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Acoustic Fault Detection Technique for
High-Power Insulators

Kyu-Chil Park =, Yuichi Motai

Abstraci—Insulators are important equipment used to
electrically isolate and mechanically hold wires in high-
voltage power transmission systems. Faults caused by the
deterioration of the insulators induce very serious prob-
lems to the power transmission line. Techniques were in-
troduced for the acoustic detection of insulator faults by
acoustic radiation noises. Radiation noises were measured
from normal state insulators and fault state insulators in an
anechoic chamber. The insulators used were two porcelain
insulators, a cut-out switch, two line posters, and a lightning
arrester. A new acoustic technique determines the direction
of the insulator faults using source localization with three-
dimensional microphone arrays. The advantage is to clas-
sify the fault state insulators without human inspection by
considering the amount of total noises and 120-Hz harmonic
components. The fault detection was determined by neural
network to diagnose the state automatically. The proposed
technique was evaluated by distinct, real datasets and the
efficacy was validated. The noise source was detected with
100.0% accuracy and the classification ratio achieved 96.7%
for three typical conditions.

Index Terms—Insulator, neural network (NN), peak detec-
tion, radiation noise, source localization.

[. INTRODUCTION

NSULATORS are used for the mechanical holding of the
I wires and the electrical insulating in the transmission line
system. Since the failure of such insulators causes a large barrier
to having a high-quality power supply, the detection of insula-
tor faults is necessary for improving the stability and reliability
of the power system for replacement or diagnosis [1]-[5]. The
insulator failures are mainly classified problems caused by mi-
croscopic defects or cracks in the manufacturing process or by
deterioration due to lightning, cold, or salinity after installation
on power plants. The problem of the manufacturing process is
detected upon sufficient inspection before the installation, but
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the problem of the deterioration after the installation requires
periodic diagnosis.

Looking at the breakdown process simply, it is known that
the insulator is aging, or damaged so that feeble discharge oc-
curs, then electrical destruction of the oxide ensures, and finally
the isolation of insulators is destroyed. As the thickness of the
insulator’s oxide film is between 0.001 and 0.01 in, a break-
down process is defined as a microspark, not arc or spark. It
is known that the breakdown occurs when the voltage is larger
than the threshold voltage of the oxide film’s breakdown voltage
[1]-[3]. The methods for detecting a faulty isolation insulator
with deterioration use voltage division and the insulation resis-
tance, the electric field, ultrasonic waves, an infrared/ultraviolet
sensor camera, and so on [2], [3]. Each method has advantages
and disadvantages in the reliability of the detection results, de-
tecting times, price, or stability. Since an insulator suffers from
various issues, it is difficult to determine the best measurement
method to cover the varieties of all the faults. The advantage is
to classify the fault state insulators without human inspection.

There is a noise source detection system using a microphone
array in [2]. As it has three microphones to estimate the three-
dimensional (3-D) position of the fault insulator, it measures
the noises twice at two different measurement positions, and
reconstructs six microphones’ data processing to represent the
noise source position. Since our system has four microphone
array in 3-D structure, it is possible to estimate the noise position
with just one time measurement.

This paper demonstrates the effective capability of the com-
bination of acoustic source detection and fault detection. The
demanding problem of how to automatically determine the sta-
tus of a power insulator is solved by developing an acoustic
sensor system. A sound detection system mounted to a robot
operating on the top of the pole wires, using measurement and
analysis of the radiated noise from the insulator, was developed.
Six insulators were measured and analyzed—two porcelain in-
sulators (PIs), a cut-out switch (COS), two line posters (LPs),
and a lightning arrester. For comparison, the radiated noise was
measured from a normal state insulator and a fault state insula-
tor, then the frequency spectrum characteristics were analyzed
so that it could be determined whether the insulator faulted.

This paper is organized as follows. In Section II, the relevant
studies are listed. In Section III, the proposed insulator noise
detection techniques are presented in detail. Section IV presents
and discusses experimental results of proposed methods. A sum-
mary of the performance of the proposed method is presented
in Section V.
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TABLE |
REPRESENTATIVE STUDIES ON FAULT DIAGNOSIS SYSTEMS

Category Representative studies and characteristics
Transient Optimize the transient response of proportional-resonant
[6] current controllers.
Imbalance Stationary-frame control for voltage unbalance compensation
[71 in an islanded microgrid.
Waveform Adaptive linear network for harmonic and interharmonic
distortion estimation.
[8]-[10] Reduce the tracking error and compensate harmonics of the
inverter systems.

Selective harmonic detection system.
Fault Adaptive multiscale noise for a health diagnosis under
monitoring stochastic resoinance conditions.

[11]-[13] Phase control scheme based on diagnosis of energy conversion
system.

Real-time algorithm to monitor electric motors.

[I. RELEVANT STUDIES

The relevant studies are listed as fault diagnosis in
Section II-A, noise source from the power line system in
Section II-B, and array signal processing in Section II-C.

A. Fault Diagnosis

The monitoring of delivering electric power is affected by
all equipment used for each specific domain. Fault diagnosis is
evaluated by a set of electrical boundaries that allows a piece of
equipment to function in its intended manner without significant
loss of performance or life expectancy [4]. IEEE 1159 defines
the power quality as the significant factor in [5].

Table I lists the representative studies on variations of power
quality that may be used for fault diagnosis. To provide
categories and typical characteristics of power system electro-
magnetic phenomena, power quality is affected by significant
phenomena such as transients [6], imbalance [7], and waveform
distortion [8]-[10]. The adaptive multiscale noise for a health di-
agnosis is developed [11], and real-time monitoring for electric
motors can detect fault signatures effectively [12], [13].

B. Noise Source From the Power Line System

The noise source of the power line system is very diverse, but
can be divided into main noise sources and minor noise sources
[1], [2]. Table II shows the main noise sources. These radiated
noises from the noise sources are generated by one independent
noise source or in combination with other noise sources. The
installation of the hardware components used for power compa-
nies is different, and the characteristics of the noise sources may
vary from concrete/wood poles, and coated /noncoated wire ties.
The noise sources of the power line system are complex, and
consequently, they may be independent/dependent. Knowledge
of the entire power line system is required to take appropriate
measures in detecting them.

The bell insulator is one of the main targets of this study. Its
average lifetime is 40 years. However, as it is a major source of
noise, it becomes replaced by any other type of insulator. The
noise of the bell insulator is related to the electrical breakdown

TABLE Il
MAIN NOISE SOURCE OVER WIRE SYSTEM [1]

Rating Source hardware

1 Bell insulator

2 Loose hardware

2 Lightning arrester

3 Insulated tie wires or bare tie wires on

insulated conductors
3 Small discharges between inadequately
spaced and unbonded metal components
3 Improperly assembled transitions between
overhead conductors and underground lines
o |
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Fig. 1. Fault state insulator’s time signal measured. It contains lots
of spike signals. The period of the impulse groups is 8.3 or 16.6 ms
according to the frequency of the electric voltage.

of the oxide film on the surface of the insulator. The com-
plicated fracture process is well identified on the basis of the
circuit.

The thickness of the oxide film of the insulator is from 0.001
to 0.01 in, so the destructive process is not considered to be an
arc or spark. It is defined as microsparks when the threshold
voltage is larger than the breakdown voltage of the oxide film.
It may be intensified by the addition of radio signals, lightning,
and other transient voltage switching on the normal transmission
voltage.Fig. | shows a time signal in a fault state of an insulator.
If it takes place on the maximum or minimum value of the
transmission voltage, impulse groups may be generated at a
period of 16.6 ms.

It can be concluded that noise due to the noise source
of the power line system represents a form of impulse like
the microspark. Also, the period of the impulse groups is
8.3 or 16.6 ms according to the frequency of the electric
voltage.

C. Array Signal Processing

The array signal processing techniques are used to identify
the acoustic characterization or estimate the position of the noise
source by the receiving signals with sensor arrays in space
[14]. It has been widely adopted on military sonar, medical
ultrasound diagnostic equipment, and vehicle noise detection
equipment. The array processing techniques [15] on these de-
vices are adopted from the beamforming method [16], MU-
SIC method [17], correlation function method [18], bispectrum
method [19], sound intensity method [20], acoustic hologra-
phy method [21], and so on. They are each determined if the
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Fig. 2. Pair of sensors, sound source, and path length difference. The
relative time delay can be estimated in a 2-D sensor system. The dots
show the same time delay between two sensors.

application is in accordance with sound environment and pur-
pose. The beamforming method and MUSIC method cannot
be adopted because of the long distance detection on the tar-
get with narrow-band signal. The spatial measuring range of
the sound intensity method and acoustic holography method is
wide so that the robot’s geometric size becomes large. It cannot
be attached to a robot, and required a long computation time in
long-term measured data. In this study, a correlation function
method employs a technique to estimate the position of the fault
insulators.

[ll. INSULATOR NOISE DETECTION

The proposed insulator noise detection consists of the fol-
lowing four modules. Cross-correlation function analysis of the
array sensor received signal in Section III-A, noise source lo-
cation estimation and arrangement in Section III-B, angular
resolution and the grid size of the image plane in Section III-C,
and the feature extraction techniques and neural network (NN)
in Section III-D.

A. Cross-Correlation Function Analysis of the Array
Sensor Received Signal

Considering two receivers as shown in Fig. 2, they assumed
abnormal noises from insulators as uncorrelated broadband
noise sources. Assuming that the reference sensor is at the coor-
dinate origin, each position and volume velocity are defined as
rn and Qn(t)(n = 1, 2,..., N), respectively. The measured
sound pressures on the reference sensor and the arbitrary ith
sensor is given by

P(t)—an t_% P(t)—an t_%
o T e, YT T A
n=1 n=1
(L
wherer;, = r, — d; and the bold lower case denotes the vec-

tor. N, p, Co, and | ¢ | are the number of the noise sources, the
density of air, the sound speed on air, and the norm, respectively.

From (1), the cross-correlation function R; () is given by [18]

Ri(T) Po(t) Pi(t+ 1) dt

) [
@@szn t—'rc—;'th——lrggHT
T 1612 [0 [ [rom | dt

n=1m=1 n m
2)

Defining D nm (T) for the cross-correlation function between

the nth and mth noise source, we obtain
E0
g,

Dam(T) = p*Qn(t) Qm(t+ 7)dt. 3)

Since each source of se is uncorrelated

Dn(T) BD, ifn=m,

D T)= : 4
nm (1) 0, if n Ein. @
Equation (2) by (3) and (4) is converted into the following
equation:
D, T- %
Ri(1) =
R TN
( ]
|di| cos 6’
= A D l71- — ) 5)
n=1
where Ap = 1/ (16m2|ry [Irin]). 64 (0 = 1,2,..., M) is

the angular position forming between a straight line on the re-
ceivers and the nth noise source, as shown in Fig. 2. Therefore,
the cross-correlation function of (5) will have a maximum value
if the time delay function 14" of each noise source satisfies the
following conditions:

[

) |di|cos 6"
) G

T

(6)

So, e,(f) will be obtained from Tr(,i) maximizing the cross-
correlation function. If the noise source’s characteristic is white
noise, R;j(T) will be the Dirac-delta function. However, the
noise source’s characteristic is a broadband signal, and it needs
a prewhitening method. The radiated noise from the fault state
insulator contained many spark signals with a 16-ms period, as
shown in Fig. 1. It can be regarded that the signal is stationary on
the length over 16 ms. In the present study, the smoothed coher-
ence transform method [22] was adopted for the prewhitening
method [23] to minie the effects of external noise, given by

Rupy(r) = F1 EL21X2 F'1j“”1
e X1 X:s Xo X2
1 2

= Q1 — 11) (7

where X1 and X are the received signals, X 1 and X, are their
respective Fourier transforms, F =1 s the inverse Fourier trans-
form, and &(¢) is the Dirac-delta function. Cross-correlation
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Fig. 3. Intersection of the conical surfaces. n is the angular position
forming between a straight line on the sensors and nth noise source and
it will be obtained by the cross-correlation function.

function analysis of the array sensor’s result will be given by a
delayed delta signal.

B. Noise Source Location Estimation and Arrangement

For the noise source location estimation, a 3-D array arrange-
ment with four microphones was adopted. By applying (5) to
the cross-correlation function between the reference sensor and
the arbitrary ith sensor, the time delay index Tp () from (6) is

given by
- -
. |d;| cos o)
e @®)

where O,(J) the nth noise source is located in a circular arc, as
shown in Fig. 3. It cannot be determined by only one array pair.
Thus, at least three pairs of noise sources must be arranged in
different planes in the space, so that the source position can be
uniquely determined.

Let the number of array elements be K (i = 1,2,..., K)
and the number of the lattice points of the image plane corre-
sponding to the noise source azimuth be M X N. Each grid point
isgivenby Zg, (s = 1,2,...,M;p=1,2,..., N), where
the focal length is defined as the distance between the image
plane and the reference point, as shown in Fig. 4. Therefore, the
time delay index Ts(,;',) between each image point of the image
plane Z,,, and the ith sensor pairs is given by

1Zsp |

i _ |Zsp = di] -
= ©)
As the nth sound source is located on the image of the source
rn, the image of the projected source to the image plane is
defined as shown in Fig. 4. Therefore, the image point of the
source is given by
dil = Iral = 1800, (10)

|Zsp - dil - |Zsp| = |rn -

When (10) is satisfied, the cross-correlation function R; (Ts(pl)) )
will have a maximum value. Therefore, the value of R; (TS(FI)))
put on the Z,, allows an image corresponding to the orientation
of the noise source to be obtained.

Focal Distance |
3m \d

ry Image of
the Source

Reference
Sensor Sy

Source
or
Insulator

Fig.4. Array geometry, coordinate, and source image plane. The sound
source can be imaged in the source image plane with three sets of time
delay, as shown in Fig. 3.

C. Angular Resolution and the Grid Size of the Image
Plane

In order to separate two adjacent noise sources, the arrange-
ment should be designed so that the maximum value of the
correlation function can be imaged. It is also necessary for the
geometrical interpretation of the geometric distance between
the sensors, and the maximum resolution dependent on the band
characteristics of the noise source.

Itis assumed that there exist two adjacent noise sources K, L,
and image point positions Zy and Z;. The time delay index for
the ith sensor pair is given by the following equations, respec-
tively,

—dil =zl iy _ |z dil -

(i) _ |Zk |ZI|
% .

T = ————— T

11
% Y

Using (8) and (11), the difference (3 in the time delay
index for each noise source is given by

-IEI- --

AT() = Tf) - Tl(i) = ldil oS 9 - cos 9 D 12)
Co
In addition, let Gl((i) = g - , then (12) is approximated
by the following equation:
_ di] [
AT = Pl g (13)

When the bandw1dth of the noise source is B, the minimum
time difference ATmIn can be approximated by 1/2B. It can
seperate the time delay index corresponding to the maximum
value on each noise source on the cross-correlation function.
Therefore, | (1] is given by

|A 8] > (14)




PARK et al.: ACOUSTIC FAULT DETECTION TECHNIQUE FOR HIGH-POWER INSULATORS

9703

x;3[n)

Fig. 5. Multiresolution filter bank. It divides a whole signal into
five different width signals in the frequency domains like as 0 kHz ~
1kHz, 1 kHz ~ 2 kHz, 2 kHz ~ 4 kHz, 4 kHz ~ 8 kHz, and8 kHz ~
16 kHz. | 2 means a factor-of-2 down sampler.

In addition, because the lattice point-to-point distance Az
of the image plane is relatively small compared to the focal
distance f , ~ [f3/f . Therefore, Az in the image plane is
given by

A 2| > (15)

The resolution and the image plane size of each grid point in
the array is determined by the distance |d ;| between the sensors,

the sound source position Gl(i), the bandwidth B, and the focal
distance f of the noise source.

D. Feature Extraction Techniques and NN

The radiated sound signal from the insulator has a nonuniform
background, and it also contains peak components in a fault state
owing to the microsparks. The amount of background noises
and peak components are important factors to know the signal’s
power and peak components’ level, respectively. However, the
peak signal can be buried by a nonuniform background signal.
So, both the sector space averaging technique and the filter bank
analysis are applied.

In the sector space averaging technique [24], the following
filter is used through the entire frequency spectrum:

Vinl= xinl= o (- K+ KD (6)

k=1
where N is the number for the filter length. The frequency re-
sponse of (16) is the high-pass filter so that the microsparks will
remain. It can also attenuate the slowly varying nonuniform
noise background. x[n] and y[n] are the input and the output
of the filter, respectively. Its frequency characteristic shows an
ideal low-frequency reject filter.

The filter bank used to extract the divergence of the entire
frequency spectrum is shown in Fig. 5. The signal is divided
into several separate frequency domains such as 0 kHz ~ 1 kHz
(FB1),1 kHz ~ 2 kHz(FB2), 2 kHz ~ 4 kHz(FB3), 4 kHz ~
8 kHz(FB4), and 8 kHz ~ 16 kHz(FB5). These five data
domains are used for the input to the curve fitting function.
The algorithm used is the curve fitting library of exponential
models (a single-term exponential) in the MATLAB toolbox.
Among the results, the exponent part will be used for the input
parameters of the NN for the classification.

For the classification of the insulators’ state, the pattern recog-
nition technique with a NN, as shown in Fig. 6, will be applied.

Output Layer
N N\

M ] U NX1 N )

L ,\.\IXI

Fig. 6. Block diagram of a NN. It is a multilayer feed-forward networks
with one-hidden layer fully connected network. L, M, and N are number
of elements in input, hidden, and output layer, respectively [25].

It is a multilayer feed-forward network with one-hidden layer
fully connected network. L, M, and N are a number of ele-
ments in the input, hidden, and output layers, respectively. The
hidden layer has a weight matrix W , a bias vector a, a de-
cision function f4, and an output vector h. The output layer
also has a weight matrix V, a bias vector {3, a decision func-
tion fo, and an output vector y. The outputs on each layer is
given by

h=f{(Wx +a), y=f,(Vh +B). (17

The classification using NN is summarized in the pseudocode
as follows:

Classification of the insulator using Neural Network

Input: x: input feature data
Ist data: an exponent part from fitting curve from
filter bank results
2nd-6th data: amplitudes of harmonic component of
120 Hz
7th data: an average from 60 Hz to 660 Hz
Learning/Training: define the weighting on the network
Repeat following 3 steps to minimize the error
1) output from the hidden layer

form = Otofv— 1do
hm = f1( " Wmix + an)
end for

2) output from the output layer
forn = Otofd]- 1do

Yn = faf Vim hm + Bn)
end for
3) minin' the cost function (sum squared error)
C = (Y = y1)?

Output: y: classification result given by normal or fault
forp= 0toP - 1do
[normal or fault] = max(logsig(yy))
end for
P: the number of samples for classification.

The used transfer function of each layer was logsig (logarith-
mic sigmoid transfer function), the back-propagation network
training function was traingd (gradient descent back propaga-
tion), and the cost function was sum squared error.



9704

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 64, NO. 12, DECEMBER 2017

Anechoic
Chamber

P C.0.5. LP
D

2.5.m Signal
. ) igna
| L JH : Acquisition
. i Module

AC High i Amplifier .
Voltage Tester |
(AC 22.9kV) ¢ Mi cma > =

oo Notebook

Fig.7. Block diagram for measurement noises from the insulators. Both

the normal state and the fault state of four types of the insulators were
measured one by one with sampling frequency 40 kHz in the anechoic
chamber [3]. The entire average SPL of ambient noise was 30.51 dB
and the average SPL from first to fifth harmonics of 120 Hz was 45.33
dB.

IV. EXPERIMENTAL RESULTS

The ambient noise in the anechoic chamber was measured
and evaluated for comparison with the insulators’ noises in
Section IV-A. The insulators’ noises were also measured and
evaluated in Section IV-B, the detection of the fault insulators’
direction with the 3-D array system in Section IV-C, and the NN
for the decision of the fault, or lack thereof, in Section IV-D.

A. Datasets

Insulators’ noise measurement and analysis methods are de-
veloped. First, the background noise was measured in the ane-
choic chamber with the system, as shown in Fig. 7. As the
acoustic detection system, which is mounted on the robot to
operate at the top of the pole wires, was located less than
3 m from the source to the front end, it was measured with
2.5-m distance in the anechoic chamber. The measurement sys-
tem consisted of four B&K 1/2 in condenser microphones Type
4130, four preamplifiers B&K Type 2642 with the power supply
B&K Type 2810, and a data acquisition device NI USB-9233.
As the received sound’s frequency range of the microphone is
5 Hz-12.5 kHz on the response —3 dB, the sampling frequency
was set to be 40 kHz. Both radiation noises of the normal state
and the fault state insulator were measured one by one.

Two different analysis methods were attempted by analyzing
the frequency characteristics of the measured time signals using
Fourier transform with a channel 16 384 point data (achieved
from microphone channel 2). The wideband (0-20 kHz) analy-
sis is for looking up the characteristics of the entire frequency
spectrum, evaluating its average level, the harmonics compo-
nents of the 120 Hz, and the peak frequency detection for ex-
tracting the harmonic component in the narrow band (0-1 kHz).

Table IIT shows the dataset to be measured. As the fault state’s
standard deviation is larger than the normal state’s, the power
of the fault state is also larger than the normal state. In the same
way as ambient noise measurement and analysis, the normal
state and the fault state of the four types of the insulators’ noises
were measured and evaluated in Section IV-B.

TABLE IlI
TYPES OF INSULATORS FOR MEASUREMENT

Type Differences Statistical property: Std (normal/fault)
PI PI.1: 2 plates 0.3186/0.6702
P.1.2: 3 plates 0.2877/0.4351
COS 0.2583/0.3063
LP L.P.1: company A 0.2565/0.3620
L.P.2: company B 0.2524/0.3022
LA 0.2679/0.2771
Std: standard deviation.
@ 2 = 100
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Fig. 8.  Comparison between the normal state and the fault state of
the Pl type 1 (P.L.1): (a) time signal, (b) frequency spectrum, (c) peak
detection, and (d) filter bank and its fitting curve. The fault state had
values 16.18 and 8.13 dB larger, than those of the normal state in the
entire average SPL and the average SPL from first to fifth harmonics
of 120 Hz, respectively. The exponent values of normal and fault were
—0.09 and 0.03, respectively.

Before the measurement of the insulators’ noises, the ambi-
ent noise was measured and evaluated. The results of the ambi-
ent noise’s characteristics closely resembled Fig. 8(b)’s normal
state insulator’s ambient noise in the wideband analysis and
peak detection. At the frequency spectrum in wideband anal-
ysis, it degraded exponentially under 3 kHz and had the flat
characteristics over 3 kHz. There several unexpected peak com-
ponents were found at approximately 800 Hz, 1.6 kHz, 12 kHz,
15 kHz, and 17 kHz. All measured data from insulators also
showed a similar frequency characteristics, so these frequency
components were ignored and not considered in the insulator’s
frequency responses. The peak detection result did not have any
considerable characteristics except for the peak at about 800 Hz.
The entire average of the sound pressure level (SPL) on ambi-
ent noise was 30.51 dB and the average SPL from first to fifth
harmonics of 120 Hz was 45.33 dB.

B. Noise Analysis

The comparison data for both the normal state and the fault
state of the PI type 1 is shown in Fig. 8. Many spike signals
and periodic components were found in the time signal of the
fault state in Fig. 8(a). In the normal state, there are no signif-
icant components to be considered except some peaks at about
700 Hz, 12 kHz, and 17 kHz like the spectrum of the ambient
noise in the anechoic. The fault state had a larger amplitude than
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Fig. 9. Comparison between the normal state and the fault state of the
COS: (a) time signal, (b) frequency spectrum, (c) peak detection, and
(d) filter bank and its fitting curve. The fault state had values 5.33 and
6.52 dB larger than those of the normal state in the entire average SPL
and the average SPL from first to fifth harmonics of 120 Hz, respec-
tively. The exponent values of normal and fault were —0.09 and - 0.05,
respectively.

the normal state through the entire spectrum, especially between
2 and 20 kHz, as shown in Fig. 8(b). There were outstanding
harmonics of 120 Hz by the peak detection in a fault state, as
shown in Fig. 8(c). The entire average SPL in both the normal
state and the fault state were, respectively, 30.38 and 46.56 dB.
The average SPL from first to fifth harmonics of 120 Hz in both
the normal state and the fault state were 47.23 and 59.28 dB, re-
spectively. The normal state had —0.13 and 1.90 dB larger values
than the ambient noise in the entire average SPL and the average
SPL from first to fifth harmonics of 120 Hz, respectively. The
fault state had a value 16.18 dB larger on entire average SPL and
a 8.13 dB larger on average SPL from first to fifth harmonics of
120 Hz than that of the normal state. In the result of the filter
bank and its fitting curve in Fig. 8(d), the exponent part of the
fault state has a larger value than the normal one.

Fig. 9 showed the measurement result of the COS. The entire
characteristics of the wideband analysis and the harmonics of
the 120 Hz looked like those of the PI type 1. The entire average
SPL in the normal state was 30.52 dB and 35.86 dB in the
fault state. The average SPL from first to fifth harmonics of
120 Hz in both the normal state and the fault state were 40.10 and
46.62 dB, respectively. The normal state had 0.02 and 0.19 dB
larger values than the ambient noise in the entire average SPL
and the average SPL from first to fifth harmonics of 120 Hz.
The fault state had values 5.33 and 6.52 dB larger than that
of the normal state in average of the entire spectrum and the
harmonics, respectively.

Fig. 10 showed the measurement result of the LP type 1.
The entire average SPL in both the normal state and the fault
state were 30.31 and 38.06 dB, respectively. The average SPL
from the first to fifth harmonics of 120 Hz in both the normal
state and the fault state were 45.44 and 62.11 dB, respectively.
The normal state had —0.19 and 0.12 dB larger values than the
ambient noise in the entire average SPL and the average SPL
from first to fifth harmonics of 120 Hz, respectively. The fault
state had values 7.75 and 14.96 dB larger than that of the normal
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Fig. 10. Comparison between the normal state and the fault state of
the LP type 1 (L.P.1): (a) time signal, (b) frequency spectrum, (c) peak
detection, and (d) filter bank and its fitting curve. The fault state had
values 7.75 and 14.96 dB larger than those of the normal state in the
entire average SPL and the average SPL from first to fifth harmonics
of 120 Hz, respectively. The exponent values of normal and fault were
-0.09 and - 0.03, respectively.
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Fig. 11.  Comparison between the normal state and the fault state of

the LA: (a) time signal, (b) frequency spectrum, (c) peak detection, and
(d) filter bank and its fitting curve. The fault state had values 0.05 and —
0.28 dB larger than those of the normal state in in the entire average SPL
and the average SPL from first to fifth harmonics of 120 Hz, respectively.
Both exponent values of fault and normal were —0.09.

state in the entire average SPL and the average SPL from first
to fifth harmonics of 120 Hz, respectively.

Fig. 11 showed the measurement result of the lightning ar-
rester. The characteristics were entirely different from the for-
mer three insulators. In the time signal, the difference between
the fault state and the normal state was not found. In the wide-
band analysis and the harmonics of the 120 Hz, the insulator’s
spark also could not be determined. In addition, the frequency
spectrums did not show any difference between each other, so it
could not be detected by the difference in results of detection of
a peak in a narrow band. The entire average SPL in the normal
state was 30.55 dB, and 30.60 dB in the fault state. The average
SPL from first to fifth harmonics of 120 Hz in both the normal
state and the fault state were 45.37 and 45.31 dB, respectively.
The normal state had 0.05 and 0.05 dB larger values than the
ambient noise in the entire average SPL and the average SPL
from first to fifth harmonics of 120 Hz. The fault state had val-
ues 0.05 and —0.28 dB larger than that of the normal state in
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Fig. 12.  Differences between the normal state and the fault state of

the insulators. AVG means the mean total power in entire frequency
response. Except LA, the SPL of the fault states are larger than those of
the normal states.

TABLE IV
COMPARISON OF ALL RESULTS

Noise source Entire Average SPL of Exponent value

(normal/fault) average SPL harmonics of 120 Hz of fitting curve

Ambient noise 30.51 45.33 -0.09

PI 30.38 47.23 -0.09
46.56 59.28 -0.03

COS 30.52 40.10 -0.09
35.86 46.62 —0.05

LP 30.31 45.44 -0.09
38.06 62.11 -0.03

LA 30.55 45.37 -0.09
30.60 45.31 -0.09

All SPL’s units are in dB.

the entire average SPL and the average SPL from first to fifth
harmonics of 120 Hz, respectively. This meant that to figure out
the fault state of the lightning arrester would be more difficult
than other insulators. A possible way to determine the fault state
of the lightning arrester would be diagnosis by thermal infrared
camera, as shown in [2].

The difference between the normal state and the fault state
of the insulators was shown in Fig. 12. AVG meant the entire
average SPL of wideband analysis, and the other was the SPL of
the harmonics of the 120 Hz in horizontal axis. In AVG, except
for the lightning arrester, the fault state’s values were larger
than those of the normal state. The harmonics of the 120 Hz
were also larger, except for the lightning arrester. From these
two apparent results—the wideband analysis and the harmonics
of the 120 Hz, the possibility of detecting the fault state of
the insulators can be found, except for the lightning arrester.
It can be concluded that the fault state’s values are larger than
the normal state’s in both total average and 120 Hz harmonic
components, as shown in Fig. 12. In the exponent value of curve
fitting from result of filter bank, it was found that values of fault
states were larger than normal state. For ease of comparison,
results were summarized and shown in Table IV.

C. Noise Source Location

Per the previous section’s result, the radiated noise had two
significant features in the total average and 120 Hz harmonics

Vertical [meter]
Vertical [meler]
=3

0 05 -1 05 ] 05 1 15
Horizontal [meter] Horizontal [meter]
(c) (d)

Fig. 13.  Source localization results: (a) PI, (b) COS, (c) LP, and (d) LA.
The normal and fault state insulator are located in A and B, respectively.
Three different type fault insulators were detected, except LA. The rect-
angular coordinates (x, y, z2) m of A and B are (- 1.0, — 0.5, 3.0) m and
(1.0, - 0.5, 8.0) m, respectively.

components that could be detected by the microphone. The
noise source location was evaluated by 3-D microphone array,
as shown in Fig. 4. The source image plane’s size is 3 m width
and 3 m height. The number of the lattice points M x N were
chosen as 200. So the size of image on source image plane has
15-mm (= 3 m/200 points) resolutions.

The insulator would be in a slightly lower position below the
robot, so the reference sensor was chosen to be the nearest to
it, as shown in Fig. 4. For the noise source location estimation
with the 3-D microphone system, two insulators’ locations were
estimated at the same time. The normal and fault state insulators
were located in A and B, respectively. The rectangular coordi-
nates (X, Y, z) m of A and B are (-1.0, -0.5, 3.0) m and (1.0,
—0.5, 3.0) m, respectively. The results are shown in Fig. 13. The
left cross line represents the position of a normal state insulator
and the right cross line represents the position of a fault state
insulator.

The entirety of the normal insulators was not detected. Mean-
while, the first three fault insulators were detected except for (d)
lightening arrester (LA). Distance error is evaluated as the Eu-
clidean norm between a source’s coordinate B and the estimated
coordinate, as shown in Table V. The first three insulators were
very close to source B and the differences came from the value
of the spectrum’s average.

D. Fault Detection

The fault detection was evaluated using a NN. Per the results
in Section IV-B, the combinations of total average and 120 Hz
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TABLE V = -
FAULT LOCATION SOURCES ESTIMATION gl 10 0 [100.0% gl 10 0 |100.0%
o 2[500% | 0.0% | 00% g 2| 50.0% | 0.0% | 0.0%
K K
Type  Auctual coordinate  Estimated coordinate ~ Distance error (m) o35 1 9 90.0% © 3 1 9 90.0%
2 L&) 50% | 45.0% | 10.0% 2 & 5.0% | 45.0% | 10.0%
PI (1.0, 0.5) (0.975, 0.515) 0.03 5 5
cos (1.0,0.5) (1.110, 0.530) 0.11 © | 90.9% | 100.0% © | 90.9% | 100.0%
Iﬂi (}.g, 8.2) (1.121\?6%530) 1%/1/5 9.1% | 0.0% 9.1% | 0.0%
(1095 Normal  Fault Normal  Fault
Target Class Target Class
. . (2) (b)
harmonic components were used for the input data. The datasets = =
for the input layer were figured out and chosen by the following: gl 10 0 I gl 8 2
. w S| 50.0% | 0.0% | 0.0% w S| 40.0% [ 10.0% | 20.0%
1) first data: the exponent part of the exponential curve fit- @ o
ting from the filter bank results; 23l 0 10 | 100.0% e 3| 8 7 | 70.0%
. . . = =]
2) second to sixth data: amplitudes of the harmonic compo- g w[ 00% | 500% ) 00% g [ 150%) 350% | S00%
nent of 120 Hz; ©  [100.0%|100.0% © | 727%| 77.8%
3) seventh data: an average from 60 to 660 Hz. 0.0% | 0.0% 27.3% | 22.2%
For the NN, the numbers of layers were chosen as 7, 30, and Normal _Fault Normal Fault
2 for the input, the hidden, and the output layer, respectively. Target Class Target Class
These numbers were empirically chosen and then validated after © @

variable numerical setting. The number of input layers depends
on the frequency characteristics as given by the output of filter
bank, peak signals, and average level. The number of output
layers depends on the results from classification as given by
normal or fault states.

The training data was the average of each insulator’s one
second length signal achieved from microphone channel 2. The
data length was about 4 s in length, so that each average was
obtained from four datasets. For the tolerance of the reference
signal, the data was multiplied by 1.1 and divided by 1.1. Total
training dataset resulted in six datasets from each insulator.
The input data for the classification were 20 datasets, which
consisted of four 1-s-length signals and a 4-s-length signal from
two different microphone channels (achieved from channel 1
and channel 4).

The fault detection was evaluated from the four datasets using
the confusion matrix in Fig. 14. It shows the performance of
the classification algorithm with a table layout. It contains true
positives (actually fault and classification output is also fault
on first row/first column), false negatives (actually normal but
classification output is fault on first row/second column), false
positives (actually fault but classification output is normal on
second row/first column), and true negatives (actually normal
and classification output is also normal on second row/second
column). There is one failure case regarding normal state as
fault state on second row/first column in (a) PI and (b) COS So
the total accuracy would be 95% (adding 10/10 in true positives
and 9/10 in true negatives). The ratio 100% illustrates no error in
classification. The highest detection ratio was 100% for (c) LP
and others were relatively more than 95%, except (d) LA. The
spectrum in LA was hard to distinguish between normal and
fault state, thus, it reached 75% (adding 8/10 in true positives
and 7/10 in true negatives).

The fault detection was also evaluated using other criteria cal-
culated in Table V. The Fq score, accuracy, and Matthews cor-
relation coefficient (MCC) [26] were used for the four datasets.
Table VI shows that these statistical values are consistently high
among three metrics, especially the first three datasets. These

Fig. 14. The confusion matrix corresponding to Table Il. (a) PI
(b) COS (c) LP (d) LA.

TABLE VI
STATISTICAL EVALUATION

Type Fqscore Accuracy MCC
PI 95.24 95.00 0.90
COS 95.24 95.00 0.90
LP 100.00 100.00 1.00
LA 76.19 75.00 0.50

The ratio 100% or 1.0 illustrate no error in
classification.

statistical evaluations validated that the proposed acoustic fault
detection system from insulators’ radiation noises was feasible.

To represent the effectiveness on our system with comparison
with [2], there are differences in the following three areas. First,
there were represented analysis results with wideband analy-
sis, peak detection using sector space averaging technique, and
exponent value from the curve fitting. Second, in source local-
ization, comparing the results of [2] shown in Table V, it can be
seen that there is almost no distance error. Also, the visual effect
can be obtained by indicating on the source image plane where
the noise is generated, as shown in Fig. 13. The noise source
was detected with 100.0% accuracy for three typical conditions.
Finally, from the analysis results, the fault detection was deter-
mined by NN to diagnose the state automatically. The highest
detection ratio was 100% and others were relatively more than
95%, except LA.

V. CONCLUSION

In this paper, radiation noises were measured and analyzed
from both the normal state insulators and the fault state insula-
tors in the anechoic chamber. Two apparent results were found
from their frequency spectrums—120 Hz harmonic components
and higher average noise levels than normal state ones. The
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technique for the direction estimation of the fault state insulator
using the cross correlation from the 3-D array microphones was
also introduced. Finally, the classification technique using a NN
was shown. It was also concluded that acoustic fault detection
techniques are useful in the detection of insulator faults and the
estimation of the direction of the fault state insulators. In addi-
tion, it was also demonstrated that the fault state of the lightning
arrester is not distinguished from the normal state of that.

Future work includes larger scale datasets under the real out-
door environment with more radiation noise data and a high
accuracy NN.
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