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A: HO"V(Eyey(T),K(R)™>) — K, (RI),

where VCY is the family of virtually cyclic subgroups of I, Eycy(T') is the universal
I-space with isotropy in VCY, HO™ (Eyey(T), K(R)~>°) is a generalized I'-equivariant
homology theory associated to the non-connective algebraic K-theory spectrum K(R)~°°,
and K, (RI) is the algebraic K-theory of RT.

The isomorphism conjecture provides an algorithm for computing the algebraic K-
theory of RI" in terms of the algebraic K-theory of R. This conjecture was introduced
in [18] for R = Z and for unital rings R in [1]. When R is H-unital, the isomorphism
conjecture follows from the unital case by using the excision theorem in algebraic K-
theory [32]. The algebraic K-theory isomorphism conjecture goes back to [21]. There are
analogous conjectures in L-theory [26,27] and C*-algebra K-theory [4]. Important cases
of the isomorphism conjecture have been verified in [18,19,2].

The algebraic K-theoretic Novikov conjecture states that the assembly map:

H,(BT,K(R)™*°) — K, (RT),

is rationally injective, where BI is the classifying space of the group I'. The algebraic
K-theoretic Novikov conjecture follows from the (rational) injectivity part of the iso-
morphism conjecture. By a remarkable theorem of Bokstedt—Hsiang—Madsen [6], the
algebraic K-theoretic Novikov conjecture holds for R = Z if the homology groups of T'
are finitely generated.

The main purpose of this paper is to prove the (rational) injectivity part of the alge-
braic K-theory isomorphism conjecture for group algebras over the ring of Schatten class
operators. As a consequence, we obtain the algebraic K-theory Novikov conjecture for
group algebras over the ring of Schatten class operators. The motivation for considering
group algebras over the ring of Schatten class operators comes from the deep work of
Connes—Moscovici on higher index theory of elliptic operators and its applications to the
Novikov conjecture [11]. In Connes—Moscovici’s higher index theory, the K-theory of the
group algebra over the ring of Schatten class operators serves as the receptacle for the
higher index of an elliptic operator.

For the convenience of readers we recall that, for any p > 1, an operator T on an
infinite dimensional and separable Hilbert space H is said to be Schatten p-class if
tr((T*T)P/?) < oo, where tr is the standard trace defined by tr(P) = 3 < Pey, e, >
for any bounded operator P acting on H and an orthonormal basis {e, }, of H (tr(P) is
independent of the choice of the orthonormal basis). Let S, be the ring of all Schatten
p-class operators on an infinite dimensional and separable Hilbert space. We define the
ring S of all Schatten class operators to be Up>1S,.

The following theorem is the main result of this paper.

Theorem 1.1. Let S be the ring of all Schatten class operators on an infinite dimensional
and separable Hilbert space. The assembly map
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A: HE™ (Byey (D), K(8)™>) — K, (ST)

is rationally injective for any group ', where ST is the group algebra of the group T' over
the ring S.

As a consequence, we obtain the algebraic K-theoretic Novikov conjecture for the
group algebra ST.

The main technical tool in the proof of Theorem 1.1 is an explicit construction of
a Connes—Chern character using an equivariant cyclic simplicial homology theory. As a
consequence of this explicit construction, we obtain a local property of the Connes—Chern
character. This local property of the Connes—Chern character plays an important role in
the proof.

This paper is organized as follows. In Section 2, we collect a few preliminary results
which will be used later in the paper. In Section 3, we reduce our main theorem to the
case of lower algebraic K-theory. In Section 4, we introduce a cyclic simplicial homology
theory to construct a Connes—Chern character. The Connes—Chern character plays a
crucial role in the proof of the main theorem. We use the explicit construction of the
Connes—Chern character to prove an important local property of the Connes—Chern
character for K-theory elements with small propagation. In Section 5, we prove the main
theorem of this paper.

The author wishes to thank Alain Connes, Max Karoubi, Xiang Tang, Andreas Thom,
Shmuel Weinberger, and Rufus Willett for inspiring discussions and very helpful com-
ments. In particular, the author would like to express his gratitude to Guillermo Cortinas
for his detailed comments about the paper and several stimulating discussions. We would
like to mention that Guillermo Cortinas and Giesela Tartaglia have given a new proof of
Theorem 1.1 in [12]. Part of this work was done at the Shanghai Center for Mathematical
Sciences (SCMS) and the author wishes to thank SCMS for providing excellent working
environment.

2. Preliminaries

In this section, we collect a few concepts and results useful for this paper.

Let R be a ring and let R™ be the unital ring obtained from R by adjoining a unit.
The ring R is defined to be H-unital if TorﬁR+ (Z,7) = 0 for all i. The importance of
H-unitality is that it guarantees excision in algebraic K-theory [32].

If R is a Q-algebra and Ra is the unital Q-algebra obtained from R with the unit

S

adjoined, then R is H-unital if and only if Tm”?‘“ (Q,Q) =0 [32].
The following result follows from [35] and Theorem 8.2.1 of [14].

Theorem 2.1. S is H-unital.
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By Theorem 7.10 in [32], we have:
Theorem 2.2. If R is H-unital, then RU is H-unital for any group T.

As a consequence, we obtain that ST is H-unital.
Recall that a ring R is called K, -regular if the natural map:

K,(R) = K,(R[t1, - ,tm]),

is an isomorphism for each m > 1. We say that R is K-regular if R is K,-regular for
all n.
The following result is a special case of Theorem 8.2.5 in [14].

Theorem 2.3. S is K -regular.
The following result follows from the proof of Proposition 2.14 in [24].
Proposition 2.4. If R is a K-reqular R-algebra, then the natural map:
HY™ (Errn (D), K(R)™) — H™ (Bvey(T), K(R) ™),

is an isomorphism, where FIN is the family of finite subgroups of T' and Exzn(T) is
the universal I'-space with isotropy in FIN .

The above proposition implies that the isomorphism conjecture for the ring & is
equivalent to the statement that the assembly map:

A HO (Brza(D),K(S)™) = Ku(ST),

is an isomorphism and Theorem 1.1 is equivalent to the statement that the above as-
sembly map is rationally injective.

By Proposition 7.2.3, Remark 7.2.6 and Theorem 8.2.5 in [14], we know that K, (S) is
2-periodic and Ky(S) = Z and K;(S) = 0. This implies that the domain of the assembly
map A in Theorem 1.1 is rationally isomorphic to &y EveanJ:I,;(E}-ZN(F), Q).

3. Reduction to the lower algebraic K-theory case

In this section, we prove the following reduction result.

Proposition 3.1. Theorem 1.1 follows from the following special case of the theorem for
lower algebraic K-theory: i.e. the assembly map

A HY™ (Byey(D), K(S) ™) — Kn(ST)

is rationally injective for n < 0.
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Proof. By Proposition 7.2.3, Remark 7.2.6 and Theorem 8.2.5 in [14], we have K,,(S) = Z
when n is even and K, (S) = 0 when n is odd. It follows that

H_y(pt, K(8)™) = Z.
By definition, the assembly map:
A: H 5(pt, K(8)™°) = K_5(S)

is an isomorphism and it maps the generator z of H_s(pt, K(S)~>°) to the Bott element
of K_5(S) (denoted by b). For any positive integer k, we can use the product operation
to construct the Bott element b* in K_55(S), where the product is defined using a
natural (injective) homomorphism § ® & — S induced by the homomorphism S(H) ®
S(H) = S(H ® H) and a choice of isomorphism S(H ® H) = S(H) (here H is an infinite
dimensional and separable Hilbert space, S(H) and S(H ® H) respectively denote the
rings of Schatten class operators on H and H ® H, and S ® S is the algebraic tensor
product of S with S).
When n = 2k, we have the following commutative diagram:

HO™ (Byey(T),K(S)™>) & K,(ST)

dxz* Ixv*
HE™ (Byey(I),K(S)™>) 5% Ky(ST)

where the vertical product maps are well defined with the help of a natural homomor-
phism S®S — S and the K-theory properties of S and ST being H-unital (Theorems 2.1
and 2.2). By Theorems 8.2.5 and 6.5.3 in [14] and Theorem 8.3 (the Bott periodicity)
in [16], we know that the Bott element b* is a generator of K_o5(S). It follows that the
product map

Hl(pt, K(S>_Do) X—ZI; Hzf2k?<pta K(S)_OO)

is an isomorphism for every integer i. This implies that the product map

HO™ (Byey (D), K(8)™) “5 HO (Byey(T), K(S) ™)

is an isomorphism by using the fact that both homology theories { HP™'( -, K(S)~>) }iez
and {HP"L (- ,K(S8)7*°)};ez have a Mayer—Vietoris sequence and a five lemma argu-
ment.
When n = 2k + 1, we have the following commutative diagram:
HO™ (Eyey (D), K(S)™®) 5 [,(ST)
IxzFHt dxprtt

HO (Byey(D),K(S)™>) & K_,(ST)
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where the vertical product maps are well defined with the help of a natural homomor-
phism S®S — S and the K-theory properties of S and ST being H-unital (Theorems 2.1
and 2.2). By the same argument as in the even case, we know that the product map

sz+1

Hi(pt,K(8)™>) =— H;_(2p+2)(pt, K(S)™)

is an isomorphism for every integer ¢. This fact, together with a standard Mayer—Vietoris
sequence and five lemma argument, implies that the product map

XZI\:+1

HY™ (Byey(T),K(S)™%) == H2' 110y (Bvey(D), K(S)™™)
is an isomorphism.
Now Proposition 3.1 follows from the above commutative diagrams and the fact that
the left vertical maps in the diagrams are isomorphisms. O

4. Cyclic simplicial homology theory and the Connes—Chern character

In this section, we introduce an equivariant cyclic simplicial homology theory to
construct the Connes—Chern character for K, (ST') when n < 0. The Connes—Chern
character is a key tool in the proof of the main theorem. We use this explicit construc-
tion to prove an important local property of the Connes—Chern character for K-theory
elements with small propagation. This local property will be useful in the proof of the
main theorem.

Let X be a simplicial complex. Let ¢ be a simplex of X. Define two orderings of its
vertex set to be equivalent if they differ from each other by an even permutation. Each of
the equivalence classes is called an orientation of o. If {vy, ..., v } is the set of all vertices
of o, we use the symbol [vg, -+ ,vg] to denote the oriented simplex with the particular
ordering (vg, -, Uk).

A locally finite k-chain on X is a formal sum

Z C(Uor“,vk)[vOa"' ,Uk],

(w0 w)
where
(1) the summation is taken over all orderings (vg, - - - , vg) of all k-simplices {vg, -+, vx}
of X and c(y,,... v;) € C;
(2) [vo,--- ,vg] is identified with —[vg,---,v;] in the above sum if (vg,---,vx) and
(vo, -+ - ,vy,) are opposite orientations of the same simplex;

(3) for any compact subset K of X, there are at most finitely many ordered simplices
(vo, - -+ ,vx) intersecting K such that c(y, ... ) 7# 0.
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We remark that in the above definition the summation is taken over all (vg,- -, vg)
instead of [vg,--- ,vx] for the purpose to have consistent notations in the definitions
of the Connes—Chern characters for lower algebraic K-groups of S1I' using simplicial
homology groups and lower algebraic K-groups of Spl' using cyclic simplicial homology
groups later in this section.

Let Ci(X) be the abelian group of all locally finite k-chains on X.

Let

8k : Ck(X) — Ckfl(X)

be the standard simplicial boundary map. We define the locally finite simplicial homology
group:

H,(X)=Ker 0,/Im Op41.

If X has a proper simplicial action of I, let Cf (X) C Cj(X) be the abelian group
consisting of all I'-invariant locally finite k-chains on X.
Let

O : G (X) = Gy (X)

be the restriction of the standard simplicial boundary map. We define the locally finite
I'-equivariant simplicial homology group:

H}(X) = Ker 0, /Im 0},

Without loss of generality, in the proof of Theorem 1.1, we can assume that I' is a
countable group (this is because every group is an inductive limit of countable groups).
We endow I' with a proper left invariant length metric (here properness simply means
that every ball with finite radius has finitely many elements). We remark that such a
proper length metric always exists for any countable group. For each d > 0, the Rips
complex Py(T') is the simplicial complex with I as its vertex set and where a finite subset
{70, -+ s n} of T forms a simplex iff d(~;,7;) < d for all 0 < 7,5 < n. It is not difficult
to show that Ug>1P4(T") is a model for Erzar(T"). When I is torsion free, Ug>1 Py(T) is
a universal space for free and proper action of I'. In this case, limg_,o, HL (P4(T)) is the
group homology of I' defined using a standard resolution.

To motivate the general construction of the Connes—Chern character, we shall first
consider the special case when I is torsion free.

Let A(T", S) be the algebra of all kernels

E:T'xI' =S

such that

(1) for each k, there exists > 0 such that k(z,y) = 0 if d(z,y) > r (the smallest such
r is called the propagation of k);
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(2) k is I-invariant, i.e. k(gx, gy) = k(z,y) for all g € T and (z,y) € T x T}
(3) the product in A(T,S) is defined by:

(k)lk‘g) Zk‘l T,z k‘g(z y)

zel
We identify ST with A(T,S) by the isomorphism:

ngg — k’(I,y) = Sz*1y7

gel

where s, € S for each g € T'. For each p > 1, we can naturally identify S,I" with A(T', S,),
where A(T', S,) is defined by replacing S with S, in the above definition of A(T', S).

For each non-negative even integer n, we shall first define the Connes—Chern character
¢, for a countable torsion free group I'

n - K()(Slr) — dlinolo(@k even, k<n HIS(Pd(F)))
by:

(4] — lgo] =
Z Z q(x0, 1)q(x1, w2) - - - q(xk, To)) [0, - -, T,

k even, k<n (zq, o)

where P,(T') is the Rips complex and § is an idempotent in M,,((SiT)"), ¢ = q + qo for
some ¢ € M,,(8:T') and idempotent go € M,,,(C), and the summation is taken over all
orderings (zq,- - ,xzk) of all n-simplices {xq, - ,zr} of Py(T') for some d large enough
such that ¢(x,y) =0 if d(x,y) > d/(n + 1).

Proposition 4.1. Let I' be a countable torsion free group. For each mon-negative even
integer n, the Connes—Chern character c,, is a well defined homomorphism from Ky(S1T)
to 11md~>oo(@k even, k<n H]S(Pd(r)))

Proof. We first observe that ¢([¢] — [qo]) is [-invariant by using the I'-invariance of q.
For each even k < n, we shall prove that

o (Y, tr(g(we, z)q(x1, @2) - q(wp, wo))[x0, -+, xh]) = 0.

(@0, k)

This implies that ¢([q] — [go]) is a cycle.
We leave to the reader the proof that the homology class of

Z Z q(zo,x1)q(x1,22) - - q(@k, T0)) [0, - -+, Te]

k even, k<n (zq, ,zk)

depends only on the K-theory class [§] — [qo]-
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By the assumption that ¢ and q¢ are idempotents, we have

7> = q— q0q — qqo-

It follows that

O Y trla(wo,en)q(er,@2) - ek, @) [zo, - ax]) =

Z(*l)i Z tr(q(zo, x1)q(x1,22) - - ¢*(wi1, iy1) - g2, T0))

(z1 Tk )

k .
Z(_l)l Z tr(q(zo, v1)q(x1,22) -~ q(@i-1, Tiy1) - - ¢(Tk, T0))
=1 (20, yBiy Tk

X[ZEQ,"' a'ﬁia"' axk]

+ Z tr(g(zy,x2) - q(@g, 1)) |@1, -+ 2p] —

(1 \Tk)

k .
(Z(_l)l Z tr(g(wo, z1)q(w1,22) -+ - qoq(Ti-1, Tit1) - - - ¢(Tk, T0))
i=1 (w0, ,%q, ,xk)

X[x()a"' a'fia"' ,.Tk;}

S tr(a(en @) qoaler, @ )wn, ] +

(z1, ,2K)

k
> (1) > trlg(wo, w1)q(@r,w2) - q(@i1, iv1)go -+ 4w, o))
=1 (o, @iy k)

X[‘TOa"' a‘fia"' 7‘Tk}

+ Y trlg(mw2) - q(ze, w)0) [Ty, ).

(z1,,2k)

Using the trace property and the definition of oriented simplices and the assumption
that k is even, we have

A

Z tr(q(wo, x1)q(@1, w2) -+ q(@im1, Tiv1) - - - q(zk, o)) [To, -+ E4y -+ k] = 0,

(r0,~~ Ly 7zk)

Z tr(g(z1, 2) - q(xp, 1)) |21, 28] = 0,

(z1,wk)
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Z (tr(q(wo, v1)q(w1,22) - - qoq(Ti-1, Tit1) - - - q(Tk, T0)) [T0, -+, T4y ] +

(zo, @5y k)
tT(q(on,fﬁl)q(ﬂUl,@) : "q($i717$i+1)(10 : "Q($k7$0))[$0, R AR 7351@]) =0,

> (tr(g(er,z2) - qog(ar, @1)) [z, -+ 2i] +

(z1, o)

tr(q(zy,z2) - q(z, v1)q0)[T1, - , %)) = 0. O

By the definition of lower algebraic K-theory using the group algebra over the free
abelian group Z™, we can similarly define the Connes—Chern character:

Cp - KZ(SJ) — dILIr;o(®k+i even, k<n ng(Pd(F)))

for each non-negative integer n and i < 0.
Next we extend the construction of the Connes—Chern character ¢, to the S, case for
each p > 1 and each non-negative integer n when I' is torsion free:

Cp @ KO(SPF) — dlggo(@k even, k<n HIS(Pd(F)))

We need to introduce an equivariant cyclic simplicial homology group to define the
Connes—Chern character.

Let X be a simplicial complex. An ordered k-simplex (vg, -+ ,vg) is defined to be an
ordered finite sequence of vertices in a simplex of X, where v; is allowed to be equal to
v; for some distinct pair of 7 and j.

Recall that the following permutation is called a cyclic permutation

(’UOa "'avk) — (vk71}07 e ,'Uk_l).

We define two ordered simplices (vo,---,vx) and (v(,---,v,) to be equivalent if one
ordered simplex can be obtained from the other ordered simplex by any number of cyclic
permutations when k is even and by an even number of cyclic permutations when k is
odd. Each of the equivalence classes is called a cyclically oriented simplex. If (vg, ..., vg)
is an ordered simplex of X, we use the symbol [vg, - - - ,vx] to denote the corresponding
cyclically oriented simplex.

A locally finite cyclic k-chain on X is a formal sum

Z C(Uow',vk)[UOa"' avk])\a

(vo,+ yvk)

where

(1) the summation is taken over all ordered simplices (vo, - - - , vx) of X and ¢(y,.... +,) €C;
(2) [vo,- - ,vk]x is identified with (—1)*[vg,vo, - -+ ,v5_1]x in the above sum;
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(3) for any compact subset K of X, there are at most finitely many ordered simplices
(vo, - -+ ,vx) intersecting K such that cy,,... ) 7 0.

Let C{(X) be the abelian group of all locally finite cyclic k-chains on X. Let
a : CR(X) = CR_y(X)

be the standard boundary map.
We define the cyclic simplicial homology group:

H)X) = Ker 0,/Im 9,

If X has a simplicial proper action of a group I', we can define C,?’F(X) C CXM(X) to
be the subspace of all I'-invariant locally finite cyclic k-chains on X.
Let

R ONT(X) = G (X)

be the restriction of the standard boundary map.
We define the T'-equivariant cyclic simplicial homology group H'(X) by:
H)(X) = Ker opT /Im 9.

The following result computes the I'-equivariant cyclic simplicial homology group in
terms of the I'-equivariant simplicial homology groups.

Proposition 4.2. Let I' be a group. Let X be a simplicial complex with a proper simplicial
action of T'. We have

HpM(X) =2 (@k<n, k=n mod 2 Hi (X)).

Proof. Given an ordering (v, - ,vg) of k+ 1 number of vertices in X, we use the same
notation (vg,- - ,vg) to denote the corresponding ordered k-simplex. Let C’ZM’F(X ) be
the abelian group of all I'-invariant locally finite ordered k-chains

Z C(UO,“-;Uk)(’UO?"' 7”]6)7

(vo,+ ,vk)

where the sum is taken over all ordered k-simplices of X and c(y,,... +,) € C. We remark
that, in the above definition, a pair of vertices in (v, - -+, vx) are allowed to be the same.

Let szod’F(X ) be the abelian subgroup of C’,:Td’F(X ) consisting of all T-invariant
locally finite ordered k-chains with the following special form:
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k+1
—_——~
ZCU (U7"' 71})7
v

where the sum is taken over all vertices of X and ¢, € C.

We define an abelian group C’,Zjﬂijg(X ) by:

Cord,F(X) . Czrd’F(X) if k is even,
kired T Oyt (X)) /Ot (X) i ks odd,

where Czrd’F(X)/C,jTOd’F(X) is the quotient group of C¢™ ! (X) over CZTSLF(X).
The standard boundary map on C’Zrd’r(X ) induces a boundary map:

d,r ar dr
aZT”‘Ed : OZ,TT@d (X) O/Zil,red(X)'
We define a new homology group:

Hord,F(X) — Ker aord,F/Im aord,F

n,red n,red n+1,red"

Let xx be the natural chain map from C’Z’rrde’g (X) to Cp" (X)) defined by:

[ > oo @0 0] = D Cug ) V0, VR

(vo,-+ k) (vo,+ k)

for every [3=., .. 1) Clworup)(V0, - Uk)] € Cgfr‘ég(){). This map is well defined be-
k41
cause [v,--+,v] » =0 when k is odd.

By a standard Mayer—Vietoris and five lemma argument, it is not difficult to prove
that y induces an isomorphism x. from Hg’:ieg(X) to H)T'(X). This is because both
homology theories satisfy the Mayer—Vietoris sequences and Yy is an isomorphism when
X =T/F as I-spaces for some finite subgroup F of T.

We define a natural chain map
brk : Clfea (X) = CE(X)
by:

[ Z C(UO’...’U,C)(Uo,'-' ,’Uk)] — C(UO’...’U,C)[U(),'“ ,Uk]
(vo,+ k) (vo,-+ k)

for every [3=., .. up) Clvorup) (Y0, s uk)] € C’,‘jjrdcjg(X). This map is well defined be-
k+1

cause [v,- -+ ,v] =0 when k is odd (more generally when k > 1).
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For each ordered k-simplex (vg,- - ,vg) of X, we let

(pkvk_Q((UOa t ,’Uk)) =

(=1)7 = oy, -+ Oy, 0, -+ ,vg] if (4, 5) is the smallest pair
such that 7 < j, v; = vy,
0 if there exists no pair ¢ < j such that v; = vj,

where the smallest (4, 7) is taken with respect to the dictionary order of {(m,l) : 0 <
m <[ <k} given by: (m,l) < (m/,l') iff either (1) m <m/, or (2) m=m' and | <.
We define a linear map

Ph k-2 CZ,TTdég(X) — Cl_a(X)

[ Z C(Uo,~~~,vk)(vov"' 7vk)] — Z C('uo,~~~,w)%ﬁk,k—2((’007"' 7vk))

(vo, -+ ,vk) (vo, -+ ,vk)

for every [Z(on,,‘ ox) Cvo, ,Uk)(UOa )] € C,?Ti’g(X)-

Note that ¢y 2 is well defined. Elementary computations show that ¢ 1o is a chain
map.

Similarly we can construct a chain map

Pkt C;i’fﬁfgg(X) - C7 (X)

if0<Ii<kandk—11is even.
Using the above chain maps, we construct a chain map:

1/171 = EBZSn, n—Il even ¢n,l : OZngg(X) — (@lgn, n—Il even ClF(X))

The chain map 1, induces an isomorphism 1, on the homology groups since both
homology theories satisfy the Mayer—Vietoris sequence and the chain map induces an
isomorphism at the homology level if X = T'/F as I'-spaces for some finite subgroup F'
of T.

Finally Proposition 4.2 follows from the facts that y, and ), are isomorphisms. 0O

For any positive even integer n > p, we now define the Connes—Chern character for a
countable torsion free group I'

e Ko(SpT) — HT(Py(T)),

where I' is endowed with a proper length metric.
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Let ¢ be an idempotent in M,,((S,I')*) and § = g + qo for some ¢ € M,,(S,T)
and idempotent ¢y € M,,(C). We identify ¢ with an element in A(T,S,) (note that
AT, M, (S,)) is isomorphic to A(T', Sp)). Let d be greater than or equal to n + 1 times
the propagation of ¢, i.e. g(z,y) = 0 if d(z,y) > d/(n + 1).

For each positive even integer n > p, the Connes—Chern character ¢, of [] — [qo] is
defined to be homology class of

Z tr(Q(xO’xl) U q(:Cn,.%Q))[l‘o, T ’mnb\ € H27F(Pd(r>)’

(@0, &n)

where the summation is taken over all ordered n-simplices (zg, - - ,zy) of Py(T).

We remark that the choice of n guarantees that the trace in the above definition of
the Connes—Chern character is finite.

By Proposition 4.2, the above Connes—Chern character induces a Connes—Chern char-
acter:

Cp @ Ko(SpF) — dhjgo(@k even, k<n H}S(Pd(r)))

for any non-negative integer n > p.

For an arbitrary non-negative even integer n, let n’ be a positive even
integer satisfying n’ > max{n,p}. Let m,, be the natural projection from
limdﬁoo(@k even, k<n’ H};(Pd(F») to hmdﬁoo(@k even, k<n H};(Pd(l‘))) We define the
Connes—Chern character ¢, from Ko(S,T') to limy oo (B even, k<n H,S(Pd(F))) to be
T/ m © Cpr. It is not difficult to verify that the definition of ¢, is independent of the
choice of n'.

Proposition 4.3. Let ' be a countable torsion free group. For any non-negative even
integer n, the Connes—Chern character c,, is a well defined homomorphism from Ko(S,I')
to hmd%oo(@k even, k<n H]E(Pd(r)))

The proof of the above proposition is similar to the proof of Proposition 4.1 and is
therefore omitted. Note that when p = 1, the above definition of the Connes—Chern
character coincides with the prior definition of the Connes—Chern character.

Next we shall construct the Connes—Chern character for a general group T.

Let I'f;n, be the set of all elements with finite order in I'. The group I' acts on I'y;,
by conjugations:
vz =gy
for all v € I' and x € T'¢;p,.

Let X be a simplicial complex with a proper simplicial action of I'. Equip the vertex
set V(X) of X with a I-invariant proper pseudo-metric dy. Let I' act on I'p; x X
diagonally.
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Let » > 0. For each g € I'f4,, we define X, , to be the simplicial subcomplex of X
consisting all simplices {vg, - - - , v, } satisfying dy (v;, gv;) < r for all 0 <3 < p.

For each ordered simplex (vy, ..., v;) of X, ,, we define the following transformation
to be a g-cyclic permutation

(U07"'7Uk) — (gvk7U07' o 7Uk—1)-

We define two ordered simplices (vo, - - ,vx) and (vg, -+ ,v;,) of X, to be g-equivalent
if one ordered simplex can be obtained from the other ordered simplex by any number
of g-cyclic permutations of ordered simplices in X, , when k is even and by an even
number of g-cyclic permutations when & is odd. Each of the equivalence classes is called
a g-cyclically oriented simplex. If (vy,...,vx) is an ordered simplex of X, ., we use the
symbol [vg, -+ ,vi]a,q to denote the corresponding g-cyclically oriented simplex.

We define (Cﬁw (X) to be the abelian group of all locally finite k-chains:

Z (97 Z C(vo,u-,vk),g[UOv"' 7'Uk:])\7g)7
g€ fin (vo, -+ ,vk)

where

(1) the second summation is taken over all ordered simplices (vg, - ,vx) of X, and
Clvg, - vn).g € C;

(2) [vo,- -+ ,vk]r,g is identified with (—1)*[guvy,vo, -, vk—1]x,¢ in the above sum;

(3) for each g € I'y;,, and any compact subset K of X, there are at most finitely many
ordered simplices (vo, - - ,vy) intersecting K such that c(y,,... v,),9 7 0-

The diagonal action of I' on I'ys, X X induces a natural I'-action on C?T(X ). Let
(CQE(X) C (C?T(X) be the abelian group consisting of all T'-invariant k-chains in (CQW(X).
We have a natural boundary map:

Ry - Cy (X) — Gy (X).
We define the following equivariant homology theory by:

H)T(X) = Ker 0% /[Im 91 .

When I' is torsion free, I'f;, consists of the identity element and we have
Hoyw (X) = Hp't (X).

For each r > 0, let X, be the simplicial subspace of I'f;, X X defined by:

~

Xr={(g,2) €Tpin x X 1w € Xy, }.

The diagonal action of I' on I'f;,, x X induces a natural I'-action on X,..
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We define
Hy, ,(X) = H} (X,).

The following result computes our new equivariant homology theory of the Rips com-
plex in terms of the (locally finite) equivariant simplicial homology theory.

Proposition 4.4. Let I' be a countable group with a proper length metric. We have

lim lim H)}(Py(T)) 2 lim lm (Br<n, k=n moa 2 Hy, . (Pa(I))).

d—o00 T—00 d—o00 1—00

Proof. Let X be a simplicial complex with a proper and cocompact action of I'. We
define an equivalence relation ~ on the chain group (CQ’S(X ) as follows. Two chains z

and 2’ in (sz (X) are said to be equivalent if

= Z <g’ Z c(vow'-,vk),g[vm"' >Uk]>\,g)a

9€lin  (vo, k)

Y= 300 D Cluom sVl hlag),

g€l fin (vo,-+ k)

and for each 0 < i < k there exists an integer j such that v} = g/v;.
Let C,?‘f(X) be the chain group (C?f(X)/ ~. We define H:H;\LE(X) to be the n-th
homology group of C’,;\TF (X).

The quotient chain map ¢ from (sz (X) to C,i‘rr (X) induces a homomorphism
bu s Hyp (X)) = HL(X).

We observe that the properness and the cocompactness of the I' action on X im-
ply that, for each r > 0, there exists N > 0 such that if ¢ € I'p;, and X, is
nonempty, then the order of the group element g is bounded by N. As a consequence,
for any d > 0 and r > 0, there exist d’ > d and 7’ > r such that, for any g € i
and any simplex in (Py(I")),» with vertices {wvo,---,vi}, the simplex with vertices
{g"vg, -+ ,g"%v : 1 <i; < N,0<j <k} isasimplex in (Py(I))y,~. This implies that
¢ is a chain homotopy equivalence from the chain complex limg_, o lim, o (sz (Pa(T))
to the chain complex limg_, oo lim,_ oo C’,i‘rr (P4(T")) with a homotopy inverse chain map
¢ from limg o0 lim, 0o Cpy (Pa(T)) to limg— o lim, 00 Cpy (Pa(T)) defined by

ZZJ([ Z (gv Z C(vo,m ,vk),g[v(); e 7’Uk])\,g)]) =
g€l fin (vo,++ ,vk)

g

Z(g, Z # Z oo, on)gl°V0, 5 9 VK] A g)

9€lfin (vo,+,ok) 9 B0, ik =1
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foreach [3 2 e, (9,2 (0, o) Clvo,w 0i)ig[V05 5 Uk]ag)] i limgoolim,oe Cpr (Pa(T)),
where ng is the order of the group element g. It follows that the homomorphism ¢, is
an isomorphism from limg_, oo lim,_ o Hﬁzf (Pa(T)) to limg— oo lim, 0 HQ;I;(Pd(F)).

Two vertices v and v’ of X, are defined to be equivalent if v = g/v’ for some j. We
denote the equivalence class of v by [v].

We define X, ,. to be the simplicial complex consisting of simplices {[vo], - - - , [vy]} for
all simplices {vo,--- , v} in Xy,
Let

Xr = {(gvx) g€ Ffinax S Xg,r}-
By an argument similar to the proof of Proposition 4.2, we have the following isomor-
phism:

lim lim H:]I;\L’E(Pd(l‘)) ~ lim lim (@kgn, k=n mod 2 H}:((Pd(r))r))

d—00 1—00 ’ d—o00 1—00

Finally we observe that the natural homomorphism

—_~—

lim lim (@kgn, k=n mod 2 HEJ(Pd(F))) — lim lim (@kgn, k=n mod 2 H’rl:((Pd(F))7))

d—o00 r—00 d—oo r—00
is an isomorphism. O
Let I be a countable group with a proper length metric. Let X be a simplicial complex

with a proper and cocompact action of I'. Let X be the subspace of T #in X X defined
by:

X ={(g,z) €Tjin x X : gx = x}.

The diagonal action of I' on I'¢;;, x X induces a natural I'-action on X. Note that X is
a simplicial complex with a simplicial action of T.
We define

HE (X) = H (X).
We remark that HL (X) is the equivariant homology theory of Baum-Connes [3].
Proposition 4.5. Let I' be a countable group with a proper length metric. We have
Jim lim H, (Pa(I) 2 lim H, (Pa(T)).

Proof. Let X be a simplicial complex with a proper and cocompact action of I'. For each
finite subset F' C I'f;p,, let

F'={yfy':yvel, feF}.
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For each g € I'ys, and r > 0, we define )V(gm to be the simplicial subcomplex of X
consisting of simplices with vertices

{gjov()a e 7gjkvk : ji S Z}

for all simplices {vo,--- , v} in Xy .
We let

Xp ={(g9,z) € F' x X : gx = z}, XF,T ={(g,z) € F' xX:xe)v(g,r}.

We have an inclusion map

it PyT) p — (Pa(D)) g,

)

The map ¢ induces a homomorphism

is : lim HY (Py(T)) = lim lim H, (Py(T)).

d—o0 d— 00 r—00

v

By the definition of (Py(I')),,, for each d > 0 and r > 0, there exists ¢ > 0 such

v

that, for every point (g,z) in (P4(T")) ., = is within distance c from a fixed point of g.
It follows that, for each d > 0 and r > 0, there exist d’ > d and a continuous map

~ ~

¢ = (Pa(D)) gy = (P (D)) p

such that if we write ¥ (g,x) = (g,v'(x)), then we have

~

sup{d(¢'(z),z) : (9,2) € (Par(T)) p} < 00,

where d is the restriction of the simplicial metric on Py(T).
The map v induces a homomorphism

¥, lim lim HL (Py(T")) — lim HE (Py(T)).

d— o0 T—00 ’ d—oo

Using linear homotopies, it is not difficult to check that i, and 1, are inverses to each
other. O

For each non-negative integer n, we are now ready to define the Connes—Chern char-
acter ¢, for a general group I':

Cp @ KO(SF) — dlinolo(@k even, k<n HEL(Pd(F)))
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For each p > 1 and even integer n > p, we shall first define the Connes—Chern
character ¢,,:

Cp : Ko(SpF) — dILH;o(@k even, k<n HE(Pd(F)))

Let ¢ be an idempotent in M,,((S,I')*) and § = g + qo for some g € M,,(S,T) and
idempotent gy € M,,(C). Let d be greater than or equal to n + 1 times the propagation
of ¢, ie. ¢(z,y) =0if d(z,y) > d/(n+1).

The Connes—Chern character ¢, of [§] — [qo] is defined to be the homology class of

Z (gu Z tr(q(xo,:ﬂl)-~-q(xn,g_1x0))[x0,--- 7xn])\79) EHQ:S(PCI(F))’

g€l fin (zo, %)

where the summation Z(mo’_” ) 18 taken over all ordered n-simplices of (P4(T"))g,a. We
remark that the choice of n guarantees that the trace in the above definition of the
Connes—Chern character is finite.

By Propositions 4.4 and 4.5, the above Connes—Chern character induces a Connes—
Chern character:

Cp : Ko(SpF) — dli—>ngo(®k even, k<n Hg(Pd(F)))

For an arbitrary non-negative integer n, let n’ be a positive even integer satisfying n’ >
maz{n,p}. Let 7,/ , be the natural projection from limg_oo(Bk even, k<n’ HL (Pa(T)))
to img oo (Bk even, k<n HE(Pd(F))). We define the Connes—Chern character ¢,, from
Ko(Spl) to img—yoo (Bk even, k<n H (Pa(T'))) to be T, 5, 0 ¢y It is not difficult to verify
that the definition of ¢, is independent of the choice of n’.

The proof of the following proposition is similar to the proof of Proposition 4.1 and
is therefore omitted.

Proposition 4.6. Let T' be a countable group. For any mnon-negative integer n, the
Connes—Chern character c, 1is a well defined homomorphism from Ky(S,I') to
hmd—)oo(EBk even, k<n HI];(Pd(F)))

Using the definition of lower algebraic K-theory, for each p > 1 and any non-negative
integer n, we can similarly define

Cp @ KZ(SPP) — dlggo(@k+i even,k<n Hg(Pd(F)))

for each i < 0.
Finally, with the help of the equality & = U,>1S,, we obtain a Connes—Chern char-
acter

e Ki(ST) = m (i even, k< Hi (Pa(T)))

for each non-negative integer n and ¢ < 0.



746 G. Yu / Advances in Mathematics 307 (2017) 727-753

Notice that when I' is torsion free, Iy, consists only of the identity element and the
above definition coincides with the prior definition for the torsion free case.

In the rest of this section, we study a local property of the Connes—Chern character for
K-theory elements with small propagations. This local property will play an important
role in the proof of the main theorem of this paper.

We shall need a few preparations to explain the concept of propagation in a continuous
setting. Let X be a I'-invariant simplicial subspace of Py, (I") for some dy > 0. Endow
Py, (T') with a metric d such that its restriction to each simplex is the standard metric
and d(v1,72) < dr(y1,72) for all v; and v2 in I' C Py, (T"), where dr is the proper length
metric on I'. Let X be given the simplicial metric of Py, (T"). Let H be a Hilbert space
with a T-action and let ¢ be a *-homomorphism from Cy(X) to B(H) which is covariant
in the sense that ¢(vf)h = (v(¢(f))y )hforally €T, f € Co(X) and h € H. Such a
triple (Co(X),T, @) is called a covariant system.

The following definition is due to John Roe [28].

Definition 4.7. Let H be a Hilbert space and let ¢ be a *-homomorphism from Cy(X)
to B(H), the C*-algebra of all bounded operators on H. Let T be a bounded linear
operator acting on H.

(1) The support of T is defined to be the complement (in X x X) of the set of all
points (z,y) € X x X for which there exists f € Co(X) and g € Cp(X) satisfying

¢(f)T¢(g) = 0 and f(x) # 0 and g(y) # 0;
(2) The propagation of T is defined to be:

sup {d(z,y) : (x,y) € Supp(T)};

(3) Given p > 1, T is said to be locally Schatten p-class if ¢(f)T and T'¢(f) are Schat-
ten p-class operators for each f € C.(X), the algebra of all compactly supported
continuous functions on X.

Definition 4.8. We define the covariant system (Cy(X),T, ¢) to be admissible if

1
2

(1) the I'-action on X is proper and cocompact;

(2) ¢

(3) ¢(f) is noncompact for any nonzero function f € Co(X);
(4)

is nondegenerate in the sense that ¢(Co(X))H is dense in H;
4) for each x € X, the action of the stabilizer group I';, on H is regular in the sense
that it is isomorphic to the action of I';, on [?(I';) ® W for some infinite dimensional
Hilbert space W, where the I',, action on I? (T'z) is regular and the I',, action on W
is trivial.

We remark that condition (4) in the above definition is unnecessary if T acts on X
freely. In particular, if M is a compact manifold and T' = w1 (M), then (Co(M),T, ¢) is
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an admissible covariant system, where M is the universal cover of M and o(f)€ = f€ for
each f € C’O(M ) and all £ € L? (JT/f ). In general, for each locally compact metric space
with a proper and cocompact isometric action of I', there exists an admissible covariant
system (Co(X),T, ¢).

Definition 4.9. For any p > 1, let (Cy(X),T, ¢) be an admissible covariant system. We
define C,(T', X, H) to be the ring of I'-invariant locally Schatten p-class operators acting
on H with finite propagation.

The proof of the following useful result is straightforward and is therefore omitted.

Proposition 4.10. Let T' be a countable group. Let X be a simplicial complex with a
simplicial proper and cocompact action of T. If (Co(X),T', ¢) is an admissible covariant
system, then the ring C,(I', X, H) 1is isomorphic to the ring S,T .

For each r > 0, let X,. be a I'-invariant discrete subset of X such that

(1) X, has bounded geometry, i.e. for each R > 0, there exists N > 0 such that any ball
in X, with radius R has at most N elements;

(2) X, is r-dense in X, i.e. d(z, X,.) < r for every z € X;

(3) X, is uniformly discrete, i.e. there exists k. > 0 such that d(z, z") > k, for all distinct
pairs of elements z and 2’ in X,.

Let {U.}.cx, be a I'-equivariant disjoint Borel cover of X such that z € U, and
diameter(U,) < r for all z. Let x, be the characteristic function of U,. Extend the
«-representation ¢ to the algebra of all bounded Borel functions. If k € C,(I", X, H), let
k(z,y) = ¢(xz)kod(xy) for all  and y in X,.

For any r > 0, let U, be the 10r-neighborhood of U, for each z € X,., i.e.
U.={z€ X :d(z,U,) < 10r}.
Let O,(X) = {U.}.ex,. Note that O,(X) is an open cover of X.
Let N(O,(X)) be the nerve space of the open cover O, (X). We equip the vertex set
V of the simplicial complex N (O, (X)) with the pseudo-metric dy defined by:

dy (W,W') = sup{d(z,y) :z € W,y € W'}

for any pair of vertices W and W' in N(O,(X)).
For each non-negative even integer n > p, we define the Connes—Chern character

Cp Ko((cp(F,X, H)) — O even,k<n Hg,r(N(OT(X)))

as follows.
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Let ¢ be an idempotent in M,,(C,(I',X,H))*) and § = ¢ + ¢qo for some ¢ €
M, (C,(T', X, H)) and idempotent gy € M,,(C). Let r be the propagation of ¢. Let
n be an even integer satisfying n > p.

The Connes—Chern character of [§] — [go] is defined to be homology class of

Z(g, Z tr(q(zo, 1)+ q(@n, g~ '@0)) [0, + L Tnlrg)

g€l fin (Zo, sxn)

in the homology group H:‘L’F (N(O(n41)r(X))), where, for each g and r, (xo,--- , )

,(n+1)r
denotes the ordered simplex (U, ,---,U, ) in the space (N(Ogq1)r(X)))g,rs [0, ,
Tp]a,g denotes the g-cyclically oriented simplex [Uy, ,--- ,U; ]x g in (N(Opng1)r(X)))g,rs

and the summation Z(wo’___ o) in the above formula is taken over all ordered simplices
it V(O 1), (X)) g

The following proposition follows from the above definition and the proof of Proposi-
tion 4.1.

Proposition 4.11. Let I" be a countable group. Let X be a simplicial complex with a simpli-
cial proper and cocompact action of I'. For each r > 0, let n be an even integer satisfying
n > p. If (Co(X),T, @) is an admissible covariant system, then the Connes—Chern char-
acter ¢, of an element in Ko(C,(T', X, H)) with propagation less than or equal to r > 0
is a homology class in Hi\LjI;(N(O(n+1)r(X)))~

We identify Ko(S,I') with limg o limx Ko(Cp(I', X, H)) using Proposition 4.10,
where the direct limit limyx is taken over the directed system of all I'-invariant,
I-compact subsets of Py(T'). We also identify limg oo limy H)7T(N(O,(X)))) with
limg—y o0 (Bk evenk<n HE (Pa(T))) using Propositions 4.4 and 4.5, where the direct limit
limx is again taken over the directed system of all I'-invariant, I'-compact sub-
sets of Py(I'). Using the projection 7, , from limg_eo(®k evenk<n Hi(Pa(T))) to
im0 (Bk even k<n Hi (Pa(T))) for n’ = max{n, p}, the above Connes—Chern character
induces a Connes—Chern character:

Cp = Tp'n ©Cpr : KO(SPF> — dh~>m (@k even, k<n Hg(Pd(F)))

for any non-negative even integer n. This construction gives back the Connes—Chern
character in Proposition 4.6.

In the following corollary, we demonstrate a local property of the Connes—Chern
character. This local property of the Connes—Chern character plays an important role in
the proof of Theorem 1.1.

Corollary 4.12. Let T’ be a countable group. Let X be a simplicial complex with a simpli-
cial proper and cocompact action of T'. Let ¢ = q+qo be an element in M,,(C,(T', X, H)*)
such that q € M,,(C,(T, X, H)), qo € M (C), ¢ and qo are idempotents. For any non-



G. Yu / Advances in Mathematics 307 (2017) 727-753 749

negative integer n, when the propagation of q is sufficiently small, ¢, ([G]—[qo]) can be rep-
resented by a homology class in @k cven, k<n HE(X). More generally for each i <0 and
p > 1, the Connes—Chern character c,, of an element in K;(C,(T', X, H)) with sufficiently
small propagation can be represented by a homology class in @k even, k<n HEH(X).

Proof. Let ¢ = ¢ + go be an element in M,,(C,(I', X, H)") such that ¢ € M,,(C,(T,
X, H)), ¢ € M,,(C), ¢ and gy are idempotents. If n > p and the propagation of ¢ is
less than or equal to r > 0, then by Proposition 4.11 we know that ¢, ([¢] — [g0]) can be
represented by a homology class in H)'L(N(Oy41),-(X))).

Let

ro =inf { d(gUL,U.): z€ X,,g €, gU. #U.},

where {U},cx, is the open cover O, (X) in the definition of the Connes—Chern character.
Assume that r is a sufficiently small positive number for the rest of this proof. We
have 1o > 0. We choose {U, },cx, such that {U.}.cx, is a good cover.
If » < rg, then we have the following:

[1] by the definition of Hj)7 (N (O, (X))), the homology group Hj) 1 (N(O,(X))) is equal
to H)T (N (O, (X)))):

[2] by Proposition 4.2, the homology group H,;\F((N(6,,(\X)))) can be identified with
@i cvenizn HE(V(O,(0)); .

[3] by the choice of {U}.ex,, the homology group H} (N (0O,(X)))) is equal to HL (X)
for each k.

When n > p, Corollary 4.12 follows from the above statements and the definition of the
lower algebraic K-groups. The case of an arbitrary non-negative integer n can be reduced
to this special case by considering n’ = max{n, p} and using the identity ¢,, = mp 0y,
where , ,, is the projection from @y even, k<n’ HE_H(X) t0 @k even, k<n H£+i(X). O

5. Proof of the main result

In this section, we give a proof of Theorem 1.1.
By Proposition 2.4, Theorem 1.1 follows from the following result.

Theorem 5.1. Let S be the ring of all Schatten class operators on an infinite dimensional

and separable Hilbert space. The assembly map
A H,?TF(E]:IN(F),K(S)*OO) — K, (ST)

is rationally injective for any group T'.
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Proof. Without loss of generality, we can assume that I' is countable (this is because
every group is an inductive limit of countable groups). We recall that Exzx(I") can be
identified with Ug>1P4(T"). For each ¢ < 0 and non-negative integer n, composing the
assembly map

A: HO"V(Erzpn (D), K(S)™%°) — K,;(ST)
with the Connes—Chern character
cn: Ki(ST) — dILII;o(GBk even, k<n Hiyi(Pa(T))),
we obtain a homomorphism
Vin: HY™ (Erza (D), K(S)7) = lim (& cven k<n Hipi(Pa(I)))-

By using the fact that HP™ (Ezzy (1), K(S)™) is limg_ e HO™ (Py(T), K(S)™),
we obtain a homomorphism

Vi HOV(Erzn(D),K(S)™>®) — Jim (&4 cven Hj,;(Pa(T)))

such that t; coincides with ; , on the image of the natural map from HZ-O’”F(Pd(F)7
K(S)™>) to HO™ (Exza(T),K(S)™>°) when n + i is greater than or equal to the di-
mension of P4(T"). Such a map 1; is unique and is independent of the choice of n.

For each simplicial T-invariant and T'-cocompact subspace X of Erzan (L), let
CI' X, H) = Up>1Cp(I', X, H), where C,(I', X, H) is as in Definition 4.9. By the def-
inition of the assembly map in [1] and the fact that this assembly map coincides with
the classic assembly map (Corollary 6.3 in [1]), K-theory elements in the image of the
assembly map

A:HPT (X, K(S)™>) = K;(C(T', X, H))

can be represented by elements with arbitrarily small propagation for ¢ < 0.
This, together with Corollary 4.12, implies that there exists a map (still denoted by ;)

Pi o HOW(X,K(S)™) = (B even Hp, (X))
for each non-positive integer ¢ such that the following diagram commutes:

r —o0 P
HOU(X,K(S)™) % (@k even HE (X))
Li. il )
HO™M(Erzpr(T),K(S)™°) 25 limgsoe(Bk cven HE,,(Pa(T)))

where j,. and j, are respectively induced by the inclusion maps.
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If X =T /F as I'-spaces for some finite subgroup F of T, then it is straightforward to
verify that ¢; is an isomorphism after tensoring with C. In fact, both sides are naturally
isomorphic to the group R(F)® C, where R(F) is the representation ring of F viewed as
an additive group. Recall that, by Proposition 7.2.3, Remark 7.2.6 and Theorem 8.2.5 in
[14], we have K,,(S) = Z when n is even and K,,(S) = 0 when n is odd. As a consequence,
the homology theory HO™T'(X,K(S)~>) is 2-periodic. Note that the homology theory
Dk cven H}; +i(X ) is 2-periodic by definition. By the proof of the Mayer—Vietoris sequence
using the mapping cone and the definition of the Connes-Chern character, we know the
homomorphisms ¢; commute with the Mayer—Vietoris sequences (up to scalars).

Using the above results, the fact that both homology theories satisfy the Mayer—
Vietoris sequence and a five lemma argument, we can prove that the map

bi: HOT(X,K(S) ™) = (Bk even H4(X))

is an isomorphism after tensoring with C for ¢ < 0. This implies that the assembly map
A is rationally injective for i < 0. Now Theorem 5.1 follows from Proposition 3.1. O

We comment that the algebraic K-theory isomorphism conjecture for the ring ST can
be viewed as an algebraic counterpart of the Baum—Connes conjecture for the K-theory
of the reduced group C*-algebra of ' [4]. The Farrell-Jones isomorphism conjecture and
the Baum—Connes conjecture imply the following conjecture.

Conjecture 5.1. Let K be the C*-algebra of all compact operators on an infinite dimen-
sional and separable Hilbert space, let C(T") be the reduced group C*-algebra of T'. The
natural homomorphism

i Kn(ST) — K, (CX(D) ® K)

is an isomorphism, where C*(I') ® K is the C*-algebraic tensor product of CX(T') with
K and i is the inclusion map from ST to C¥(I') @ K.

We remark that, by a theorem of Suslin-Wodzicki [32], the algebraic K-theory
K, (C¥(') ® K) is isomorphic to the topological K-theory K!P(C#*(T')). Theorem 1.1
implies that the Novikov higher signature conjecture follows from the (rational) injec-
tivity of i, in the above conjecture.

We speculate that the (algebraic) bivariant K-theory of Cuntz, Cuntz—Thom and
Cortinas—Thom should be useful in studying the algebraic K-theory isomorphism con-
jecture for ST [15-17,13]. Finally we mention several other related works [5,7-10,20,22,
23,25,29-31,33,34,36,37].
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