
J. Math. Anal. Appl. 451 (2017) 794–821
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

The Maslov index for Lagrangian pairs on R2n

P. Howard a,∗, Y. Latushkin b, A. Sukhtayev c

a Mathematics Department, Texas A&M University, College Station, TX 77843, USA
b Mathematics Department, University of Missouri, Columbia, MO 65211, USA
c Mathematics Department, Indiana University, Bloomington, IN 47405, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 August 2016
Available online 28 February 2017
Submitted by P. Exner

Keywords:
Eigenvalues
Maslov index
Morse index
Schrödinger operators

We discuss a definition of the Maslov index for Lagrangian pairs on R2n based on 
spectral flow, and develop many of its salient properties. We provide two applications 
to illustrate how our approach leads to a straightforward analysis of the relationship 
between the Maslov index and the Morse index for Schrödinger operators on [0, 1]
and R.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

With origins in the work of V.P. Maslov [16] and subsequent development by V.I. Arnol’d [1], the 
Maslov index on R2n is a tool for determining the nature of intersections between two evolving Lagrangian 
subspaces (see Definition 1.1). As discussed in [6], several equivalent definitions are available, and we focus 
on a definition for Lagrangian pairs based on the development in [4] (using the definition of spectral flow 
introduced in [17]). We note at the outset that the theory associated with the Maslov index has now been 
extended well beyond the simple setting of our analysis (see, for example, [4,7,8,10]); nonetheless, the Maslov 
index for Lagrangian pairs on R2n is a useful tool, and a systematic development of its properties is certainly 
warranted.

As a starting point, we define what we will mean by a Lagrangian subspace of R2n.

Definition 1.1. We say � ⊂ R2n is a Lagrangian subspace if � has dimension n and

(Jx, y)R2n = 0,

for all x, y ∈ �. Here, (·, ·)R2n denotes Euclidean inner product on R2n, and

* Corresponding author.
E-mail addresses: phoward@math.tamu.edu (P. Howard), latushkiny@missouri.edu (Y. Latushkin), alimsukh@iu.edu

(A. Sukhtayev).
http://dx.doi.org/10.1016/j.jmaa.2017.02.022
0022-247X/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmaa.2017.02.022
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:phoward@math.tamu.edu
mailto:latushkiny@missouri.edu
mailto:alimsukh@iu.edu
http://dx.doi.org/10.1016/j.jmaa.2017.02.022
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2017.02.022&domain=pdf


P. Howard et al. / J. Math. Anal. Appl. 451 (2017) 794–821 795
J =
(

0 −In

In 0

)
,

with In the n × n identity matrix. We sometimes adopt standard notation for symplectic forms, ω(x, y) =
(Jx, y)R2n . Finally, we denote by Λ(n) the collection of all Lagrangian subspaces of R2n, and we will refer 
to this as the Lagrangian Grassmannian.

A simple example, important for intuition, is the case n = 1, for which (Jx, y)R2 = 0 if and only if x and y
are linearly dependent. In this case, we see that any line through the origin is a Lagrangian subspace of R2. 
As a foreshadowing of further discussion, we note that each such Lagrangian subspace can be identified with 
precisely two points on the unit circle S1.

More generally, any Lagrangian subspace of R2n can be spanned by a choice of n linearly independent 
vectors in R2n. We will generally find it convenient to collect these n vectors as the columns of a 2n × n

matrix X, which we will refer to as a frame for �. Moreover, we will often write X =
(

X
Y

)
, where X and Y

are n × n matrices.
Given any two Lagrangian subspaces �1 and �2, with associated frames X1 =

(
X1
Y1

)
and X2 =

(
X2
Y2

)
, we 

can define the complex n × n matrix

W̃ = −(X1 + iY1)(X1 − iY1)−1(X2 − iY2)(X2 + iY2)−1, (1.1)

which we will see in Section 3 is unitary. (We will also verify in Section 3 that (X1 − iY1) and X2 + iY2 are 
both invertible, and that W̃ is independent of the choice of frames we take for �1 and �2.) Notice that if 
we switch the roles of �1 and �2 then W̃ will be replaced by W̃ −1, and since W̃ is unitary this is W̃ ∗. We 
conclude that the eigenvalues in the switched case will be complex conjugates of those in the original case.

Remark 1.2. We use the tilde to distinguish the n × n complex-valued matrix W̃ from the Souriau map (see 
equation (3.8) below), which is a related 2n × 2n matrix often—as here—denoted W . The general form of 
W̃ appears in a less general context in [9,12]. For the special case X2 =

(0
I

)
(associated, for example, with 

Dirichlet boundary conditions for a Sturm–Liouville eigenvalue problem) we see that

W̃ = (X1 + iY1)(X1 − iY1)−1, (1.2)

which has been extensively studied, perhaps most systematically in [2] (particularly Chapter 10). If we let 
W̃D denote (1.2) for X1 =

(0
I

)
and for j = 1, 2 set

W̃j = (Xj + iYj)(Xj − iYj)−1,

then our form for W̃ can be viewed as the composition map

−W̃1W̃D(W̃2W̃D)−1 = −W̃1(W̃2)−1. (1.3)

For a related observation regarding the Souriau map see Remark 3.3.

Combining observations from Sections 2 and 3, we will establish the following theorem (cf. Lemma 1.3 
in [4]).

Theorem 1.3. Suppose �1, �2 ⊂ R2n are Lagrangian subspaces, with respective frames X1 =
(

X1
Y1

)
and X2 =(

X2
Y2

)
, and let W̃ be as defined in (1.1). Then

dim ker(W̃ + I) = dim(�1 ∩ �2).



796 P. Howard et al. / J. Math. Anal. Appl. 451 (2017) 794–821
That is, the dimension of the eigenspace of W̃ associated with the eigenvalue −1 is precisely the dimension 
of the intersection of the Lagrangian subspaces �1 and �2.

Given a parameter interval I = [a, b], which can be normalized to [0, 1], we consider maps � : I → Λ(n), 
which will be expressed as �(t). In order to specify a notion of continuity, we need to define a metric on 
Λ(n), and following [10] (p. 274), we do this in terms of orthogonal projections onto elements � ∈ Λ(n). 
Precisely, let Pi denote the orthogonal projection matrix onto �i ∈ Λ(n) for i = 1, 2. I.e., if Xi denotes a 
frame for �i, then Pi = Xi(Xt

iXi)−1Xt
i. We take our metric d on Λ(n) to be defined by

d(�1, �2) := ‖P1 − P2‖,

where ‖ ·‖ can denote any matrix norm. We will say that � : I → Λ(n) is continuous provided it is continuous 
under the metric d. Likewise, for L = (�1, �2) ∈ Λ(n) × Λ(n) and M = (m1, m2) ∈ Λ(n) × Λ(n), we take

ρ(L, M) = (d(�1, m1)2 + d(�2, m2)2)1/2. (1.4)

Given two continuous maps �1(t), �2(t) on a parameter interval I, we denote by L(t) the path

L(t) = (�1(t), �2(t)).

In what follows, we will define the Maslov index for the path L(t), which will be a count, including both 
multiplicity and direction, of the number of times the Lagrangian paths �1 and �2 intersect. In order to be 
clear about what we mean by multiplicity and direction, we observe that associated with any path L(t)
we will have a path of unitary complex matrices as described in (1.1). We have already noted that the 
Lagrangian subspaces �1 and �2 intersect at a value t0 ∈ I if and only if W̃ (t0) has −1 as an eigenvalue. In 
the event of such an intersection, we define the multiplicity of the intersection to be the multiplicity of −1
as an eigenvalue (since W̃ is unitary the algebraic and geometric multiplicities are the same). When we talk 
about the direction of an intersection, we mean the direction the eigenvalues of W̃ are moving (as t varies) 
along the unit circle S1 as they pass through −1 (we take counterclockwise as the positive direction). We 
note that the eigenvalues certainly do not all need to be moving in the same direction, and that we will need 
to take care with what we mean by a crossing in the following sense: we must decide whether to increment 
the Maslov index upon arrival or upon departure.

Following [4,10,17], we proceed by choosing a partition a = t0 < t1 < · · · < tn = b of I = [a, b], along with 
numbers εj ∈ (0, π) so that ker

(
W̃ (t) − ei(π±εj)I

)
= {0} for tj−1 < t < tj ; that is, ei(π±εj) ∈ C \ σ(W̃ (t)), 

for tj−1 < t < tj and j = 1, . . . , n. Moreover, for each j = 1, . . . , n and any t ∈ [tj−1, tj ] there are only 
finitely many values θ ∈ [0, εj ] for which ei(π+θ) ∈ σ(W̃ (t)).

Fix some j ∈ {1, 2, . . . , n} and consider the value

k(t, εj) :=
∑

0≤θ<εj

dim ker
(
W̃ (t) − ei(π+θ)I

)
, (1.5)

for tj−1 ≤ t ≤ tj . This is precisely the sum, along with multiplicity, of the number of eigenvalues of W̃ (t)
that lie on the arc

Aj := {eit : t ∈ [π, π + εj)}.

The stipulation that ei(π±εj) ∈ C \ σ(W̃ (t)), for tj−1 < t < tj asserts that no eigenvalue can enter Aj in the 
clockwise direction or exit in the counterclockwise direction during the interval tj−1 < t < tj . In this way, we 
see that k(tj , εj) −k(tj−1, εj) is a count of the number of eigenvalues that entered Aj in the counterclockwise 
direction minus the number that left in the clockwise direction during the interval (tj−1, tj).
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In dealing with the catenation of paths, it’s particularly important to understand this quantity if an 
eigenvalue resides at −1 at either t = tj−1 or t = tj (i.e., if an eigenvalues begins or ends at a crossing). 
If an eigenvalue moving in the counterclockwise direction arrives at −1 at t = tj , then we increment the 
difference forward, while if the eigenvalue arrives at −1 from the clockwise direction we do not. On the 
other hand, suppose an eigenvalue resides at −1 at t = tj−1 and moves in the counterclockwise direction. 
There is no change, and so we do not increment the difference, but we decrement the difference if the 
eigenvalue leaves in the clockwise direction. In summary, the difference increments forward upon arrivals 
in the counterclockwise direction, but not upon arrivals in the clockwise direction, and it decrements upon 
departure in the clockwise direction, but not upon departure in the counterclockwise direction.

We are now ready to define the Maslov index.

Definition 1.4. Let L(t) = (�1(t), �2(t)), where �1, �2 : I → Λ(n) are continuous paths in the Lagrangian–
Grassmannian. The Maslov index Mas(L; I) is defined by

Mas(L; I) =
n∑

j=1
(k(tj , εj) − k(tj−1, εj)). (1.6)

Remark 1.5. In [6] the authors provide a list of six properties that entirely characterize the Maslov index for 
a pair of Lagrangian paths. Our definition satisfies their properties, except for the choice of normalization 
(their Property VI), which is reversed. In our notation, their normalization is specified for n = 1 with 
reference to Lagrangian subspaces �1 and �2 with respective frames X1 =

(1
0
)

and X2 =
(cos t

sin t

)
. For this 

choice, we have

W̃ (t) = −cos t − i sin t

cos t + i sin t
,

for which we see immediately that W̃ (−π
4 ) = −i, W̃ (0) = −1, and W̃ (π

4 ) = i. This path is mono-
tonic, so the following three values are immediate: Mas(�1, �2; [−π

4 , π4 ]) = −1, Mas(�1, �2; [−π
4 , 0]) = 0, 

and Mas(�1, �2; [0, π4 ]) = −1. (Cf. equation (1.7) in [6].)
We also note two additional definitions of the Maslov index for paths. In Section 3 of [18] the authors 

give a definition based on crossing forms, and in Section 3.5 of [10] the author gives a definition based on a 
direct sum of the Lagrangian pairs. In Section 3 (of the current paper) we clarify how these two definitions 
are related to our Definition 1.4.

One of the most important features of the Maslov index is homotopy invariance, for which we need to 
consider continuously varying families of Lagrangian paths. To set some notation, we denote by P(I) the 
collection of all paths L(t) = (�1(t), �2(t)), where �1, �2 : I → Λ(n) are continuous paths in the Lagrangian–
Grassmannian. We say that two paths L, M ∈ P(I) are homotopic provided there exists a family Hs so 
that H0 = L, H1 = M, and Hs(t) is continuous as a map from [a, b] × [0, 1] into Λ(n).

The Maslov index has the following properties (see, for example, Theorem 3.6 in [10]).

(P1) (Path Additivity) If a < b < c then

Mas(L; [a, c]) = Mas(L; [a, b]) + Mas(L; [b, c]).

(P2) (Homotopy Invariance) If L, M ∈ P(I) are homotopic, with L(a) = M(a) and L(b) = M(b) (i.e., if 
L, M are homotopic with fixed endpoints) then

Mas(L; [a, b]) = Mas(M; [a, b]).
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Remark 1.6. For (P1), the only issue regards cases in which there is an intersection at t = b. For example, 
suppose the intersection is an arrival in the clockwise direction, followed by departure in the same direction. 
Then at this intersection, Mas(L; [a, c]) decrements by 1, Mas(L; [a, b]) is unaffected, and Mas(L; [b, c])
decrements by 1. Other cases are similar.

Verification of (P2) requires more work, and we leave that discussion to an appendix.

2. Framework for W and W̃

In Section 3, we will use the formulation of [4,10] to derive our form of W̃ , and in preparation for that 
we will briefly discuss the nature of this formulation. This material has all been covered in a much more 
general case in [4,10], and our motivation for including this section is simply to allow readers to understand 
this framework in the current setting.

We record at the outset an important property of Lagrangian frames.

Proposition 2.1. A 2n × n matrix X =
(

X
Y

)
is a frame for a Lagrangian subspace if and only if the columns 

of X are linearly independent, and additionally

XtY − Y tX = 0. (2.1)

We refer to this relation as the Lagrangian property for frames.

Proof. To see this, we observe by definition that X is the frame of a Lagrangian subspace if and only if its 
columns are linearly independent, and each of its column pairs 

(
xi

yi

)
, 

(
xj

yj

)
satisfies

(J
(

xi

yi

)
,

(
xj

yj

)
)R2n = 0; i.e., (

(
−yi

xi

)
,

(
xj

yj

)
)R2n = (xi, yj)R2n − (xj , yi)R2n = 0.

Observing that

(XtY − Y tX)ij = (xi, yj)Rn − (xj , yi)Rn ,

we obtain the claim. �
Remark 2.2. It is clear that the Lagrangian property can alternatively be expressed as

XtJX = 0.

We next observe that for a given pair of Lagrangian subspaces L = (�1, �2) ∈ Λ(n) × Λ(n) we can change 
our choice of frames without changing either the associated W̃ or the projection matrices P1 and P2.

Proposition 2.3. Suppose X1 =
(

X1
Y1

)
and X2 =

(
X2
Y2

)
are any two frames for the same Lagrangian subspace 

� ⊂ R2n. Then

(X1 + iY1)(X1 − iY1)−1 = (X2 + iY2)(X2 − iY2)−1,

and likewise

X1(Xt
1X1)−1Xt

1 = X2(Xt
2X2)−1Xt

2.
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Proof. Under our assumptions, there exists an invertible n ×n matrix M so that X1 = X2M . In particular, 
we must have X1 = X2M and Y1 = Y2M . But then

(X1 + iY1)(X1 − iY1)−1 = (X2M + iY2M)(X2M − iY2M)−1

= (X2 + iY2)MM−1(X2 − iY2)−1 = (X2 + iY2)(X2 − iY2)−1.

Likewise,

X1(Xt
1X1)−1Xt

1 = X2M((X2M)tX2M)−1(X2M)t

= X2M(M t(Xt
2X2)M)−1M tXt

2 = X2MM−1(Xt
2X2)−1(M t)−1M tXt

2

= X2(Xt
2X2)−1Xt

2. �
Next, we introduce a complex Hilbert space, which we will denote R2n

J . The elements of this space 
will continue to be real-valued vectors of length 2n, but we will define multiplication by complex scalars 
γ = α + iβ as

(α + iβ)u := αu + βJu, u ∈ R
2n, α + iβ ∈ C,

and we will define a complex scalar product

(u, v)R2n
J

:= (u, v)R2n − iω(u, v), u, v ∈ R
2n

(recalling ω(u, v) = (Ju, v)R2n). It is important to note that, considered as a real vector space, R2n
J is 

identical to R2n, and not its complexification R2n ⊗R C. (In fact, R2n
J

∼= Cn while R2n ⊗R C ∼= C2n.) 
However, it is easy to see that R2n

J
∼= � ⊗RC for any Lagrangian subspace � ∈ Λ(n), and we’ll take advantage 

of this correspondence.
For a matrix U acting on R2n

J , we denote the adjoint in R2n
J by UJ∗ so that

(Uu, v)R2n
J

= (u, UJ∗v)R2n
J

,

for all u, v ∈ R2n
J . We denote by UJ the space of unitary matrices acting on R2n

J (i.e., the matrices so that 
UUJ∗ = UJ∗U = I). In order to clarify the nature of UJ , we note that we have the identity

(Uu, Uv)R2n
J

= (u, v)R2n
J

,

from which

(Uu, Uv)R2n − i(JUu, Uv)R2n = (u, v)R2n − i(Ju, v)R2n .

Equating real parts, we see that U must be unitary as a matrix on R2n, while by equating imaginary parts 
we see that UJ = JU . We have, then,

UJ = {U ∈ R
2n×2n | U tU = UU t = I2n, UJ = JU}.

Fix some Lagrangian subspace �0 ⊂ R2n, and notice that J(�0) is orthogonal to �0; i.e., if X0 =
(

X0
Y0

)
is 

a frame for �0 then JX0 =
(−Y0

X0

)
is a frame for J(�0), and we have

(
Xt

0 Y t
0

) (−Y0
)

= −Xt
0Y0 + Y t

0 X0 = 0,

X0
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by the Lagrangian property. In this way, we see that

R
2n = �0 ⊕ J(�0),

so that given any z ∈ R2n we can express z uniquely as z = x + Jy for some x, y ∈ �0. We define the 
conjugate of z in R2n

J by

τ0z := x − Jy.

Notice that we can compute τ0 = 2Π0 −I2n, where Π0 is the orthogonal projection onto �0. For any U ∈ UJ , 
we define

UT := τ0U tτ0, (2.2)

which is also in UJ (as follows easily from our next proposition).

Proposition 2.4. Let X0 =
(

X0
Y0

)
be a frame for a Lagrangian subspace �0 ⊂ R2n. Then the matrix Xt

0X0+Y t
0 Y0

is symmetric and positive definite, and if we set M0 := (Xt
0X0 + Y t

0 Y0)−1/2 we have

Π0 =
(

X0M2
0 Xt

0 X0M2
0 Y t

0
Y0M2

0 Xt
0 Y0M2

0 Y t
0

)

τ0 =
(2X0M2

0 Xt
0 − I 2X0M2

0 Y t
0

2Y0M2
0 Xt

0 2Y0M2
0 Y t

0 − I

)
,

with additionally τ t
0 = τ0, τ2

0 = I, and Jτ0 = −τ0J .

Proof. These claims can all be proven in a straightforward manner, using the following identities, which are 
established in the proof of Lemma 3.3 in [12]:

X0M2
0 Xt

0 + Y0M2
0 Y t

0 = I;

X0M2
0 Y t

0 − Y0M2
0 Xt

0 = 0.
(2.3)

Noting that

Xt
0X0 =

(
Xt

0 Y t
0

) (
X0

Y0

)
= Xt

0X0 + Y t
0 Y0,

we see that

Π0 = X0(Xt
0X0)−1Xt

0 =
(

X0

Y0

)
M2

0

(
Xt

0
Y t

0

)

=
(

X0M2
0 Y t

0 X0M2
0 Y t

0
Y0M2

0 Xt
0 Y0M2

0 Y t
0

)
.

The remaining claims follow in a straightforward manner. �
Now, given a second Lagrangian subspace �, let U ∈ UJ satisfy

� = U(J(�0)), (2.4)
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or equivalently

U t(�) = J(�0). (2.5)

(Such a matrix U is not uniquely defined.) We define

W = UUT = Uτ0U tτ0,

and it follows from Proposition 2.4 that W ∈ UJ .

Lemma 2.5. For �0, �, and W as above

ker(W + I) = (� ∩ �0) ⊕ J(� ∩ �0).

Proof. As a start, take any z ∈ (� ∩ �0) ⊕J(� ∩ �0), and write z = x +Jy for some x, y ∈ � ∩ �0. We compute

Wz = Uτ0U tτ0(x + Jy)

= Uτ0U t(x − Jy)

= Uτ0(U tx − JU ty)
∗= U(−U tx − JU ty) = −x − Jy = −z,

where in obtaining the equality indicated with ∗ we have observed from (2.4) and (2.5) that U tx ∈ J(�0)
and JU ty ∈ �0.

On the other hand, suppose z ∈ R2n satisfies Wz = −z. We can write z = x + Jy for some x, y ∈ �0, and 
we would like to show that x, y ∈ � so that in fact x, y ∈ � ∩ �0. We compute

−(x + Jy) = Uτ0U tτ0(x + Jy) = Uτ0U t(x − Jy)

= Uτ0(U tx − U tJy),

which implies

−(U tx + U tJy) = τ0(U tx − U tJy).

It’s straightforward to see that this can only hold if U tJy ∈ �0 and U tx ∈ J(�0), which according to (2.4)
and (2.5) implies that x, y ∈ �. �

For a similar statement in a more general context, see equation (2.37) in [10].
The relationship between �0, �, and U ∈ UJ provides a natural and productive connection between 

the elements � of the Lagrangian Grassmannian and elements U ∈ UJ . However, the associated unitary 
matrices are not uniquely specified, and consequently the spectrum of U contains redundant information. 
For example, in the simple case of R2 this redundant information corresponds with our previous observation 
that each element � ∈ Λ(1) corresponds with two points on S1. We overcome this difficulty by defining a 
new (uniquely specified) unitary matrix W in R2n

J by W = UUT .
We observe that the unitary condition UJ = JU implies U must have the form

U =
(

U11 −U21

U21 U11

)
=

(
U11 0
0 U11

)
+ J

(
U21 0
0 U21

)
.

In addition, we have the scaling condition
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U t
11U11 + U t

21U21 = I

U11U t
11 + U21U t

21 = I

U t
11U21 − U t

21U11 = 0

U11U t
21 − U21U t

11 = 0

(2.6)

(from UU t = U tU = I). In this way, there is a natural one-to-one correspondence between matrices U ∈ UJ

and the n × n complex unitary matrices Ũ = U11 + iU21 (i.e., the Ũ ∈ Cn×n so that Ũ∗Ũ = Ũ Ũ∗ = I). It 
follows that the matrix W = UUT , which can be expressed as

W =
(

W11 −W21

W21 W11

)
,

has a natural corresponding matrix W̃ = W11 + iW21. We will see in section 3 that our matrix W̃ in (1.1)
is constructed in precisely this way.

Proof of Theorem 1.3. Let W and W̃ be as in the preceding paragraph, and suppose z = x + Jy, x, y ∈ �0, 
is an eigenvector for W , associated to the eigenvalue λ = −1. If we write x =

(
x1
x2

)
and y =

(
y1
y2

)
then the 

equation Wz = −z becomes

W11(x1 − y2) − W21(x2 + y1) = −(x1 − y2)

W21(x1 − y2) + W11(x2 + y1) = −(x2 + y1).

We see that if w = u + iv, with u = x1 − y2 and v = x2 + y1, then W̃w = −w. Moreover, w cannot be 
trivial, because if w = 0 then x1 = y2 and x2 = −y1, so that

0 = ω(x, y) = (Jx, y) = |x1|2 + |x2|2,

which would imply x = 0, and consequently y = 0. This contradicts our assumption that z is an eigenvector 
of W .

On the other hand, notice that if w = u + iv is any eigenvector of W̃ associated to the eigenvalue λ = −1, 
then

W11u − W21v = −u

W11v + W21u = −v.

If we set x =
(

x1
x2

)
=

(
u
v

)
then Wx = −x, and likewise if we set y =

(
y1
y2

)
=

(
v

−u

)
then WJy = −Jy. 

We see that each eigenvector of W̃ associated to λ = −1 corresponds with precisely two eigenvectors of 
W associated to λ = −1. Since dim ker(W + I) = 2 dim(�0 ∩ �) (from Lemma 2.5), the theorem follows 
immediately. �
3. Derivation of W and W̃

In this section, we will use our general formulation from Section 2 to derive the form of W̃ expressed 
in (1.1). We begin by collecting some straightforward observations that will be used throughout our deriva-
tion.

Lemma 3.1. If X =
(

X
Y

)
is a frame for a Lagrangian subspace � ⊂ R2n then XtX + Y tY is a symmetric 

positive definite matrix, and the matrices X − iY and X + iY are both invertible.
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Proof. First, if X is the frame for a Lagrangian subspace � ⊂ R2n then the columns of X must be linearly 
independent. Positive definiteness (and hence invertibility) of XtX = XtX + Y tY follows (see, e.g., p. 28 
in [14]; also, note that it’s clear that this matrix is symmetric).

Turning to invertibility of X ±iY , we focus on X +iY , noting that if this matrix has zero as an eigenvalue 
then there will be a vector w = u + iv so that (X + iY )(u + iv) = 0, which means

Xu − Y v = 0

Y u + Xv = 0.
(3.1)

If we multiply the first of these equations by Y t and the second by Xt and subtract the results (recalling 
the Lagrangian property of frames (2.1)) we obtain (XtX + Y tY )v = 0. But we’ve already seen that 
(XtX + Y tY ) is invertible, so we must have v = 0. Likewise, if we multiply the first equation in (3.1) by 
Xt and the second by Y t we find that u = 0, which contradicts our assumption that w = u + iv is an 
eigenvector associated with zero. �

To begin our construction of W̃ , we let �1 and �2 denote two Lagrangian subspaces of R2n, with associated 
frames X1 =

(
X1
Y1

)
and X2 =

(
X2
Y2

)
. As discussed in Section 2, we proceed by associating this pair of 

Lagrangian subspaces with a matrix U ∈ UJ . In particular, U should map �⊥
2 = J(�2) to �1. In terms of 

frames, this asserts that

X1 = UJX2,

where in order to ensure the unitary normalization U t
11U11 + U t

21U21 = I, we note that for each i = 1, 2 we 
can choose the frame Xi to be 

(
XiMi

YiMi

)
for any n × n invertible matrix Mi. With this choice, we find that U

should solve
(

X1M1

Y1M1

)
=

(
U11 −U21

U21 U11

) (−Y2M2

X2M2

)
. (3.2)

We will verify below that the choices

Mi = (Xt
i Xi + Y t

i Yi)−1/2

suffice. We can express (3.2) as

((X1M1)t

(Y1M1)t

)
= V

(
U t

11
U t

21

)
; V =

(−(Y2M2)t −(X2M2)t

(X2M2)t −(Y2M2)t

)
. (3.3)

Using identities of the form (2.3), we can check that V is orthogonal, allowing us to solve for U and see 
that

U =
(

X1M1 −Y1M1

Y1M1 X1M1

) ( −M2Y t
2 M2Xt

2
−M2Xt

2 −M2Y t
2

)
=: U1U2.

We now compute

W = UUT = Uτ2U tτ2 = U1U2τ2U t
2U t

1τ2,

where τ2 denotes the conjugation operator obtained as in Section 2, with �0 replaced by �2. As in Proposi-
tion 2.4, we have
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τ2 =
(

2X2M2
2 Xt

2 − I 2X2M2
2 Y t

2
2Y2M2

2 Xt
2 2Y2M2

2 Y t
2 − I

)
,

and computing directly we can show that

U2τ2U t
2 =

(−I 0
0 I

)
.

Using this intermediate step, and computing directly again we arrive at

U1U2τ2U t
2U t

1τ2 =
(

X1M2
1 Xt

1 − Y1M2
1 Y t

1 −2X1M2
1 Y t

1
2X1M2

1 Y t
1 X1M2

1 Xt
1 − Y1M2

1 Y t
1

)

×
(

Y2M2
2 Y t

2 − X2M2
2 Xt

2 −2X2M2
2 Y2

2X2M2
2 Y t

2 Y2M2
2 Y t

2 − X2M2
2 Xt

2

)
=: W1W2.

Last, we identify the matrix W̃ , which we can compute as W̃ = W̃1W̃2. First, it’s clear that

W̃1 = X1M2
1 Xt

1 − Y1M2
1 Y t

1 + i2X1M2
1 Y t

1

= (X1 + iY1)M2
1 (Xt

1 + iY t
1 ),

(3.4)

where we’ve used the identity X1M2
1 Y t

1 = Y1M2
1 Xt

1 (see the proof of Proposition 2.4). Using the Lagrangian 
property (2.1), we see that

(X1 − iY1)−1(Xt
1 + iY t

1 )−1 =
(

(Xt
1 + iY t

1 )(X1 − iY1)
)−1

=
(

Xt
1X1 + Y t

1 Y1 + i(Y t
1 X1 − Xt

1Y1)
)−1

= M2
1 .

(3.5)

Continuing with our calculation of W̃1, we conclude

W̃1 = (X1 + iY1)(X1 − iY1)−1(Xt
1 + iY t

1 )−1(Xt
1 + iY t

1 )

= (X1 + iY1)(X1 − iY1)−1.

Proceeding similarly, we find

W̃2 = −(X2 − iY2)(X2 + iY2)−1,

from which the form of W̃ in (1.1) is immediate.
Using the argument leading to (3.5), we obtain the identities

(Xj − iYj)−1 = M2
j (Xt

j + iY t
j )

(Xj + iYj)−1 = M2
j (Xt

j − iY t
j ),

(3.6)

for j = 1, 2. This provides us with the alternative form

W̃ = −(X1 + iY1)M2
1 (Xt

1 + iY t
1 )(X2 − iY2)M2

2 (Xt
2 − iY t

2 ).

Using (3.4) (and the fact that M2
1 is self-adjoint), we compute

W̃1W̃ ∗
1 = (X1 + iY1)M2

1 (Xt
1 + iY t

1 )(X1 − iY1)M2
1 (Xt

1 − iY t
1 )

= (X1 + iY1)M2
1 (Xt

1 − iY t
1 ) = I,

verifying that W̃1 is unitary. Likewise, W̃2 is unitary, and so W̃ is unitary.
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Remark 3.2. We can now extend Arnol’d’s Det2 map to the current setting (see, for example, Section 1.3 
in [1]). We define a map Det2 : Λ(n) × Λ(n) → S1 as follows: given any Lagrangian pair �1, �2 ∈ Λ(n) and 
respectively any frames X1 =

(
X1
Y1

)
, X2 =

(
X2
Y2

)
, we set

Det2(�1, �2) := det W̃ = − det
{(

(X1 + iY1)M2
1 (Xt

1 + iY t
1 )

)
·
(

(X2 − iY2)M2
2 (Xt

2 − iY t
2 )

)}

= − det2(X1 + iY1)
det(Xt

1X1 + Y t
1 Y1) · det2(X2 − iY2)

det(Xt
2X2 + Y t

2 Y2) .

(3.7)

We have already seen that W̃ does not depend on the choice of frames, and so the map Det2 is well-defined.

For some calculations, it’s productive to observe that we can express our matrix W in the coordinate-free 
form

W = −(2P1 − I)(2P2 − I), (3.8)

sometimes referred to as the Souriau map. Here, P1 and P2 are respectively orthogonal projections onto �1
and �2, and given particular frames Xi =

(
Xi

Yi

)
we can express these as

Pi = Xi(Xt
iXi)−1Xt

i =
(

Xi

Yi

)
M2

i

(
Xt

i Y t
i

)
=

(
XiM

2
i Xt

i XiM
2
i Y t

i

YiM
2
i Xt

i YiM
2
i Y t

i

)
,

where Mi = (Xt
i Xi + Y t

i Yi)−1/2. We see that

2Pi − I2n =
(2XiM

2
i Xt

i − In 2XiM
2
i Y t

i

2YiM
2
i Xt

i 2YiM
2
i Y t

i − In

)
.

Using the relations

XiM
2
i Xt

i + YiM
2
i Y t

i = In

XiM
2
i Xt

i − YiM
2
i Y t

i = 0,

and temporarily setting

Ai = XiM
2
i Xt

i − YiM
2
i Y t

i

Bi = 2XiM
2
i Y t

i ,

we can check that

(2P1 − In)(2P2 − In) =
(

A1 B1

B1 −A1

) (
A2 B2

B2 −A2

)

= −
(

A1 −B1

B1 A1

) (−A2 −B2

B2 −A2

)
= −W.

In order to clarify the relationship between W and W̃ , we recall that since W ∈ UJ we have the corre-
spondence

W =
(

W11 −W21
)

⇐⇒ W̃ = W11 + iW21.

W21 W11
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We can easily check that W and W̃ have precisely the same eigenvalues, and indeed we have

W̃ (u + iv) = eiθ(u + iv)

if and only if

W

(
u + iv

v − iu

)
= eiθ

(
u + iv

v − iu

)
and W

(
−v + iu

u + iv

)
= eiθ

(
−v + iu

u + iv

)
.

I.e., eiθ is an eigenvalue of W̃ with multiplicity k if and only if it is an eigenvalue of W with multiplicity 2k. 
Notice that this simply generalizes our observations from the proof of Theorem 1.3.

Remark 3.3. We are now in a position to observe that our composition relation from Remark 1.2 corresponds 
with Corollary 2.45 in [10]. In particular, if we let PD denote projection onto the Dirichlet Lagrangian 
subspace (i.e., the Lagrangian subspace with frame 

(0
I

)
), and we set

W1D = −(2P1 − I)(2PD − I)

WD2 = −(2PD − I)(2P2 − I),

then Corollary 2.45 in [10] asserts

W = −W1DWD2,

which corresponds with the composition (1.3). (Here, W is from (3.8).)

3.1. Relation to Furutani’s development

In [10] (Section 3.5), the author takes a different approach to computing the Maslov index for a pair of 
evolving Lagrangian subspaces, and we verify here that the two approaches are equivalent in the current 
setting. As a starting point, we denote by Hω the symplectic Hilbert space obtained by equipping R2n

with the symplectic form ω(x, y) = (Jx, y)R2n , and likewise we denote by H−ω the symplectic Hilbert space 
obtained by equipping R2n with the symplectic form −ω(x, y) = (−Jx, y)R2n . Following [10], we denote the 
direct sum of these spaces

H = Hω � H−ω.

Now let �1, �2 ⊂ R2n denote two Lagrangian subspaces with associated frames X1 =
(

X1
Y1

)
and X2 =

(
X2
Y2

)
. 

We can identify the direct sum �1 ⊕ �2 with a subspace of R4n. For z1, z2 ∈ R4n, we set

ωJ(z1, z2) = (Jz1, z2)R4n ; J =
(

J 0
0 −J

)
.

It follows immediately from the assumption that �1 and �2 are Lagrangian subspaces in R2n that

Z =
(

X1 02n×n

02n×n X2

)

is a frame for a Lagrangian subspace in R4n. We denote this Lagrangian subspace �, and note that we can 
associate it with �1 ⊕ �2.
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In [10], the author detects intersections between �1 and �2 by identifying intersections between � and the 
diagonal in H: i.e., the Lagrangian subspace Δ ⊂ R4n with frame ZΔ =

(
I2n

I2n

)
. The orthogonal projection 

associated with � can be expressed as

PZ = Z(ZtZ)Zt =
(P1 0

0 P2

)
,

and likewise the orthogonal projection associated with Δ can be expressed as

PΔ = 1
2

(
I2n I2n

I2n I2n

)
.

We can now compute the Souriau map for � and Δ as

W = −(2PZ − I4n)(2PΔ − I4n) =
( 0 I2n − 2P1

I2n − 2P2 0

)
.

We see that the eigenvalues of W will satisfy

det
( −λI2n I2n − 2P1

I2n − 2P2 −λI2n

)
= det

(
λ2I − (I2n − 2P1)(I2n − 2P2)

)
.

We see that the values −λ2 will be the eigenvalues of the Souriau map (3.8).
According to Lemma 2.5 we have an intersection of �1 and �2 if and only if −1 is an eigenvalue of W , 

and the multiplicity of −1 as an eigenvalue of W is twice the dimension of the intersection. In this case, 
we will have eigenvalues λ of W satisfying −λ2 = −1. We see that W has two corresponding eigenvalues 
λ = −1, +1, each with the same multiplicity for W as −1 has for W . Reversing the argument, we conclude 
that −1 is an eigenvalue of W if and only if it is an eigenvalue of W, and its multiplicity as an eigenvalue 
of these two matrices agrees.

Finally, we will be able to conclude that the spectral flow through −1 is the same for W and W if the 
directions associated with crossings agree. Suppose ei(π−ε) is an eigenvalue of W for some small ε > 0 (i.e., 
an eigenvalue rotated slightly clockwise from −1). If λ is the associated eigenvalue of W then we will have 
−λ2 = ei(π−ε), and so λ = ei(π− ε

2 ), ei(2π− ε
2 ). If the eigenvalue of W rotates through −1 then its counterpart 

ei(π− ε
2 ) will rotate through −1 in the same direction. Other cases are similar, and we see that indeed the 

directions associated with the crossings agree.

4. Monotonicity

For many applications, such as the ones discussed in Section 5, we have monotonicity in the following 
sense: as the parameter t ∈ I varies in a fixed direction, the eigenvalues of W̃ (t) move monotonically 
around S1. In this section, we develop a general framework for checking monotonicity in specific cases.

As a starting point, we take the following lemma from [12] (see also Theorem V.6.1 in [2]):

Lemma 4.1 ([12], Lemma 3.11). Let W̃ (t) be a smooth family of unitary n × n matrices on some inter-
val I, satisfying the differential equation d

dtW̃ (t) = iW̃ (t)Ω̃(t), where Ω̃(t) is a continuous, self-adjoint and 
negative-definite n × n matrix. Then the eigenvalues of W̃ (t) move (strictly) monotonically clockwise on the 
unit circle as τ increases.

In order to employ Lemma 4.1 we need to obtain a convenient form for dW̃
dt . For this, we begin by writing 

W̃ (t) = −W̃1(t)W̃2(t), where
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W̃1(t) = (X1(t) + iY1(t))(X1(t) − iY1(t))−1

W̃2(t) = (X2(t) − iY2(t))(X2(t) + iY2(t))−1.

For W̃1(t) we have

dW̃1

dt
= (X ′

1(t) + iY ′
1(t))(X1(t) − iY1(t))−1

− (X1(t) + iY1(t))(X1(t) − iY1(t))−1(X ′
1(t) − iY ′

1(t))(X1(t) − iY1(t))−1

= (X ′
1(t) + iY ′

1(t))(X1(t) − iY1(t))−1

− W̃1(X ′
1(t) − iY ′

1(t))(X1(t) − iY1(t))−1

= W̃1W̃ ∗
1 (X ′

1(t) + iY ′
1(t))(X1(t) − iY1(t))−1

− W̃1(X ′
1(t) − iY ′

1(t))(X1(t) − iY1(t))−1

= W̃1

{
W̃ ∗

1 (X ′
1(t) + iY ′

1(t)) − (X ′
1(t) − iY ′

1(t))
}

(X1(t) − iY1(t))−1,

where we have liberally taken advantage of the fact that W̃ is unitary. Here,

{· · · } = (X1(t)t + iY1(t)t)−1(X1(t)t − iY1(t)t)(X ′
1(t) + iY ′

1(t)) − (X ′
1(t) − iY ′

1(t))

= (X1(t)t + iY1(t)t)−1
[
(X1(t)t − iY1(t)t)(X ′

1(t) + iY ′
1(t))

− (X1(t)t + iY1(t)t)(X ′
1(t) − iY ′

1(t))
]
,

and

[· · · ] = 2i(X1(t)tY ′
1(t) − Y1(t)tX ′

1(t)).

We conclude that

dW̃1

dt
= iW̃1(t)Ω̃1(t),

where

Ω̃1(t) = 2
(

(X1(t) − iY1(t))−1
)∗(

X1(t)tY ′
1(t) − Y1(t)tX ′

1(t)
)(

(X1(t) − iY1(t))−1
)

.

Proceeding similarly for W̃2(t) we find

dW̃2

dt
= iW̃2(t)Ω̃2(t),

where

Ω̃2(t) = −2
(

(X2(t) + iY2(t))−1
)∗(

X2(t)tY ′
2(t) − Y2(t)tX ′

2(t)
)(

(X2(t) + iY2(t))−1
)

.

Combining these observations, we compute

dW̃

dt
= −dW̃1

dt
W̃2 − W̃1

dW̃2

dt

= −iW̃1(t)Ω̃1(t)W̃2(t) − iW̃1(t)W̃2(t)Ω̃2(t)
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= i(−W̃1(t)W̃2(t))W̃2(t)∗Ω̃1(t)W̃2(t) + i(−W̃1(t)W̃2(t))Ω̃2(t)

= iW̃ (t)
{

W̃2(t)∗Ω̃1(t)W̃2(t) + Ω̃2(t)
}

.

That is, we have

dW̃

dt
= iW̃ (t)Ω̃(t),

where

Ω̃(t) = W̃2(t)∗Ω̃1(t)W̃2(t) + Ω̃2(t).

We notice particularly that we can write

W̃ ∗
2 Ω̃1W̃2 = 2

(
(X1 − iY1)−1W̃2

)∗
(Xt

1Y ′
1 − Y t

1 X ′
1)

(
(X1 − iY1)−1W̃2

)
.

We see that the nature of Ω̃(t) will be determined by the matrices (X1(t)tY ′
1(t) − Y1(t)tX ′

1(t)) and 
(X2(t)tY ′

2(t) − Y2(t)tX ′
2(t)). In order to check that these matrices are symmetric, we differentiate the La-

grangian property

X1(t)tY1(t) − Y1(t)tX1(t) = 0

to see that

X1(t)tY ′
1(t) − Y1(t)tX ′

1(t) = Y ′
1(t)tX1(t) − X ′

1(t)tY1(t).

Symmetry of (X1(t)tY ′
1(t) − Y1(t)tX ′

1(t)) is immediate, and we proceed similarly for (X2(t)tY ′
2(t) −

Y2(t)tX ′
2(t)). We conclude that Ω̃(t) is self-adjoint.

Finally, for monotonicity, we need to check that Ω̃(t) is definite. We show how to do this in certain cases 
in Section 5. For convenient reference, we summarize these observations into a lemma.

Lemma 4.2. Suppose �1, �2 : I → Λ(n) denote paths of Lagrangian subspaces with C1 frames X1 =
(

X1
Y1

)
and 

X2 =
(

X2
Y2

)
(respectively). If the matrices

−Xt
1JX′

1 = X1(t)tY ′
1(t) − Y1(t)tX ′

1(t)

and (noting the sign change)

Xt
2JX′

2 = −(X2(t)tY ′
2(t) − Y2(t)tX ′

2(t))

are both non-negative and at least one is positive definite then the eigenvalues of W̃ (t) rotate in the coun-
terclockwise direction as t increases. Likewise, if both of these matrices are non-positive, and at least one is 
negative definite then the eigenvalues of W̃ (t) rotate in the clockwise direction as t increases.

4.1. Monotonicity at crossings

We are often interested in the rotation of eigenvalues of W̃ through −1; i.e., the rotation associated with 
an intersection of our Lagrangian subspaces. Let t∗ denote the time of intersection. As discussed in [12], if 
we let P̃ denote projection onto ker(W̃ + I), then the rotation of eigenvalues through −1 is determined by 
the eigenvalues of the matrix P̃Ω̃(t∗)P̃. Notice that if ṽ ∈ ker(W̃ + I) we will have
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−(X1(t∗) + iY1(t∗))(X1(t∗) − iY1(t∗))−1(X2(t∗) − iY2(t∗))(X2(t∗) + iY2(t∗))−1ṽ = −ṽ,

and correspondingly

(X1(t∗) − iY1(t∗))−1W̃2(t∗)ṽ = (X1(t∗) + iY1(t∗))−1ṽ.

Recalling relations (3.6), we find that

(X1(t∗) + iY1(t∗))−1ṽ = M1(t∗)2(X1(t∗)t − iY1(t∗)t)ṽ.

We see that if Ω̃(t∗) acts on ker(W̃ + I) we can replace it with

Ω̃P(t∗) := 2
(

M1(t∗)2(X1(t∗)t − Y1(t∗)t)
)∗(

X1(t∗)tY ′
1(t∗) − Y t

1 (t∗)X ′
1(t∗)

)

× M1(t∗)2(X1(t∗)t − Y1(t∗)t)

− 2
(

M2(t∗)2(X2(t∗)t − Y2(t∗)t)
)∗(

X2(t∗)tY ′
2(t∗) − Y t

2 (t∗)X ′
2(t∗)

)

× M2(t∗)2(X2(t∗)t − Y2(t∗)t).

If we express ṽ = v1 + iv2, we can write

(X1(t∗) − iY1(t∗))−1W̃2(t∗)ṽ = M1(t∗)2(X1(t∗)t − iY1(t∗)t)(v1 + iv2)

= M1(t∗)2
{

X1(t∗)tv1 + Y1(t∗)tv2 + i(X1(t∗)tv2 − Y1(t∗)tv1)
}

= M1(t∗)2
{

X1(t∗)tv1 + Y1(t∗)tv2

}
.

Here, we have observed that it follows from the Lagrangian property that X1(t∗)tv2 − Y1(t∗)tv1 = 0. 
Likewise,

M2(t∗)2(X2(t∗)t − Y2(t∗)t)(ṽ) = M2(t∗)2
{

X2(t∗)tv1 + Y2(t∗)tv2

}
.

If we now write

Ω̃P(t∗) = Ω̃(1)
P (t∗) + Ω̃(2)

P (t∗),

then the quadratic form associated with Ω̃(1)
P (t∗) will take the form

(
Ω̃(1)

P (t∗)ṽ, ṽ
)
Cn

= 2
(

(X1(t∗)tY ′
1(t∗) − Y t

1 (t∗)X ′
1(t∗))M1(t∗)2

{
X1(t∗)tv1 + Y1(t∗)tv2

}
,

M1(t∗)2
{

X1(t∗)tv1 + Y1(t∗)tv2

})
Cn

,
(4.1)

and likewise the quadratic form associated with Ω̃(2)
P (t∗) will take the form

(
Ω̃(2)

P (t∗)ṽ, ṽ
)
Cn

= 2
(

(X2(t∗)tY ′
2(t∗) − Y t

2 (t∗)X ′
2(t∗))M2(t∗)2

{
X2(t∗)tv1 + Y2(t∗)tv2

}
,

M2(t∗)2
{

X2(t∗)tv1 + Y2(t∗)tv2

})
Cn

.
(4.2)

We will use (4.1) and (4.2) in our next section in which we relate our approach to the development of [18], 
based on crossing forms.
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4.2. Relation to crossing forms

In this section, we discuss the relation between our development and the crossing forms of [18]. As a 
starting point, let �1(t) denote a path of Lagrangian subspaces, and let �2 denote a fixed target Lagrangian 
subspace. Let the respective frames be

X1(t) =
(

X1(t)
Y1(t)

)
; X2 =

(
X2

Y2

)
,

and let t∗ denote the time of a crossing; i.e.,

�1(t∗) ∩ �2 �= {0}.

The corresponding matrix W̃ (t) will be

W̃ (t) = −(X1(t) + iY1(t))(X1(t) − iY1(t))−1(X2 − iY2)(X2 + iY2)−1.

Our goal is to compare the information obtained by computing W̃ ′(t∗) with the information we get from 
the crossing form at t∗.

Following [18], we construct the crossing form at t∗ as a map

Γ(�1, �2; t∗) : �1(t∗) ∩ �2 → R

defined as follows: given v ∈ �1(t∗) ∩ �2, we find u ∈ Rn so that v = X1(t∗)u, and compute

Γ(�1, �2; t∗)(v) = (X1(t∗)u, Y ′
1(t∗)u)Rn − (X1(t∗)u, Y ′

1(t∗)u)Rn

=
(

(X1(t∗)tY ′
1(t∗) − Y1(t∗)tX ′

1(t∗))u, u
)

.

Since v ∈ �1(t∗) ∩ �2 ⊂ �1(t∗) the vector u is uniquely defined and we can compute it in terms of the 
Moore–Penrose pseudo-inverse of X1,

u = (Xt
1X1)−1Xt

1v = M2
1 (Xt

1v1 + Y t
1 v2),

where v =
(

v1
v2

)
.

Comparing with (4.1), and taking X2 in this setting to be X2(t∗) in the setting of (4.1), we see that

Γ(�1, �2; t∗)(v) = 1
2

(
Ω̃(1)

P (t∗)ṽ, ṽ
)
Cn

. (4.3)

When computing the Maslov index with crossing forms, the rotation of eigenvalues of W̃ through −1 is 
determined by the signature of the crossing form. We see from (4.3) that this information is encoded in the 
eigenvalues of Ω̃(1)

P (t∗).
Turning now to path pairs, we recall that in [18] the crossing form for a pair of Lagrangian paths �1(t)

and �2(t) is defined as

Γ(�1, �2; t∗) = Γ(�1, �2(t∗); t∗) − Γ(�2, �1(t∗); t∗).

Here, �2(t∗) is viewed as a constant Lagrangian subspace, so that our previous development can be applied 
to Γ(�1, �2(t∗); t∗), and similarly for Γ(�2, �1(t∗); t∗), in which case �1(t∗) is viewed as a constant Lagrangian 
subspace. In the previous calculations, we have already checked that
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Γ(�1, �2(t∗); t∗)(v) = 1
2

(
Ω̃(1)

P (t∗)ṽ, ṽ
)
Cn

,

and we similarly find that

Γ(�2, �1(t∗); t∗)(v) = 1
2

(
Ω̃(2)

P (t∗)ṽ, ṽ
)
Cn

.

Combining these expressions, we see that the crossing form for the Lagrangian pair (�1(t), �2(t)) at a crossing 
point t∗ is

Γ(�1, �2; t∗) = 1
2

(
Ω̃P(t∗)ṽ, ṽ

)
Cn

.

5. Applications

Although full applications will be carried out in separate papers, we indicate two motivating applications 
for completeness.

Application 1. In [12], the authors consider Schrödinger equations

−y′′ + V (x)y = λy

α1y(0) + α2y′(0) = 0

β1y(1) + β2y′(1) = 0,

(5.1)

where V ∈ C([0, 1]) is a real-valued symmetric matrix,

rank [α1 α2 ] = n; rank [β1 β2 ] = n, (5.2)

and we assume separated, self-adjoint boundary conditions, for which we have

α1αt
2 − α2αt

1 = 0;

β1βt
2 − β2βt

1 = 0.
(5.3)

By a choice of scaling we can take, without loss of generality,

α1αt
1 + α2αt

2 = I;

β1βt
1 + β2βt

2 = I.

In order to place this system in the current framework, we set p = y, q = y′, and p =
(

p
q

)
, so that it can 

be expressed as a first-order system

dp
dx

= A(x; λ)p; A(x; λ) =
( 0 I

V (x) − λI 0

)
. (5.4)

Since rank [α1 α2 ] = n, there exists an n-dimensional space of solutions to the left boundary condition

[α1 α2 ] p(0) = 0

(i.e., the kernel of [α1 α2 ]). In particular, we see from (5.3) that we can take
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X1(0, λ) =
(

αt
2

−αt
1

)
.

By virtue of the Lagrangian property, we see that X1(0; λ) is the frame for a Lagrangian subspace.
Let X1(x, λ) be a path of frames created by starting with X1(0, λ) and evolving according to (5.4). In 

order to see that X1(x, λ) continues to be a frame for a Lagrangian subspace for all x ∈ [0, 1], we begin by 
setting

Z(x, λ) = X1(x, λ)tY1(x, λ) − Y1(x, λ)tX1(x, λ),

and noting that Z(0, λ) = 0. Also (using prime to denote differentiation with respect to x),

Z ′ = (X ′
1)tY1 + Xt

1Y ′
1 − (Y ′

1)tX1 − Y t
1 X ′

1

= Y t
1 Y1 + Xt

1(V (x)X1 − λX1) − (V (x)X1 − λX1)tX1 − Y t
1 Y1

= 0,

where we have observed X ′
1 = Y1, Y ′

1 = V (x)X1 − λX1, and have used our assumption that V is symmetric. 
We see that Z(x, λ) is constant in x, and since Z(0, λ) = 0 this means Z(x, λ) = 0 for all x ∈ [0, 1]. We 
conclude from Lemma 2.1 that X1(x, λ) is the frame for a Lagrangian subspace for all x ∈ [0, 1]. As usual, 
we denote the Lagrangian subspace associated with X1 by �1.

In this case, the second (“target”) Lagrangian subspace is the one associated with the boundary conditions 
at x = 1. I.e.,

X2 =
(

X2

Y2

)
=

(
βt

2
−βt

1

)
,

which is Lagrangian due to our boundary condition and the Lagrangian property. We denote the Lagrangian 
subspace associated with X2 by �2. We find that

W̃ (x, λ) = −(X1(x, λ) + iY1(x, λ))(X1(x, λ) − iY1(x, λ))−1(βt
2 + iβt

1)(βt
2 − iβt

1)−1.

For comparison with [12], we observe that

(βt
2 + iβt

1)(βt
2 − iβt

1)−1 = βt
2β2 − βt

1β1 + 2i(βt
2β1), (5.5)

and this right-hand side, along with the negative sign, is the form that appears in [12] (see p. 4517). In 
order to verify (5.5), we directly compute

(β2 + iβ1)(βt
2 − iβt

1) = β2βt
2 + β1βt

1 + i(β1βt
2 − β2βt

1) = I,

showing that

(βt
2 − iβt

1)−1 = (β2 + iβ1).

But then

(βt
2 + iβt

1)(βt
2 − iβt

1)−1 = (βt
2 + iβt

1)(β2 + iβ1)

= βt
2β2 − βt

1β1 + i(βt
2β1 + βt

1β2)

= βt
2β2 − βt

1β1 + 2i(βt
2β1).

(These are the same considerations that led to (3.6).)
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Turning to the important property of monotonicity, we see that we can consider monotonicity as x

varies or as λ varies (or, in principle, we could consider any other path in the x–λ plane). We find that 
while monotonicity doesn’t generally hold as x varies (except in special cases, such as Dirichlet boundary 
conditions), it does hold generally as λ varies. In order to see this, we observe that in light of Section 4 we 
can write

∂W̃

∂λ
= iW̃ Ω̃,

where

Ω̃ = 2
(

(X1 − iY1)−1W̃2

)∗(
Xt

1∂λY1 − Y t
1 ∂λX1

)(
(X1 − iY1)−1W̃2

)
,

and

W̃2 = (βt
2 + iβt

1)(βt
2 − iβt

1)−1.

We see that monotonicity is determined by the matrix

A(x, λ) = X1(x, λ)t∂λY1(x, λ) − Y1(x, λ)t∂λX1(x, λ),

where our introduction of the notation A(x, λ) is simply for the convenience of the next calculation. Differ-
entiating with respect to x, we find

A′ = (X ′
1)t∂λY1 + Xt

1∂λY ′
1 − (Y ′

1)t∂λX1 − Y t
1 ∂λX ′

1

= Y t
1 ∂λY1 + Xt

1∂λ(V (x)X1 − λX1) − (V (x)X1 − λX1)t∂λX1 − Y t
1 ∂λY1

= −Xt
1X1.

Integrating on [0, x], we find

A(x, λ) = X1(0, λ)t∂λY1(0, λ) − Y1(0, λ)t∂λX1(0, λ) −
x∫

0

X1(y, λ)tX1(y, λ)dy.

We observe that since X1(0, λ) = αt
2 and Y1(0, λ) = −αt

1, we have ∂λX1(0, λ) = 0 and ∂λY1(0, λ) = 0, and 
so

A(x, λ) = −
x∫

0

X1(y, λ)tX1(y, λ)dy,

which is negative definite. We conclude that Ω̃ is negative definite, and so for any x ∈ [0, 1], as λ increases 
the eigenvalues of W̃ rotate monotonically in the clockwise direction.

In order to summarize the result that these observations lead to, we will find it productive to fix s0 > 0
(taken sufficiently small during the analysis) and λ∞ > 0 (taken sufficiently large during the analysis), and 
to consider the rectangular path

Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4,

where the paths {Γi}4
i=1 are depicted in Fig. 1 (taken from [12]).
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Fig. 1. Schematic of the path Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4.

Due to path additivity,

Mas(�1, �2; Γ) = Mas(�1, �2; Γ1) + Mas(�1, �2; Γ2) + Mas(�1, �2; Γ3) + Mas(�1, �2; Γ4),

and by homotopy invariance the Maslov index around any closed path will be 0, so that

Mas(�1, �2; Γ) = 0.

In order to deal efficiently with our self-adjoint boundary conditions, we adapt an elegant theorem from [3]
(see also an earlier version in [15]).

Theorem 5.1 (Adapted from [3]). Let α1 and α2 be as described in (5.2)–(5.3). Then there exist three 
orthogonal (and mutually orthogonal) projection matrices PD (the Dirichlet projection), PN (the Neumann 
projection), and PR = I − PD − PN (the Robin projection), and an invertible self-adjoint operator Λ acting 
on the space PRR

n such that the boundary condition

α1y(0) + α2y′(0) = 0

can be expressed as

PDy(0) = 0

PN y′(0) = 0

PRy′(0) = ΛPRy(0).

Moreover, PD can be constructed as the projection onto the kernel of α2 and PN can be constructed as the 
projection onto the kernel of α1. Construction of the operator Λ is discussed in more detail in [3], and also 
in [12]. Precisely the same statement holds for β1 and β2 for the boundary condition at x = 1.

We also take the following from [12].

Definition 5.2. Let (PD0 , PN0 , PR0 , Λ0) denote the projection quadruplet associated with our boundary 
conditions at x = 0, and let (PD1 , PN1 , PR1 , Λ1) denote the projection quadruplet associated with our 
boundary conditions at x = 1. We denote by B the self-adjoint operator obtained by restricting (PR0Λ0PR0 −
PR1Λ1PR1) to the space (ker PD0) ∩ (ker PD1).

The main result of [12] is the following theorem.
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Theorem 5.3. For system (5.1), let V ∈ C([0, 1]) be a symmetric matrix in Rn×n, and let α1, α2, β1, and β2
be as in (5.2)–(5.3). In addition, let Q denote projection onto the kernel of B, and make the non-degeneracy 
assumption 0 /∈ σ(Q(V (0) − (PR0Λ0PR0)2)Q). Then we have

Mor(H) = − Mas(�, �1; Γ2) + Mor(B) + Mor(Q(V (0) − (PR0Λ0PR0)2)Q).

In order to clarify the nature of the terms Mor(B) + Mor(Q(V (0) − (PR0Λ0PR0)2)Q), we show here how 
they easily arise from a naive perturbation argument; for a rigorous treatment, the reader is referred to [12].

First, we observe that a crossing at a point (s, λ) corresponds with a solution to the system

−y′′ + V (x)y = λy

α1y(0) + α2y′(0) = 0

β1y(s) + β2y′(s) = 0.

(5.6)

Setting ξ = x/s and u(ξ) = y(x), we obtain the system

H(s)u := −u′′ + s2V (sξ)y = s2λu

α1u(0) + 1
s

α2u′(0) = 0

β1u(1) + 1
s

β2u′(1) = 0.

(5.7)

Employing a straightforward energy estimate similar to the proof of Lemma 3.12 in [12], we find that there 
exists a constant c so that any eigenvalue of (5.6) satisfies

λ(s) ≥ − c

s
− ‖V ‖L∞(0,1).

This means that by taking λ∞ sufficiently large we can ensure that there are no crossings along the left shelf. 
In order to understand crossings along the bottom shelf we set λ̃ = s2λ(s) and take the naive expansions

λ̃(s) = λ̃0 + λ̃1s + λ̃2s2 + · · ·

φ(ξ; s) = φ0(ξ) + φ1(ξ)s + φ2(ξ)s2 + · · · ,
(5.8)

where φ(ξ; s) is an eigenfunction corresponding with eigenvalue λ̃(s). We emphasize that the spectral curves 
we are looking for will have the corresponding form

λ(s) = λ̃0

s2 + λ̃1

s
+ λ̃2 + . . . . (5.9)

Using Theorem 5.1, we can express the boundary conditions for (5.7) as

PD0u(0) = 0; PD1u(1) = 0;

PN0u′(0) = 0; PN1u′(1) = 0;

PR0u′(0) = sΛ0PR0u(0); PR1u′(1) = sΛ1PR1u(1).

Upon substitution of (5.8) into (5.7) with projection boundary conditions, we find that the zeroth order 
equation is −φ′′

0 = λ̃0φ0 with boundary conditions



P. Howard et al. / J. Math. Anal. Appl. 451 (2017) 794–821 817
PD0φ0(0) = 0; PD1φ0(1) = 0;

PN0φ′
0(0) = 0; PN1φ′

0(1) = 0;

PR0φ′
0(0) = 0; PR1φ′

0(1) = 0.

Taking an L2(0, 1) inner product of this equation with φ0 we obtain

λ̃0‖φ0‖2
L2(0,1) = 〈φ′′

0 , φ0〉

= ‖φ′
0‖2

L2(0,1) − (φ′
0(1), φ0(1))Rn + (φ′

0(0), φ0(0))Rn .

Observing that

(φ′
0(1), φ0(1))Rn = (φ′

0(1), PD1φ0(1) + PN1φ0(1) + PR1φ0(1))Rn

= (PN1φ′
0(1) + PR1φ′

0(1), φ0(1))Rn = 0,
(5.10)

and noting that similarly (φ′
0(0), φ0(0))Rn = 0, we see that

λ̃0‖φ0‖2
L2(0,1) = ‖φ′

0‖2
L2(0,1).

Clearly, we must have λ̃0 ≥ 0, and if λ̃0 > 0 the associated spectral curve will lie in the right quarter-plane 
and will not cross into the Maslov Box. On the other hand, if λ̃0 = 0 then ‖φ′

0‖L2(0,1) = 0 and φ0 will be 
a constant function. In this case, the only requirement on the constant vector φ0 is (from the projection 
boundary conditions)

φ0 ∈ (ker PD0) ∩ (ker PD1).

Let P denote the orthogonal projection onto the space (ker PD0) ∩ (ker PD1) and set

B = P (PR0Λ0PR0 − PR1Λ1PR1)P

(i.e., B is the matrix defined in (5.2)). Since B is symmetric and maps (ker PD0) ∩ (ker PD1) to itself, we can 
create an orthonormal basis for (ker PD0) ∩ (ker PD1) from the eigenvectors of B. Moreover, let Q denote 
the orthogonal projection onto ker B (as in the statement of Theorem 5.3) and create an orthonormal basis 
for ker B from the eigenvectors of Q(V (0) − (PR0Λ0PR0)2)Q.

Now, we are ready for the order 1 equation, assuming already that λ̃0 = 0. For any φ0 selected from 
our chosen basis for (ker PD0) ∩ (ker PD1), we obtain the equation −φ′′

1 = λ̃1φ0, with projection boundary 
conditions

PD0φ1(0) = 0; PD1φ1(1) = 0;

PN0φ′
1(0) = 0; PN1φ′

1(1) = 0; (5.11)

PR0φ′
1(0) = Λ0PR0φ0; PR1φ′

1(1) = Λ1PR1φ0. (5.12)

Upon taking an L2(0, 1) inner product with φ0, we find

λ̃1|φ0|2Rn = −〈φ′′
1 , φ0〉

=
(

(PR0Λ0PR0 − PR1Λ1PR1)φ0, φ0

)
=

(
Bφ0, φ0

)
,

Rn Rn
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using a calculation similar to (5.10). Since φ0 is an eigenvector for B, λ̃1 will be an eigenvalue of B. If 
λ̃1 > 0 this eigenvalue will be in the right half-plane for s small and so won’t cross into the Maslov Box. 
On the other hand, if λ̃1 < 0 we will obtain a spectral curve with the asymptotic form λ(s) ∼ λ̃1

s , and (for 
λ∞ chosen sufficiently large) this will enter the Maslov Box through the bottom shelf. These crossings are 
precisely counted by the term Mor(B) in Theorem 5.3.

Finally, if λ̃1 = 0 we need to proceed with the next order of our perturbation argument. For this step, we 
note that we have λ̃0 = 0 and λ̃1 = 0, and that we now restrict to φ0 ∈ ker B. Our second order perturbation 
equation is −φ′′

2 + V (0)φ0 = λ̃2φ0 subject to the conditions

PD0φ2(0) = 0; PD1φ2(1) = 0;

PN0φ′
2(0) = 0; PN1φ′

2(1) = 0;

PR0φ′
2(0) = Λ0PR0φ1(0); PR1φ′

2(1) = Λ1PR1φ1(1).

We take an L2(0, 1) inner product of this equation with φ0 and compute

λ̃2|φ0|2Rn − (V (0)φ0, φ0)Rn = −〈φ′′
2 , φ0〉 = −(φ′

2(1), φ0)Rn + (φ′
2(0), φ0)Rn

= (PR0Λ0PR0φ1(0) − PR1Λ1PR1φ1(1), φ0)Rn .

In order to understand this last inner product, we note that for λ̃1 = 0 we have φ′′
1 = 0 with boundary 

conditions (5.11). We can write φ1(x) = ax +b for constant vectors a, b ∈ Rn, and the conditions PR0φ′
1(0) =

Λ0PR0φ0 and PR1φ′
1(1) = Λ1PR1φ0 imply PR0a = PR0Λ0PR0φ0 and likewise PR1a = PR1Λ1PR1φ0. Noting 

also that φ1(1) − φ1(0) = a, we compute

(PR0Λ0PR0φ1(0) − PR1Λ1PR1φ1(1), φ0)Rn = (φ1(0), PR0Λ0PR0φ0)Rn − (φ1(1), PR1Λ1PR1φ0)Rn

= (φ1(0) − φ1(1), PR0Λ0PR0φ0)Rn = −(a, PR0Λ0PR0φ0)Rn

= −(PR0a, PR0Λ0PR0φ0)Rn = −(PR0Λ0PR0φ0, PR0Λ0PR0φ0)Rn

= −((PR0Λ0PR0)2φ0, φ0)Rn .

We see that

λ̃2|φ0|2Rn =
(

(V (0) − (PR0Λ0PR0)2)φ0, φ0

)
Rn

.

Recalling that we have selected the vectors φ0 to be orthonormal eigenvectors for the matrix Q(V (0) −
(PR0Λ0PR0)2)Q, we see that we have a spectral curve entering the Maslov Box if and only if λ̃2 is a negative 
eigenvalue of this matrix.

In principle, if λ̃2 = 0 we can proceed to the next step in the perturbation argument, but this is the case 
that we have eliminated by our non-degeneracy assumption.

Application 2. In [11], the authors consider Schrödinger equations on R,

Hy := −y′′ + V (x)y = λy,

dom(H) = H1(R),
(5.13)

where y ∈ Rn and V ∈ C(R) is a symmetric matrix satisfying the following asymptotic conditions:
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(A1) The limits limx→±∞ V (x) = V± exist, and for all M ∈ R,

∞∫
−M

(1 + |x|)|V (x) − V+|dx < ∞;
M∫

−∞

(1 + |x|)|V (x) − V−|dx < ∞.

(A2) The eigenvalues of V± are all positive.

As verified in [11], if λ < 0 then (5.13) will have n linearly independent solutions that decay as x → −∞
and n linearly independent solutions that decay as x → +∞. We express these respectively as

φ−
n+j(x; λ) = eμ−

n+j(λ)x(r−
j + E−

j (x; λ))

φ+
j (x; λ) = eμ+

j (λ)x(r+
n+1−j + E+

j (x; λ)),

with also

∂xφ−
n+j(x; λ) = eμ−

n+j(λ)x(μ−
n+jr−

j + Ẽ−
j (x; λ))

∂xφ+
j (x; λ) = eμ+

j (λ)x(μ+
j r+

n+1−j + Ẽ+
j (x; λ)),

for j = 1, 2, . . . , n, where the nature of the μ±
j , r±

j , and E±
j (x; λ), Ẽ±

j (x; λ) are developed in [11], but won’t 
be necessary for this brief discussion, except for the observation that under assumptions (A1) and (A2)

lim
x→±∞

E±
j (x; λ) = 0; lim

x→±∞
Ẽ±

j (x; λ) = 0. (5.14)

If we create a frame X−(x; λ) =
(X−(x;λ)

Y −(x;λ)
)

by taking {φ−
n+j}n

j=1 as the columns of X− and {φ−
n+j

′}n
j=1

as the respective columns of Y − then it is straightforward to verify that X− is a frame for a Lagrangian 
subspace, which we will denote �− (see [11]). Likewise, we can create a frame X+(x; λ) =

(
X+(x;λ)
Y +(x;λ)

)
by 

taking {φ+
j }n

j=1 as the columns of X+ and {φ+
j

′}n
j=1 as the respective columns of Y +. Then X+ is a frame 

for a Lagrangian subspace, which we will denote �+.
In either case, we can view the exponential multipliers eμ±

j x as expansion coefficients, and if we drop 
these off we retain frames for the same spaces. That is, we can create an alternative frame for �− by 
taking the expressions r−

j + E−
j (x; λ) as the columns of X− and the expressions μ−

n+jr−
j + Ẽ−

j (x; λ) as the 
corresponding columns for Y −. Using (5.14) we see that in the limit as x tends to −∞ we obtain the frame 
R−(λ) =

(
R−

S−(λ)
)
, where

R− =
(
r−

1 r−
2 . . . r−

n

)
S−(λ) =

(
μ−

n+1r−
1 μ−

n+2r−
2 . . . μ−

2nr−
n

)
.

As discussed in [11], R− is the frame for a Lagrangian subspace, which we will denote �−
∞. Proceeding 

similarly with �+, we obtain the asymptotic Lagrangian subspace �+
∞ with frame R+(λ) =

(
R+

S+(λ)
)
, where

R+ =
(
r+

n r+
n−1 . . . r+

1
)

S+(λ) =
(
μ+

1 r+
n μ+

2 r+
n−1 . . . μ+

n r+
1

)
.

(5.15)

We can now construct W̃ (x, λ) in this case as

W̃ (x; λ) = −(X−(x; λ) + iY −(x; λ))(X−(x; λ) − iY −(x; λ))−1(R+ − iS+(λ))(R+ + iS+(λ))−1. (5.16)
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We will be interested in a closed path in the x–λ plane, determined by a sufficiently large value λ∞. First, 
if we fix λ = 0 and let x run from −∞ to +∞, we denote the resulting path Γ0 (the right shelf ). Next, we 
let Γ+ denote a path in which λ decreases from 0 to −λ∞. (We can view this as a path corresponding with 
the limit x → +∞, but the limiting behavior will be captured by the nature of the Lagrangian subspaces; 
we refer to this path as the top shelf.) Continuing counterclockwise along our path, we denote by Γ∞ the 
path obtained by fixing λ = −λ∞ and letting x run from +∞ to −∞ (the left shelf ). Finally, we close 
the path in an asymptotic sense by taking a final path, Γ−, with λ running from −λ∞ to 0 (viewed as the 
asymptotic limit as x → +∞; we refer to this as the bottom shelf ).

The principal result of [11] is as follows.

Theorem 5.4. Let V ∈ C(R) be a symmetric real-valued matrix, and suppose (A1) and (A2) hold. Then

Mor(H) = − Mas(�−, �+
∞; Γ0).

Remark 5.5. As discussed in Section 5 of [11], Theorem 5.4 can be extended to the case

Hsy := −y′′ + sy′ + V (x)y = λy, (5.17)

for any s ∈ R. This observation—for which the authors are indebted to [5]—allows the application of these 
methods in the study of spectral stability for traveling wave solutions in Allen–Cahn equations.
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Appendix A

In this brief appendix, we verify (P2) (homotopy invariance) for our definition of the Maslov index. 
We assume L(s, t) = (�1(s, t), �2(s, t)) is continuous on a cartesian product of closed, bounded intervals 
I ×J = [0, 1] × [a, b], and that L(s, a) = La for all s ∈ I and likewise L(s, b) = Lb for all s ∈ I, for some fixed 
La, Lb ∈ Λ(n) × Λ(n). We denote by W̃ (s, t) the matrix (1.1) associated with L(s, t). It’s straightforward to 
see from our metric (1.4) that continuity of L implies continuity of the associated frame X(s, t), which in 
turn (and along with non-degeneracy) implies continuity of W̃ (s, t). We know from Theorem II.5.1 in [13]
that the eigenvalues of W̃ (s, t) must vary continuously with s and t. Moreover, we see from Theorem II.5.2 
in the same reference that these eigenvalues can be tracked as n continuous paths {μk(s, t)}n

k=1, which in 
our case will be restricted to S1.

For notational convenience, let’s fix s1, s2 ∈ I suitably close together (in a manner that we make precise 
below) and set W̃1(t) := W̃ (s1, t) and W̃2(t) := W̃ (s2, t).

Claim A.1. Suppose μ(t) and ν(t) are any two continuous eigenvalue paths of W̃1(t) and W̃2(t) respectively, 
with μ(a) = ν(a) and μ(b) = ν(b). Then there exists ε > 0 sufficiently small so that if

max
t∈J

|μ(t) − ν(t)| < ε

then the spectral flow of μ(t) is the same as the spectral flow of ν(t).
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Proof. First, suppose neither μ(a) nor μ(b) is −1 (and so the same is true for ν(a) and ν(b)). Take ε small 
enough so that Bε(μ(a)) (the ball in C centered at μ(a) with radius ε) does not contain −1, and similarly 
for μ(b). According to our hypothesis, we will have μ(t), ν(t) ∈ Bε(μ(t)) for all t ∈ J , and so the spectral 
flows for μ(t) and ν(t) will both match the flow for Bε(μ(t)).

Suppose next that μ(a) = −1, but μ(b) does not. In this case, there must be a first time, t∗, at which 
Bε(μ(t∗)) does not contain −1. By assumption, we must have ν(t∗) ∈ Bε(μ(t∗)), and this allows us to apply 
an argument on [t∗, b] similar to our argument on [a, b] in the previous paragraph. A similar argument holds 
if μ(b) = −1, but μ(a) does not.

Last, suppose μ(a) = −1 and μ(b) = −1. If μ(t) and ν(t) are both −1 for all t ∈ J then we’re finished. If 
not, i.e., if there exists a time t∗ at which one or both μ(t∗) and ν(t∗) is not −1, then we can apply one of 
the first two cases to complete the proof. �

Since I × J is closed and bounded, the matrices W̃ (s, t) are uniformly continuous on I × J . This means 
that given any ε̃ > 0 we can find δ > 0 sufficiently small so that

|s1 − s2| < δ =⇒ max
t∈J

‖W̃1(t) − W̃2(t)‖ < ε̃.

Fix any k ∈ {1, 2, . . . , n}, and set μk
1(t) = μk(s1, t) and μk

2(t) = μk(s2, t). By eigenvalue continuity, this 
means we can take δ small enough to ensure that

max
t∈J

|μk
1(t) − μk

2(t)| < ε

for all k ∈ {1, 2, . . . , n}. But since ε is arbitrary, we see from our claim that the flow associated with each of 
these eigenvalue pairs must be the same, and so the spectral flow for W̃1(t) must agree with that of W̃2(t).

Finally, then, by starting with s1 = 0, and proceeding to s2 = δ
2 , s3 = δ etc., we see that the Maslov 

index will be the same at each step, and that since the steps have fixed length we eventually arrive at s = 1. 
This concludes the proof of property (P2).
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