radial basis function
RBF Radial Basis Function
RBEN Radial Basis Function Network
RBM Restricted Boltzmann machine
RMSE Root Mean Square Error.
SVM Support Vector Machine

complexity is determined by O(I X P)+ O(I X HpjggestANN)-
The first term indicates the time required to find the nearest
neighbors to the new input vector among all P training
instances, whereas the second term represents the process
of applying the new input vector of I dimensionality to
the largest structured individual ANN, which has HpiggestANN
hidden units. Similarly, the first term also represents Tiss,
and the second term represents 7Tinns. When the number of
training datasets, P, decreases, the effect of the first term
nearly vanishes, and the speed of the MCRN method increases.
With large-scale datasets, the effect of the first term will
increase, and the system will be delayed, even if the structure
of the individual ANNSs is less than in the traditional RBFN
structure. This issue can be utilized in future work to decrease
the complexity of the neighbor searching technique by sorting
instances or memorizing the last results instead of repeating
the entire search process numerous times.

F. MCRN Compared With Other Classifiers

Many studies select the SVM and KNN to use as com-
parative classifiers for the RBFN, as in [8], and [31]-[33].
In this paper, the same training and testing instances used in
the RBFN and MCRN are used to train and test the SVM and
KNN. The accuracy results are compared with those obtained
with the RBFN and the MCRN, as shown in Table VII.
This comparison demonstrates how the performance of the
MCRN compares with those of other well-known classification
techniques.

These results demonstrate that the MCRN can compete with
the machine learning techniques that have been considered.
The MCRN is superior for the Iris, Seeds, Liver, Wisconsin,
Thyroid, Hepatitis, Ionosphere, and Urban datasets. For the
other results, the MCRN is considered comparable, with
percentage decreases of —0.6% to —9.1% compared with the
best result for each dataset. In general, the MCRN is still better
than the RBFN for all cases and still shows promising results
when compared with the SVM and KNN.
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V. CONCLUSION

Using different benchmark UCI datasets, the MCRN shows
a total accuracy improvement of 35.3% for all datasets com-
pared with the SVM, 22.7% compared with KNN and up
to 34.8% compared with the RBFN. Although the MCRN
considers distance computations between every new entry and
all training data instances, it shows a maximum reduction in
training time of up to 70.5% with two subsets and up to 74.8%
with four subsets compared with the RBFN. Furthermore, the
MCRN shows a maximum reduction in testing time of up to
94.2% with two subsets and up to 94.7% with four subsets
compared woth the RBFN. The RBFN requires excessive
computations for kernel inner products with each new test
input entry. Although the distance computations of the MCRN
add considerable delays, particularly with a large-scale dataset,
it still utilizes smaller individual ANN structures, resulting in
fewer overall inner products. Moreover, the MCRN is suitable
for a parallel environment because of the independence of
its individual ANNs, while the RBEN structure cannot be
deployed in parallel as easily because of its fully connected
structure. Compared with recent results, the MCRN shows
promise in terms of both accuracy and timing. Suggestions for
future studies include determining a way to minimize distance
computations with large-scale data and a way to use hardware
ANN chips to obtain better results.

APPENDIX
See Tables VIII and IX.

ACKNOWLEDGMENT

The authors would like to thank A. Huynh and J. Perez for
proofreading to help improve this paper.

REFERENCES

[1] W. Kaminski and P. Strumillo, “Kernel orthonormalization in radial basis
function neural networks,” IEEE Trans. Neural Netw., vol. 8, no. 5,
pp. 1177-1183, Sep. 1997.

[2] H. Yu, P. D. Reiner, T. Xie, T. Bartczak, and B. M. Wilamowski,
“An incremental design of radial basis function networks,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 25, no. 10, pp. 1793-1803, Oct. 2014.

[3] L. Shao, D. Wu, and X. Li, “Learning deep and wide: A spectral method
for learning deep networks,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 25, no. 12, pp. 2303-2308, Dec. 2014.

[4] D. Ciresan, U. Meier, and J. Schmidhuber, “Multi-column deep neural
networks for image classification,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2012, pp. 3642-3649.

[5] C. Yan et al., “A highly parallel framework for HEVC coding unit
partitioning tree decision on many-core processors,” IEEE Signal
Process. Lett., vol. 21, no. 5, pp. 573-576, May 2014.

[6] C. Panchapakesan, M. Palaniswami, D. Ralph, and C. Manzie, “Effects
of moving the center’s in an RBF network,” IEEE Trans. Neural Netw.,
vol. 13, no. 6, pp. 1299-1307, Nov. 2002.

[7]1 L. Bruzzone and D. F. Prieto, “A technique for the selection of kernel-
function parameters in RBF neural networks for classification of remote-
sensing images,” IEEE Trans. Geosci. Remote Sens., vol. 37, no. 2,
pp. 1179-1184, Mar. 1999.

[8] K. Z.Mao and G.-B. Huang, “Neuron selection for RBF neural network
classifier based on data structure preserving criterion,” [EEE Trans.
Neural Netw., vol. 16, no. 6, pp. 1531-1540, Nov. 2005.

[9] A. G. Bors and I. Pitas, “Median radial basis function neural network,”
IEEE Trans. Neural Netw., vol. 7, no. 6, pp. 1351-1364, Nov. 1996.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[10] T. Xie, H. Yu, J. Hewlett, P. Rozycki, and B. Wilamowski, “Fast
and efficient second-order method for training radial basis function
networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 4,
pp- 609-619, Apr. 2012.

[11] O. Arif and P. A. Vela, “Kernel map compression for speeding the
execution of kernel-based methods,” IEEE Trans. Neural Netw., vol. 22,
no. 6, pp. 870-879, Jun. 2011.

[12] M. Bianchini and F. Scarselli, “On the complexity of neural network
classifiers: A comparison between shallow and deep architectures,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 8, pp. 1553-1565,
Aug. 2014.

[13] L. Szymanski and B. McCane, “Deep networks are effective encoders
of periodicity,” IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 10,
pp. 1816-1827, Oct. 2014.

[14] A. Krizhevsky, I. Sulskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst. (NIPS), vol. 25. 2012, pp. 1-9.

[15] S.Ji, W. Xu, M. Yang, and K. Yu, “3D convolutional neural networks
for human action recognition,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 1, pp. 221-231, Jan. 2013.

[16] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504-507,
Jul. 2006.

[17] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm
for deep belief nets,” Neural Comput., vol. 18, no. 7, pp. 1527-1554,
Jul. 2006.

[18] W. K. Wong and M. Sun, “Deep learning regularized Fisher mappings,”
IEEE Trans. Neural Netw., vol. 22, no. 10, pp. 1668-1675, Oct. 2011.

[19] A. Stuhlsatz, J. Lippel, and T. Zielke, “Feature extraction with deep
neural networks by a generalized discriminant analysis,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 23, no. 4, pp. 596-608, Apr. 2012.

[20] R. Salakhutdinov, J. B. Tenenbaum, and A. Torralba, “Learning with
hierarchical-deep models,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 1958-1971, Aug. 2013.

[21] S. Bu, Z. Liu, J. Han, J. Wu, and R. Ji, “Learning high-level feature
by deep belief networks for 3-D model retrieval and recognition,” IEEE
Trans. Multimedia, vol. 16, no. 8, pp. 2154-2167, Dec. 2014.

[22] K. Chen and A. Salman, “Learning speaker-specific characteristics with
a deep neural architecture,” IEEE Trans. Neural Netw., vol. 22, no. 11,
pp. 1744-1756, Nov. 2011.

[23] M. Van De Steeg, M. M. Drugan, and M. Wiering, “Temporal dif-
ference learning for the game Tic-Tac-Toe 3D: Applying structure to
neural networks,” in Proc. IEEE Symp. Ser. Comput. Intell., Dec. 2015,
pp. 564-570.

[24] R. Mall, V. Jumutc, R. Langone, and J. A. K. Suykens, “Representative
subsets for big data learning using k-NN graphs,” in Proc. IEEE Int.
Conf. Big Data, Oct. 2014, pp. 37-42.

[25] Q. Gu and J. Han, “Clustered support vector machines,” in Proc.
AISTATS, 2013, pp. 307-315.

[26] J. L. Bentley, “Multidimensional binary search trees in database appli-
cations,” IEEE Trans. Softw. Eng., vol. SE-5, no. 4, pp. 333-340,
Jul. 1979.

[271 A. Asuncion and D. J. Newman. (2007). UCI Machine Learn-
ing Repository, accessed on Mar. 3, 2016. [Online]. Available:
http://www.ics.uci.edu/~/MLRepository.html

[28] B. A. Johnson and Z. Xie, “Classifying a high resolution image of an
urban area using super-object information,” ISPRS J. Photogram. Remote
Sens., vol. 83, pp. 40-49, Sep. 2013.

[29] B. A. Johnson, “High-resolution urban land-cover classification using
a competitive multi-scale object-based approach,” Remote Sens. Lett.,
vol. 4, no. 2, pp. 131-140, Feb. 2013.

[30] L. M. Candanedo and V. Feldheim, “Accurate occupancy detection of an
office room from light, temperature, humidity and CO, measurements
using statistical learning models,” Energy Buildings, vol. 112, pp. 28-39,
Jan. 2016.

[31] Y.-J. Oyang, S.-C. Hwang, Y.-Y. Ou, C.-Y. Chen, and Z.-W. Chen, “Data
classification with radial basis function networks based on a novel kernel
density estimation algorithm,” IEEE Trans. Neural Netw., vol. 16, no. 1,
pp- 225-236, Jan. 2005.

[32] R. N. Mahdi and E. C. Rouchka, “Reduced HyperBF networks: Reg-
ularization by explicit complexity reduction and scaled Rprop-based
training,” IEEE Trans. Neural Netw., vol. 22, no. 5, pp. 673-686,
May 2011.

[33] F. Dammak and L. Baccour, “Proposition of a classification system
‘B-LS-SVM’ and its application to medical data sets,” in Proc. 6th Int.
Conf. Soft Comput. Pattern Recognit. (SoCPaR), 2014, pp. 101-105.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HOORI AND MOTAI: MULTICOLUMN RBF NETWORK

Ammar O. Hoori (S’17) received the B.Sc. and
the M.Sc. degrees in computer engineering from
University of Baghdad, Baghdad, Iraq, in 1999 and
2002, respectively. He is currently pursuing the
Ph.D. degree in electrical and computer engineering
with Virginia Commonwealth University, Richmond,
VA, USA.

From 2008 to 2013, he was a Teacher and
Researcher with the Computer Engineering Depart-
ment, University of Baghdad. His current research
interests include machine learning, neural networks,

computer networks, and distributed systems.

Yuichi Motai (S’00-M’03-SM’12) received the
B.Eng. degree in instrumentation engineering from
Keio University, Tokyo, Japan, in 1991, the M.Eng.
degree in applied systems science from Kyoto Uni-
versity, Kyoto, Japan, in 1993, and the Ph.D. degree
in electrical and computer engineering from Purdue
University, West Lafayette, IN, USA, in 2002.

He is currently an Associate Professor of Electrical
and Computer Engineering with Virginia Common-
wealth University, Richmond, VA, USA. His cur-
rent research interests include sensory intelligence;

particularly in medical imaging, pattern recognition, computer vision, and
sensory-based robotics.



