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Abstract—We investigate Human Behavior-based Target
Tracking from Omni-directional (O-D) thermal images for
intelligent perception in unmanned systems. Current target
tracking approaches are primarily focused on perspective visual
and infrared band, as well as O-D visual band tracking. The target
tracking from O-D images and the use of O-D thermal vision have
not been adequately addressed. Thermal O-D images provide a
number of advantages over other passive sensor modalities such as
illumination invariance, wide field-of-view, ease of identifying
heat-emitting objects, and long term tracking without
interruption. Unfortunately, thermal O-D sensors have not yet
been widely used due to the following disadvantages: low
resolution, low frame rates, high cost, sensor noise, and an increase
in tracking time. This paper outlines a spectrum of approaches
which mitigate these disadvantages to enable an O-D thermal IR
camera equipped with a mobile robot to track a human in a variety
of environments and conditions. The CMKF (Curve Matched
Kalman Filter) is used for tracking a human target based on the
behavioral movement of the human and MAP (Maximum A
Posteriori) based estimation is extended for the human tracking as
long term which provides a faster prediction. The benefits to using
our MAP based method are decreasing the prediction time of a
target’s position and increasing the accuracy of prediction of the
next target position based on the target’s previous behavior while
increasing the tracking view and lighting conditions via the view
from O-D IR camera.

Index Terms— Human behavior understanding, omni-
directional camera, far infrared camera, thermal vision, behavior-
based target tracking, mobile robot.

I. INTRODUCTION

RACKING targets with path prediction from Omni-
directional (O-D) Infrared (IR) sensor is proposed to
increase the accuracy of tracking for unmanned systems.
Current approaches are primarily focused on perspective visual
band and O-D visual band for 3D reconstruction, mapping, and
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Fig. 1. The O-D Infrared Camera (a) the mobile robot equipped with O-D IR

camera (b) the O-D camera with the placement map, and an O-D IR image.

tracking; furthermore, a literature search found no significant
research in our area of interest, the O-D IR images and human
behavior-based tracking prediction. O-D IR sensors provide
numerous advantages to predict the human target’s next
position for precise tracking. O-D images provide 360-degree
vision for the robot so the target can be tracked continuously.
The thermal imaging feature of the O-D IR sensor provides a
light independent observation of the target scene. The light
independent observation and the 360-degree vision present an
advantage for the robot by providing nonstop tracking of a
target. Utilizing a human body heat signature is another
advantage of O-D IR sensor which yields an easily obtained
human target oriented detection. Since the other objects can
provide an inconsistent heat pattern, the tracking of non-human
targets delivers unsuccessful results in the complex texture of
thermal images. Thus, the O-D IR sensor can continuously
detect and track the human target in this complex texture of
thermal images. However, O-D IR sensors have not yet been
widely used because they have several disadvantages as well;
O-D IR sensors have noise, low frame rates, and are quite
costly. Since the IR sensors provide low resolution images,
noise, and low frame rate combined causes high prediction as
well as tracking error. In order to increase the accuracy of the
predicted target position, we use a Maximum A Posteriori
(MAP) based Curve Matched Kalman Filter (CMKF). CMKF
improves the prediction accuracy for short term tracking;
however, the advantage of continuous tracking with the O-D IR
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sensor becomes a disadvantage with its increasing
computational time of CMKF approach. The low resolution and
frame rate of the O-D IR camera causes a higher prediction
error with the current visible band based methods since they
cannot handle O-D IR images. Thus our method is necessary to
overcome the higher error. MAP based CMKF helps to improve
the prediction results and decreases the increasing
computational time for long term tracking. We will look at the
O-D IR view to predict the precise target position and tracking
it in a faster manner by MAP based CMKF.

The 360 degree view of thermal images for target tracking
are obtained by a single O-D IR sensor, mounted on top of the
mobile robot, as shown in Fig. 1(a). O-D images for the tracking
process are taken while the target is in motion. Fig. 1(b) shows
a closer look at the O-D camera used in our application and the
configuration of its parts. Fig. 1(b) also shows an O-D IR image
of the target in the scene. The spherical mirror reflects rays from
objects towards the camera sensor and camera sees itself in the
middle of the O-D IR image. The camera sensor is placed on
the mirror’s z-coordinate axis.

Our work shows that the fusion of target tracking for short
and long term modified for the far IR view of targets with the
curve matching based tracking minimizes the tracking error and
time. Behavior-based tracking for the human target is examined
and the target position is estimated by Curve Matching (CM)
and by Kalman Filter (KF) for short term target movement. The
human target’s behavioral movement is considered so that we
can analyze the human target’s trajectory history and its
walking behavior. In this period, analyzing movement helps our
method to decide what kind of possible path the target can
travel. For the recent short term trajectory, the walking behavior
of the human target is continuously modeled by the CMKF
method during the entire path progression of the target. The
combination of these methods is updated by a MAP estimation
based statistical analysis for long term tracking. The
contributions of our human behavior-based method are
decreasing the prediction time of target position and increasing
the accuracy of prediction for the next target position while
increasing the tracking view and lighting conditions via the
view from O-D IR camera.

The organization of this paper is as follows: In Section II,
related works are discussed. Section III explains omni-infrared
camera data. Target tracking via omni-directional Thermal
Images is proposed in Section IV. Then, the experiments are
given in Section V. Finally, Section VI presents the conclusion
and future work.

II. RELATED WORKS

We cover relevant studies on target tracking for mobile
robots with a 360 degree thermal imager on a mobile robot. The
following subsections will first describe target tracking through
mobile robots in Section II.LA by comparing representative
prediction methods. Then we explore, in Section II.B, human
tracking methods based on their algorithms in order to get better
results in terms of tracking than those discussed in previous
methods [1]-[4].

A. Target Tracking via Mobile Robots

For various years, human behavior-based target tracking has
had an enormous increase in research and popularity [5], [6].
Prevalent target tracking interest has been for the human body;
there are several existing methods: processing 2D or 3D
reconstructed images by Normal Kalman Filter based methods
[7]-[13], or by manipulating several sensors, or laser-based via
on-board laser range finder [10], [14], or by utilizing an ordered
Kalman Filter [9], or by quaternions [15]. Several human
features may be employed [16], [17], for tracking, likewise the
robot’s placement in the environment can be used for tracking
as well. Some other works have been applied: For detection
and classification of abnormal movement [18]. The ability to
recognize a human from afar through motion energy mapping
[19]. In order to detect movement, extraction features are
applied spatially and through chronological templates [20].
Target activity recognition is attained by a sequential silhouette
analysis based on human behavior [21], [22]. But, not one
algorithm implements a technique such that the robot is trained
to mark and learn the target’s trajectory.

Target trajectory application in some studies has shown that
robots may be trained to learn from a target’s motion as in [8],
[23], [24] and then tracking the target’s path [12]. Other
research for unfamiliar environments are modeled by a robot as
in [25], [26]. However, any prediction and estimation
algorithms of a target’s trajectory have not been applied to those
methods aimed at target behavior analysis. Table I displays the
details of the three different tracking methods that we will focus
on for our target tracking methodology; Curve Matching,
Kalman Filter, and Maximum A Posteriori based method in
conjunction with sensors and prediction accuracy.

B. Human Tracking Algorithms

Curve matching based tracking has various applications in
the field of robotics. The most common methods in curve
matching is recognition of some known curve from images, and
tracking these corresponding paths [27]-[31], whereas [32]
does not utilize any parameters in order for it to record images
by the elasticity theory. Also, [33]-[37] are responsible for
seeking contours in the images to detect as well as categorize
the targets. Curve matching can be achieved with splines,
another extensive area of study [38]-[40]. Other curve
matching studies utilize the polygonal arc methods [41], while
curve characteristics matching is conducted in a curve
measurement of unary and binary [42], Fuzzy Logic in [43], and
Sethian’s Fast Marching method in [44].

The KF consists of an equation pack which keeps the system

TABLE 1
TARGET TRACKING METHODS
Method Camera Se?nsor Prediction
Sensor Requirements Error
Curve Matching [18, IR or
+
27-33, 37-44] Color Camera + Range Moderate
Kalman Filter (KF) [3, IR or .
+
7-13, 45-49] Color Camera + Range High
Maximum A Posteriori Color Camera + Range Low

(MAP) [1,2,4]
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state up to date. The system state is derived from its latter state
which is being extensively used in target and trajectory tracking
[45], [46]. The KF method has access to a universal solution to
a quadratic mean estimation problem in terms of a rectilinear
estimator [47], [48]. The KF based curve matching algorithm,
CMKEF, is another method that checks the reappearance in the
target’s movement behaviors and sections in a certain extent
with the curve matching techniques of [3], [49]. CMKF is a
low computational cost method in comparison to previous
methods.

Maximum A Posteriori (MAP) estimation has been applied
to Kalman Filter based tracking in recent studies [1], [2]. The
MAP estimation method helps to resolve the problem of target
tracking by using the extended Kalman Filter approach such
that it selects the most probable local hypotheses. A bank of
MAP estimation tracking is proposed in [1]. The method
introduces a solution to the linearization problem caused by
extended Kalman Filter tracking. The least probable hypotheses
are pruned to control the computational cost. The method
proposed in [2] is another multi target tracking method from a
moving camera. A range sensor and particle filter is used to
detect the moving targets and distances then the tracking
problem was solved by MAP estimation. In this method, both
target and robot positions were estimated by MAP. An infrared
camera for tracking small target’s is used with another MAP
application in [4].

III. OMNI-INFRARED CAMERA DATA

w, Y ZE is a real world point in space and
P vl s the projection of said 3D point from the

spherical mirror onto an image, as shown in Fig. 2. The point’s
reflection on the spherical mirror has a ray vector of

P, Y Zn & and this ray vector is converted into
another point, p v@, on the image. Equation (1)
calculates the projected image point p v@given by [50],

0 uonosﬂﬁ
. v o (EHin 7 (1)
0 1

where the first term of the right hand side, known as the camera
intrinsic matrix, consists of focal lengths, f,,f,, and the

coordinates of principle point, u,, v,. The angles, [Zand L2,
are calculated by utilizing cylindrical mirror coordinates

rm z, % which include 7, -/xmz B
z, -/Rmz 2 .

sphere center to projection center, is used to find the angle &

and

The parameter L, the distance from the

from (2). The angle, /7, is derived by using the real world point
coordinates from tan@(Y/ X) . It can also be found by using the

mirror coordinates of x,, y, since the direction of the ray

m

vector to the world point and the mirror point is the same.

Center
Fig. 2. Projections of spherical mirror. Unified model for projection of a space
point W, vy zIE to p vl image point. The image shows the
view of the coordinates from the top of the camera.

AL, /(L E)) 2

The angle, [z, is obtained by using the radial distance from

the optical axis to a real world point, » (W x2 [EH? | and the Z
coordinate of the real world point (3). Since the reflection

angles, @ and C, on the spherical mirror surface are equal,
another relationship between the angles, /i and £, is

expressed as (ZAIG/2 Cin™(r /2, .
(™2 [3,)/ (- [ )| H72 3)
Finding /£, /% and [Z offers us the transition between the

mirror coordinates, P, , and image coordinates, p , which is our

target’s position from experimental data set.

The calculation of 3D coordinates of real points based on the
moving stereo is illustrated in Fig. 3. The improved information
of low resolution infrared images helps to enhance the tracking
of objects. The 3D target coordinates for precise target tracking
is obtained from our previous work, n observation points are
used to calculate the target coordinates. The number of
observation points, »n, is adjusted with respect to the
experimental results.

First observation Xﬂ, Second observation
point

point

Fig. 3. 3D reconstruction from moving stereo.
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The solution of equation (4) gives two depth values (z,,z,)
by utilizing of the

Pm,l Eﬁ 1 ym,l Zm,l % and Pm,2 Eillé:% .2 ym,Z Zm,Z %
from both images. The calculated world coordinates of the
feature points, p,, El Y 21@ and  p,, A ZZE

are found from the middle point of those depth values. If the
middle point depth value is calculated by x,, and y,, coordinates
of the reference image, 3D coordinates can be obtained for each
triangulation step. The reconstructed points are plotted in a
form of a point cloud in Fig. 3. Any change to the target’s 3D
coordinates can be tracked by our proposed tracking algorithm
more precisely.

ray vectors mirror coordinates,

Q)

where R is a 3x3 rotation matrix and 7 is a 3x1 translation
vector between two camera positions. The dot product operator,

<3 x1,3 x1> , utilizes two 3x1 column vectors and a 2x1 column
vector is obtained for the depth values of two feature points.
Mirror coordinates are normalized so that they do not have units

and rotation matrix and translation vector provides the units for
real world coordinate, given in (5).

e, [ (r.[Bp, )@@ e, . 2, ){p,,.7)
[ N LA e AE )

FO
ER
FO

R N [ _—

] )
e[ (R, 1) B (Be, ) (R, B,
= |Gk 5. e, e, )

After the depth coordinates are obtained from (5) by utilizing
the transformation information, the coordinates of the target are

attained as p,, EIY y z@ from the average triangulation

results.

IV. HUMAN BEHAVIOR-BASED TARGET TRACKING VIA
OMNI-DIRECTIONAL THERMAL IMAGES

A new method of tracking targets from images from an O-D
IR camera is implemented using the behavior analysis based
tracking. Nonlinear movement of the targets makes the
requirement for the infrared O-D images significant for
behavior-based and long term tracking in order to make a
precise prediction in addition to providing tracking results. The
advantage of an O-D IR is that it provides for an easier way to
detect a target as well as tracking for a long period of time;
however, visual band sensor based methods have high
prediction error and increasing computational time problems
that make tracking difficult, making our method necessary. We
are developing a new tracking algorithm for O-D thermal
distribution in the following three steps; First, behavior learning
by using Curve Matching (CM) in Section IV.A. Second,
Section IV.B, prediction for short term tracking. Then, long
term tracking with Maximum A Posteriori (MAP) estimation in
Section I'V.C, and finally, criteria to follow a human target from

e
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Fig. 4. Near target position is selected for trajectory history analyses.
a mobile robot in Section IV.D.

A. Behavior Analysis

For human targets, we considered the data sequences of
longitudinal trajectory rather than a static scene. For the first
behavior analysis, a nearby target is detected and separated
from the background, Fig. 4. The human position trajectories in
the video sequences are determined by assembling the extracted
features described in a static scene of O-D reconstruction (as
new cases are accrued over time into multiple frames).
Behavior learning is acquired from the patterns of target’s
trajectories in an O-D thermal distribution. The human target’s
behavioral movement is the algorithm’s main criteria for
making a decision. The next movement of the human target
considers both its present movement, and the prior walking

Pm (I)\X,,,,J',,,

“ Pm (]')|Jcm=‘;|;“|

(@)
e Flrs..t
Past Trajectory ~ Position

(b
Fig. 5. Bearing tracking, a) O-D angle trajectory curve of the target, b)
unwrapped image trajectory of long term and current trajectory of the target.
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Fig. 6. Distance behavior analysis from 3D reconstruction results.

behaviors of the target’s entire trajectory in the short term
prediction window.

The target’s position on the O-D image is recorded for the
bearing tracking first with respect to the O-D geometry
coordinates which is given by the angle, /Z. The starting point,

Q, is the target’s position angle from the first image, C is the
starting point of the current motion of the target, and C is the
last position of the target on the last image seen in Fig. 5 (a).
We converted an O-D curve to an unwrapped image trajectory
line given in Fig. 5 (b). O-D image angles, C, are calculated

from the horizontal, x, , and vertical, y, , coordinates of P,

mirror coordinates for the angle prediction process (6). The
image trajectory positions are obtained from the horizontal

coordinates of P, (¢) until, p, (¢), the last pixel position of the
entire movement, at time ¢, and p.(m) is the last position of
the current motion trajectory.

[Mhan™ )/, (©)

Target distance tracking is applied to a current position to
find the best recent distance of the target, in Fig. 6, when we
have the distance value from each reconstruction step. The
calculated distance coordinates, z(¢), are used from B, (¢) and

P.(m) strings for the entire distance and the current distance

values of the target. Distance behavior analysis results will be
combined with the bearing behavior results and will be sent to

TABLE II
CURVE MATCHING ALGORITHM

For human behavior modeling via curve fitting

B, (t) « Past trajectories;

P.(m) « Current trajectories;

Match « Find F.(m) in F,(t);

Assign the best curve modeling to evaluate F.(m) in B, (t)

Length «— Find the best length of the match;
Frequency « Frequency of the match;

Learns the curve string sequences of the target behaviors for prediction.

Target’s last
positionat

Target's first

2 position
time t ==
. Robot
F@ ..
F(0)
h ¥
1 r:* .............................. (1) P IT—— e

Fig. 7. Curve Matching for behavior analysis.

F,(t) and P.(m) strings, then (7) and (8), for the curve

matching process.

The CM method [3] acquires the motion characteristics of a
human target by modeling the movements of a human through
the mathematical CM equation in order to relate the target’s
movement at the precise instant it happened to some similar
motion in the past, Fig. 7. Table II shows the learning algorithm
CM. For modeling the behavioral movement of the human
target, we consider two curves, the first curve is used for the
target’s whole trajectory from the beginning of its motion or the
target’s past trajectory curve, and the second curve is used for
the target’s current trajectory or the target’s current trajectory
curve. The current target’s curve in the trajectory represents the
recent walking behavior of the human target. Similarity
detection of a current target curve is searched in the target’s
whole trajectory. In order to use these trajectory curves for a
similarity search, we constructed two trajectory strings from the
curves, the current curve string £.(m) and the whole trajectory
string B, (¢) respectively. The matched part of the whole
trajectory string, £, (¢), with the current string, P.(m),
provides the time length of similar movement characteristics of
the target. The matched part of these strings are taken from the
last position of the target, the last element of the string £, (¢) .
The two empty strings are beginning to be filled with the
target’s positions from when we start the tracking mission of
the robot. The target’s entire trajectory is constructed as the past
curve in string F,(¢). The specific length of the entire

trajectory string F, (¢) is matched with the recent movement
string P.(m), and this is considered a matched curve. If the CM

algorithm cannot find any matched part in these strings, the
current curve string P.(m) 1is restarted as an empty current

curve string. The strings B, (¢) and P.(m) are represented by;
BOLCD,M p,@ - pOF (7)
P(m) Epe () pe(2) pe(m] (8)

The human target behavior-based modeling utilizes the
targets recent walking behavior in the interested trajectory. The
matched parts and the number of matches during this period
models the target behavior to make a decision for the future
position of the human target according to this walking behavior
model. The weight of CM represents the recent behavioral
walking of the human target in the trajectory. The position
coordinates in the strings are searched and a weight for CM is
determined by two criteria; the length of the match, and the
frequency of the match in its history. The CM method uses the
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Fig. 8. CMKEF estimation of adjusting each short term period tracking of the
target.

weight from this search with the given criteria and the equation
for the weight of the CM framework is shown by (9).

lC hed .
@ . f C strlng) :;:! .) ' (9)
(2] ‘c,string (S F

is the length of the exact matched part in the strings,

C,string

/

C,matched

/

C,string
sigmoid function to keep the weight bounded, and the amount
of matched strings is § . The final weight of the CM algorithm
is obtained from (9).

The position of the target from the CM quadratic curve fitting
and the weight of the CM is multiplied to find the next target’s
coordinates. The most recent target coordinates are used for
tracking by CM and estimation of the next position using the
CM weight.

is the length of the current curve string, while f is the

B. Prediction for Short Term Tracking using Curve
Matched Kalman Filter

In Step2, the next position of the trajectories are estimated
by the trained patterns in Stepl. The learning space along with
longitudinal analysis is now time-indexed as a possible
expansion of the prediction window size. After obtaining the
recent position of the target, the trajectory is analyzed for its
previous path history to estimate the future position information
of the target. This prediction is used to update the target’s
position which allows for the possibility to forecast the
subsequent behavior of a human target from data sequences

TABLE III
CURVE MATCHED KALMAN FILTER MODULES

Modulel Calculate the mixing probabilities.

Module2  Form the weighted average using the mixing probabilities.
Module3  Create CM state matched filtering.

Module4  Update CM state probability.

Module5  Estimate and covariance combination.

with time by comparing incoming online data sequences [t, t+1]
and the existing data sequence [0, t]. Curve Matched Kalman
Filter (CMKF) [3] is used in our proposed method as illustrated
in Fig. 8. The KF method aims to track the motion of a target
by accumulating the amount of CM states that depend on the
extrapolation. Table III is representative of the modules on how
the CM makes relation between the target’s prompt movement
and any related movement in the entire trajectory, and this
makes an improved extrapolation for the KF framework over
the time sequences. Modulel calculates the probabilities of
each method and Module2 forms the weights of CM as well as
KF. Module3 creates the matched curve from the target’s
trajectory and Module 4 updates the matched curve probability.
Module5 estimates the next position information of the target.
The flowchart of the CMKF is obtained through MAP by using
n images for target positions and tracking from those
reconstructed view can be seen in Fig. 9.

KF predicts the next position at time (#+1) for the system
model with the following equations

ol o
ytﬂ]ﬁohﬂl (11)

where x, is the velocity and the position vector at time ¢, u,
is the acceleration, y, is the measured position of the target. C
is the process noise and v,is the measurement noise. If we
define transition matrix A Eti_l dt; 0 1|_§, input matrix
B 2/ 2; dt&, measurement matrix J 0l when the
measurement of the position is done every dr seconds. KF

equations K,, the Kalman gain, %, , an estimation of next

position can be given as,

AN o (12)
m EA %, BB, (R, (v, 02, (13)
G L 1" (1 R )G AT (14)

where G, is the estimation-error covariance for the system, W
is the measurement noise covariance, Q is the process noise
covariance of the system. Exploiting the greater predictive
power of the higher feature space, online data sequences
effectively update the CM described in Stepl. The update is
used to identify the future curve parameters at time 7 [:d], by
minimizing the prediction error, called the Normalized Root

n
Images

3D Target Position

[ Curve Matching ] [

Kalman Filter ]
Coordinates

Coordinates

CMKF Weighted
Coordinates (15

[ MAP Estimation (21) ]
Fig. 9. Flowchart of Curve Matched Kalman Filter via MAP.
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Mean Squared Error (NRMSE), between the predicted and
actual position trajectories. The weight of KF for the Curve—
matched KF process is calculated from the Curve Matching
algorithm weight by@ Em . The target coordinates are

applied to KF and the next position of the target is obtained by
(13). KF weight @ is multiplied by the estimated KF

coordinates to find the weighted KF coordinates for the short
term tracking process.

P ¢ E) EE P, ¢ Y EET P, (D) (15)

After finding the accurate estimation of CMKF, the MAP is
applied to the trajectory of the target. In order to find the next
position of the targets, the MAP estimation will become more
reliable and is then applied proportionally to the CM weight.
This proportion is calculated from the length of the CMKF
frame. Thus we can predict the lost data depending mostly on
long term prediction than short term CMKEF.

C. Prediction for Long Term Tracking using Maximum A
Posteriori (MAP) Estimation

The MAP estimation method is a probabilistic estimation for
the next target’s position for their entire trajectory path, which
we called long term tracking. CMKF prediction has an error
problem and an increasing computational time problem, since
this approach only considers the limited or short term
trajectories. MAP estimation method helps to solve this error
and time problems for long term trajectories. We would like to
increase the horizontal time window by considering a longer
window size.

The combination of MAP and CMKEF is used in our proposed
method to find the minimum error and the best estimation of the
target’s position. Next target position is first predicted by the
KF method with respect to the CM for the last matched
trajectory part. Then the MAP estimation is applied to the whole
trajectory with all the matched trajectory curves in the past.
Thus, the next position is predicted by a probabilistic estimation
approach rather than solely searching for the last matched
curve. The entire trajectory is represented by P, (¢#) and the

characteristics, such as weights and probability, of CM for all
CMKEF frames. The CMKEF frames are represented by F.(¢) for

every current trajectory in that instant with the prior of matched
curves, P.(0). The entire and the current human target

trajectories were substituted for all MAP estimation processes
with the equation P(B.(7)| B, () [EF(B. (0)P(B, (1) | P.(2)) .
We want to maximize the left hand side to get the best weight
of a matched curves in the entire trajectory
argmax [P(P.(1) | P, (¢)) . The right hand side of the equation is

Fe(n)

also maximized similarly argmax P(B.(0))P(B,(1)|P.(?)).
Fe ()

The approximations to obtain the weight of CM for the next
position of the target are calculated by (16), while we maximize
the product of the entire trajectory and the current trajectory
with the prior, P.(0), in the short term frame. The optimum

frame length will be specified when the minimum error is

satisfied by (17). _
P(P.(1)| B, (1)) (ER(E. (0))(Pn- M|R)  (16)

The size of the CM and the KF frame for short term tracking
is determined by the prediction error when it is less than the
predefined threshold value as the estimation process is initiated
from the beginning. The time length of short term CMKF
tracking frames is calculated by (17) in order to keep the short
term frame on the most recent part of the trajectory. The running
average prediction error during the frame is calculated from the
difference between the CMKF prediction and the actual
position. This short term frame helps to keep the prediction
error minimum while the prediction time is bounded.

[, 0 B,0L
[5]

: l frame
/ rg min 4
Ijmnm[—_LbJ] lfmme

Then the weights of each frame are stored from ¢ [l to the
end of the last predicted target position corresponding to the
sample of time ¢, Fig. 10. The stored weights of CM and KF
aid in finding the posterior probability of the subsequent
weight. Thus, in addition to the prediction of the following
target position, we also predict the weight of the combination
of two estimation methods one step prior to its application. The
process of the moving CMKF frame along the trajectory and the
MAP estimation applied on the whole trajectory is given in
Fig.10. The Maximum A Posteriori estimation is given by the
Bayes’ Rule equation while MAP estimates the best application
of CM to the KF frame by  maximizing
P(B. ()| B, (1) EP(R. (0)P(B, () | B. (1) /P(B, (1)) . The
Posterior equation involves prior of matched curves in the
trajectory history, which is the first term of the numerator in
equation, and the maximum likelihood, the second term of the
numerator. The denominator is evidence for the change in
weight of the whole trajectory.

The weight of CM, q,(t), is updated according to the

maximum result of the posterior probability by (18);

@ ) Erg max P(P.(1)| B, (¢))

Fe (1)
[re max P(E (0)}L""(Pu-(f )| P.(2)
Pe(0) P(B, (1))

(17)

(18)

MAP Estimation
2 ()| Br () =B(R.(ON] [B(B- D | B-(2))

it

[t-/] [t] [t+1]
Fig. 10. MAP estimation scan the whole trajectory and CMKF frames moving
through target trajectory to estimate next position for best weighted update for
Curve Matching Algorithm and KF.
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Since the evidence portion is not dependent on @(r) as

well as the result of the maximization process, we then can drop
the denominator portion.
L () r% max P(P.(0)E(B, ()| P.(£))
C . (19)
[Frg max P(2.(0) [ L2 P(2, (i) | P-(1))
Fe () I
The logarithm of the posteriors can be used to make the
problem easier, so we can rearrange in the following form;

@ ) rg max

Fe(n)

bg P(B, (i) | P-(1)) (ibg ?(PC(O))EQO)

Predictive target positioning may sync with the position of
moving target, while minimizing the time delay of tracing the
target. Long term tracking and reliable target following are
desired to maintain an acceptable prediction accuracy so that
the feature space can dynamically adjust to changes in the
learning phase for the duration of the longitudinal sequence.
The weight of CM is adjusted by MAP for long term tracking
results and is applied to CM and KF separately by using (21).
The estimated coordinates, P,,,, (¢ (£} , of the target is obtained

more precisely.
P, (t B T (0, ¢ DELTT 0H, D @

We propose a simultaneously iterative learning and
prediction for consistent field testing. The prediction criterion
for simultaneous learning provides the error variations for the
time horizon window of the data sequences. We determine the
applicable prediction range for the long term data that will
minimize the prediction error. The horizontal prediction
window will be iteratively applied to the updated human
behavior (described in Section IV.A) for the incoming online
sequences for predicting the future positioning of robot
trajectories (described in Section IV.B).

D. Criteria to Follow a Human Target from a Mobile Robot

Target motion analysis helps to extract the target’s pixels in
the image sequence for the reconstruction of the target view.
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Fig. 11. Velocity change criteria of angle and target position during the target
motion.

TABLE IV
CRITERIA OF TARGET TRACKING

For target motion variables
B (@) I:[.k v, 2], Qe Robot’s motion;
P, () Ek, y, 21", [ < Target’s motion;
Extractione— Find P, in Fy;
Assign the best target 3D position B, ;

Evaluate target’s motion characteristics;

min @T, R‘in @,@ ‘l:e Find the distance of the target;

Vdjﬂw (R AL ) [e Find the angular velocity of the target;
v, CIEX, / |__L|1 Cik, (AT [l Find the velocity of the target;

The robot’s movement will cause the positions of feature points
to change all along the images as well as the pixels in each
image. In order to track the target and the distance information
of the target, target’s feature points and feature points of the
other objects must to be sorted. We will use three criteria to
obtain more detailed information about the target and identify
the target in an O-D IR view. Table IV shows the procedures of
the target’s tracking steps.

Distance tracking is one of three criteria needed in order to
track the target’s trajectory. The coordinates of the target
provides the depth information of the target. The current
target’s position, B, , and robot’s current position, P, , provide

the actual distance from the target. X, , the location of the

target and, X,, the location of the robot are used for the

distance in x, y axes, |XT,R| @DW@| w @Er , E

The recent coordinates of the target are used for inputting the
distance and is then tracked by MAP estimation, Fig.10.
Predicted and actual distances between robot and target are used
for validation of the prediction for target distance tracking.

The second criterion is angle tracking of the targets such that
the direction of the robot is based on the targets. The angle of
the target, Q, in the O-D image provides a value from 0 to 360

degrees of the target position, l/E L5 V/E . Those angle values

are tracked and then are predicted in order to find the minimum
error of V=, angular velocity of the target, for prediction steps,

Fig. 11. Angular velocity for that instant can be calculated from
the angle position difference of the first and last position of the

target, VLR C CEVTE VAR ) [

The third criteria is the velocity of the targets from the
predicted positions. Fig. 11 shows the target velocity, V;,

calculated by using the actual position of the target at the first
its final movement moment,

at
E]]DW,,@| w E E@ @0 E Predicting  the

and
X0
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target’s velocity will provide an acceptable way to approach the
target and having the robot follow the target while
simultaneously adjusting the robot’s velocity to track its

movement, ¥, GIE, / @t (X, EIHE‘! B

V. EXPERIMENTS

The experiment section is organized in the form of six
subsections: First, in Section V.A, behavior analysis and
hardware information with the data sets are used for tracking is
given. Second, prediction for short term target tracking is
applied and compared with respect to the time length of the
prediction period in Section V.B. Third, prediction for long
term target tracking using the MAP estimation method is given
in Section V.C. Then, target motion analysis for evaluating
various human target behaviors is in Section V.D. And, an
analytical comparison is done to other studies in Section V.E.

A. Behavior Analysis and Hardware

The hardware for target tracking consists of a mobile robot
platform with three main components. First component is the
mobile robot Pioneer 3-DX, equipped with a PC for
autonomous control. Second component is a Windows 7
computer with an Intel i7 processor used to perform image
processing and tracking algorithms with Matlab. Third
component is the RemoteReality O-D IR camera sensor for the
acquisition of 360 degrees O-D IR images with 65 degrees of
vertical field of view (FOV). The O-D IR sensor provides gray
level images with a resolution of 640x480 pixels and the images
are taken by a 30Hz imaging frequency of an O-D IR sensor.
The mobile robot platform equipped with a windows computer
and an O-D IR sensor is shown in Fig. 1 in Section I. The O-D
IR camera was calibrated by the O-D camera calibration
toolbox [51] using a heated grid pattern since the calibration
toolbox was only created for visible-band cameras. The grid
pattern is constructed by a silver aluminum tape in order to
utilize heat reflection, dependent specifically on the
temperature of the tracked objects. The detection of feature

Fig. 12. Representative imaging conditions, (a) short term, (b) long term, (c)
slow movement, (d) fast movement

TABLE V
IMAGING CONDITIONS
Imacin Covered Total Frame Average Target
gne Area (m?) Size (images) Velocity (m/sec)
Short Term 6.4 20 1.8445
Long Term 80 475 1.432
Fast
Movement 80 384 1.867

points and human target in the images was done by corner
detection in Matlab’s computer vision toolbox with respect to
Eigen values of the feature points.

The imaging conditions included have four different types,
a) short term, b) long term, c) slow move, and d) fast move. As
shown in Fig. 12, the first data set was taken for short term
tracking, 20 images, in a relatively small area and was over a
short distance. The second data set had a longer time
observation with a slow moving target, with 475 images, in a
larger area. The third image sequence was also taken in a large
area, about 80 m?, with a short term recording period for a faster
moving target. The last data set includes a fast target with long
term tracking purposes, 384 images. The characteristics of the
imaging condition for the data sets of short term, and long term
along with slow and fast movement, can be seen from Table V.
The sampling of the video recording time was set to five images
per second.

The Curve Matching method for trajectory estimation was
used to improve the tracking error of a human target by a mobile
robot. The O-D IR images provide additional information to
select the human regions based on a thermal signature of the
human body. The pixel values corresponding to the human
body temperature are specified in order to make a decision for
the detection threshold of the human body regions. The feature
points of the human target were calculated by the SURFfeature
Matlab function in the unwrapped O-D images. Those images
were also converted to binary images from a gray level image,
based on the thermal signature of a human, to get the human

0 50 100 150 200 250 300 350 400 450

Fig. 13. O-D data set used for tracking in unwrapped (panoramic) O-D image
format. The detected target is shown in Frame 7, 225, and 428. The color shows
the trajectory of the target according to frame number in the color bar.
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Fig. 14. Original unwrapped images from Frame 7, 225, and 428. Detected
target features in the binary unwrapped O-D images during the targets
movement.

target’s position information rather than the coordinates of the
noisy feature points in the background. In order to avoid losing
the human target during the tracking process, the five strongest
features of the target are selected. Those feature points were
detected with respected to the difference in two consecutive
images. The detection process for the strongest feature points
was applied for the moving human target region. Thus, we
avoid the detection of the objects which have similar thermal
signatures to the human body while the static objects were
ignored from the scene. In case of losing any of the selected
features, the remaining feature points overcome the
misdetection problem of the target’s position. Since our method
is based on the human motion behavior, any unexpected error
or mis-tracking is predicted correctly in the next process. For
evaluation of our method, we selected only one target which is
closest and giving better features for detection. The first
detected and tracked features of the corresponding target is
considered as the main target. However, we can apply our
method to multiple targets after detection and proper
identifying each target in the O-D images. The position of the
target in the Frame 7, 225, and 428, while it is moving is shown
in Fig. 13. The target’s positions from every image frame are
given on each image with the corresponding color to show the
entire trajectory of the target. The color bar represents the
corresponding color of the specific frame number. Dark blue
represents the first position of the target while the dark red is
the last target position in the trajectory. In order to detect these
target positions, the moving human target has been detected in
the original unwrapped O-D images, shown in Fig.14. The
strongest feature points of those images are also shown by green
circles on the binary image in Fig. 14 for Frame 7, 225, and 428
from the image sequence. The human region was detected by
utilizing the thermal signature of the human body. Objects with
the similar temperature were also eliminated by applying the
detection algorithm on the regions that have changes from a

TABLE VI
CAPTURED DATA SETS
Imagin Covered Area Total Frame Average Target
ing (degree/m?) Size (images) Velocity (m/sec)
Omni-directional
Data Set 360/ 80 475 2.102
PersPeCStge Data 60 /134 400 1432

previous frame. Table VI shows the data set information in
greater detail.

The coordinates of the target in each images of the data set
was calculated by the strongest feature points and those
coordinates for the image sequence were used to estimate the
trajectory of the target while in motion. Those detected target
coordinates in the images were considered as the ground truth
of the target image position. After the prediction process, the
prediction result and those detected target positions were used
to calculate the prediction error. The ground truth of the target
was done by physical measurements from the target to the robot
for the evaluation of our method. Linear regression based on the
Curve Matching algorithm was applied to those coordinates and
the estimated curve was obtained as the result. The actual data
is given by a black line in Fig. 15 and estimated values of this
position are given by a blue line as the CMKF prediction in Fig.
15. The position of the target is given in the horizontal pixel
coordinates of the human target in the unwrapped O-D images.
During a specific term, the target’s current curve matches a
prior curve as seen from the error between an actual and an
estimated curve. The result was the motion of the target
includes the position with respect to beginning coordinates, this
portion of the curve was predicted accurately as we can see in
Fig. 15. The computational time for estimating the subsequent
target coordinates using CMKF is given in Fig. 17.

The result was the motion of the target including the
position’s angle with respect to the beginning coordinates, this
portion of the curve was predicted accurately as we can see in
Fig. 15. CMKF had an average error of 0.7357 pixel with
respect to the position information on the trajectory path. This

320 T T T T T T

— Actual Position
— CMKF Prediction

280 1
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Fig. 15. The trajectory prediction from CMKF for O-D IR data set, Short
Term dataset.
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error was tolerable for the targets that have nonlinear motion
characteristics. However, computational time was getting
higher for the later portion of the trajectory. The computational
time for estimating the next target coordinates by CMKF is
given in Table IX.

B. Prediction for Short Term Target Tracking

In this section, prediction for the tracking method was
applied to short and long periods with a slow as well as fast
target images from the O-D IR camera. First, the robot was
driven in a laboratory condition to take images of the target with
a slow target imaging type setting. Then, the robot recording for
fast movement of the target for long and short periods aimed at
tracking the target in a larger area as a more complex data set.

TABLE VIII
TRACKING ERROR MAXIMUM A POSTERIORI (MAP) ESTIMATION
Imaging Angul.ar Angle Targgt Predl.c.tlon
Dataset Velocity Error Velocity Position
(degree/sec) (degree) Error (m/sec)  Error (pixel)
Short Term 2.0869 0.1993 0.2425 0.7075
Long Term 1.4198 0.1693 0.0122 0.6586
Fast 1.8934 02136 0.0268 0.8309

Movement

TABLE VII
TRACKING ERROR USING CURVE MATCHED KALMAN FILTER
fmaging Angul.ar Angle Targ?t Pred¥c4t10n
Dataset Velocity Error Velocity Position
(degree/sec) (degree) Error (m/sec)  Error (pixel)
Short Term 24217 0.3905 0.5772 1.0149
Long Term 1.4794 0.1891 0.0474 0.7357
Fast 1.9591 02232 0.0924 0.8682
Movement

The tracking results of the target from short and long term
datasets is compared and the average prediction errors are given
in Table VII. When the target was moving very fast, the
prediction error was increasing. The best result was obtained
from the slow movement with a long term dataset, 0.7357 pixel
for the CMKF tracking method. However, the prediction error
remained stable for much longer times. The average prediction
error increased to 1.0149 pixels for the target’s short term
observation with an actual speed of 1.8445 m/sec shown in
Table V and a predicted speed of 2.4217 m/sec, given in Table
VII. The average prediction error provided a moderate value of
0.8682 pixel for the fast moving target of the long term dataset
from the observed images. The prediction of the target’s
velocity was obtained as 1.9591 m/sec with an acceptable
velocity error of 0.0924 m/sec while the target moving fast for
a long period of time.

The Kalman Filter method was applied to the same data set
without the Curve Matching algorithm. The results of the KF
method provided a higher prediction error than the CMKF
method with a stable average for computational time. Also, the
standard deviation of error was high since the KF method
contributed significantly higher prediction error. CMKF had
around 98 percent better standard deviation, when the
nonlinearity of the target’s movement was high. Computational
time was stable and higher for KF, but CMKF computational
time was increasing as the tracking duration was increasing.
CMKEF gave improved prediction results with around 25%
lower prediction error than the KF method.

C. Prediction for Long Term Target Tracking

We used three different datasets, short term, long term, and
fast movement, and they were compared to find the minimum
prediction error for the tracking the target in a large area and
small area. First, short term tracking used the MAP estimation

based prediction method and the tracking time has decreased;
for long term tracking by applying the MAP estimation to see
the differences for those two different tracking results. The
datasets with different target velocities were utilized for the
long term tracking process to obtain the minimum prediction
error. The short term dataset with the fast target movement in a
6.4 m? area while the long term dataset area with slow and fast
target movement in a 80 m? area were used, given in Fig. 12,
respectively.

CMKEF increased the prediction accuracy for next target
position with respect to KF by around 60%, however, the
computational time was increasing continuously and also after
a specific time period prediction error remained stable. MAP
estimation made it possible to adjust the weights of CM and KF
along with the predicted weight from MAP, the next target
position was calculated with higher accuracy and faster
computational time.

MAP estimation predicted the next target position calculated
with 10.48% higher accuracy and faster, Fig. 16. The human
behavior-based method predicted the possible unexpected
values from the sudden movement of the target and separates
them from the human’s walking behavior in the long term
trajectory. Those sudden movements of the human and possible
changes in the target’s movement direction in the trajectory are
given in the zoomed window in detail. We used the actual
position of the target from the detected image points in the data
set images. The given input, actual position, and the predicted
position in the next image frame are used to calculate the
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Fig. 16. The trajectory prediction from MAP with O-D IR data set, Long Term
dataset.
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prediction error. It can be seen that our method predicted a
closer target position to a possible human movement. The
prediction difference from the CMKF prediction can be seen
from Table VII and table VIII.

In the fast target case the average prediction error was 0.1723
pixel higher than the slow target case. Thus, this higher
prediction error increased the average tracking error over
20.13% for the fast movement dataset, since the target’s
trajectory had more sudden moves and changes than the slow
movement dataset’s trajectory. The best imaging conditions
were obtained from the long term data set with the slow
movement of the target, 1.432 m/sec shown in Table V and Fig.
12(c). The lowest prediction error for the long term data set by
the MAP prediction case with 100 to 500 images by 0.6586
average value.

The computational time for short term and long term
tracking of different data sets are given by Fig. 17. The time
was considered to track the target’s coordinates from each
image. Fig. 17 gives the slow movement data set’s
computational time along with the short term method, (blue),
and long term method (red) of computational times. The
computational time curve shows that our proposed MAP-based
method took longer to predict the target’s position for the short
time tracking, up to the 127" frame. The computational time for
CMKEF increased and passed the time spent in our method when
the frame number is higher than 127. The computational time
of those reported periods were increasing almost linearly for the
CMKF method. We can see that the time for CMKF nearly
doubled the time consumed from the 200" frame to the 400"
frame. In case of multiple target tracking, our method can be
applied to each target separately after identification of each
target properly. The number of targets will increase the
computational time similar to other methods. The second target
doubles the computational time; however, our method provides
sufficient time to track multiple targets since the computational
time is low enough to finalize the process. Our proposed
method gave a computational time approximately stable for the
same time period. We used the advantage of lower prediction
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Fig. 17. Computational time for long term tracking by using MAP estimation
(red) and CMKEF (blue).

TABLE IX
COMPUTATIONAL COMPLEXITY OF PREDICTION
Slow Fast Average

Duration Movement Movement Prediction

Time (ms) Time (ms) Time (ms)
CMKF 0.1767 0.1467 0.1617
MAP 0.0974 0.0979 0.0976
Difference (%) 4488 33.26 39.64

time from CMKF for a shorter term tracking and kept the
prediction time steady. The use of CMKEF in short term tracking
windows as part of the MAP-based continuous prediction
maintains the computational time with a minimum increase.

Long term tracking by MAP estimation process gave the best
value for tracking with the CMKF frame length of 20 images
and this value was decided to be the optimal length for a CMKF
subset. The CMKF prediction accuracy remained stable but the
computational time was still increasing after the 20" image. We
limited the CMKEF short term tracking window at this point and
decided the final prediction by the MAP prediction to increase
the accuracy and decrease the computational time.

The average computational time for a short term CMKF
frame was 0.1617 ms and was 0.0976 ms for long term tracking
by MAP estimation given in Table IX. Our proposed method
gave 39.64% lower computational time for the prediction of the
target’s next position with higher accuracy. The MAP
estimation method has an advantage of a lower computational
time while the computational time of the CMKF method is
increasing around 50% for every additional 200 images. The
prediction time will be much higher in case of using only
CMKEF prediction for continuous human target tracking. Fig. 17
shows that the computational time of CMKF was 2.5 times
higher than our method at the 450" frame, the linear increase
shows that the computational time difference between two
methods will increase for a higher number of frames. For a
longer tracking process, our method delivers increasing
performance.

D. Evaluation of Various Human Target Behaviors

Distance tracking is applied as the first step. The O-D view
aids the depth acquisition for any orientation of the target with
respect to the robot’s position. The most recent coordinates of
the target are used for inputting the distance tracking process

with the depth value, |X .|, of those coordinates.

Angle tracking the target is the second step of the process. The
angle of the target, Q, is derived from the detected target

TABLE X
EVALUATION OF FOLLOW HUMAN TARGETS
Average Average Average

Motion Prediction Error ~ Prediction Error Prediction Time

(Fast) (Slow) (ms) (Fast/Slow)

a‘ls)tance 0.8309 0.6586 0.0974 /0.0979

Angle 0.2136 0.1693 0.0974 /0.0979
(degree)

Velocity 0.0268 0.0122 0.1298 /0.1305
(m/sec)
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Fig. 18. Angular Position gof the target by CMKF, MAP Estimation.

position in the O-D image. The O-D image provides from a 0
to a 360 degree angle position of the target and those angle
values are stored for the prediction steps, Fig. 18.

sensor are advantageous, but does have lower accuracy as well
as a higher prediction time problem that makes tracking
difficult with the visual band and perspective camera based
methods. We overcame these problems to make tracking work
better with the proposed method. The comparison between the
proposed MAP and the other four methods: A bank of MAP [1],
the Backward Model Validation-Based Visual Tracking (BVT)
[5], the Curve Matched Kalman Filter (CMKF) [3], and the
Extended Kalman Filter (EKF) method is shown in Table XI.
These methods are calculated with respect to the average
prediction error, the velocity prediction error, the standard
deviation of the error, and the average prediction time.
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TABLE XI
COMPARISON WITH OTHER METHODS
Average Velocity S?]?:Zg:l Average
Methods Prediction Prediction Prediction
Error (pixel)  Error (m/sec) of Error Time (ms)
(pixel)
Proposed
MAP based 0.6586 0.0938 2.2874 0.0976
tracking
l[vl']AP Bank N/A 9.9527 N/A 03160
BVT[5] 35.620 N/A N/A 125.0
CMKEF [3] 0.7357 0.2390 0.0662 0.1617
EKF [3] 1.0121 N/A 5.2748 0.4255
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Fig. 19. Angular velocity Llof target by CMKF, MAP Estimation.

The actual velocity of the targets was calculated from the
target’s stored positions during the movement of the target. The
predicted Target velocities from the CMKF and the MAP
methods showed that the MAP had predicted the target’s
velocity with 71.0% lower error than the CMKF method, shown
in Table VII, Table VIII, and Fig. 19. Tracking of the angle
provides improved tracking results of 10.48% compared to the
short term tracking results, Fig. 18. Table X shows the tracking
error of the distance, the angle and angular velocity of the
target, [7 in terms of slow or fast moving target. For the slow

target, the velocity prediction provided 54.47% lower error than
the fast target.

E. Comparison to Other Studies

Comparison between the MAP and the other four tracking
methods is given by the average prediction error, the velocity
prediction error, the standard deviation of error, and the average
prediction time for this section. The benefits of the O-D IR

The results of all five methods indicated that our proposed
method improved the prediction of the next target position. The
standard deviation of error has improved by 56.63% with
respect to the EKF method. The velocity prediction error for our
method was 60.75% lower than CMKF prediction the target
velocity and significantly lower than velocity error of A Bank
of MAP. The standard deviation of error was higher than
CMKEF’s standard deviation of error; however, our proposed
method provided a 39.64% faster computational speed than the
CMKF method. Also, our proposed method gives an additional
computational time advantage for a considerably longer
tracking processes. The average prediction time of our MAP
based tracking method was lower and was significantly faster
than the average prediction time of the BVT method. The long
term behavior analysis prediction error was lower than both the
CMKF and the EKF methods while it outperformed BVT in
terms of average prediction error.

VI. CONCLUSION AND FUTURE WORK

We proposed behavior learning and MAP estimation based
target tracking methods to improve the tracking accuracy and
to reduce the computational time. An Omni-directional IR
camera was used to maximize the target tracking timeframe
with the freedom of lighting and to extend the tracking view by
360 degrees FOV of O-D sensor. The disadvantages of the other
methods for long term tracking, low accuracy and high
computational time, was solved by our proposed MAP based
target tracking method by using an O-D IR camera and utilizing
human behavior and human body features. We evaluated our
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TABLE XII
APPENDIX
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3D Real world point in space
2D image point on O-D image
Principle point of the camera

Distance between mirror center and
projection center

Radius of the mirror

Reflected mirror coordinates of a world point

Ray vector of the mirror coordinates from
first observation point

Ray vector of the mirror coordinates from
first observation point

Radial distance of the mirror point to optical
axis

Radial distance of a real world point to
optical axis

Focal lengths of the O-D camera

Angle between the rays from the projection
center to principle point and image point
Angle of the image point on the image x, y
coordinates

Angle between the vertical axis and the ray
vector from the world point to the mirror
surface

Reflection angle on the mirror

3x3 Rotation matrix

3x1 Translation vector

Calculated target distance from the first and
second observation point

Triangulation result, target’s position.

Entire positions of target in trajectory.

Current trajectory of the target in the time
length of m

Prior of matched curve

Weight of CM, KF, and MAP-based CM
weight

Predicted positions by CMKF, CM, KF, and
MAP

Length of entire trajectory and matched curve

Final and test length of CMKF frame

Constant to adjust CM weight, amount of
match string, and sigmoid function

Kalman gain

Measurement matrix and noise covariance

Transition matrix
Input matrix

Estimation error covariance
Measurement noise covariance
Acceleration, measurement noise
Estimation of KF

Robot’s coordinates and 2D location
Target’s velocity and angular velocity

Angle of robot and target.

method by tracking only one target from one mobile robot and
this method can be used for multiple robots with proper
identification of each target.

For our future work, we plan to utilize the MAP based
tracking with multiple human targets by increasing the number
of mobile robots. The low computational time of our method
will provide more sufficient time for multiple target tracking.
Employment of multiple robots will be used for predicting the
multiple targets’ positions to improve the tracking performance
of the mobile robots.
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