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A : HOrΓ
n (EVCY(Γ),K(R)−∞) −→ Kn(RΓ),

where VCY is the family of virtually cyclic subgroups of Γ, EVCY(Γ) is the universal 
Γ-space with isotropy in VCY, HOrΓ

n (EVCY(Γ), K(R)−∞) is a generalized Γ-equivariant 
homology theory associated to the non-connective algebraic K-theory spectrum K(R)−∞, 
and Kn(RΓ) is the algebraic K-theory of RΓ.

The isomorphism conjecture provides an algorithm for computing the algebraic K-
theory of RΓ in terms of the algebraic K-theory of R. This conjecture was introduced 
in [18] for R = Z and for unital rings R in [1]. When R is H-unital, the isomorphism 
conjecture follows from the unital case by using the excision theorem in algebraic K-
theory [32]. The algebraic K-theory isomorphism conjecture goes back to [21]. There are 
analogous conjectures in L-theory [26,27] and C∗-algebra K-theory [4]. Important cases 
of the isomorphism conjecture have been verified in [18,19,2].

The algebraic K-theoretic Novikov conjecture states that the assembly map:

Hn(BΓ,K(R)−∞) −→ Kn(RΓ),

is rationally injective, where BΓ is the classifying space of the group Γ. The algebraic 
K-theoretic Novikov conjecture follows from the (rational) injectivity part of the iso-
morphism conjecture. By a remarkable theorem of Bökstedt–Hsiang–Madsen [6], the 
algebraic K-theoretic Novikov conjecture holds for R = Z if the homology groups of Γ
are finitely generated.

The main purpose of this paper is to prove the (rational) injectivity part of the alge-
braic K-theory isomorphism conjecture for group algebras over the ring of Schatten class 
operators. As a consequence, we obtain the algebraic K-theory Novikov conjecture for 
group algebras over the ring of Schatten class operators. The motivation for considering 
group algebras over the ring of Schatten class operators comes from the deep work of 
Connes–Moscovici on higher index theory of elliptic operators and its applications to the 
Novikov conjecture [11]. In Connes–Moscovici’s higher index theory, the K-theory of the 
group algebra over the ring of Schatten class operators serves as the receptacle for the 
higher index of an elliptic operator.

For the convenience of readers we recall that, for any p ≥ 1, an operator T on an 
infinite dimensional and separable Hilbert space H is said to be Schatten p-class if 
tr((T ∗T )p/2) < ∞, where tr is the standard trace defined by tr(P ) =

∑
n < Pen, en >

for any bounded operator P acting on H and an orthonormal basis {en}n of H (tr(P ) is 
independent of the choice of the orthonormal basis). Let Sp be the ring of all Schatten 
p-class operators on an infinite dimensional and separable Hilbert space. We define the 
ring S of all Schatten class operators to be ∪p≥1Sp.

The following theorem is the main result of this paper.

Theorem 1.1. Let S be the ring of all Schatten class operators on an infinite dimensional 
and separable Hilbert space. The assembly map
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A : HOrΓ
n (EVCY(Γ),K(S)−∞) −→ Kn(SΓ)

is rationally injective for any group Γ, where SΓ is the group algebra of the group Γ over 
the ring S.

As a consequence, we obtain the algebraic K-theoretic Novikov conjecture for the 
group algebra SΓ.

The main technical tool in the proof of Theorem 1.1 is an explicit construction of 
a Connes–Chern character using an equivariant cyclic simplicial homology theory. As a 
consequence of this explicit construction, we obtain a local property of the Connes–Chern 
character. This local property of the Connes–Chern character plays an important role in 
the proof.

This paper is organized as follows. In Section 2, we collect a few preliminary results 
which will be used later in the paper. In Section 3, we reduce our main theorem to the 
case of lower algebraic K-theory. In Section 4, we introduce a cyclic simplicial homology 
theory to construct a Connes–Chern character. The Connes–Chern character plays a 
crucial role in the proof of the main theorem. We use the explicit construction of the 
Connes–Chern character to prove an important local property of the Connes–Chern 
character for K-theory elements with small propagation. In Section 5, we prove the main 
theorem of this paper.

The author wishes to thank Alain Connes, Max Karoubi, Xiang Tang, Andreas Thom, 
Shmuel Weinberger, and Rufus Willett for inspiring discussions and very helpful com-
ments. In particular, the author would like to express his gratitude to Guillermo Cortiñas 
for his detailed comments about the paper and several stimulating discussions. We would 
like to mention that Guillermo Cortiñas and Giesela Tartaglia have given a new proof of 
Theorem 1.1 in [12]. Part of this work was done at the Shanghai Center for Mathematical 
Sciences (SCMS) and the author wishes to thank SCMS for providing excellent working 
environment.

2. Preliminaries

In this section, we collect a few concepts and results useful for this paper.
Let R be a ring and let R+ be the unital ring obtained from R by adjoining a unit. 

The ring R is defined to be H-unital if TorR+
i (Z, Z) = 0 for all i. The importance of 

H-unitality is that it guarantees excision in algebraic K-theory [32].
If R is a Q-algebra and R+

Q is the unital Q-algebra obtained from R with the unit 
adjoined, then R is H-unital if and only if TorR

+
Q

i (Q, Q) = 0 [32].
The following result follows from [35] and Theorem 8.2.1 of [14].

Theorem 2.1. S is H-unital.
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By Theorem 7.10 in [32], we have:

Theorem 2.2. If R is H-unital, then RΓ is H-unital for any group Γ.

As a consequence, we obtain that SΓ is H-unital.
Recall that a ring R is called Kn-regular if the natural map:

Kn(R) → Kn(R[t1, · · · , tm]),

is an isomorphism for each m ≥ 1. We say that R is K-regular if R is Kn-regular for 
all n.

The following result is a special case of Theorem 8.2.5 in [14].

Theorem 2.3. S is K-regular.

The following result follows from the proof of Proposition 2.14 in [24].

Proposition 2.4. If R is a K-regular R-algebra, then the natural map:

HOrΓ
n (EFIN (Γ),K(R)−∞) → HOrΓ

n (EVCY(Γ),K(R)−∞),

is an isomorphism, where FIN is the family of finite subgroups of Γ and EFIN (Γ) is 
the universal Γ-space with isotropy in FIN .

The above proposition implies that the isomorphism conjecture for the ring S is 
equivalent to the statement that the assembly map:

A : HOrΓ
n (EFIN (Γ),K(S)−∞) → Kn(SΓ),

is an isomorphism and Theorem 1.1 is equivalent to the statement that the above as-
sembly map is rationally injective.

By Proposition 7.2.3, Remark 7.2.6 and Theorem 8.2.5 in [14], we know that Kn(S) is 
2-periodic and K0(S) = Z and K1(S) = 0. This implies that the domain of the assembly 
map A in Theorem 1.1 is rationally isomorphic to ⊕k evenHOrΓ

n+k(EFIN (Γ), Q).

3. Reduction to the lower algebraic K-theory case

In this section, we prove the following reduction result.

Proposition 3.1. Theorem 1.1 follows from the following special case of the theorem for 
lower algebraic K-theory: i.e. the assembly map

A : HOrΓ
n (EVCY(Γ),K(S)−∞) → Kn(SΓ)

is rationally injective for n ≤ 0.
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Proof. By Proposition 7.2.3, Remark 7.2.6 and Theorem 8.2.5 in [14], we have Kn(S) = Z
when n is even and Kn(S) = 0 when n is odd. It follows that

H−2(pt,K(S)−∞) = Z.

By definition, the assembly map:

A : H−2(pt,K(S)−∞) → K−2(S)

is an isomorphism and it maps the generator z of H−2(pt, K(S)−∞) to the Bott element 
of K−2(S) (denoted by b). For any positive integer k, we can use the product operation 
to construct the Bott element bk in K−2k(S), where the product is defined using a 
natural (injective) homomorphism S ⊗ S → S induced by the homomorphism S(H) ⊗
S(H) → S(H ⊗ H) and a choice of isomorphism S(H ⊗ H) ∼= S(H) (here H is an infinite 
dimensional and separable Hilbert space, S(H) and S(H ⊗ H) respectively denote the 
rings of Schatten class operators on H and H ⊗ H, and S ⊗ S is the algebraic tensor 
product of S with S).

When n = 2k, we have the following commutative diagram:

HOrΓ
n (EVCY(Γ),K(S)−∞) A→ Kn(SΓ)

↓×zk ↓×bk

HOrΓ
0 (EVCY(Γ),K(S)−∞) A→ K0(SΓ)

,

where the vertical product maps are well defined with the help of a natural homomor-
phism S⊗S → S and the K-theory properties of S and SΓ being H-unital (Theorems 2.1
and 2.2). By Theorems 8.2.5 and 6.5.3 in [14] and Theorem 8.3 (the Bott periodicity) 
in [16], we know that the Bott element bk is a generator of K−2k(S). It follows that the 
product map

Hi(pt,K(S)−∞) ×zk

−→ Hi−2k(pt,K(S)−∞)

is an isomorphism for every integer i. This implies that the product map

HOrΓ
i (EVCY(Γ),K(S)−∞) ×zk

−→ HOrΓ
i−2k(EVCY(Γ),K(S)−∞)

is an isomorphism by using the fact that both homology theories {HOrΓ
i ( · , K(S)−∞)}i∈Z

and {HOrΓ
i−2k( · , K(S)−∞)}i∈Z have a Mayer–Vietoris sequence and a five lemma argu-

ment.
When n = 2k + 1, we have the following commutative diagram:

HOrΓ
n (EVCY(Γ),K(S)−∞) A→ Kn(SΓ)

↓×zk+1 ↓×bk+1

HOrΓ
−1 (EVCY(Γ),K(S)−∞) A→ K−1(SΓ)

,
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where the vertical product maps are well defined with the help of a natural homomor-
phism S⊗S → S and the K-theory properties of S and SΓ being H-unital (Theorems 2.1
and 2.2). By the same argument as in the even case, we know that the product map

Hi(pt,K(S)−∞) ×zk+1
−→ Hi−(2k+2)(pt,K(S)−∞)

is an isomorphism for every integer i. This fact, together with a standard Mayer–Vietoris 
sequence and five lemma argument, implies that the product map

HOrΓ
i (EVCY(Γ),K(S)−∞) ×zk+1

−→ HOrΓ
i−(2k+2)(EVCY(Γ),K(S)−∞)

is an isomorphism.
Now Proposition 3.1 follows from the above commutative diagrams and the fact that 

the left vertical maps in the diagrams are isomorphisms. ✷

4. Cyclic simplicial homology theory and the Connes–Chern character

In this section, we introduce an equivariant cyclic simplicial homology theory to 
construct the Connes–Chern character for Kn(SΓ) when n ≤ 0. The Connes–Chern 
character is a key tool in the proof of the main theorem. We use this explicit construc-
tion to prove an important local property of the Connes–Chern character for K-theory 
elements with small propagation. This local property will be useful in the proof of the 
main theorem.

Let X be a simplicial complex. Let σ be a simplex of X. Define two orderings of its 
vertex set to be equivalent if they differ from each other by an even permutation. Each of 
the equivalence classes is called an orientation of σ. If {v0, ..., vk} is the set of all vertices 
of σ, we use the symbol [v0, · · · , vk] to denote the oriented simplex with the particular 
ordering (v0, · · · , vk).

A locally finite k-chain on X is a formal sum

∑

(v0,··· ,vk)
c(v0,··· ,vk)[v0, · · · , vk],

where

(1) the summation is taken over all orderings (v0, · · · , vk) of all k-simplices {v0, · · · , vk}
of X and c(v0,··· ,vk) ∈ C;

(2) [v0, · · · , vk] is identified with −[v′
0, · · · , v′

k] in the above sum if (v0, · · · , vk) and 
(v′

0, · · · , v′
k) are opposite orientations of the same simplex;

(3) for any compact subset K of X, there are at most finitely many ordered simplices 
(v0, · · · , vk) intersecting K such that c(v0,··· ,vk) ̸= 0.
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We remark that in the above definition the summation is taken over all (v0, · · · , vk)
instead of [v0, · · · , vk] for the purpose to have consistent notations in the definitions 
of the Connes–Chern characters for lower algebraic K-groups of S1Γ using simplicial 
homology groups and lower algebraic K-groups of SpΓ using cyclic simplicial homology 
groups later in this section.

Let Ck(X) be the abelian group of all locally finite k-chains on X.
Let

∂k : Ck(X) → Ck−1(X)

be the standard simplicial boundary map. We define the locally finite simplicial homology 
group:

Hn(X) = Ker ∂n/Im ∂n+1.

If X has a proper simplicial action of Γ, let CΓ
k (X) ⊂ Ck(X) be the abelian group 

consisting of all Γ-invariant locally finite k-chains on X.
Let

∂Γ
k : CΓ

k (X) → CΓ
k−1(X)

be the restriction of the standard simplicial boundary map. We define the locally finite 
Γ-equivariant simplicial homology group:

HΓ
n (X) = Ker ∂Γ

n/Im ∂Γ
n+1.

Without loss of generality, in the proof of Theorem 1.1, we can assume that Γ is a 
countable group (this is because every group is an inductive limit of countable groups). 
We endow Γ with a proper left invariant length metric (here properness simply means 
that every ball with finite radius has finitely many elements). We remark that such a 
proper length metric always exists for any countable group. For each d ≥ 0, the Rips 
complex Pd(Γ) is the simplicial complex with Γ as its vertex set and where a finite subset 
{γ0, · · · , γn} of Γ forms a simplex iff d(γi, γj) ≤ d for all 0 ≤ i, j ≤ n. It is not difficult 
to show that ∪d≥1Pd(Γ) is a model for EFIN (Γ). When Γ is torsion free, ∪d≥1Pd(Γ) is 
a universal space for free and proper action of Γ. In this case, limd→∞ HΓ

n (Pd(Γ)) is the 
group homology of Γ defined using a standard resolution.

To motivate the general construction of the Connes–Chern character, we shall first 
consider the special case when Γ is torsion free.

Let A(Γ, S) be the algebra of all kernels

k : Γ × Γ → S

such that

(1) for each k, there exists r ≥ 0 such that k(x, y) = 0 if d(x, y) > r (the smallest such 
r is called the propagation of k);
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(2) k is Γ-invariant, i.e. k(gx, gy) = k(x, y) for all g ∈ Γ and (x, y) ∈ Γ × Γ;
(3) the product in A(Γ, S) is defined by:

(k1k2)(x, y) =
∑

z∈Γ
k1(x, z)k2(z, y).

We identify SΓ with A(Γ, S) by the isomorphism:
∑

g∈Γ
sgg → k(x, y) = sx−1y,

where sg ∈ S for each g ∈ Γ. For each p ≥ 1, we can naturally identify SpΓ with A(Γ, Sp), 
where A(Γ, Sp) is defined by replacing S with Sp in the above definition of A(Γ, S).

For each non-negative even integer n, we shall first define the Connes–Chern character 
cn for a countable torsion free group Γ

cn : K0(S1Γ) → lim
d→∞

(⊕k even, k≤n HΓ
k (Pd(Γ)))

by:

[q̃] − [q0] →
∑

k even, k≤n

∑

(x0,··· ,xk)
tr(q(x0, x1)q(x1, x2) · · · q(xk, x0))[x0, · · · , xk],

where Pd(Γ) is the Rips complex and q̃ is an idempotent in Mm((S1Γ)+), q̃ = q + q0 for 
some q ∈ Mm(S1Γ) and idempotent q0 ∈ Mm(C), and the summation is taken over all 
orderings (x0, · · · , xk) of all n-simplices {x0, · · · , xk} of Pd(Γ) for some d large enough 
such that q(x, y) = 0 if d(x, y) > d/(n + 1).

Proposition 4.1. Let Γ be a countable torsion free group. For each non-negative even 
integer n, the Connes–Chern character cn is a well defined homomorphism from K0(S1Γ)
to limd→∞(⊕k even, k≤n HΓ

k (Pd(Γ))).

Proof. We first observe that c([q̃] − [q0]) is Γ-invariant by using the Γ-invariance of q.
For each even k ≤ n, we shall prove that

∂Γ
k (

∑

(x0,··· ,xk)
tr(q(x0, x1)q(x1, x2) · · · q(xk, x0))[x0, · · · , xk]) = 0.

This implies that c([q̃] − [q0]) is a cycle.
We leave to the reader the proof that the homology class of

∑

k even, k≤n

∑

(x0,··· ,xk)
tr(q(x0, x1)q(x1, x2) · · · q(xk, x0))[x0, · · · , xk]

depends only on the K-theory class [q̃] − [q0].



G. Yu / Advances in Mathematics 307 (2017) 727–753 735

By the assumption that q̃ and q0 are idempotents, we have

q2 = q − q0q − qq0.

It follows that

∂k(
∑

(x0,··· ,xk)
tr(q(x0, x1)q(x1, x2) · · · q(xk, x0))[x0, · · · , xk]) =

k∑

i=1
(−1)i

∑

(x0,··· ,x̂i,··· ,xk)
tr(q(x0, x1)q(x1, x2) · · · q2(xi−1, xi+1) · · · q(xk, x0))

×[x0, · · · , x̂i, · · · , xk]

+
∑

(x1,··· ,xk)
tr(q(x1, x2) · · · q2(xk, x1))[x1, · · · , xk] =

k∑

i=1
(−1)i

∑

(x0,··· ,x̂i,··· ,xk)
tr(q(x0, x1)q(x1, x2) · · · q(xi−1, xi+1) · · · q(xk, x0))

×[x0, · · · , x̂i, · · · , xk]

+
∑

(x1,··· ,xk)
tr(q(x1, x2) · · · q(xk, x1))[x1, · · · , xk] −

(
k∑

i=1
(−1)i

∑

(x0,··· ,x̂i,··· ,xk)
tr(q(x0, x1)q(x1, x2) · · · q0q(xi−1, xi+1) · · · q(xk, x0))

×[x0, · · · , x̂i, · · · , xk]

+
∑

(x1,··· ,xk)
tr(q(x1, x2) · · · q0q(xk, x1))[x1, · · · , xk] +

k∑

i=1
(−1)i

∑

(x0,··· ,x̂i,··· ,xk)
tr(q(x0, x1)q(x1, x2) · · · q(xi−1, xi+1)q0 · · · q(xk, x0))

×[x0, · · · , x̂i, · · · , xk]

+
∑

(x1,··· ,xk)
tr(q(x1, x2) · · · q(xk, x1)q0)[x1, · · · , xk]).

Using the trace property and the definition of oriented simplices and the assumption 
that k is even, we have

∑

(x0,··· ,x̂i,··· ,xk)
tr(q(x0, x1)q(x1, x2) · · · q(xi−1, xi+1) · · · q(xk, x0))[x0, · · · , x̂i, · · · , xk] = 0,

∑

(x1,··· ,xk)
tr(q(x1, x2) · · · q(xk, x1))[x1, · · · , xk] = 0,
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∑

(x0,··· ,x̂i,··· ,xk)
(tr(q(x0, x1)q(x1, x2) · · · q0q(xi−1, xi+1) · · · q(xk, x0))[x0, · · · , x̂i, · · · , xk] +

tr(q(x0, x1)q(x1, x2) · · · q(xi−1, xi+1)q0 · · · q(xk, x0))[x0, · · · , x̂i, · · · , xk]) = 0,
∑

(x1,··· ,xk)
(tr(q(x1, x2) · · · q0q(xk, x1))[x1, · · · , xk] +

tr(q(x1, x2) · · · q(xk, x1)q0)[x1, · · · , xk]) = 0. ✷

By the definition of lower algebraic K-theory using the group algebra over the free 
abelian group Zn, we can similarly define the Connes–Chern character:

cn : Ki(S1Γ) → lim
d→∞

(⊕k+i even, k≤n HΓ
k (Pd(Γ)))

for each non-negative integer n and i < 0.
Next we extend the construction of the Connes–Chern character cn to the Sp case for 

each p ≥ 1 and each non-negative integer n when Γ is torsion free:

cn : K0(SpΓ) → lim
d→∞

(⊕k even, k≤n HΓ
k (Pd(Γ))).

We need to introduce an equivariant cyclic simplicial homology group to define the 
Connes–Chern character.

Let X be a simplicial complex. An ordered k-simplex (v0, · · · , vk) is defined to be an 
ordered finite sequence of vertices in a simplex of X, where vi is allowed to be equal to 
vj for some distinct pair of i and j.

Recall that the following permutation is called a cyclic permutation

(v0, ..., vk) → (vk, v0, · · · , vk−1).

We define two ordered simplices (v0, · · · , vk) and (v′
0, · · · , v′

k) to be equivalent if one 
ordered simplex can be obtained from the other ordered simplex by any number of cyclic 
permutations when k is even and by an even number of cyclic permutations when k is 
odd. Each of the equivalence classes is called a cyclically oriented simplex. If (v0, ..., vk)
is an ordered simplex of X, we use the symbol [v0, · · · , vk]λ to denote the corresponding 
cyclically oriented simplex.

A locally finite cyclic k-chain on X is a formal sum
∑

(v0,··· ,vk)
c(v0,··· ,vk)[v0, · · · , vk]λ,

where

(1) the summation is taken over all ordered simplices (v0, · · · , vk) of X and c(v0,··· ,vk) ∈C;
(2) [v0, · · · , vk]λ is identified with (−1)k[vk, v0, · · · , vk−1]λ in the above sum;
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(3) for any compact subset K of X, there are at most finitely many ordered simplices 
(v0, · · · , vk) intersecting K such that c(v0,··· ,vk) ̸= 0.

Let Cλ
k (X) be the abelian group of all locally finite cyclic k-chains on X. Let

∂λ
k : Cλ

k (X) → Cλ
k−1(X)

be the standard boundary map.
We define the cyclic simplicial homology group:

Hλ
n(X) = Ker ∂λ

n/Im ∂λ
n+1.

If X has a simplicial proper action of a group Γ, we can define Cλ,Γ
k (X) ⊆ Cλ

k (X) to 
be the subspace of all Γ-invariant locally finite cyclic k-chains on X.

Let

∂λ,Γ
k : Cλ,Γ

k (X) → Cλ,Γ
k−1(X)

be the restriction of the standard boundary map.
We define the Γ-equivariant cyclic simplicial homology group Hλ,Γ

n (X) by:

Hλ,Γ
n (X) = Ker ∂λ,Γ

n /Im ∂λ,Γ
n+1.

The following result computes the Γ-equivariant cyclic simplicial homology group in 
terms of the Γ-equivariant simplicial homology groups.

Proposition 4.2. Let Γ be a group. Let X be a simplicial complex with a proper simplicial 
action of Γ. We have

Hλ,Γ
n (X) ∼= (⊕k≤n, k=n mod 2 HΓ

k (X)).

Proof. Given an ordering (v0, · · · , vk) of k+1 number of vertices in X, we use the same 
notation (v0, · · · , vk) to denote the corresponding ordered k-simplex. Let Cord,Γ

k (X) be 
the abelian group of all Γ-invariant locally finite ordered k-chains

∑

(v0,··· ,vk)
c(v0,··· ,vk)(v0, · · · , vk),

where the sum is taken over all ordered k-simplices of X and c(v0,··· ,vk) ∈ C. We remark 
that, in the above definition, a pair of vertices in (v0, · · · , vk) are allowed to be the same.

Let Cord,Γ
k,0 (X) be the abelian subgroup of Cord,Γ

k (X) consisting of all Γ-invariant 
locally finite ordered k-chains with the following special form:
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∑

v

cv

k+1︷ ︸︸ ︷
(v, · · · , v),

where the sum is taken over all vertices of X and cv ∈ C.
We define an abelian group Cord,Γ

k,red (X) by:

Cord,Γ
k,red (X) :=

{
Cord,Γ

k (X) if k is even,
Cord,Γ

k (X)/Cord,Γ
k,0 (X) if k is odd,

where Cord,Γ
k (X)/Cord,Γ

k,0 (X) is the quotient group of Cord,Γ
k (X) over Cord,Γ

k,0 (X).
The standard boundary map on Cord,Γ

k (X) induces a boundary map:

∂ord,Γ
k,red : Cord,Γ

k,red (X) −→ Cord,Γ
k−1,red(X).

We define a new homology group:

Hord,Γ
n,red (X) = Ker ∂ord,Γ

n,red/Im ∂ord,Γ
n+1,red.

Let χk be the natural chain map from Cord,Γ
k,red (X) to Cλ,Γ

k (X) defined by:

[
∑

(v0,··· ,vk)
c(v0,··· ,vk)(v0, · · · , vk)] −→

∑

(v0,··· ,vk)
c(v0,··· ,vk)[v0, · · · , vk]λ,

for every [
∑

(v0,··· ,vk) c(v0,··· ,vk)(v0, · · · , vk)] ∈ Cord,Γ
k,red (X). This map is well defined be-

cause 
k+1︷ ︸︸ ︷

[v, · · · , v] λ = 0 when k is odd.
By a standard Mayer–Vietoris and five lemma argument, it is not difficult to prove 

that χ induces an isomorphism χ∗ from Hord,Γ
n,red (X) to Hλ,Γ

n (X). This is because both 
homology theories satisfy the Mayer–Vietoris sequences and χ∗ is an isomorphism when 
X = Γ/F as Γ-spaces for some finite subgroup F of Γ.

We define a natural chain map

φk,k : Cord,Γ
k,red (X) → CΓ

k (X)

by:

[
∑

(v0,··· ,vk)
c(v0,··· ,vk)(v0, · · · , vk)] −→

∑

(v0,··· ,vk)
c(v0,··· ,vk)[v0, · · · , vk]

for every [
∑

(v0,··· ,vk) c(v0,··· ,vk)(v0, · · · , vk)] ∈ Cord,Γ
k,red (X). This map is well defined be-

cause 
k+1︷ ︸︸ ︷

[v, · · · , v] = 0 when k is odd (more generally when k ≥ 1).
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For each ordered k-simplex (v0, · · · , vk) of X, we let

ϕk,k−2((v0, · · · , vk)) :=
⎧
⎪⎨

⎪⎩

(−1)j−i+1[v0, · · · , v̂i, · · · , v̂j , · · · , vk] if (i, j) is the smallest pair
such that i < j, vi = vj ,

0 if there exists no pair i < j such that vi = vj ,

where the smallest (i, j) is taken with respect to the dictionary order of {(m, l) : 0 ≤
m < l ≤ k} given by: (m, l) < (m′, l′) iff either (1) m < m′, or (2) m = m′ and l < l′.

We define a linear map

φk,k−2 : Cord,Γ
k,red (X) → CΓ

k−2(X)

by:

[
∑

(v0,··· ,vk)
c(v0,··· ,vk)(v0, · · · , vk)] −→

∑

(v0,··· ,vk)
c(v0,··· ,vk)ϕk,k−2((v0, · · · , vk))

for every [
∑

(v0,··· ,vk) c(v0,··· ,vk)(v0, · · · , vk)] ∈ Cord,Γ
k,red (X).

Note that φk,k−2 is well defined. Elementary computations show that φk,k−2 is a chain 
map.

Similarly we can construct a chain map

φk,l : Cord,Γ
k,red (X) → CΓ

l (X)

if 0 ≤ l ≤ k and k − l is even.
Using the above chain maps, we construct a chain map:

ψn = ⊕l≤n, n−l even φn,l : Cord,Γ
n,red (X) → (⊕l≤n, n−l even CΓ

l (X)).

The chain map ψn induces an isomorphism ψ∗ on the homology groups since both 
homology theories satisfy the Mayer–Vietoris sequence and the chain map induces an 
isomorphism at the homology level if X = Γ/F as Γ-spaces for some finite subgroup F
of Γ.

Finally Proposition 4.2 follows from the facts that χ∗ and ψ∗ are isomorphisms. ✷

For any positive even integer n ≥ p, we now define the Connes–Chern character for a 
countable torsion free group Γ

cn : K0(SpΓ) → Hλ,Γ
n (Pd(Γ)),

where Γ is endowed with a proper length metric.
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Let q̃ be an idempotent in Mm((SpΓ)+) and q̃ = q + q0 for some q ∈ Mm(SpΓ)
and idempotent q0 ∈ Mm(C). We identify q with an element in A(Γ, Sp) (note that 
A(Γ, Mm(Sp)) is isomorphic to A(Γ, Sp)). Let d be greater than or equal to n + 1 times 
the propagation of q, i.e. q(x, y) = 0 if d(x, y) > d/(n + 1).

For each positive even integer n ≥ p, the Connes–Chern character cn of [q̃] − [q0] is 
defined to be homology class of

∑

(x0,··· ,xn)
tr(q(x0, x1) · · · q(xn, x0))[x0, · · · , xn]λ ∈ Hλ,Γ

n (Pd(Γ)),

where the summation is taken over all ordered n-simplices (x0, · · · , xn) of Pd(Γ).
We remark that the choice of n guarantees that the trace in the above definition of 

the Connes–Chern character is finite.
By Proposition 4.2, the above Connes–Chern character induces a Connes–Chern char-

acter:

cn : K0(SpΓ) → lim
d→∞

(⊕k even, k≤n HΓ
k (Pd(Γ)))

for any non-negative integer n ≥ p.
For an arbitrary non-negative even integer n, let n′ be a positive even

integer satisfying n′ ≥ max{n, p}. Let πn′,n be the natural projection from
limd→∞(⊕k even, k≤n′ HΓ

k (Pd(Γ))) to limd→∞(⊕k even, k≤n HΓ
k (Pd(Γ))). We define the 

Connes–Chern character cn from K0(SpΓ) to limd→∞(⊕k even, k≤n HΓ
k (Pd(Γ))) to be 

πn′,n ◦ cn′ . It is not difficult to verify that the definition of cn is independent of the 
choice of n′.

Proposition 4.3. Let Γ be a countable torsion free group. For any non-negative even 
integer n, the Connes–Chern character cn is a well defined homomorphism from K0(SpΓ)
to limd→∞(⊕k even, k≤n HΓ

k (Pd(Γ))).

The proof of the above proposition is similar to the proof of Proposition 4.1 and is 
therefore omitted. Note that when p = 1, the above definition of the Connes–Chern 
character coincides with the prior definition of the Connes–Chern character.

Next we shall construct the Connes–Chern character for a general group Γ.
Let Γfin be the set of all elements with finite order in Γ. The group Γ acts on Γfin

by conjugations:

γ · x = γxγ−1

for all γ ∈ Γ and x ∈ Γfin.
Let X be a simplicial complex with a proper simplicial action of Γ. Equip the vertex 

set V (X) of X with a Γ-invariant proper pseudo-metric dV . Let Γ act on Γfin × X

diagonally.
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Let r ≥ 0. For each g ∈ Γfin, we define Xg,r to be the simplicial subcomplex of X
consisting all simplices {v0, · · · , vp} satisfying dV (vi, gvi) ≤ r for all 0 ≤ i ≤ p.

For each ordered simplex (v0, ..., vk) of Xg,r, we define the following transformation 
to be a g-cyclic permutation

(v0, ..., vk) → (gvk, v0, · · · , vk−1).

We define two ordered simplices (v0, · · · , vk) and (v′
0, · · · , v′

k) of Xg,r to be g-equivalent 
if one ordered simplex can be obtained from the other ordered simplex by any number 
of g-cyclic permutations of ordered simplices in Xg,r when k is even and by an even 
number of g-cyclic permutations when k is odd. Each of the equivalence classes is called 
a g-cyclically oriented simplex. If (v0, ..., vk) is an ordered simplex of Xg,r, we use the 
symbol [v0, · · · , vk]λ,g to denote the corresponding g-cyclically oriented simplex.

We define Cλ
k,r(X) to be the abelian group of all locally finite k-chains:

∑

g∈Γfin

(g,
∑

(v0,··· ,vk)
c(v0,··· ,vk),g[v0, · · · , vk]λ,g),

where

(1) the second summation is taken over all ordered simplices (v0, · · · , vk) of Xg,r and 
c(v0,··· ,vk),g ∈ C;

(2) [v0, · · · , vk]λ,g is identified with (−1)k[gvk, v0, · · · , vk−1]λ,g in the above sum;
(3) for each g ∈ Γfin and any compact subset K of X, there are at most finitely many 

ordered simplices (v0, · · · , vk) intersecting K such that c(v0,··· ,vk),g ̸= 0.

The diagonal action of Γ on Γfin × X induces a natural Γ-action on Cλ
k,r(X). Let 

Cλ,Γ
k,r (X) ⊆ Cλ

k,r(X) be the abelian group consisting of all Γ-invariant k-chains in Cλ
k,r(X).

We have a natural boundary map:

∂λ,Γ
k,r : Cλ,Γ

k,r (X) −→ Cλ,Γ
k−1,r(X).

We define the following equivariant homology theory by:

Hλ,Γ
n,r (X) = Ker ∂λ,Γ

n,r /Im ∂λ,Γ
n+1,r.

When Γ is torsion free, Γfin consists of the identity element and we have

Hλ,Γ
n,r (X) = Hλ,Γ

n (X).

For each r ≥ 0, let X̂r be the simplicial subspace of Γfin × X defined by:

X̂r = {(g, x) ∈ Γfin × X : x ∈ Xg,r}.

The diagonal action of Γ on Γfin × X induces a natural Γ-action on X̂r.
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We define

HΓ
n,r(X) = HΓ

n (X̂r).

The following result computes our new equivariant homology theory of the Rips com-
plex in terms of the (locally finite) equivariant simplicial homology theory.

Proposition 4.4. Let Γ be a countable group with a proper length metric. We have

lim
d→∞

lim
r→∞

Hλ,Γ
n,r (Pd(Γ)) ∼= lim

d→∞
lim
r→∞

(⊕k≤n, k=n mod 2 HΓ
n,r(Pd(Γ))).

Proof. Let X be a simplicial complex with a proper and cocompact action of Γ. We 
define an equivalence relation ∼ on the chain group Cλ,Γ

k,r (X) as follows. Two chains z
and z′ in Cλ,Γ

k,r (X) are said to be equivalent if

z =
∑

g∈Γfin

(g,
∑

(v0,··· ,vk)
c(v0,··· ,vk),g[v0, · · · , vk]λ,g),

z′ =
∑

g∈Γfin

(g,
∑

(v0,··· ,vk)
c(v0,··· ,vk),g[v′

0, · · · , v′
k]λ,g),

and for each 0 ≤ i ≤ k there exists an integer j such that v′
i = gjvi.

Let Cλ,Γ
k,r (X) be the chain group Cλ,Γ

k,r (X)/ ∼. We define H̃λ,Γ
n,r (X) to be the n-th 

homology group of Cλ,Γ
k,r (X).

The quotient chain map φ from Cλ,Γ
k,r (X) to Cλ,Γ

k,r (X) induces a homomorphism

φ∗ : Hλ,Γ
n,r (X) → H̃λ,Γ

n,r (X).

We observe that the properness and the cocompactness of the Γ action on X im-
ply that, for each r ≥ 0, there exists N > 0 such that if g ∈ Γfin and Xg,r is 
nonempty, then the order of the group element g is bounded by N . As a consequence, 
for any d ≥ 0 and r ≥ 0, there exist d′ ≥ d and r′ ≥ r such that, for any g ∈ Γfin

and any simplex in (Pd(Γ))g,r with vertices {v0, · · · , vk}, the simplex with vertices 
{gi0v0, · · · , gikvk : 1 ≤ ij ≤ N, 0 ≤ j ≤ k} is a simplex in (Pd′(Γ))g,r′ . This implies that 
φ is a chain homotopy equivalence from the chain complex limd→∞ limr→∞ Cλ,Γ

k,r (Pd(Γ))
to the chain complex limd→∞ limr→∞ Cλ,Γ

k,r (Pd(Γ)) with a homotopy inverse chain map 
ψ from limd→∞ limr→∞ Cλ,Γ

k,r (Pd(Γ)) to limd→∞ limr→∞ Cλ,Γ
k,r (Pd(Γ)) defined by

ψ([
∑

g∈Γfin

(g,
∑

(v0,··· ,vk)
c(v0,··· ,vk),g[v0, · · · , vk]λ,g)]) =

∑

g∈Γfin

(g,
∑

(v0,··· ,vk)

1
nk+1
g

ng∑

i0,··· ,ik=1
c(v0,··· ,vk),g[gi0v0, · · · , gikvk]λ,g)
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for each [
∑

g∈Γfin
(g, 

∑
(v0,··· ,vk)c(v0,··· ,vk),g[v0, · · ·, vk]λ,g)] in limd→∞limr→∞Cλ,Γ

k,r (Pd(Γ)), 
where ng is the order of the group element g. It follows that the homomorphism φ∗ is 
an isomorphism from limd→∞ limr→∞ Hλ,Γ

n,r (Pd(Γ)) to limd→∞ limr→∞ H̃λ,Γ
n,r (Pd(Γ)).

Two vertices v and v′ of Xg,r are defined to be equivalent if v = gjv′ for some j. We 
denote the equivalence class of v by [v].

We define X̃g,r to be the simplicial complex consisting of simplices {[v0], · · · , [vk]} for 
all simplices {v0, · · · , vk} in Xg,r.

Let

X̃r = {(g, x) : g ∈ Γfin, x ∈ X̃g,r}.

By an argument similar to the proof of Proposition 4.2, we have the following isomor-
phism:

lim
d→∞

lim
r→∞

H̃λ,Γ
n,r (Pd(Γ)) ∼= lim

d→∞
lim
r→∞

(⊕k≤n, k=n mod 2 HΓ
n ((P̃d(Γ))r)).

Finally we observe that the natural homomorphism

lim
d→∞

lim
r→∞

(⊕k≤n, k=n mod 2 HΓ
n,r(Pd(Γ))) → lim

d→∞
lim
r→∞

(⊕k≤n, k=n mod 2 HΓ
n ((P̃d(Γ))r))

is an isomorphism. ✷

Let Γ be a countable group with a proper length metric. Let X be a simplicial complex 
with a proper and cocompact action of Γ. Let X̂ be the subspace of Γfin × X defined 
by:

X̂ = {(g, x) ∈ Γfin × X : gx = x}.

The diagonal action of Γ on Γfin × X induces a natural Γ-action on X̂. Note that X̂ is 
a simplicial complex with a simplicial action of Γ.

We define

HΓ
k (X) = HΓ

k (X̂).

We remark that HΓ
k (X) is the equivariant homology theory of Baum–Connes [3].

Proposition 4.5. Let Γ be a countable group with a proper length metric. We have

lim
d→∞

lim
r→∞

HΓ
n,r(Pd(Γ)) ∼= lim

d→∞
HΓ

n(Pd(Γ)).

Proof. Let X be a simplicial complex with a proper and cocompact action of Γ. For each 
finite subset F ⊂ Γfin, let

F ′ = {γfγ−1 : γ ∈ Γ, f ∈ F}.
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For each g ∈ Γfin and r ≥ 0, we define X̌g,r to be the simplicial subcomplex of X
consisting of simplices with vertices

{gj0v0, · · · , gjkvk : ji ∈ Z}

for all simplices {v0, · · · , vk} in Xg,r.
We let

X̂F = {(g, x) ∈ F ′ × X : gx = x}, X̌F,r = {(g, x) ∈ F ′ × X : x ∈ X̌g,r}.

We have an inclusion map

i : ˆPd(Γ)F → ˇ(Pd(Γ))F,r.

The map i induces a homomorphism

i∗ : lim
d→∞

HΓ
n(Pd(Γ)) → lim

d→∞
lim
r→∞

HΓ
n,r(Pd(Γ)).

By the definition of ˇ(Pd(Γ))F,r, for each d ≥ 0 and r ≥ 0, there exists c > 0 such 

that, for every point (g, x) in ˇ(Pd(Γ))F,r, x is within distance c from a fixed point of g. 
It follows that, for each d ≥ 0 and r ≥ 0, there exist d′ ≥ d and a continuous map

ψ : ˇ(Pd(Γ))F,r → ˆ(Pd′(Γ))F

such that if we write ψ(g, x) = (g, ψ′(x)), then we have

sup{d(ψ′(x), x) : (g, x) ∈ ˆ(Pd′(Γ))F } < ∞,

where d is the restriction of the simplicial metric on Pd(Γ).
The map ψ induces a homomorphism

ψ∗ : lim
d→∞

lim
r→∞

HΓ
n,r(Pd(Γ)) → lim

d→∞
HΓ

n(Pd(Γ)).

Using linear homotopies, it is not difficult to check that i∗ and ψ∗ are inverses to each 
other. ✷

For each non-negative integer n, we are now ready to define the Connes–Chern char-
acter cn for a general group Γ:

cn : K0(SΓ) −→ lim
d→∞

(⊕k even, k≤n HΓ
n(Pd(Γ))).
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For each p ≥ 1 and even integer n ≥ p, we shall first define the Connes–Chern 
character cm:

cn : K0(SpΓ) −→ lim
d→∞

(⊕k even, k≤n HΓ
k (Pd(Γ)))

Let q̃ be an idempotent in Mm((SpΓ)+) and q̃ = q + q0 for some q ∈ Mm(SpΓ) and 
idempotent q0 ∈ Mm(C). Let d be greater than or equal to n + 1 times the propagation 
of q, i.e. q(x, y) = 0 if d(x, y) > d/(n + 1).

The Connes–Chern character cn of [q̃] − [q0] is defined to be the homology class of
∑

g∈Γfin

(g,
∑

(x0,··· ,xn)
tr(q(x0, x1) · · · q(xn, g

−1x0))[x0, · · · , xn]λ,g) ∈ Hλ,Γ
n,d(Pd(Γ)),

where the summation 
∑

(x0,··· ,xn) is taken over all ordered n-simplices of (Pd(Γ))g,d. We 
remark that the choice of n guarantees that the trace in the above definition of the 
Connes–Chern character is finite.

By Propositions 4.4 and 4.5, the above Connes–Chern character induces a Connes–
Chern character:

cn : K0(SpΓ) → lim
d→∞

(⊕k even, k≤n HΓ
k (Pd(Γ))).

For an arbitrary non-negative integer n, let n′ be a positive even integer satisfying n′ ≥
max{n, p}. Let πn′,n be the natural projection from limd→∞(⊕k even, k≤n′ HΓ

k (Pd(Γ)))
to limd→∞(⊕k even, k≤n HΓ

k (Pd(Γ))). We define the Connes–Chern character cn from 
K0(SpΓ) to limd→∞(⊕k even, k≤n HΓ

k (Pd(Γ))) to be πn′,n ◦ cn′ . It is not difficult to verify 
that the definition of cn is independent of the choice of n′.

The proof of the following proposition is similar to the proof of Proposition 4.1 and 
is therefore omitted.

Proposition 4.6. Let Γ be a countable group. For any non-negative integer n, the
Connes–Chern character cn is a well defined homomorphism from K0(SpΓ) to
limd→∞(⊕k even, k≤n HΓ

k (Pd(Γ))).

Using the definition of lower algebraic K-theory, for each p ≥ 1 and any non-negative 
integer n, we can similarly define

cn : Ki(SpΓ) → lim
d→∞

(⊕k+i even,k≤n HΓ
k (Pd(Γ)))

for each i < 0.
Finally, with the help of the equality S = ∪p≥1Sp, we obtain a Connes–Chern char-

acter

cn : Ki(SΓ) → lim
d→∞

(⊕k+i even, k≤n HΓ
k (Pd(Γ)))

for each non-negative integer n and i ≤ 0.
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Notice that when Γ is torsion free, Γfin consists only of the identity element and the 
above definition coincides with the prior definition for the torsion free case.

In the rest of this section, we study a local property of the Connes–Chern character for 
K-theory elements with small propagations. This local property will play an important 
role in the proof of the main theorem of this paper.

We shall need a few preparations to explain the concept of propagation in a continuous 
setting. Let X be a Γ-invariant simplicial subspace of Pd0(Γ) for some d0 ≥ 0. Endow 
Pd0(Γ) with a metric d such that its restriction to each simplex is the standard metric 
and d(γ1, γ2) ≤ dΓ(γ1, γ2) for all γ1 and γ2 in Γ ⊆ Pd0(Γ), where dΓ is the proper length 
metric on Γ. Let X be given the simplicial metric of Pd0(Γ). Let H be a Hilbert space 
with a Γ-action and let φ be a ∗-homomorphism from C0(X) to B(H) which is covariant 
in the sense that φ(γf)h = (γ(φ(f))γ−1)h for all γ ∈ Γ, f ∈ C0(X) and h ∈ H. Such a 
triple (C0(X), Γ, φ) is called a covariant system.

The following definition is due to John Roe [28].

Definition 4.7. Let H be a Hilbert space and let φ be a ∗-homomorphism from C0(X)
to B(H), the C∗-algebra of all bounded operators on H. Let T be a bounded linear 
operator acting on H.

(1) The support of T is defined to be the complement (in X × X) of the set of all 
points (x, y) ∈ X × X for which there exists f ∈ C0(X) and g ∈ C0(X) satisfying 
φ(f)Tφ(g) = 0 and f(x) ̸= 0 and g(y) ̸= 0;

(2) The propagation of T is defined to be:

sup {d(x, y) : (x, y) ∈ Supp(T )};

(3) Given p ≥ 1, T is said to be locally Schatten p-class if φ(f)T and Tφ(f) are Schat-
ten p-class operators for each f ∈ Cc(X), the algebra of all compactly supported 
continuous functions on X.

Definition 4.8. We define the covariant system (C0(X), Γ, φ) to be admissible if

(1) the Γ-action on X is proper and cocompact;
(2) φ is nondegenerate in the sense that φ(C0(X))H is dense in H;
(3) φ(f) is noncompact for any nonzero function f ∈ C0(X);
(4) for each x ∈ X, the action of the stabilizer group Γx on H is regular in the sense 

that it is isomorphic to the action of Γx on l2(Γx) ⊗W for some infinite dimensional 
Hilbert space W , where the Γx action on l2(Γx) is regular and the Γx action on W
is trivial.

We remark that condition (4) in the above definition is unnecessary if Γ acts on X
freely. In particular, if M is a compact manifold and Γ = π1(M), then (C0(M̃), Γ, φ) is 
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an admissible covariant system, where M̃ is the universal cover of M and φ(f)ξ = fξ for 
each f ∈ C0(M̃) and all ξ ∈ L2(M̃). In general, for each locally compact metric space 
with a proper and cocompact isometric action of Γ, there exists an admissible covariant 
system (C0(X), Γ, φ).

Definition 4.9. For any p ≥ 1, let (C0(X), Γ, φ) be an admissible covariant system. We 
define Cp(Γ, X, H) to be the ring of Γ-invariant locally Schatten p-class operators acting 
on H with finite propagation.

The proof of the following useful result is straightforward and is therefore omitted.

Proposition 4.10. Let Γ be a countable group. Let X be a simplicial complex with a 
simplicial proper and cocompact action of Γ. If (C0(X), Γ, φ) is an admissible covariant 
system, then the ring Cp(Γ, X, H) is isomorphic to the ring SpΓ.

For each r > 0, let Xr be a Γ-invariant discrete subset of X such that

(1) Xr has bounded geometry, i.e. for each R > 0, there exists N > 0 such that any ball 
in Xr with radius R has at most N elements;

(2) Xr is r-dense in X, i.e. d(x, Xr) < r for every x ∈ X;
(3) Xr is uniformly discrete, i.e. there exists kr > 0 such that d(z, z′) ≥ kr for all distinct 

pairs of elements z and z′ in Xr.

Let {Uz}z∈Xr be a Γ-equivariant disjoint Borel cover of X such that z ∈ Uz and 
diameter(Uz) < r for all z. Let χz be the characteristic function of Uz. Extend the 
∗-representation φ to the algebra of all bounded Borel functions. If k ∈ Cp(Γ, X, H), let 
k(x, y) = φ(χx)kφ(χy) for all x and y in Xr.

For any r > 0, let U ′
z be the 10r-neighborhood of Uz for each z ∈ Xr, i.e.

U ′
z = {x ∈ X : d(x, Uz) < 10r}.

Let Or(X) = {U ′
z}z∈Xr . Note that Or(X) is an open cover of X.

Let N(Or(X)) be the nerve space of the open cover Or(X). We equip the vertex set 
V of the simplicial complex N(Or(X)) with the pseudo-metric dV defined by:

dV (W,W ′) = sup{d(x, y) : x ∈ W, y ∈ W ′}

for any pair of vertices W and W ′ in N(Or(X)).
For each non-negative even integer n ≥ p, we define the Connes–Chern character

cn : K0(Cp(Γ, X,H)) → ⊕k even,k≤n HΓ
k,r(N(Or(X)))

as follows.
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Let q̃ be an idempotent in Mm(Cp(Γ, X, H))+) and q̃ = q + q0 for some q ∈
Mm(Cp(Γ, X, H)) and idempotent q0 ∈ Mm(C). Let r be the propagation of q. Let 
n be an even integer satisfying n ≥ p.

The Connes–Chern character of [q̃] − [q0] is defined to be homology class of

∑

g∈Γfin

(g,
∑

(x0,··· ,xn)
tr(q(x0, x1) · · · q(xn, g

−1x0))[x0, · · · , xn]λ,g)

in the homology group Hλ,Γ
n,(n+1)r(N(O(n+1)r(X))), where, for each g and r, (x0, · · · , xn)

denotes the ordered simplex (U ′
x0 , · · · , U

′
xn
) in the space (N(O(n+1)r(X)))g,r, [x0, · · · ,

xn]λ,g denotes the g-cyclically oriented simplex [U ′
x0 , · · · , U

′
xn
]λ,g in (N(O(n+1)r(X)))g,r, 

and the summation 
∑

(x0,··· ,xn) in the above formula is taken over all ordered simplices 
in (N(O(n+1)r(X)))g,r.

The following proposition follows from the above definition and the proof of Proposi-
tion 4.1.

Proposition 4.11. Let Γ be a countable group. Let X be a simplicial complex with a simpli-
cial proper and cocompact action of Γ. For each r > 0, let n be an even integer satisfying 
n ≥ p. If (C0(X), Γ, φ) is an admissible covariant system, then the Connes–Chern char-
acter cn of an element in K0(Cp(Γ, X, H)) with propagation less than or equal to r > 0
is a homology class in Hλ,Γ

n,r (N(O(n+1)r(X))).

We identify K0(SpΓ) with limd→∞ limX K0(Cp(Γ, X, H)) using Proposition 4.10, 
where the direct limit limX is taken over the directed system of all Γ-invariant, 
Γ-compact subsets of Pd(Γ). We also identify limd→∞ limX Hλ,Γ

n,r (N(Or(X)))) with 
limd→∞(⊕k even,k≤n HΓ

k (Pd(Γ))) using Propositions 4.4 and 4.5, where the direct limit 
limX is again taken over the directed system of all Γ-invariant, Γ-compact sub-
sets of Pd(Γ). Using the projection πn′,n from limd→∞(⊕k even,k≤n′ HΓ

k (Pd(Γ))) to 
limd→∞(⊕k even,k≤n HΓ

k (Pd(Γ))) for n′ = max{n, p}, the above Connes–Chern character 
induces a Connes–Chern character:

cn = πn′,n ◦ cn′ : K0(SpΓ) → lim
d→∞

(⊕k even, k≤n HΓ
k (Pd(Γ)))

for any non-negative even integer n. This construction gives back the Connes–Chern 
character in Proposition 4.6.

In the following corollary, we demonstrate a local property of the Connes–Chern 
character. This local property of the Connes–Chern character plays an important role in 
the proof of Theorem 1.1.

Corollary 4.12. Let Γ be a countable group. Let X be a simplicial complex with a simpli-
cial proper and cocompact action of Γ. Let q̃ = q+q0 be an element in Mm(Cp(Γ, X, H)+)
such that q ∈ Mm(Cp(Γ, X, H)), q0 ∈ Mm(C), q̃ and q0 are idempotents. For any non-
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negative integer n, when the propagation of q is sufficiently small, cn([q̃] −[q0]) can be rep-
resented by a homology class in ⊕k even, k≤n HΓ

k (X). More generally for each i ≤ 0 and 
p ≥ 1, the Connes–Chern character cn of an element in Ki(Cp(Γ, X, H)) with sufficiently 
small propagation can be represented by a homology class in ⊕k even, k≤n HΓ

k+i(X).

Proof. Let q̃ = q + q0 be an element in Mm(Cp(Γ, X, H)+) such that q ∈ Mm(Cp(Γ,
X, H)), q0 ∈ Mm(C), q̃ and q0 are idempotents. If n ≥ p and the propagation of q is 
less than or equal to r > 0, then by Proposition 4.11 we know that cn([q̃] − [q0]) can be 
represented by a homology class in Hλ,Γ

n,r (N(O(n+1)r(X))).
Let

r0 = inf { d(gU ′
z, U

′
z) : z ∈ Xr, g ∈ Γ, gU ′

z ̸= U ′
z},

where {U ′
z}z∈Xr is the open cover Or(X) in the definition of the Connes–Chern character.

Assume that r is a sufficiently small positive number for the rest of this proof. We 
have r0 > 0. We choose {Uz}z∈Xr such that {U ′

z}z∈Xr is a good cover.
If r < r0, then we have the following:

[1] by the definition of Hλ,Γ
n,r (N(Or(X))), the homology group Hλ,Γ

n,r (N(Or(X))) is equal 
to Hλ,Γ

n ( ̂(N(Or(X))));
[2] by Proposition 4.2, the homology group Hλ,Γ

n ( ̂(N(Or(X)))) can be identified with 
⊕k even,k≤n HΓ

k ( ̂(N(Or(X)));
[3] by the choice of {U ′

z}z∈Xr , the homology group HΓ
k ( ̂(N(Or(X)))) is equal to HΓ

k (X)
for each k.

When n ≥ p, Corollary 4.12 follows from the above statements and the definition of the 
lower algebraic K-groups. The case of an arbitrary non-negative integer n can be reduced 
to this special case by considering n′ = max{n, p} and using the identity cn = πn′,n ◦cn′ , 
where πn′,n is the projection from ⊕k even, k≤n′ HΓ

k+i(X) to ⊕k even, k≤n HΓ
k+i(X). ✷

5. Proof of the main result

In this section, we give a proof of Theorem 1.1.
By Proposition 2.4, Theorem 1.1 follows from the following result.

Theorem 5.1. Let S be the ring of all Schatten class operators on an infinite dimensional 
and separable Hilbert space. The assembly map

A : HOrΓ
n (EFIN (Γ),K(S)−∞) → Kn(SΓ)

is rationally injective for any group Γ.
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Proof. Without loss of generality, we can assume that Γ is countable (this is because 
every group is an inductive limit of countable groups). We recall that EFIN (Γ) can be 
identified with ∪d≥1Pd(Γ). For each i ≤ 0 and non-negative integer n, composing the 
assembly map

A : HOrΓ
i (EFIN (Γ),K(S)−∞) → Ki(SΓ)

with the Connes–Chern character

cn : Ki(SΓ) −→ lim
d→∞

(⊕k even, k≤n HΓ
k+i(Pd(Γ))),

we obtain a homomorphism

ψi,n : HOrΓ
i (EFIN (Γ),K(S)−∞) → lim

d→∞
(⊕k even,k≤n HΓ

k+i(Pd(Γ))).

By using the fact that HOrΓ
i (EFIN (Γ), K(S)−∞) is limd→∞ HOrΓ

i (Pd(Γ), K(S)−∞), 
we obtain a homomorphism

ψi : HOrΓ
i (EFIN (Γ),K(S)−∞) → lim

d→∞
(⊕k even HΓ

k+i(Pd(Γ)))

such that ψi coincides with ψi,n on the image of the natural map from HOrΓ
i (Pd(Γ),

K(S)−∞) to HOrΓ
i (EFIN (Γ), K(S)−∞) when n + i is greater than or equal to the di-

mension of Pd(Γ). Such a map ψi is unique and is independent of the choice of n.
For each simplicial Γ-invariant and Γ-cocompact subspace X of EFIN (Γ), let 

C(Γ, X, H) = ∪p≥1Cp(Γ, X, H), where Cp(Γ, X, H) is as in Definition 4.9. By the def-
inition of the assembly map in [1] and the fact that this assembly map coincides with 
the classic assembly map (Corollary 6.3 in [1]), K-theory elements in the image of the 
assembly map

A : HOrΓ
i (X,K(S)−∞) → Ki(C(Γ, X,H))

can be represented by elements with arbitrarily small propagation for i ≤ 0.
This, together with Corollary 4.12, implies that there exists a map (still denoted by ψi)

ψi : HOrΓ
i (X,K(S)−∞) → (⊕k even HΓ

k+i(X))

for each non-positive integer i such that the following diagram commutes:

HOrΓ
i (X,K(S)−∞) ψi−→ (⊕k even HΓ

k+i(X))
↓j∗ ↓j′

∗

HOrΓ
i (EFIN (Γ),K(S)−∞) ψi−→ limd→∞(⊕k even HΓ

k+i(Pd(Γ)))
,

where j∗ and j′
∗ are respectively induced by the inclusion maps.
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If X = Γ/F as Γ-spaces for some finite subgroup F of Γ, then it is straightforward to 
verify that ψi is an isomorphism after tensoring with C. In fact, both sides are naturally 
isomorphic to the group R(F ) ⊗C, where R(F ) is the representation ring of F viewed as 
an additive group. Recall that, by Proposition 7.2.3, Remark 7.2.6 and Theorem 8.2.5 in 
[14], we have Kn(S) = Z when n is even and Kn(S) = 0 when n is odd. As a consequence, 
the homology theory HOrΓ

i (X, K(S)−∞) is 2-periodic. Note that the homology theory 
⊕k even HΓ

k+i(X) is 2-periodic by definition. By the proof of the Mayer–Vietoris sequence 
using the mapping cone and the definition of the Connes–Chern character, we know the 
homomorphisms ψi commute with the Mayer–Vietoris sequences (up to scalars).

Using the above results, the fact that both homology theories satisfy the Mayer–
Vietoris sequence and a five lemma argument, we can prove that the map

ψi : HOrΓ
i (X,K(S)−∞) → (⊕k even HΓ

k+i(X))

is an isomorphism after tensoring with C for i ≤ 0. This implies that the assembly map 
A is rationally injective for i ≤ 0. Now Theorem 5.1 follows from Proposition 3.1. ✷

We comment that the algebraic K-theory isomorphism conjecture for the ring SΓ can 
be viewed as an algebraic counterpart of the Baum–Connes conjecture for the K-theory 
of the reduced group C∗-algebra of Γ [4]. The Farrell–Jones isomorphism conjecture and 
the Baum–Connes conjecture imply the following conjecture.

Conjecture 5.1. Let K be the C∗-algebra of all compact operators on an infinite dimen-
sional and separable Hilbert space, let C∗

r (Γ) be the reduced group C∗-algebra of Γ. The 
natural homomorphism

i∗ : Kn(SΓ) → Kn(C∗
r (Γ) ⊗ K)

is an isomorphism, where C∗
r (Γ) ⊗ K is the C∗-algebraic tensor product of C∗

r (Γ) with 
K and i is the inclusion map from SΓ to C∗

r (Γ) ⊗ K.

We remark that, by a theorem of Suslin–Wodzicki [32], the algebraic K-theory 
Kn(C∗

r (Γ) ⊗ K) is isomorphic to the topological K-theory Ktop
n (C∗

r (Γ)). Theorem 1.1
implies that the Novikov higher signature conjecture follows from the (rational) injec-
tivity of i∗ in the above conjecture.

We speculate that the (algebraic) bivariant K-theory of Cuntz, Cuntz–Thom and 
Cortiñas–Thom should be useful in studying the algebraic K-theory isomorphism con-
jecture for SΓ [15–17,13]. Finally we mention several other related works [5,7–10,20,22,
23,25,29–31,33,34,36,37].
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