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I. INTRODUCTION 

RACKING targets with path prediction from Omni-
directional (O-D) Infrared (IR) sensor is proposed to 

increase the accuracy of tracking for unmanned systems. 
Current approaches are primarily focused on perspective visual 
band and O-D visual band for 3D reconstruction, mapping, and 

tracking; furthermore, a literature search found no significant 
research in our area of interest, the O-D IR images and human 
behavior-based tracking prediction. O-D IR sensors provide 
numerous advantages to predict the human 
position for precise tracking. O-D images provide 360-degree 
vision for the robot so the target can be tracked continuously. 
The thermal imaging feature of the O-D IR sensor provides a 
light independent observation of the target scene. The light 
independent observation and the 360-degree vision present an 
advantage for the robot by providing nonstop tracking of a 
target. Utilizing a human body heat signature is another 
advantage of O-D IR sensor which yields an easily obtained 
human target oriented detection. Since the other objects can 
provide an inconsistent heat pattern, the tracking of non-human 
targets delivers unsuccessful results in the complex texture of 
thermal images. Thus, the O-D IR sensor can continuously 
detect and track the human target in this complex texture of 
thermal images.   However, O-D IR sensors have not yet been 
widely used because they have several disadvantages as well; 
O-D IR sensors have noise, low frame rates, and are quite 
costly. Since the IR sensors provide low resolution images, 
noise, and low frame rate combined causes high prediction as 
well as tracking error. In order to increase the accuracy of the 
predicted target position, we use a Maximum A Posteriori 
(MAP) based Curve Matched Kalman Filter (CMKF). CMKF 
improves the prediction accuracy for short term tracking; 
however, the advantage of continuous tracking with the O-D IR 
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Fig. 1.  The O-D Infrared Camera (a) the mobile robot equipped with O-D IR
camera (b) the O-D camera with the placement map, and an O-D IR image.  
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sensor becomes a disadvantage with its increasing 
computational time of CMKF approach. The low resolution and 
frame rate of the O-D IR camera causes a higher prediction 
error with the current visible band based methods since they 
cannot handle O-D IR images. Thus our method is necessary to 
overcome the higher error. MAP based CMKF helps to improve 
the prediction results and decreases the increasing 
computational time for long term tracking. We will look at the 
O-D IR view to predict the precise target position and tracking 
it in a faster manner by MAP based CMKF. 

The 360 degree view of thermal images for target tracking 
are obtained by a single O-D IR sensor, mounted on top of the 
mobile robot, as shown in Fig. 1(a). O-D images for the tracking 
process are taken while the target is in motion.  Fig. 1(b) shows 
a closer look at the O-D camera used in our application and the 
configuration of its parts. Fig. 1(b) also shows an O-D IR image 
of the target in the scene. The spherical mirror reflects rays from 
objects towards the camera sensor and camera sees itself in the 
middle of the O-D IR image. The camera sensor is placed on 
the mirror  z-coordinate axis.  

 Our work shows that the fusion of target tracking for short 
and long term modified for the far IR view of targets with the 
curve matching based tracking minimizes the tracking error and 
time. Behavior-based tracking for the human target is examined 
and the target position is estimated by Curve Matching (CM) 
and by Kalman Filter (KF) for short term target movement. The 
h so that we 
can analyze the 
walking behavior. In this period, analyzing movement helps our 
method to decide what kind of possible path the target can 
travel. For the recent short term trajectory, the walking behavior 
of the human target is continuously modeled by the CMKF 
method during the entire path progression of the target. The 
combination of these methods is updated by a MAP estimation 
based statistical analysis for long term tracking. 

.  
The organization of this paper is as follows: In Section II, 

related works are discussed. Section III explains omni-infrared 
camera data. Target tracking via omni-directional Thermal 
Images is proposed in Section IV. Then, the experiments are 
given in Section V. Finally, Section VI presents the conclusion 
and future work. 

II. RELATED WORKS 

We cover relevant studies on target tracking for mobile 
robots with a 360 degree thermal imager on a mobile robot. The 
following subsections will first describe target tracking through 
mobile robots in Section II.A by comparing representative 
prediction methods. Then we explore, in Section II.B, human 
tracking methods based on their algorithms in order to get better 
results in terms of tracking than those discussed in previous 
methods [1] [4].  

A. Target Tracking via Mobile Robots 

For various years, human behavior-based target tracking has 
had an enormous increase in research and popularity [5], [6]. 
Prevalent target tracking interest has been for the human body; 
there are several existing methods: processing 2D or 3D 
reconstructed images by Normal Kalman Filter based methods 
[7] [13], or by manipulating several sensors, or laser-based via 
on-board laser range finder [10], [14], or by utilizing an ordered 
Kalman Filter [9], or by quaternions [15]. Several human 
features may be employed [16], [17], for tracking, likewise the 

as well.  Some other works have been applied: For detection 
and classification of abnormal movement [18]. The ability to 
recognize a human from afar through motion energy mapping 
[19]. In order to detect movement, extraction features are 
applied spatially and through chronological templates [20]. 
Target activity recognition is attained by a sequential silhouette 
analysis based on human behavior [21], [22]. But, not one 
algorithm implements a technique such that the robot is trained 

 
Target trajectory application in some studies has shown that 

robots  [8], 
[23], [24] and then tra [12]. Other 
research for unfamiliar environments are modeled by a robot as 
in [25], [26]. However, any prediction and estimation 

methods aimed at target behavior analysis. Table I displays the 
details of the three different tracking methods that we will focus 
on for our target tracking methodology; Curve Matching, 
Kalman Filter, and Maximum A Posteriori based method in 
conjunction with sensors and prediction accuracy. 

B. Human Tracking Algorithms 

 Curve matching based tracking has various applications in 
the field of robotics. The most common methods in curve 
matching is recognition of some known curve from images, and 
tracking these corresponding paths [27] [31], whereas [32] 
does not utilize any parameters in order for it to record images 
by the elasticity theory. Also, [33] [37] are responsible for 
seeking contours in the images to detect as well as categorize 
the targets. Curve matching can be achieved with splines, 
another extensive area of study [38] [40].  Other curve 
matching studies utilize the polygonal arc methods [41], while 
curve characteristics matching is conducted in a curve 
measurement of unary and binary [42], Fuzzy Logic in [43], and 

 in [44].  
The KF consists of an equation pack which keeps the system 

TABLE I  
TARGET TRACKING METHODS 

Method 
Camera 
Sensor  

Sensor 
Requirements 

Prediction 
Error 

Curve Matching [18, 
27-33, 37-44] 

IR or 
Color 

Camera + Range Moderate 

Kalman Filter (KF) [3, 
7-13, 45-49] 

IR or 
Color  

Camera + Range  High 

Maximum A Posteriori  
(MAP) [1, 2, 4] 

Color Camera + Range Low 

 



state up to date. The system state is derived from its latter state 
which is being extensively used in target and trajectory tracking 
[45], [46]. The KF method has access to a universal solution to 
a quadratic mean estimation problem in terms of a rectilinear 
estimator [47], [48]. The KF based curve matching algorithm, 
CMKF, is another method that checks the reappearance in the 

 behaviors and sections in a certain extent 
with the curve matching techniques of [3], [49].  CMKF is a 
low computational cost method in comparison to previous 
methods. 

Maximum A Posteriori  (MAP) estimation has been applied 
to Kalman Filter based tracking in recent studies [1], [2]. The 
MAP estimation method helps to resolve the problem of target 
tracking by using the extended Kalman Filter approach such 
that it selects the most probable local hypotheses. A bank of 
MAP estimation tracking is proposed in [1]. The method 
introduces a solution to the linearization problem caused by 
extended Kalman Filter tracking. The least probable hypotheses 
are pruned to control the computational cost. The method 
proposed in [2] is another multi target tracking method from a 
moving camera. A range sensor and particle filter is used to 
detect the moving targets and distances then the tracking 
problem was solved by MAP estimation. In this method, both 
target and robot positions were estimated by MAP. An infrared 

with another MAP 
application in [4].  

III. OMNI-INFRARED CAMERA DATA  

 
T

PW X Y Z  is a real world point in space and 
T

p u v   is the projection of said 3D point from the 

spherical mirror onto an image, as shown in Fig. 2
reflection on the spherical mirror has a ray vector of

T

m m m mP x y z  and this ray vector is converted into 

another point, ,
T

p u v , on the image. Equation (1) 

calculates the projected image point ,
T

p u v given by [50], 
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where the first term of the right hand side, known as the camera 
intrinsic matrix, consists of focal lengths, ,u vf f , and the 

coordinates of principle point, 0 0,u v . The angles,  and , 

are calculated by utilizing cylindrical mirror coordinates 
T

m mr z  which include 2 2
m m mr x y   and 

2 2
m m mz R r  .  The parameter L, the distance from the 

sphere center to projection center, is used to find the angle  

from (2). The angle, , is derived by using the real world point 

coordinates from 1tan ( )Y X . It can also be found by using the 

mirror coordinates of ,m mx y  since the direction of the ray 

vector to the world point and the mirror point is the same.     

 1tan ( ( ))m mr L z   (2) 

The angle, , is obtained by using the radial distance from 

the optical axis to a real world point, 2 2r X Y , and the Z  
coordinate of the real world point (3). Since the reflection 
angles, i  and r , on the spherical mirror surface are equal, 

another relationship between the angles,  and , is 

expressed as 1( ) 2 tan ( )m mr z . 

 1tan ( ) ( ) 2m mZ z r r   (3) 

Finding ,  and  offers us the transition between the 

mirror coordinates, mP , and image coordinates , p , which is our 

 
The calculation of 3D coordinates of real points based on the 

moving stereo is illustrated in Fig. 3. The improved information 
of low resolution infrared images helps to enhance the tracking 
of objects. The 3D target coordinates for precise target tracking 
is obtained from our previous work, n observation points are 
used to calculate the target coordinates. The number of 
observation points, n, is adjusted with respect to the 
experimental results. 

 
Fig. 3.  3D reconstruction from moving stereo.  

 
Fig. 2.  Projections of spherical mirror. Unified model for projection of a space

point T

PW X Y Z   to T
p u v  image point. The image shows the 

view of the coordinates from the top of the camera.  



The solution of equation (4) gives two depth values 1 2(z , z )  

by utilizing ray vectors of the mirror coordinates, 

,1 ,1 ,1 ,1

T

m m m mP x y z  and ,2 ,2 ,2 ,2

T

m m m mP x y z  

from both images. The calculated world coordinates of the 

feature points,
1 1 1 1

T

Wp x y z  and 
2 2 2 2

T

Wp x y z  

are found from the middle point of those depth values. If the 
middle point depth value is calculated by xm and ym coordinates 
of the reference image, 3D coordinates can be obtained for each 
triangulation step. The reconstructed points are plotted in a 
form of a point cloud in Fig. 3.  Any change to the target s 3D 
coordinates can be tracked by our proposed tracking algorithm 
more precisely.  

1
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where R  is a 3x3 rotation matrix and  T  is a 3x1 translation 
vector between two camera positions. The dot product operator, 

3x1,3x1  , utilizes two 3x1 column vectors and a 2x1 column 

vector is obtained for the depth values of two feature points. 
Mirror coordinates are normalized so that they do not have units 
and rotation matrix and translation vector provides the units for 
real world coordinate, given in (5).   
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After the depth coordinates are obtained from (5) by utilizing 
the transformation information, the coordinates of the target are 

attained as 
T

Wp x y z  from the average triangulation 

results. 

IV. HUMAN BEHAVIOR-BASED TARGET TRACKING VIA 

OMNI-DIRECTIONAL THERMAL IMAGES 

A new method of tracking targets from images from an O-D 
IR camera is implemented using the behavior analysis based 
tracking. Nonlinear movement of the targets makes the 
requirement for the infrared O-D images significant for 
behavior-based and long term tracking in order to make a 
precise prediction in addition to providing tracking results. The 
advantage of an O-D IR is that it provides for an easier way to 
detect a target as well as tracking for a long period of time; 
however, visual band sensor based methods have high 
prediction error and increasing computational time problems 
that make tracking difficult, making our method necessary. We 
are developing a new tracking algorithm for O-D thermal 
distribution in the following three steps; First, behavior learning 
by using Curve Matching (CM) in Section IV.A. Second, 
Section IV.B, prediction for short term tracking. Then, long 
term tracking with Maximum A Posteriori (MAP) estimation in 
Section IV.C, and finally, criteria to follow a human target from 

a mobile robot in Section IV.D.  

A. Behavior Analysis 

For human targets, we considered the data sequences of 
longitudinal trajectory rather than a static scene. For the first 
behavior analysis, a nearby target is detected and separated 
from the background, Fig. 4. The human position trajectories in 
the video sequences are determined by assembling the extracted 
features described in a static scene of O-D reconstruction (as 
new cases are accrued over time into multiple frames). 
Behavior learning is acquired from the patterns of  
trajectories in an O-D thermal distribution. The h
behavioral movement is the main criteria for 
making a decision. The next movement of the human target 
considers both its present movement, and the prior walking 

 
Fig. 4.  Near target position is selected for trajectory history analyses.  

(a) 

(b) 
Fig. 5.  Bearing tracking, a) O-D angle trajectory curve of the target, b) 
unwrapped image trajectory of long term and current trajectory of the target.  



behaviors of the target  entire trajectory in the short term 
prediction window.   

The target -D image is recorded for the 
bearing tracking first with respect to the O-D geometry 
coordinates which is given by the angle, . The starting point,

1 , is from the first image, c  is the 

starting point of the current motion of the target, and  t  is the 

last position of the target on the last image seen in Fig. 5 (a). 
We converted an O-D curve to an unwrapped image trajectory 
line given in Fig. 5 (b). O-D image angles, t , are calculated 

from the horizontal, mx , and vertical, my , coordinates of mP  

mirror coordinates for the angle prediction process (6). The 
image trajectory positions are obtained from the horizontal 
coordinates of ( )WP t  until,  ( )Wp t , the last pixel position of the 

entire movement, at time t , and ( )Cp m  is the last position of 

the current motion trajectory.  

 1tan m my x    (6) 

Target distance tracking is applied to a current position to 
find the best recent distance of the target, in Fig. 6, when we 
have the distance value from each reconstruction step. The 
calculated distance coordinates, ( )z t , are used from ( )WP t and 

( )CP m  strings for the entire distance and the current distance 

values of the target. Distance behavior analysis results will be 
combined with the bearing behavior results and will be sent to 

( )WP t  and ( )CP m  strings, then (7) and (8), for the curve 

matching process.  
  The CM method [3] acquires the motion characteristics of a 

human target by modeling the movements of a human through 
the mathematical CM equation in order to relate the 
movement at the precise instant it happened to some similar 
motion in the past, Fig. 7. Table II shows the learning algorithm 
CM. For modeling the behavioral movement of the human 
target, we consider two curves, the first curve is used for the 
target whole trajectory from the beginning of its motion or the 

past trajectory curve, and the second curve is used for 
the target current trajectory 
curve. s the 
recent walking behavior of the human target. Similarity 
detection of a current target curve is searched in the 
whole trajectory.  In order to use these trajectory curves for a 
similarity search, we constructed two trajectory strings from the 
curves, the current curve string ( )CP m  and the whole trajectory 

string ( )WP t  respectively. The matched part of the whole 

trajectory string, ( )WP t , with the current string, ( )CP m , 

provides the time length of similar movement characteristics of 
the target. The matched part of these strings are taken from the 
last position of the target, the last element of the string ( )WP t . 

The two empty strings are beginning to be filled with the 
 from when we start the tracking mission of 

the robot. 
curve in string ( )WP t . The specific length of the entire 

trajectory string ( )WP t  is matched with the recent movement 

string ( )CP m , and this is considered a matched curve. If the CM 

algorithm cannot find any matched part in these strings, the 
current curve string ( )CP m  is restarted as an empty current 

curve string. The strings ( )WP t  and ( )CP m  are represented by; 

 ( ) [ (1) (2) ... ( )]T
W W W WP t p p p t   (7) 

 ( ) [ (1) (2) ... ( )]T
C C C CP m p p p m   (8) 

The human target behavior-based modeling utilizes the 
targets recent walking behavior in the interested trajectory. The 
matched parts and the number of matches during this period 
models the target behavior to make a decision for the future 
position of the human target according to this walking behavior 
model. The weight of CM represents the recent behavioral 
walking of the human target in the trajectory. The position 
coordinates in the strings are searched and a weight for CM is 
determined by two criteria; the length of the match, and the 
frequency of the match in its history. The CM method uses the 

 
Fig. 6.  Distance behavior analysis from 3D reconstruction results.  

TABLE II  
CURVE MATCHING ALGORITHM 

For human behavior modeling via curve fitting 

(t)WP  ; 

( )CP m  ; 

 ( )CP m  in (t)WP ; 

Assign the best curve modeling to evaluate ( )CP m  in (t)WP  

 

 

Learns the curve string sequences of the target behaviors for prediction. 
 

 

Fig. 7.  Curve Matching for behavior analysis.  



weight from this search with the given criteria and the equation 
for the weight of the CM framework is shown by (9). 

 ,
,

, ,

1
( ) 1

( 1)
C matched

CM C string
C string C string

l
k f l

l l s
      (9) 

,C matchedl  is the length of the exact matched part in the strings, 

,C stringl  is the length of the current curve string, while f  is the 

sigmoid function to keep the weight bounded, and the amount 
of matched strings is s . The final weight of the CM algorithm 
is obtained from (9).  

The position of the target from the CM quadratic curve fitting 
and the weight of the CM is multiplied to find the next target  
coordinates. The most recent target coordinates are used for 
tracking by CM and estimation of the next position using the 
CM weight.  

B. Prediction for Short Term Tracking using Curve 
Matched Kalman Filter 

 In Step2, the next position of the trajectories are estimated 
by the trained patterns in Step1. The learning space along with 
longitudinal analysis is now time-indexed as a possible 
expansion of the prediction window size. After obtaining the 
recent position of the target, the trajectory is analyzed for its 
previous path history to estimate the future position information 
of the target. This prediction is used to update the target  
position which allows for the possibility to forecast the 
subsequent behavior of a human target from data sequences 

with time by comparing incoming online data sequences [t, t+1] 
and the existing data sequence [0, t]. Curve Matched Kalman 
Filter (CMKF) [3] is used in our proposed method as illustrated 
in Fig. 8. The KF method aims to track the motion of a target 
by accumulating the amount of CM states that depend on the 
extrapolation. Table III is representative of the modules on how 
the CM  
and any related movement in the entire trajectory, and this 
makes an improved extrapolation for the KF framework over 
the time sequences. Module1 calculates the probabilities of 
each method and Module2 forms the weights of CM as well as 
KF. Module3 creates the matched curve from the  
trajectory and Module 4 updates the matched curve probability. 
Module5 estimates the next position information of the target. 
The flowchart of the CMKF is obtained through MAP by using 
n images for target positions and tracking from those 
reconstructed view can be seen in Fig. 9.   

KF predicts the next position at time (t+1) for the system 
model with the following equations,    

 
2

1

1 2

0 1t t t t

dt dt
x x u

dt
 (10) 

 1 0t t ty x v  (11) 

where tx is the velocity and the position vector at time t, tu

is the acceleration, ty is the measured position of the target. t

is the process noise and tv is the measurement noise. If we 

define transition matrix A 1 ; 0 1dt , input matrix 

2B 2;dt dt , measurement matrix J 1 0  when the 

measurement of the position is done every dt  seconds. KF 
equations tK , the Kalman gain, tx , an estimation of next 

position can be given as, 
 1J (J J )T T

t t tK G G W  (12) 

 1 (A B ) (y J )t t t t t tx x u K u   (13) 

 1 J ( J) AT T
t t t tG G I K G Q   (14) 

where tG  is the estimation-error covariance for the system, W  

is the measurement noise covariance, Q  is the process noise 

covariance of the system. Exploiting the greater predictive 
power of the higher feature space, online data sequences 
effectively update the CM described in Step1. The update is 
used to identify the future curve parameters at time 1t , by 
minimizing the prediction error, called the Normalized Root 

TABLE III  
CURVE MATCHED KALMAN FILTER MODULES 

Module1 Calculate the mixing probabilities. 

Module2 Form the weighted average using the mixing probabilities. 

Module3 Create CM state matched filtering. 

Module4 Update CM state probability. 

Module5 Estimate and covariance combination. 

Fig. 8.  CMKF estimation of adjusting each short term period tracking of the
target. 

 
Fig. 9.  Flowchart of Curve Matched Kalman Filter via MAP.  



Mean Squared Error (NRMSE), between the predicted and 
actual position trajectories. The weight of KF for the Curve
matched KF process is calculated from the Curve Matching 
algorithm weight by 1KF CM . The target coordinates are 

applied to KF and the next position of the target is obtained by 
(13). KF weight KF  is multiplied by the estimated KF 

coordinates to find the weighted KF coordinates for the short 
term tracking process. 

 ( 1) ( 1) ( 1)CMKF CM CM KF KFP t P t P t   (15) 

After finding the accurate estimation of CMKF, the MAP is 
applied to the trajectory of the target. In order to find the next 
position of the targets, the MAP estimation will become more 
reliable and is then applied proportionally to the CM weight. 
This proportion is calculated from the length of the CMKF 
frame. Thus we can predict the lost data depending mostly on 
long term prediction than short term CMKF.

C. Prediction for Long Term Tracking using Maximum A 
Posteriori (MAP) Estimation 

The MAP estimation method is a probabilistic estimation for 
the next position for their entire trajectory path, which 
we called long term tracking. CMKF prediction has an error 
problem and an increasing computational time problem, since 
this approach only considers the limited or short term 
trajectories. MAP estimation method helps to solve this error 
and time problems for long term trajectories. We would like to 
increase the horizontal time window by considering a longer 
window size. 

The combination of MAP and CMKF is used in our proposed 
method to find the minimum error and the best estimation of the 
target s position. Next target position is first predicted by the 
KF method with respect to the CM for the last matched 
trajectory part. Then the MAP estimation is applied to the whole 
trajectory with all the matched trajectory curves in the past. 
Thus, the next position is predicted by a probabilistic estimation 
approach rather than solely searching for the last matched 
curve. The entire trajectory is represented by ( )WP t  and the 

characteristics, such as weights and probability, of CM for all 
CMKF frames. The CMKF frames are represented by ( )CP t  for 

every current trajectory in that instant with the prior of matched 
curves, (0)CP . The entire and the current human target 

trajectories were substituted for all MAP estimation processes 
with the equation ( ( ) | ( )) ( (0)) ( ( ) | ( ))C W C W CP t P t P P t P t . 

We want to maximize the left hand side to get the best weight 
of a matched curves in the entire trajectory 

( )
argmax ( ( ) | ( ))

C

C W
P t

P t P t . The right hand side of the equation is 

also maximized similarly 
( )

arg max ( (0)) ( ( ) | ( ))
C

C W C
P t

P P t P t . 

The approximations to obtain the weight of CM for the next 
position of the target are calculated by (16), while we maximize 
the product of the entire trajectory and the current trajectory 
with the prior, (0)CP , in the short term frame. The optimum 

frame length will be specified when the minimum error is 

satisfied by (17).   

 ( ( ) | ( )) ( (0)) ( ( ) | ( ))C W C W C
i t

P t P t P P i P t   (16) 

The size of the CM and the KF frame for short term tracking 
is determined by the prediction error when it is less than the 
predefined threshold value as the estimation process is initiated 
from the beginning. The time length of short term CMKF 
tracking frames is calculated by (17) in order to keep the short 
term frame on the most recent part of the trajectory. The running 
average prediction error during the frame is calculated from the 
difference between the CMKF prediction and the actual 
position. This short term frame helps to keep the prediction 
error minimum while the prediction time is bounded.   

 
[0, ]

( ) ( )

arg min frame

frame

t

CMKF w
l t l

l t frame

P l P l

l
l

  (17) 

 Then the weights of each frame are stored from t l  to the 
end of the last predicted target position corresponding to the 
sample of time t , Fig. 10. The stored weights of CM and KF 
aid in finding the posterior probability of the subsequent 
weight. Thus, in addition to the prediction of the following 
target position, we also predict the weight of the combination 
of two estimation methods one step prior to its application. The 
process of the moving CMKF frame along the trajectory and the 
MAP estimation applied on the whole trajectory is given in 
Fig.10. The Maximum A Posteriori estimation is given by the 

while MAP estimates the best application 
of CM to the KF frame by maximizing

( ( ) | ( )) ( (0)) ( ( ) | ( )) ( ( ))C W C W C WP t P t P P t P t P t . The 

Posterior equation involves prior of matched curves in the 
trajectory history, which is the first term of the numerator in 
equation, and the maximum likelihood, the second term of the 
numerator. The denominator is evidence for the change in 
weight of the whole trajectory.  

The weight of CM, ( )CM t , is updated according to the 

maximum result of the posterior probability by (18);  

 
( )

( )

( ) arg max ( ( ) | ( ))

( (0)) ( ( ) | ( ))
arg max

( ( ))

C

C

CM C W
P t

C W C

P t W

t P t P t

P P t P t

P t

  (18) 

Fig. 10.  MAP estimation scan the whole trajectory and CMKF frames moving 
through target trajectory to estimate next position for best weighted update for
Curve Matching Algorithm and KF. 



Since the evidence portion is not dependent on ( )CM t  as 

well as the result of the maximization process, we then can drop 
the denominator portion. 

 
( )

( )

( ) arg max ( (0)) ( ( ) | ( ))

arg max ( (0)) ( ( ) | ( ))

C

C

CM C W C
P t

t

C W C
P t i t l

t P P t P t

P P i P t
  (19) 

The logarithm of the posteriors can be used to make the 
problem easier, so we can rearrange in the following form; 

( )
( ) arg max log ( ( ) | ( )) log ( (0))

C

t

CM W C C
P t i t l

t P i P t P  (20) 

Predictive target positioning may sync with the position of 
moving target, while minimizing the time delay of tracing the 
target. Long term tracking and reliable target following are 
desired to maintain an acceptable prediction accuracy so that 
the feature space can dynamically adjust to changes in the 
learning phase for the duration of the longitudinal sequence. 
The weight of CM is adjusted by MAP for long term tracking 
results and is applied to CM and KF separately by using (21). 
The estimated coordinates, ( 1)MAPP t , of the target is obtained 

more precisely.   

( 1) ( ) ( 1) 1 ( ) ( 1)MAP CM CM CM KFP t t P t t P t  (21) 

We propose a simultaneously iterative learning and 
prediction for consistent field testing. The prediction criterion 
for simultaneous learning provides the error variations for the 
time horizon window of the data sequences. We determine the 
applicable prediction range for the long term data that will 
minimize the prediction error.  The horizontal prediction 
window will be iteratively applied to the updated human 
behavior (described in Section IV.A) for the incoming online 
sequences for predicting the future positioning of robot 
trajectories (described in Section IV.B).  

D. Criteria to Follow a Human Target from a Mobile Robot 

s in 
the image sequence for the reconstruction of the target view. 

The r positions of feature points 
to change all along the images as well as the pixels in each 
image. In order to track the target and the distance information 
of the target, target  feature points and feature points of the 
other objects must to be sorted. We will use three criteria to 
obtain more detailed information about the target and identify 
the target in an O-D IR view. Table IV shows the procedures of 
the target  tracking steps.  

Distance tracking is one of three criteria needed in order to 
. The coordinates of the target 

provides the depth information of the target. The current 
t , WP , , RP , provide 

the actual distance from the target. TX , the location of the 

target and, RX , the location of the robot are used for the 

distance in x, y axes, 
2 2

,T R W R t r t rX P x x y y . 

The recent coordinates of the target are used for inputting the 
distance and is then tracked by MAP estimation, Fig.10. 
Predicted and actual distances between robot and target are used 
for validation of the prediction for target distance tracking.  

The second criterion is angle tracking of the targets such that 
the direction of the robot is based on the targets. The angle of 
the target, T , in the O-D image provides a value from 0 to 360 

degrees of the target position, 0T t . Those angle values 

are tracked and then are predicted in order to find the minimum 
error of V , angular velocity of the target, for prediction steps, 

Fig. 11. Angular velocity for that instant can be calculated from 
the angle position difference of the first and last position of the 

target, 0 0T tV t t t .  

The third criteria is the velocity of the targets from the 
predicted positions. Fig. 11 shows the target velocity, TV , 

calculated by using the actual position of the target at the first 
and at its final movement moment, 

2 2

,0 , 0 0 0t W t t tX P x x y y . Predicting the 

TABLE IV 
CRITERIA OF TARGET TRACKING 

For target motion variables 

( ) [x y z ]R r r rP t , R  

( ) [x y z ]T
W t t tP t , T   

WP  in RP ; 

Assign the best target 3D position WP  ;  

Evaluate t  

,min minT R W RX P  

0 0T tV t t t angular velocity of the target; 

0 0T T tV X t X X t t velocity of the target; 

 

 

 
Fig. 11.  Velocity change criteria of angle and target position during the target 
motion. 



target  velocity will provide an acceptable way to approach the 
target and having the robot follow the target while 
simultaneously adjusting  to track its 

movement, 0 0T T tV X t X X t t . 

V. EXPERIMENTS 

The experiment section is organized in the form of six 
subsections: First, in Section V.A, behavior analysis and 
hardware information with the data sets are used for tracking is 
given. Second, prediction for short term target tracking is 
applied and compared with respect to the time length of the 
prediction period in Section V.B. Third, prediction for long 
term target tracking using the MAP estimation method is given 
in Section V.C. Then, target motion analysis for evaluating 
various human target behaviors is in Section V.D. And, an 
analytical comparison is done to other studies in Section V.E.  

A. Behavior Analysis and Hardware 

The hardware for target tracking consists of a mobile robot 
platform with three main components. First component is the 
mobile robot Pioneer 3-DX, equipped with a PC for 
autonomous control. Second component is a Windows 7 
computer with an Intel i7 processor used to perform image 
processing and tracking algorithms with Matlab. Third 
component is the RemoteReality O-D IR camera sensor for the 
acquisition of 360 degrees O-D IR images with 65 degrees of 
vertical field of view (FOV). The O-D IR sensor provides gray 
level images with a resolution of 640x480 pixels and the images 
are taken by a 30Hz imaging frequency of an O-D IR sensor. 
The mobile robot platform equipped with a windows computer 
and an O-D IR sensor is shown in Fig. 1 in Section I. The O-D 
IR camera was calibrated by the O-D camera calibration 
toolbox [51] using a heated grid pattern since the calibration 
toolbox was only created for visible-band cameras. The grid 
pattern is constructed by a silver aluminum tape in order to 
utilize heat reflection, dependent specifically on the 
temperature of the tracked objects. The detection of feature 

points and human target in the images was done by corner 
detection in Matlab  computer vision toolbox with respect to 
Eigen values of the feature points. 

The imaging conditions included have four different types, 
a) short term, b) long term, c) slow move, and d) fast move. As 
shown in Fig. 12, the first data set was taken for short term 
tracking, 20 images, in a relatively small area and was over a 
short distance. The second data set had a longer time 
observation  with a slow moving target, with 475 images, in a 
larger area. The third image sequence was also taken in a large 
area, about 80 m2, with a short term recording period for a faster 
moving target. The last data set includes a fast target with long 
term tracking purposes, 384 images.  The characteristics of the 
imaging condition for the data sets of short term, and long term 
along with slow and fast movement, can be seen from Table V. 
The sampling of the video recording time was set to five images 
per second.  

The Curve Matching method for trajectory estimation was 
used to improve the tracking error of a human target by a mobile 
robot. The O-D IR images provide additional information to 
select the human regions based on a thermal signature of the 
human body. The pixel values corresponding to the human 
body temperature are specified in order to make a decision for 
the detection threshold of the human body regions. The feature 
points of the human target were calculated by the SURFfeature 
Matlab function in the unwrapped O-D images. Those images 
were also converted to binary images from a gray level image, 
based on the thermal signature of a human, to get the human 

    
(a)             (b)    

    
    (c)             (d)   

Fig. 12. Representative imaging conditions, (a) short term, (b) long term, (c)
slow movement, (d) fast movement 

TABLE V  
IMAGING CONDITIONS 

Imaging 
Covered 

Area (m2) 
Total Frame 

Size (images) 
Average Target 
Velocity (m/sec) 

Short Term 6.4 20 1.8445 

Long Term 80 475 1.432 

Fast 
Movement 

80 384 1.867 

 

Fig. 13.  O-D data set used for tracking in unwrapped (panoramic) O-D image
format. The detected target is shown in Frame 7, 225, and 428. The color shows 
the trajectory of the target according to frame number in the color bar.   



target  position information rather than the coordinates of the 
noisy feature points in the background. In order to avoid losing 
the human target during the tracking process, the five strongest 
features of the target are selected. Those feature points were 
detected with respected to the difference in two consecutive 
images. The detection process for the strongest feature points 
was applied for the moving human target region. Thus, we 
avoid the detection of the objects which have similar thermal 
signatures to the human body while the static objects were 
ignored from the scene. In case of losing any of the selected 
features, the remaining feature points overcome the 

is based on the human motion behavior, any unexpected error 
or mis-tracking is predicted correctly in the next process. For 
evaluation of our method, we selected only one target which is 
closest and giving better features for detection. The first 
detected and tracked features of the corresponding target is 
considered as the main target. However, we can apply our 
method to multiple targets after detection and proper 
identifying each target in the O-D images. The position of the 
target in the Frame 7, 225, and 428, while it is moving is shown 
in Fig. 13. The target  positions from every image frame are 
given on each image with the corresponding color to show the 
entire trajectory of the target. The color bar represents the 
corresponding color of the specific frame number. Dark blue 
represents the first position of the target while the dark red is 
the last target position in the trajectory. In order to detect these 
target positions, the moving human target has been detected in 
the original unwrapped O-D images, shown in Fig.14.  The 
strongest feature points of those images are also shown by green 
circles on the binary image in Fig. 14 for Frame 7, 225, and 428 
from the image sequence. The human region was detected by 
utilizing the thermal signature of the human body. Objects with 
the similar temperature were also eliminated by applying the 
detection algorithm on the regions that have changes from a 

previous frame. Table VI shows the data set information in 
greater detail.  

 The coordinates of the target in each images of the data set 
was calculated by the strongest feature points and those 
coordinates for the image sequence were used to estimate the 
trajectory of the target while in motion. Those detected target 
coordinates in the images were considered as the ground truth 
of the target image position. After the prediction process, the 
prediction result and those detected target positions were used 
to calculate the prediction error. The ground truth of the target 
was done by physical measurements from the target to the robot 
for the evaluation of our method. Linear regression based on the 
Curve Matching algorithm was applied to those coordinates and 
the estimated curve was obtained as the result. The actual data 
is given by a black line in Fig. 15 and estimated values of this 
position are given by a blue line as the CMKF prediction in Fig. 
15. The position of the target is given in the horizontal pixel 
coordinates of the human target in the unwrapped O-D images. 
During a specific term, the  curve matches a 
prior curve as seen from the error between an actual and an 
estimated curve.  The result was the motion of the target 
includes the position with respect to beginning coordinates, this 
portion of the curve was predicted accurately as we can see in 
Fig. 15. The computational time for estimating the subsequent 
target coordinates using CMKF is given in Fig. 17.   

The result was the motion of the target including the 
position  angle with respect to the beginning coordinates, this 
portion of the curve was predicted accurately as we can see in 
Fig. 15. CMKF had an average error of 0.7357 pixel with 
respect to the position information on the trajectory path. This 

 
Fig. 14.  Original unwrapped images from Frame 7, 225, and 428.  Detected
target features in the binary unwrapped O-D images during the targets
movement. 

TABLE VI  
CAPTURED DATA SETS 

Imaging 
Covered Area 
(degree/m2) 

Total Frame 
Size (images) 

Average Target 
Velocity (m/sec) 

Omni-directional 
Data Set 

360 / 80 475 2.102 

Perspective Data 
Set 

60 / 13.4 400 1.432 

 
Fig. 15. The trajectory prediction from CMKF for O-D IR data set, Short 
Term dataset. 
 



error was tolerable for the targets that have nonlinear motion 
characteristics. However, computational time was getting 
higher for the later portion of the trajectory. The computational 
time for estimating the next target coordinates by CMKF is 
given in Table IX.   

B. Prediction for Short Term Target Tracking 

In this section, prediction for the tracking method was 
applied to short and long periods with a slow as well as fast 
target images from the O-D IR camera. First, the robot was 
driven in a laboratory condition to take images of the target with 
a slow target imaging type setting. Then, the robot recording for 
fast movement of the target for long and short periods aimed at 
tracking the target in a larger area as a more complex data set.  

The tracking results of the target from short and long term 
datasets is compared and the average prediction errors are given 
in Table VII. When the target was moving very fast, the 
prediction error was increasing. The best result was obtained 
from the slow movement with a long term dataset, 0.7357 pixel 
for the CMKF tracking method. However, the prediction error 
remained stable for much longer times. The average prediction 
error increased to 1.0149 pixels for the short term 
observation with an actual speed of 1.8445 m/sec shown in 
Table V and a predicted speed of 2.4217 m/sec, given in Table 
VII. The average prediction error provided a moderate value of 
0.8682 pixel for the fast moving target of the long term dataset 
from the observed images. The prediction of the 
velocity was obtained as 1.9591 m/sec with an acceptable 
velocity error of 0.0924 m/sec while the target moving fast for 
a long period of time.   

 The Kalman Filter method was applied to the same data set 
without the Curve Matching algorithm. The results of the KF 
method provided a higher prediction error than the CMKF 
method with a stable average for computational time. Also, the 
standard deviation of error was high since the KF method 
contributed significantly higher prediction error. CMKF had 
around 98 percent better standard deviation, when the 

nt was high. Computational 
time was stable and higher for KF, but CMKF computational 
time was increasing as the tracking duration was increasing. 
CMKF gave improved prediction results with around 25% 
lower prediction error than the KF method.  

C. Prediction for Long Term Target Tracking  

We used three different datasets, short term, long term, and 
fast movement, and they were compared to find the minimum 
prediction error for the tracking the target in a large area and 
small area. First, short term tracking used the MAP estimation 

based prediction method and the tracking time has decreased; 
for long term tracking by applying the MAP estimation to see 
the differences for those two different tracking results. The 
datasets with different target velocities were utilized for the 
long term tracking process to obtain the minimum prediction 
error. The short term dataset with the fast target movement in a 
6.4 m2 area while the long term dataset area with slow and fast 
target movement in a 80 m2 area were used,  given in Fig. 12, 
respectively. 

CMKF increased the prediction accuracy for next target 
position with respect to KF by around 60%, however, the 
computational time was increasing continuously and also after 
a specific time period prediction error remained stable. MAP 
estimation made it possible to adjust the weights of CM and KF 
along with the predicted weight from MAP, the next target 
position was calculated with higher accuracy and faster 
computational time.  

MAP estimation predicted the next target position calculated 
with 10.48% higher accuracy and faster, Fig. 16. The human 
behavior-based method predicted the possible unexpected 
values from the sudden movement of the target and separates 

trajectory. Those sudden movements of the human and possible 
 movement direction in the trajectory are 

given in the zoomed window in detail. We used the actual 
position of the target from the detected image points in the data 
set images. The given input, actual position, and the predicted 
position in the next image frame are used to calculate the 

TABLE VIII  
TRACKING ERROR MAXIMUM A POSTERIORI (MAP) ESTIMATION  

Imaging 
Dataset 

Angular 
Velocity  

(degree/sec) 

Angle 
Error 

(degree) 

Target 
Velocity 

Error (m/sec) 

Prediction 
Position 

Error (pixel) 

Short Term 2.0869 0.1993 0.2425 0.7075 

Long Term  1.4198 0.1693 0.0122 0.6586 

Fast 
Movement 

1.8934 0.2136 0.0268 0.8309 

 

Fig. 16.  The trajectory prediction from MAP with O-D IR data set, Long Term
dataset. 

TABLE VII  
TRACKING ERROR USING CURVE MATCHED KALMAN FILTER 

Imaging 
Dataset 

Angular 
Velocity  

(degree/sec) 

Angle 
Error 

(degree) 

Target 
Velocity 

Error (m/sec) 

Prediction 
Position 

Error (pixel) 

Short Term 2.4217 0.3905 0.5772 1.0149 

Long Term  1.4794 0.1891 0.0474 0.7357 

Fast 
Movement 

1.9591 0.2232 0.0924 0.8682 

 



prediction error. It can be seen that our method predicted a 
closer target position to a possible human movement. The 
prediction difference from the CMKF prediction can be seen 
from Table VII and table VIII.  

In the fast target case the average prediction error was 0.1723 
pixel higher than the slow target case. Thus, this higher 
prediction error increased the average tracking error over 
20.13% for the fast movement dataset, since the target
trajectory had more sudden moves and changes than the slow 
movement dataset trajectory. The best imaging conditions 
were obtained from the long term data set with the slow 
movement of the target, 1.432 m/sec shown in Table V and Fig. 
12(c). The lowest prediction error for the long term data set by 
the MAP prediction case with 100 to 500 images by 0.6586 
average value.

 The computational time for short term and long term 
tracking of different data sets are given by Fig. 17. The time 
was considered to track the  from each 
image. Fig. 17 gives the slow movement data set  
computational time along with the short term method, (blue), 
and long term method (red) of computational times. The 
computational time curve shows that our proposed MAP-based 

time tracking, up to the 127th frame. The computational time for 
CMKF increased and passed the time spent in our method when 
the frame number is higher than 127. The computational time 
of those reported periods were increasing almost linearly for the 
CMKF method. We can see that the time for CMKF nearly 
doubled the time consumed from the 200th frame to the 400th 
frame. In case of multiple target tracking, our method can be 
applied to each target separately after identification of each 
target properly. The number of targets will increase the 
computational time similar to other methods. The second target 
doubles the computational time; however, our method provides 
sufficient time to track multiple targets since the computational 
time is low enough to finalize the process. Our proposed 
method gave a computational time approximately stable for the 
same time period. We used the advantage of lower prediction 

time from CMKF for a shorter term tracking and kept the 
prediction time steady. The use of CMKF in short term tracking 
windows as part of the MAP-based continuous prediction 
maintains the computational time with a minimum increase.    

Long term tracking by MAP estimation process gave the best 
value for tracking with the CMKF frame length of 20 images 
and this value was decided to be the optimal length for a CMKF 
subset. The CMKF prediction accuracy remained stable but the 
computational time was still increasing after the 20th image. We 
limited the CMKF short term tracking window at this point and 
decided the final prediction by the MAP prediction to increase 
the accuracy and decrease the computational time.  

 The average computational time for a short term CMKF 
frame was 0.1617 ms and was 0.0976 ms for long term tracking 
by MAP estimation given in Table IX. Our proposed method 
gave 39.64% lower computational time for the prediction of the 

higher accuracy. The MAP 
estimation method has an advantage of a lower computational 
time while the computational time of the CMKF method is 
increasing around 50% for every additional 200 images. The 
prediction time will be much higher in case of using only 
CMKF prediction for continuous human target tracking. Fig. 17 
shows that the computational time of CMKF was 2.5 times 
higher than our method at the 450th frame, the linear increase 
shows that the computational time difference between two 
methods will increase for a higher number of frames. For a 
longer tracking process, our method delivers increasing 
performance. 

D. Evaluation of Various Human Target Behaviors  

Distance tracking is applied as the first step. The O-D view 
aids the depth acquisition for any orientation of the target with 
respect to the robot  position. The most recent coordinates of 
the target are used for inputting the distance tracking process 

with the depth value, ,t rX , of those coordinates. 

Angle tracking the target is the second step of the process. The 
angle of the target, t , is derived from the detected target 

TABLE IX 
COMPUTATIONAL COMPLEXITY OF PREDICTION  

Duration 
Slow 

Movement 
Time (ms) 

Fast 
Movement 
Time (ms) 

Average 
Prediction 
Time (ms)  

CMKF 0.1767 0.1467 0.1617 

MAP 0.0974 0.0979 0.0976 

Difference (%) 44.88 33.26 39.64 

 
Fig. 17.  Computational time for long term tracking by using MAP estimation 
(red) and CMKF (blue). 

TABLE X 
EVALUATION OF FOLLOW HUMAN TARGETS 

Motion 
Average 

Prediction Error 
(Fast) 

Average 
Prediction Error 

(Slow) 

Average 
Prediction Time 
(ms) (Fast/Slow)  

Distance 
(m) 

0.8309 0.6586 0.0974 / 0.0979 

Angle 
(degree) 

0.2136 0.1693 0.0974 / 0.0979 

Velocity 
(m/sec) 

0.0268 0.0122 0.1298 / 0.1305 



position in the O-D image. The O-D image provides from a 0 
to a 360 degree angle position of the target and those angle 
values are stored for the prediction steps, Fig. 18.   

The actual velocity of the targets was calculated from the 
target s stored positions during the movement of the target. The 
predicted Target velocities from the CMKF and the MAP 
methods showed that the MAP had 
velocity with 71.0% lower error than the CMKF method, shown 
in Table VII, Table VIII, and Fig. 19. Tracking of the angle 
provides improved tracking results of 10.48% compared to the 
short term tracking results, Fig. 18. Table X shows the tracking 
error of the distance, the angle and angular velocity of the 
target, 

t
 in terms of slow or fast moving target. For the slow 

target, the velocity prediction provided 54.47% lower error than 
the fast target.   

E. Comparison to Other Studies  

Comparison between the MAP and the other four tracking 
methods is given by the average prediction error, the velocity 
prediction error, the standard deviation of error, and the average 
prediction time for this section. The benefits of the O-D IR 

sensor are advantageous, but does have lower accuracy as well 
as a higher prediction time problem that makes tracking 
difficult with the visual band and perspective camera based 
methods. We overcame these problems to make tracking work 
better with the proposed method. The comparison between the 
proposed MAP and the other four methods: A bank of MAP [1], 
the Backward  Model Validation-Based Visual Tracking (BVT) 
[5], the Curve Matched Kalman Filter (CMKF) [3], and the 
Extended Kalman Filter (EKF) method is shown in Table XI. 
These methods are calculated with respect to the average 
prediction error, the velocity prediction error, the standard 
deviation of the error, and the average prediction time. 

The results of all five methods indicated that our proposed 
method improved the prediction of the next target position. The 
standard deviation of error has improved by 56.63% with 
respect to the EKF method. The velocity prediction error for our 
method was 60.75% lower than CMKF prediction the target 
velocity and significantly lower than velocity error of A Bank 
of MAP. The standard deviation of error was higher than 
CMKF  standard deviation of error; however, our proposed 
method provided a 39.64% faster computational speed than the 
CMKF method. Also, our proposed method gives an additional 
computational time advantage for a considerably longer 
tracking processes. The average prediction time of our MAP 
based tracking method was lower and was significantly faster 
than the average prediction time of the BVT method. The long 
term behavior analysis prediction error was lower than both the 
CMKF and the EKF methods while it outperformed BVT in 
terms of average prediction error.   

VI. CONCLUSION AND FUTURE WORK 

We proposed behavior learning and MAP estimation based 
target tracking methods to improve the tracking accuracy and 
to reduce the computational time. An Omni-directional IR 
camera was used to maximize the target tracking timeframe 
with the freedom of lighting and to extend the tracking view by 
360 degrees FOV of O-D sensor. The disadvantages of the other 
methods for long term tracking, low accuracy and high 
computational time, was solved by our proposed MAP based 
target tracking method by using an O-D IR camera and utilizing 
human behavior and human body features. We evaluated our 

TABLE XI 
COMPARISON WITH OTHER METHODS  

Methods 
Average 

Prediction  
Error (pixel) 

Velocity 
Prediction 

Error (m/sec) 

Standard 
Deviation 
of Error 
(pixel) 

Average 
Prediction 
Time (ms)  

Proposed 
MAP based 
tracking 

0.6586 0.0938 2.2874 0.0976 

MAP Bank 
[1] 

N/A 9.9527 N/A 0.3160 

BVT [5] 35.620 N/A N/A 125.0 

CMKF [3] 0.7357 0.2390 0.0662 0.1617 

EKF [3] 1.0121 N/A 5.2748 0.4255 

 

 
Fig. 18.  Angular Position t of the target by CMKF, MAP Estimation. 

 
Fig. 19.  Angular velocity t of target by CMKF, MAP Estimation. 



method by tracking only one target from one mobile robot and 
this method can be used for multiple robots with proper 
identification of each target.  

For our future work, we plan to utilize the MAP based 
tracking with multiple human targets by increasing the number 
of mobile robots. The low computational time of our method 
will provide more sufficient time for multiple target tracking. 
Employment of multiple robots will be used for predicting the 

positions to improve the tracking performance 
of the mobile robots.
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TABLE XII 
APPENDIX 

Symbol Definition 
T

PW X Y Z  3D Real world point in space 
T

p u v  2D image point on O-D image 

0 0u v  Principle point of the camera 

L  
 

Distance between mirror center and 
projection center 

mR  Radius of the mirror 

T

m m m mP x y z  Reflected mirror coordinates of a world point 

,1 ,1 ,1 ,1

T

m m m mP x y z

 

Ray vector of the mirror coordinates from 
first observation point 

,2 ,2 ,2 ,2

T

m m m mP x y z

 

Ray vector of the mirror coordinates from 
first observation point 

2 2
m m mr x y  Radial distance of the mirror point to optical 

axis 
2 2r X Y  Radial distance of  a real world point to 

optical axis 

,u vf f  Focal lengths of the O-D camera 

 Angle between the rays from the projection 
center to principle point and image point 

 
 

Angle of the image point on the image x, y 
coordinates 

 
 
 

Angle between the vertical axis and the ray 
vector from the world point to the mirror 
surface 

,i r  Reflection angle on the mirror 

R   
T   

1 2,z z  
Calculated target distance from the first and 
second observation point 

T

Wp x y z   

( )WP t  Entire positions of target in trajectory. 

( )CP m  Current trajectory of the target in the time 
length of  m 

(0)CP  Prior of matched curve 

, , ( )CM KF CM t  Weight of CM, KF, and MAP-based CM 
weight 

, , ,CMKF CM KF MAPP P P P  Predicted positions by CMKF, CM, KF, and 
MAP 

, ,,C string C matchedl l  Length of entire trajectory and matched curve 

, framel l  Final and test length of CMKF frame 

,k s, f  Constant to adjust CM weight, amount of 
match string, and sigmoid function 

tK  Kalman gain 

J, W  Measurement matrix and noise covariance 

A  Transition matrix 
B  Input matrix 

tG  Estimation error covariance 

Q  Measurement noise covariance 

t ,t tu v  Acceleration, measurement noise 

tx  Estimation of KF  

,R RP X  2D location 

,TV V   

,R T  Angle of robot and target. 
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