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1. Introduction

Let M be a closed smooth manifold. Suppose M carries a metric of positive scalar cur-
vature. It is well known that the space of all Riemannian metrics on M is contractible,
hence topologically trivial. To the contrary, the space of all positive scalar curvature
metrics on M, denoted by RT (M), often has very nontrivial topology. For example,
the homotopy groups of Rt (M) often contain many nontrivial elements (cf. [6,8]). In
particular, Rt (M) is often not connected and in fact has infinitely many connected
components (cf. [1,11,13,18]). For example, by using the Cheeger-Gromov L2-rho invari-
ant [3] and the delocalized eta invariant of Lott [12], Piazza and Schick showed that
R (M) has finitely many connected components, if M is a closed spin manifold with
dim M = 4k + 3 > 5 and 7 (M) contains torsion [13, Theorem 1.3].

Following Stolz [21,22], Weinberger and Yu introduced an abelian group P(M) to
measure the size of the space of positive scalar curvature metrics [23]. In addition, they
used the finite part of K-theory of the maximal group C*-algebra C} . (71 (M)) to give
a lower bound of the rank of P(M). A special case of their theorem states that the
rank of P(M) is > 1, if M is a closed spin manifold with dimM = 2k +1 > 5 and
m1(M) contains torsion [23, Theorem 4.1]. In particular, this implies the above theorem
of Piazza and Schick.

In this paper, inspired by the results of Piazza and Schick [13] and Weinberger and
Yu [23], we use the finite part of K-theory of C} . (71 (M)) to study the moduli space
of positive scalar curvature metrics. Recall that the group of diffeomorphisms on M,
denoted by Diff(M), acts on RT (M) by pulling back the metrics. The moduli space of
positive scalar curvature metrics is defined to be the quotient space R*(M)/Diff(M).
Similarly, Diff (M) acts on the group P(M) and we denote the coinvariant of the action by
P(M). That is, P(M) = P(M)/P,y(M) where Py(M) is the subgroup of P(M) generated
by elements of the form [x] — ¢*[x] for all [x] € P(M) and all ¢ € Diff (M). We call
P(M) the moduli group of positive scalar curvature metrics on M. It measures the size
of the moduli space of positive scalar curvature metrics on M. The following conjecture
gives a lower bound for the rank of the abelian group ﬁ(M ).

Conjecture. Let M be a closed spin manifold with 71 (M) =T and dim M =2k +1 > 5,
which carries a positive scalar curvature metric. Then the rank of the abelian group
P(M) is > Ngn(T'), where Ny (T) is the cardinality of the following collection of positive
integers:

{d € N, | 3y € T such that order(y) = d and v # e}.

In the main theorem (Theorem 5.9) of the paper, we show that the above conjecture
holds for strongly finitely embeddable groups (see Section 4 for the definition of strongly
finite embeddability).
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Theorem A. Let M be a closed spin manifold which carries a positive scalar curvature
metric with dim M = 2k + 1 > 5. If the fundamental group T' = w1 (M) of M is strongly
finitely embeddable into Hilbert space, then the rank of the abelian group P(M) is >
Ngn(T).

To prove this theorem, we need invariants under the action of the diffeomorphism
group that come from Dirac operators to distinguish positive scalar curvature metrics.
The index theoretic techniques used in [23], for example, do not produce such invariants.
The key idea of our proof is the use of higher rho invariant; this is a secondary invariant
associated to Dirac operators and in particular depends on the choice of Riemannian
metric. We show that the higher rho invariant remains unchanged in a certain K-theory
group under the action of the diffeomorphism group, allowing us to distinguish elements
in P(M). This is the main novelty of the proof.

The concept of strongly finite embeddability into Hilbert space for groups is a stronger
version of the notion of finite embeddability into Hilbert space, which was introduced
by Weinberger and Yu in [23]. We refer the reader to [23] or Section 3 & 4 below for
the precise definitions. The class of groups that are strongly finitely embeddable into
Hilbert space includes all residually finite groups, amenable groups, hyperbolic groups,
and virtually torsion free groups (e.g. Out(F,)). By definition, strongly finite embed-
dability implies finite embeddability (see Section 3 & 4). It is an open question whether
the converse is true, that is, whether finite embeddability implies strongly finite embed-
dability.

For general groups, we prove the following weaker version of the conjecture. This result
is motivated by a theorem of Piazza and Schick [13]. They used a different method to
show that the moduli space R (M) /Diff (M) has infinitely many connected components
when dim M = 4k + 3 > 5 and the fundamental group 71 (M) is not torsion free [13].

Theorem B. Let M be a closed spin manifold which carries a positive scalar curvature
metric with dim M =2k +1 > 5. If T' = m (M) is not torsion free, then the rank of the
abelian group P(M) is > 1.

The paper is organized as follows. In Section 2, we recall the definition of the index
map, the local index map and the higher rho invariant. In Section 3, we discuss the
finite part of K-theory of group C*-algebras. In Section 4, we introduce the notion of
strongly finite embeddability into Hilbert space for groups. We prove the main results
of the paper in Section 5.

2. Preliminaries

In this section, we briefly recall some standard definitions. We refer the reader to
[4,17,26] for more details.



Z. Xie, G. Yu / Advances in Mathematics 307 (2017) 1046-1069 1049

2.1. Mazimal Roe algebras and localization algebras

Let X be a proper metric space. That is, every closed ball in X is compact. An
X-module is a separable Hilbert space equipped with a s-representation of Cp(X), the
algebra of all continuous functions on X which vanish at infinity. An X-module is called
nondegenerate if the x-representation of Cy(X) is nondegenerate. An X-module is said
to be ample if no nonzero function in Cy(X) acts as a compact operator. Throughout
the paper, we only work with ample X-modules.

Definition 2.1. Let Hx be a X-module and T be a bounded linear operator acting on Hx.

(i) The propagation of T is defined to be sup{d(z,y) | (z,y) € Supp(T)}, where Supp(T’)
is the complement (in X x X) of the set of points (z,y) € X x X for which there
exist f,g € Co(X) such that ¢7f =0 and f(x) #0, g(y) # 0;

(ii) T is said to be locally compact if fT and Tf are compact for all f € Cy(X).

Definition 2.2. Let Hx be a nondegenerate ample X-module and B(Hy) the set of all
bounded linear operators on Hx. The (reduced) Roe algebra of X, denoted by C(X),
is the C*-algebra generated by all locally compact operators with finite propagations in
B(Hx).

In this paper, we will mainly work with the maximal Roe algebra [4]. Let us denote by
C[X] the *-algebra of all locally compact operators with finite propagations in B(Hx).

Lemma 2.3 (/4, Lemma 3.4]). For each a € C[X], there is a constant c, such that

lp(a)ll < ca
for all x-representation ¢ : C[X| — B(H), where H is a Hilbert space.
We refer the reader to [4, Lemma 3.4] for a detailed proof of the above lemma.

Definition 2.4. For each a € C[X], we define

llallmax = sup {[l¢(a)|| | ¢ : C[X] — B(H) a *-representation },
@

where ¢ runs through all x-representations of C[X]. The maximal Roe algebra C}

(X)
is defined to be the completion of C[X] with respect to this maximal norm.

For notational simplicity, we write C*(X) = C}

¥ ax(X) from now on. Let us also recall

the definition of localization algebras [26]. Again, we work with the maximal version.
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Definition 2.5.

(i) C7(X) is the C*-algebra generated by all bounded and uniformly continuous func-
tions f : [0,00) — C*(X) such that

propagation of f(t) — 0, as t — oo.
(ii) C7 o(X) is the kernel of the evaluation map
ev: CL(X) = C*(X), ev(f) = J(0).
In particular, C7 4(X) is a closed ideal of C7 (X).

Now suppose there is a countable discrete group I' acting on X properly and cocom-
pactly. Let Hx be an X-module equipped with a covariant unitary representation of I.
If we denote the representation of Cy(X) by ¢ and the representation of I' by 7, this
means

(V) (@(fv) = o(f7) (7 (7)v),

where f € Co(X), v €T, v € Hx and f7(x) = f(y 'z). In this case, we call (Hx,T', )
a covariant system.

Definition 2.6 (/28/). A covariant system (Hx,T', ¢) is called admissible if

(1) the T'-action on X is proper and cocompact;

(2) Hx is a nondegenerate ample X-module;

(3) for each = € X, the stabilizer group I', acts on Hx regularly in the sense that the
action is isomorphic to the action of T'; on [?(T',) ® H for some infinite dimensional
Hilbert space H. Here T, acts on [2(T';) by translations and acts on H trivially.

We remark that for each proper metric space X with a proper and cocompact isometric
action of I', there exists an admissible covariant system (Hx,I',¢). Moreover, if I" acts
freely on X, then the condition (3) is automatically satisfied. If no confusion arises,
we will simply denote an admissible covariant system (Hx,T',¢) by Hx and call it an
admissible (X, I')-module.

Definition 2.7. Let X be a locally compact metric space X with a proper and cocompact
isometric action of I'. Suppose Hx is an admissible (X, I')-module. We denote by C[X]"
the x-algebra of all I'-invariant locally compact operators with finite propagations in
B(Hx). We define the maximal I'-invariant Roe algebra C*(X)'' = C _ (X)' to be the

completion of C[X]'" under the maximal norm:
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l|allmax = sup {[|¢(a)|| | ¢ : C[X]" — B(H) a =-representation}.
¢

We can also define the maximal C} (X)" and C} (X)" similarly.

Remark 2.8. In fact, C[X]! is isomorphic to K[['] the group algebra over the coefficient
ring K, where K is the algebra of all compact operators. In particular, C¥, (X)I' =

Cl (1) ® K, where C

max max

(T) is the maximal group C*-algebra of T.
2.2. K-homology

In this subsection, we recall the definition of K-homology due to Kasparov. Let X
be a locally compact metric space with a proper and cocompact isometric action of T'.
The K-homology groups K ]F (X), j =0,1, are generated by the following cycles modulo
certain equivalence relations (cf. [9]):

(i) an even cycle for K} (X) is a pair (Hx, F), where Hx is an admissible (X, I")-module
and F € B(Hx) such that F is I'-equivariant, F*F — I and FF* — I are locally
compact and [F, f] = Ff — fF is compact for all f € Cy(X).

(ii) an odd cycle for K1 (X) is a pair (Hx, F'), where Hy is an admissible (X, I')-module
and F is a T-equivariant self-adjoint operator in B(Hx) such that F? — [ is locally
compact and [F, f] is compact for all f € Co(X).

Remark 2.9. In the general case where the action of I on X is not necessarily cocompact,
we define

where Y runs through all closed I'-invariant subsets of X such that Y/T is compact.
2.3. K-theory and index maps

In this subsection, we recall the standard construction of the index maps in K-theory
of C*-algebras. For a short exact sequence of C*-algebras 0 - J — A — A/J — 0, we

have a six-term exact sequence in K-theory:

Ko(J) —— Ko(A) —— Ko(A/T)

aOT lal

Ki(A)J) =— Ki(A) =—— K1(J)

Let us recall the definition of the index maps 0;.
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(1) Even case. Let u be an invertible element in .4/7. Let v be the inverse of v in A4/J.
Now suppose U,V € A are lifts of u and v. We define

(DGR )

Notice that W is invertible and a direct computation shows that

U 0
W—(O V)ej.

Consider the idempotent

10\, (UV+UVA-UV) (2-UV)1-UV)U
P:W(o 0>W :< V(l—(UV) b (1—)(VU)2 ! ) )

We have
1 0
P—(O 0) cJ.

By definition,

it =171~ |(§ )] € Kol

(2) Odd case. Let ¢ be an idempotent in .A4/7 and Q a lift of ¢ in .A. Then
1 (lg) = [*™°] € K1(T).
2.4. Higher index map and local index map

In this subsection, we recall the construction of the higher index map and the local
index map [26,28].

Let (Hx,F) be an even cycle for K} (X). Choose a I'-invariant locally finite open
cover {U;} of X with diameter (U;) < ¢ for some fixed ¢ > 0. Let {¢;} be a I'-invariant
continuous partition of unity subordinate to {U;}. We define

F=>0/"F¢”,

where the sum converges in strong operator norm topology. It is not difficult to see
that (Hx,F) is equivalent to (Hyx, F) in K} (X). By using the fact that F has finite
propagation, we see that F is a multiplier of C*(X)' and, in fact, is a unitary modulo
C*(X)''. Consider the short exact sequence of C*-algebras
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0— C*(X)' = M(C*(X)F) = M(C*(X)N)/C*(X)" =0

where M(C*(X)) is the multiplier algebra of C*(X)''. By the construction in Section 2.3
above, F produces a class [F] € Ko(C*(X)"). We define the higher index of (Hy, F) to
be [F]. From now on, we denote [F] by Ind(Hx, F') or simply Ind(F), if no confusion
arises.

To define the local index class of (Hx, F'), we need to use a family of partitions of
unity. More precisely, for each n € N, let {U,, ;} be a I'-invariant locally finite open cover
of X with diameter (U, ;) < 1/n and {¢, ;} be a I'-invariant continuous partition of
unity subordinate to {U, ;}. We define

Fly=>"(1—(t —n)oyFFor? + (t —n)on/?y  Forll (2)

J

for t € [n,n + 1].

Then F(t),0 < t < oo, is a multiplier of C (X)! and a unitary modulo C (X)''. Hence
by the construction in Section 2.3 above, F(t),0 < t < oo, gives rise to an element in
Ko(C:(X)F). We call this class [F(t)] € Ko(C(X)') the local index of (Hx, F). If no
confusion arises, we denote this local index class by Indy, (Hx, F') or simply Indy (F).

Now let (Hx, F) be an odd cycle in KT'(X). With the same notation from above, we
set ¢ = ZFL. Then the index class of (Hx, F) is defined to be [e2™] € K;(C*(X)F).

F(t)+1
2

For the local index class of (Hy, F'), we use ¢(t) = in place of q.

2.5. Higher rho invariant

In this subsection, we define the higher rho invariant [7, Definition 7.1]. We carry out
the construction in the odd dimensional case. The even dimensional case is similar.

Suppose X is an odd dimensional complete spin manifold without boundary and we
fix a spin structure on X. Assume that there is a discrete group I' acting on M properly
and cocompactly by isometries. In addition, we assume the action of I' preserves the spin
structure on X. A typical such example comes from a Galois cover M of a closed spin
manifold M with I' being the group of deck transformations.

Let S be the spinor bundle over X and D = Dx be the associated Dirac operator
on X. Let Hy = L*(X,S) and

F=D(D?+1)"V2
Then (Hx,F) defines a class in KT (X). Note that F lies in the multiplier algebra of

C*(X)T, since F' can be approximated by elements of finite propagation in the multiplier
algebra of C*(X)T. As a result, we can directly work with?

3 In other words, there is no need to pass to the operator F or F(t) as in the general case.
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F(t) =3 (1~ (t—n)oy TFol? + (t —n)oy/l ;Forll (3)
J

for t € [n,n + 1]. And the same argument as before defines the index class and the local
index class of (Hx, F'). We shall denote them by Ind(D) € K;(C*(X)") and Ind (D) €
K1(C3(X)V) respectively.

Now suppose in addition X is endowed with a complete Riemannian metric g whose
scalar curvature s is positive everywhere, then the associated Dirac operator in fact
naturally defines a class in K1(C} o(X)"). Indeed, recall that

K

D? =V*V + -

+ 1

where V : C®(X,S) — C®(X,T*X ® S) is the associated connection and V* is the

adjoint of V. If k > 0, then it follows immediately that D is invertible. So, instead of
D(D? +1)"/2, we can use

F:=D|D|™%

Note that £}l is a genuine projection. Define F(t) as in formula (3), and define
q(t) = w By the construction in Section 2.3, we form the path of unitaries
u(t) = 2™ 0 < t < oo, in (O3 (X)')*. Notice that u(0) = 1. So this path
u(t),0 < t < oo, in fact lies in (C} (X)")T, therefore defines a class in K1(C} o(X)).

Let us now define the higher rho invariant. It was first introduced by Higson and Roe
[7, Definition 7.1]. Our formulation is slightly different from that of Higson and Roe. The
equivalence of the two definitions was shown in [24, Section 6].

Definition 2.10. The higher rho invariant p(D,g) of the pair (D, g) is defined to be the
K-theory class [u(t)] € K1(C} o(X)").

The even dimensional case is similar, where one needs to work with the natural
7./2Z-grading on the spinor bundle.

3. Finite part of K-theory for group C*-algebras

In this section, we discuss the finite part of K-theory for group C*-algebras. We also
review some results from the paper of Weinberger and Yu [23].

Let " be a countable discrete group. Recall that an element v € I' is said to have
finite order d if d is the smallest positive integer such that y¢ = e, where e is the identity
element of I". In this case, we write order(y) = d.

Let v € I" be an element of finite order d. We define

1 d
Py = QZ'}’k

k=1
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We observe that p.,, is an idempotent of the group algebra C[I']. Recall that C*(T") is the
maximal group C*-algebra of T'. We define K£"(C*(T)) to be the abelian subgroup of
Ko(C*(T)) generated by [p,] for all finite order elements vy # e in I'. We call K£*(C*(T"))
the finite part of Ko(C*(I)).

Definition 3.1. Let {~1,--- ,7»} be a collection of nontrivial elements (i.e. v; # e) with fi-
nite order in T'. We define M., ... -, to be the abelian subgroup of K{"(C*(I")) generated

by {[p"/l]’ ) [an]}'

Weinberger and Yu made the following conjecture in [23]. The conjecture gives a lower
bound of the rank of the abelian group K" (C*(T).

Conjecture 3.2 (/23]). Suppose {v1,-+- ,Vn} is a collection of elements in T with distinct
finite orders and v; # e for all 1 <i <n. Then

(1) the abelian group M., ... 5. has rank n,

(2) any nonzero element in M., ... ~. is not in the image of the assembly map

i K§ (BT) — Ko(C*(T)),
where ET' is the universal space for proper and free I'-action.

Weinberger and Yu proved that the above conjecture holds for a large class of groups,
including all residually finite groups, amenable groups, Gromov’s monster groups, virtu-
ally torsion free groups (e.g. Out(F,)), and any group of analytic diffeomorphisms of a
connected analytic manifold fixing a given point [23]. In fact, they introduced a notion
of finite embeddability for groups and showed that the conjecture holds for all groups
that are finitely embeddable into Hilbert space. Then they verified that the list of groups
mentioned above are finitely embeddable into Hilbert space.

Let us recall the notion of finite embeddability for groups in the following. We shall
first recall the notion of coarse embeddability due to Gromov.

Definition 3.3 (Gromov). A countable discrete group I' is said to be coarsely embeddable
into Hilbert space H if there exists a map f : ' — H such that

(1) for any finite subset F' C T, there exists R > 0 such that if y~!3 € F, then

1f(v) = fB)I < R;
(2) for any S > 0, there exists a finite subset F' C I" such that if y=!3 € T' — F, then

If() = fBI=S.

The notion of finite embeddability for groups, introduced by Weinberger and Yu (also
inspired by the work in [27]), is more flexible than the notion of coarse embeddability.
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Definition 3.4 (/23]). A countable discrete group T is said to be finitely embeddable into
Hilbert space H if for any finite subset ' C T, there exist a group I that is coarsely
embeddable into H and a map ¢ : F' — IV such that

(1) if v, 8 and yf are all in F', then ¢(v53) = ¢(v)9(8);
(2) if v is a finite order element in F', then order(¢(y)) = order(y).

As mentioned above, Weinberger and Yu proved that Conjecture 3.2 holds for all
groups that are finitely embeddable into Hilbert space [23, Theorem 1.4]. This result has
some interesting applications, and we list a few of them in the following. We denote by
Nan(T) the cardinality of the following collection of positive integers:

{d € N} | 3y €T such that order(y) = d and v # e}.
Then we have the following results from [23].

(i) Let T' be an arbitrary countable discrete group. Suppose I' contains a nontrivial
finite order element v # e, that is, I' is not torsion free. Then [p,] generates a
subgroup of rank one in Ky(C*(I')) and any nonzero multiple of [p,] is not in the
image of the assembly map p : K§ (ET) — Ko(C*(T)) [23, Theorem 2.3].

(ii) Recall that if M is a compact oriented topological manifold, the structure group
S(M) is the abelian group of equivalence classes of all pairs (f, M’), where M’
is a compact oriented manifold and f : M’ — M is an orientation preserving
homotopy equivalence (cf. [16]). The rank of the abelian group S(M) measures the
degree of non-rigidity for M. Suppose dimM = 4k —1 > 5 and T' = m (M) is
finitely embeddable into Hilbert space. Then the rank of the abelian group S(M)
is > Ngn(T) [23, Theorem 1.5].

(iii) Now suppose M is a closed smooth spin manifold which supports at least one metric
of positive scalar curvature. Following Stolz [19,21], Weinberger and Yu [23, Sec-
tion 4] introduced an abelian group P(M) of concordance classes of all positive
scalar curvature metrics to measure the size of the space of all positive scalar curva-
ture metrics (see also Section 5 below). Suppose I' = 71 (M) is finitely embeddable
into Hilbert space. If dim M = 2k —1 > 5, then the rank of the abelian group P(M)
is > Ngn(T). If dim M = 4k — 1 > 5, then the rank of the abelian group P(M) is
> Ngn(T') + 1 [23, Theorem 1.7].

Remark 3.5. In fact, the same argument in [23] can be used to prove the following slightly
stronger result. Let Ji"(C*(I")) be the abelian subgroup of K{"(C*(T")) generated by
elements [py] — [pg] with order(y) = order(5). We define the reduced finite part of
K°(C*(T)) to be

K§"(C*(I) = K§™(C*(I)/Tg™(C*(T)).
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Let /T/l/%’... ~» be the image of M, ... ;. in Kfn(C*(I)). If T is finitely embeddable into

Hilbert space, then

n

(1) the abelian group /\771,... ~, has rank n,
(2) any nonzero element in K&*(C*(I')) is not in the image of the assembly map

p: Kq (ET) = Ko(C*(I)),
where ET is the universal space for proper and free I'-action.

So one is led to the following conjecture, which is a slight generalization of Conjec-
ture 3.2.

Conjecture 3.6. Let I' be a countable discrete group. Suppose {v1, - ,yn} is a collection
of elements in T' with distinct finite orders and v; # e for all 1 <i <n. Then

(1) the abelian group /f\/lv»n,... ~n has rank n,
(2) any nonzero element in K&»(C*(T')) is not in the image of the assembly map

s K5 (BT) = Ko(C*(D)),
where ET is the universal space for proper and free I'-action.
4. Finite embeddability and strongly finite embeddability

In this section, we introduce the notion of strongly finitely embeddability for groups.
Since we are interested in the fundamental groups of manifolds, all groups are assumed
to be finitely generated in the following discussion.

Let I" be a countable discrete group. Then any set of n automorphisms of I', say,
Y1, ¥, € Aut(l'), induces a natural action of F;, the free group of n generators on I'.
More precisely, if we denote the set of generators of F,, by {s1,---,s,}, then we have a
homomorphism F,, — Aut(T) by s; — ;. This homomorphism induces an action of F),
on I'. We denote by I' Xy, ... 4.} Fn the semi-direct product of I' and F), with respect
to this action. If no confusion arises, we shall write I' x F, instead of T" Xy, ... 4.} Fhn-

Definition 4.1. A countable discrete group I' is said to be strongly finitely embeddable
into Hilbert space H, if I Xy, ... 1 Fy, is finitely embeddable into Hilbert space H for
all n € Nand all ¥q,- -, ¢, € Aut(D).

We remark that all coarsely embeddable groups are strongly finitely embeddable.
Indeed, if a group I is coarsely embeddable into Hilbert space, then T" 3y, ... 4.y Fp is
coarsely embeddable (hence finitely embeddable) into Hilbert space for all n € N and all

1, € Aut(L).
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If a group T has a torsion free normal subgroup IV such that I'/T” is residually finite,
then T is strongly finitely embeddable into Hilbert space. Indeed, recall that any finitely
generated group has only finitely many distinct subgroups of a given index. Let I';,, be
the intersection of all subgroups of I with index at most m. Then I'/T',, is a finite group.
Moreover, for given 1, --- , %, € Aut(T'), the induced action of F, on I" descends to an
action of F;, on I'/T',,. In other words, we have a natural homomorphism

Om: T x F, = (T/T) X G

where G, is the image of F,, under the homomorphism F,, — Aut(I'/T,,). It follows
that, for any finite set F' C I', there exists a sufficiently large m such that the map

¢m F CT xF, = (I'/T),) x Gn,
satisfies

(1) if 7,8 and yp are all in F', then ¢(v8) = ¢(7)¢(B);
(2) if ~y is a finite order element® in F', then order(¢(v)) = order (7).

Notice that G, is a finite group and (I'/T,,) % G, is coarsely embeddable into Hilbert
space. This shows that I' is strongly finitely embeddable into Hilbert space.

To summarize, we see that the class of strongly finitely embeddable groups includes
all residually finite groups, amenable groups, hyperbolic groups, and virtually torsion
free groups (e.g. Out(F},)).

The notion of sofic groups is a generalization of amenable groups and residually finite
groups. It is an open question whether sofic groups are (strongly) finitely embeddable into
Hilbert space. Narutaka Ozawa, Denise Osin and Thomas Delzant have independently
constructed examples of groups which are not finitely embeddable into Hilbert space. An
affirmative answer to the above question would imply that there exist non-sofic groups.

By definition, strongly finite embeddability implies finite embeddability. It is an open
question whether the converse holds:

Question. If a group is finitely embeddable into Hilbert space, then does it follow that
the group is also strongly finitely embeddable into Hilbert space?

In fact, it was shown in [23] that Gromov’s monster groups and any group of analytic
diffeomorphisms of an analytic connected manifold fixing a given point are finitely em-
beddable into Hilbert space. It is still an open question whether these groups are strongly
finitely embeddable into Hilbert space.

4 Note that in this case, all finite order elements in I’ Xy, i, } Fn come from T
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Remark 4.2. The notion of strongly finite embeddability into Hilbert space can be gen-
eralized to strongly finite embeddability into Banach spaces with Property (H) [10]. The
main results of this paper remain true under this more flexible condition.

5. The moduli space of positive scalar curvature metrics

In this section, we prove the main results of the paper. We first recall the definition
of the moduli group of positive scalar curvature metrics on a manifold [23]. Then we use
the higher rho invariant and the finite part of K-theory of group C*-algebra to give a
lower bound on the rank of this moduli group.

Let M be an oriented smooth closed manifold with dim M > 5 and its fundamental
group m (M) = I'. Assume that M carries a metric of positive scalar curvature. We
denote it by gar. Let I be the closed interval [0,1]. Consider the connected sum (M x
D)i(M x I), where the connected sum is performed away from the boundary of M x I.
Note that m ((M x I)§(M x I)) =T =T the free product of two copies of I.

Definition 5.1. We define the generalized connected sum (M x I)i§(M x I) to be the
manifold obtained from (M x I)§(M x I) by removing the kernel of the homomorphism
I'«T' — T through surgeries away from the boundary.”

Note that (M x I)i(M x I) has four boundary components, two of them being M and
the other two being —M, where —M is the manifold M with its reversed orientation.
Now suppose ¢g; and g» are two positive scalar curvature metrics on M. We endow
one boundary component M with gp;, and endow the two —M components with gq
and gs. Then by the Gromov—Lawson and Schoen—Yau surgery theorem for positive scalar
curvature metrics [5,20], there exists a positive scalar curvature metric on (M x I)(M xI)
which is a product metric near all boundary components. In particular, the restriction
of this metric on the other boundary component M has positive scalar curvature. We
denote this metric on M by g.

Definition 5.2. Two positive scalar curvature metrics ¢ and h on M are concordant if
there exists a positive scalar curvature metric on M x I which is a product metric near
the boundary and restricts to g and h on the two boundary components respectively.

One can in fact show that if g and ¢’ are two positive scalar curvature metrics on M
obtained from the same pair of positive scalar curvature metrics g; and g, by the above
procedure, then g and ¢’ are concordant [23, Section 4].

Definition 5.3. Fix a positive scalar curvature metric gy on M. Let PT (M) be the set
of all concordance classes of positive scalar metrics on M. Given [g1] and [g2] in P (M),

5 The kernel of '« ' — T' is generated by loops which do not meet the boundary, and we may remove the
kernel by surgeries away from the boundary.
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we define the sum of [g1] and [go] (with respect to [gas]) to be [g] constructed from
the procedure above. Then it is not difficult to verify that P (M) becomes an abelian
semigroup under this addition. We define the abelian group P(M) to be the Grothendieck
group of PT(M).

Remark 5.4. The abelian group P(M) is defined for any closed smooth manifold with
dim M > 5 which supports positive scalar curvature metrics. However, for our applica-
tions, we assume that M is a spin manifold.

The abelian group P(M) measures the size of the space of positive scalar curvature
metrics on M. Weinberger and Yu used the finite part of K-theory of C*(71(M)) to give
a lower bound of the rank of P(M) [23, Theorem 4.1]. More precisely, let r4,(T") be the
rank of the abelian subgroup of Ko(C*(I')) generated by [p,] for all finite order elements
~v € I'. Note that here ~ is allowed to be the identity element e. Suppose M is a closed
smooth spin manifold which supports positive scalar curvature metrics. Then one has

(1) if dim M = 2k — 1 > 5, then the rank of P(M) is > rq, (") — 1;
(2) if dim M = 4k — 1 > 5, then the rank of P(M) is > rg,(T).

One of main ingredients of their proof is the following proposition. For a finite group F',
a F-manifold Y is called F-connected if the quotient Y/F is connected. Let Zy be the
cyclic group of order d.

Proposition 5.5 (/23, Proposition 4.4]). Given positive integers d and k,

(1) there exist Zg-connected closed spin Zg-manifolds {Y1,---,Y,} with dimY; = 2k
such that
(a) the Zq-equivariant indices of the Dirac operators on {Y1,--- ,Y,} rationally gen-
erate RO(Z4) ® Q, modulo the regular representation,
(b) Zg acts on'Y; freely except for finitely many fized points,
where RO(Zg) is the real representation ring of Za;
(2) there exist Zq-connected closed spin Zg-manifolds {Yy,---,Y,} with dimY; = 4k
such that
(a) the Zq-equivariant indices of the Dirac operators on {Y7,--- ,Y,} rationally gen-
erate RO(Zq) ® Q,
(b) Zq acts on'Y; freely except for finitely many fixed points.

Now let M be a closed spin manifold with a positive scalar curvature metric g, and
dim M > 5 as before. This proposition, combined with the relative higher index theorem
[2,25], allows one to construct distinct concordance classes of positive scalar curvature
metrics in P(M). More precisely, for each nontrivial finite order element v € T', one can
construct a new positive scalar curvature metric h, on M such that the relative higher
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index Indr(gar, hy) = [p4] € Ko(C*(I")), where p, = éZﬁzl v* with d = order(y). We
refer the reader to [23, Theorem 4.1] for the detailed construction. Here let us recall the
definition of this relative higher index Indr(gas, k). We endow M x R with the metric
gt + (dt)? where g; is a smooth path of Riemannian metrics on M such that

gu  fort <0,
gt =< hy fort>1,
any smooth path of metrics from gps to h, for 0 <t < 1.

Then M x R becomes a complete Riemannian manifold with positive scalar curvature
away from a compact subset. Denote by Dj;«r the corresponding Dirac operator on
M x R with respect to this metric. Then the higher index of Dj;«g is well-defined and
is denoted by Indr(gas, hy) (cf. [25]).

To summarize, one can construct distinct elements in P(M) by surgery theory and
the relative higher index theorem [2,25]. Moreover, these elements are distinguished by
their relative higher indices (with respect to gar) [23, Theorem 4.1].

In the following, we shall prove that these concordance classes of positive scalar curva-
ture metrics remain distinct even after modulo diffeomorphisms. Moreover, our method
of proof shows that these positive scalar curvature metrics constructed in [23] actu-
ally give distinct spin-bordism classes of positive scalar curvature metrics. We recall the
definition of spin-bordism of positive scalar curvature metrics.

Definition 5.6. Two metrics g1 and go are said to be spin-bordant if there exists a compact
spin manifold Y with a positive scalar curvature metric g such that

(1) the boundary of Y is 0Y = M II (- M),

(2) the metric g is a product metric near the boundary, and g restricts to g; (resp. g2)
on M (resp. —M),

(3) Y admits a Galois I'-covering Y which at the two boundary components restricts to
the universal cover of M, where I' = 71 (M).

Now let us define the moduli group of positive scalar curvature metrics. We denote
by Diff (M) the group of all diffeomorphisms from M to M.

Definition 5.7. For each diffeomorphism ¢ € Diff (M) and g € P(M), we denote by ¥*(g)
the pullback metric of g by ¢. We define Py(M) to be the abelian subgroup of P(M)
generated by elements of the form [g] — [¢*(g)] for all g € P(M) and all ¢ € Diff(M).
Then the moduli group of positive scalar curvature metrics on M is defined to be

P(M) = P(M)/Py(M).

Remark 5.8. Notice that, in general, the action of Diff (M) on P(M) is not linear, but
affine.
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Note that every diffeomorphism 1 € Diff(M) induces an automorphism® of I' =
m1(M). We denote this automorphism of T" also by .
Recall that Ng,(T) is the cardinality of the following collection of positive integers:

{d € Ny | 3y € T such that v # e and order(y) = d}.
Then we have the following main theorem of the paper.

Theorem 5.9. Let M be a closed spin manifold with dim M = 2k +1 > 5 which carries a
positive scalar curvature metric. If T = 71 (M) is strongly finitely embeddable into Hilbert
space, then the rank of the abelian group P(M) is > Nan(T).

If we denote the space of all positive scalar curvature metrics on M by Rt (M), then
Diff(M) again acts on RT (M) by pulling back the metrics. The moduli space of all
positive scalar curvature metrics on M is defined to be R*(M)/Diff (M) the quotient
space of R*(M) by Diff(M). Piazza and Schick used a different method to show the
moduli space R (M) /Diff (M) has infinitely many connected components when dim M =
4k+3 > 5 and the fundamental group 71 (M) is not torsion free [13]. The following result
is a refinement of their theorem.

Theorem 5.10. Let M be a closed spin manifold which carries a positive scalar curvature
metric. Suppose dim M =2k +1>5 and T' = m (M) is not torsion free. Then the rank
of the abelian group P(M) is > 1.

Proof. Recall that for any non-torsion-free countable discrete group G, if v # e is a
finite order element of G, then [p,] generates a subgroup of rank one in Ky(C*(G)) and
any nonzero multiple of [p,] is not in the image of the assembly map u: K§ (EG) —
Ko(C*(Q)) [23, Theorem 2.3]. Now we apply this fact to I' x F,,, and the theorem is
proved the same way as Theorem 5.9. O

The following result is an immediate corollary of Theorem 5.10.
Corollary 5.11. Let M be a closed spin manifold with dim M = 2k + 1 > 5 which carries
a positive scalar curvature metric. If T' = w1 (M) is not torsion free, then the moduli
space RT(M)/Diff(M) has infinitely many connected components, i.e.,

|mo(RT (M) /Diff(M))| = oo.

Now let us give the proof of Theorem 5.9.

6 To be precise, it only determines an outer automorphism of I". But all representatives in this outer
automorphism class give rise to the same automorphism of K;(C™*(I")).
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Proof of Theorem 5.9. Consider the following short exact sequence
0— Ot o(M)F — Ci(M)T — C*(M)F =0

where M is the universal cover of M. It induces the following six-term long exact se-
quence:

KM —

Ko(Co(M)T) —— Ko(C3(M)T) —— Ko(C*(M)T)

! |

Ki(C*(M)) <—— Ky(C;(M)") <— K1(Cj o(M)")

Recall that we have Ko(Cj(M)F) = KL(M) and Ko(C*(M)T) = Ko(C*(T)).

Fix a positive scalar curvature metric gp;y on M. For each finite order element v € T',
we can construct a new positive scalar curvature metric h, on M such that the relative
higher index Indr(gar, hy) = [py] € Ko(C*(I')) [23, Theorem 4.1]. Let us still denote by
h~ (resp. gar) the metric on M lifted from the metric h~ (resp. gar) on M. Let p(D, h.,)
and p(D, gar) be the higher rho invariants for the pairs (D, h,) and (D, gar), where D
is the Dirac operator on M (cf. Section 2.5). Then we have

([py]) = 9(Indr(gar, hy)) = p(D, hy) = p(D, gnr), (4)

(cf. [14, Theorem 1.17], [24, Theorem 4.1]).
One of the key points of the proof is to construct a certain group homomorphism

on P(M) which can be used to distinguish elements in P(M). First, we define a map
0: P(M) = K:1(Cf o(M)") by

o(h) :== p(D,h) — p(D, gnr)

for all h € P(M). It follows from the definition of P(M) and [24, Theorem 4.1] that
the map o is a well-defined group homomorphism. Now recall that a diffeomorphism
1 € Diff (M) induces a homomorphism

Vet Ky (CF o(M)F) = K1 (CF o(M)").

Let Il(C’;O(]T/[/)F) be the subgroup of Kl(C’z,O(M)F) generated by elements of the form
[x] — ¥ux] for all [x] € Kl(Cz,O(M)F) and all ¢ € Diff(M). We claim that ¢ descends
to a group homomorphism

01 P(M) — K1(Cf o(M)") /T2 (C o (M)T).

To see this, it suffices to verify that
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o(h) = o(¥*(h)) € Ti(Cj o (M)")
for all [h] € P(M) and v € Diff (M). Indeed, we have

o(h) — o(¥*(h)) = p(D,h) — p(D, gn) — (p(D,4*(h)) = p(D, gar))
p(D, h) — p(D, " (h))
p(D,

(D, h) = ¥u(p(D, h)) € 1 (C, o (M)F).

We remark that it is crucial to use the higher rho invariant, instead of the rel-
ative higher index, to construct such a group homomorphism. Let us explain the
subtlety here. Note that there is in fact a well-defined group homomorphism Ind,.; :
P(M) — Ko(C*(I')) by Indye;(h) = Indr(D; gar, h). The well-definedness of Ind,.; fol-
lows from the definition of P(M) and the relative higher index theorem [2,25]. However,
in general, it is not clear at all whether Ind,.; descends to a group homomorphism
P(M) — Ko(C*(I))/Zo(C*()), where Zo(C*(T)) is the subgroup of Ko(C*(I')) gener-
ated by elements of the form [z] — ¢, [z] for all [z] € Ko(C*(T")) and all ¢ € Diff (M).

Now for a collection of elements {v1,--- ,7,} with distinct finite orders, we consider
the associated collection of positive scalar curvature metrics {h.,,--- ,h, } as before.
To prove the theorem, it suffices to show that for any collection of elements {y1,--- ,vn}
with distinct finite orders, the elements

5(h71)7 T E(h’Yn)

are linearly independent in K1(CZ,O(M)F)/L(C}:’O(M)F).
Let us assume the contrary, that is, there exist [x1],--- ,[z;] € Kl(C};O(M)F) and
1, P, € Diff(M) such that

> ciolhy) =Y (5] = (5)«[x;]), (5)
i=1 j=1
where c1,--- , ¢, € Z with at least one ¢; # 0.

We denote by W the wedge sum of m circles. The fundamental group m (W) is
the free group F,, of m generators {si,---,8;,}. We denote the universal cover of
W by w. Clearly, W is the Cayley graph of F,, with respect to the generating set
{51, ,sm,sl_l,-~- ,s1}. Notice that F,, acts on M through the diffeomorphisms

Y1, ,¥m. In other words, we have a homomorphism F,, — Diff(M) by s; — ;.
We define

X=Mxp W.

m

Notice that 71 (X) =T Xy, ... 4.} Fm- Let us write I' x Fy, for T' gy, ...y, 3 Fim, if DO
confusion arises.
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Let X be the universal cover of X. We have the following short exact sequence:
0 — CL O( )F><F,,, — C*( )I‘><1Fm N C*( )I‘><1Fm 0.

Recall that Ko(Cj(X)TFn) = K (X) and Ko(C*(X)D1Fn) = Ko(C*(T % Fp,)).
So we have the following six-term long exact sequence:

Ko(Cj o(X)"Fm) —— K (X) —— Ko(C*(T % Fp))

T o 0

Ey(C7(T % F)) <—— K7 (X) <—— Ki(Cf o(X)"F)

Now recall the following Pimsner—Voiculescu exact sequence [15]:

DL, KolCH(I) — L en(ry) e Ko(C (T % F)
T g1 1=(5)« l
K(CF (T % ) K (€ (D)) @7, Ki(C*(T)

where (¢;), is induced by v; and i, is induced by the inclusion map of I" into I" X F,,.
Similarly, we also have the following two Pimsner—Voiculescu type exact sequences for
K-homology and the K-theory groups of Cio—algebras in the diagram (6) above.

(). _

@, Kb (M) K§ (M) K§ P (X)

| |

Sy 1 (4)-

K (X) KT(M) @, KT (M)
— ity 1=(5)« — i
@, Ko(Cyo(M)T) Ko(Cj o(M)T) Ko(C} o(X)T#Fm)
T - |

Ey(C (X)) Ky (Cro(M)Y) — @, Ki(Cf (M)
where again (1;). and 4, are defined in the obvious way.
Combining these Pimsner—Voiculescu exact sequences together, we have the following

commutative diagram:
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——— @, K5 (M) d K§ (M) - Ky (X)
—— @], Ko(C*(I)) Ko(C* (1)) — s Ko(C*(I % Fy)) ——>
Orx Fym

—— DLy K1(Co(M)") —= Ki(Cfo(M)") ——= Ki(Cf (X)) ——

(7)

where o = Z;n=1 1 — (¢;)+. Notice that all rows and columns are exact.

Now on one hand, if we pass Equation (5) to Kl(C’z,O(X)FX‘F"") under the map i,,
then it follows immediately that

> e - infoliy, )] = 0 in Ky (Cf (X)),
k=1

where at least one ¢; # 0. On the other hand, by assumption, I' is strongly finitely
embeddable into Hilbert space. Hence I' x F,, is finitely embeddable into Hilbert space.
Therefore, Conjecture 3.2 holds for I" x F,,,, which implies the following.

(i) {[p.],-**,[py.]} generates a rank n abelian subgroup of Kf*(C*(T' x F,,)), since
Y1, ,7n have distinct finite orders. In other words,

D crlpy] # 0 € KGP (O™ (I % Fy))

k=1

if at least one ¢ # 0.
(ii) Every nonzero element in K{"(C*(T'x F,,)) is not in the image of the assembly map

p: Ky (B(T % Fp,)) — Ko(C*(T x E,)),

where E(I' x F,,) is the universal space for proper and free I' x Fj,,-action. In par-
ticular, every nonzero element in K{"(C*(I' x F,,)) is not in the image of the map

o K37 (X)) = Ko(C*(T % Fy,))
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in diagram (7). It follows that the map
. fin * * Y\ X Frn
Orur,, K" (C*(I'x Fr,)) = K1(CF o(X) )

is injective. In other words, Oryf, maps a nonzero element in Ki*(C*(T' x F,,)) to
I'}F,, )

a nonzero element in K1(C7 ((X)

To summarize, we have

a) Yy [Py # 0 in K§*(C*(L % F)),

(a)
(b) Yokoy ek -ixfo(hoy)] = 0 in Ky (CF o(X)TF),

(¢) the map Orxr,, : Ki(C*(T' x Fy,)) — Kl(C’z,O(X)F”Fm) is injective,
(d)

d) and by Equation (4), 9o, ( oy clpy]) = Shey ek - ix[o(hny ).
Therefore, we arrive at a contradiction. This finishes the proof. O

Remark 5.12. In the above proof, we used the higher rho invariant to show that a partic-
ular collection of elements in P (M) are linearly independent. Recall that the higher rho
invariant is constant within a spin-bordism class of positive scalar curvature metrics, cf.
[24, Theorem 4.1]. Therefore, our proof in fact shows that this particular collection of
concordance classes of positive scalar curvature metrics give rise to distinct spin-bordism
classes of positive scalar curvature metrics.

Remark 5.13. All the above discussion also applies to the case where M is even dimen-
sional, with an additional assumption on its fundamental group (M ). More precisely,
the following analogues of Theorem 5.9, Theorem 5.10 and Corollary 5.11 hold. Through-
out this remark, let us assume that M is a closed spin manifold with dim M = 2k > 5
which carries a positive scalar curvature metric, and there is a surjective group homo-
morphism ¢ : I' = 71 (M) - Z x G for some group G.

(i) If G is strongly finite embeddable, then the rank of P(M) is > Ngy(G).
(ii) If G is not torsion-free, then the rank of P(M) is > 1. In particular, this implies
that |mo(R*T(M)/Diff (M))| = oc.

The proofs of these statements are essentially the same as those in the odd case, combined
with a suspension argument. More precisely, we have the following observations.

(a) The surjection ¢ : I' = (M) — Z x G determines a (Z x G)-covering of M, denoted
by Myzxa. We work with Mz, instead of the universal covering M.

(b) For each nontrivial torsion element v € G, let p, = 22:1 7v* with d = order(y).
We fix a positive scalar curvature metric gp; on M and use the manifold S! x Y
to construct new positive scalar metrics h, on M, where Y is a manifold as in
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Proposition 5.5. Notice that the suspension is applied to the manifold Y, not the
manifold M. Recall that

K1(CH(Z x G)) = (EK1(C*(2)) ® Ko(C™(G))) & (Ko(C™(2)) ® Kr(C™(G)))-

Let Dg1 be the standard Dirac operator on S! and v = Indz(Dg1) € K1(C*(Z)).
Note that u is a generator of K1(C*(Z)) & Z. Moreover, we have

Indzxc(gn, hy) = [u] ® [py] € K1(C*(Z)) ® Ko(C™(G)).

Recall that p, is not in the image of the assembly map (for free actions) p
K§(EG) — Ko(C*(G)). It follows that [u] ® [p,] is not in the image of the assem-
bly map (for free actions) pu : KZ*¢(B(Z x G)) — Ko(C*(Z x G)). This argument
also applies to the case of linear combinations of [p.,] for a collection of elements
{71, ,n} with distinct finite orders in G.

(c¢) Various terms in the proof for the odd case above now switch parities. For example,
the higher rho invariant p(Dps, hy) now lies in K (CZVO(MZXg)ZXG).
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