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1. Introduction

With origins in the work of V.P. Maslov [16] and subsequent development by V.I. Arnol’d [1], the
Maslov index on R?" is a tool for determining the nature of intersections between two evolving Lagrangian
subspaces (see Definition 1.1). As discussed in [6], several equivalent definitions are available, and we focus
on a definition for Lagrangian pairs based on the development in [4] (using the definition of spectral flow
introduced in [17]). We note at the outset that the theory associated with the Maslov index has now been
extended well beyond the simple setting of our analysis (see, for example, [4,7,8,10]); nonetheless, the Maslov
index for Lagrangian pairs on R?" is a useful tool, and a systematic development of its properties is certainly
warranted.

As a starting point, we define what we will mean by a Lagrangian subspace of R?™.

Definition 1.1. We say ¢ C R?" is a Lagrangian subspace if £ has dimension n and
(Jxvy)]RZ" = 0)

for all 2,y € £. Here, (-,-)gen denotes Euclidean inner product on R?", and
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0 -1
J = ",
I, O
with I,, the n X n identity matrix. We sometimes adopt standard notation for symplectic forms, w(z,y) =

(Jx,y)g2n. Finally, we denote by A(n) the collection of all Lagrangian subspaces of R?", and we will refer
to this as the Lagrangian Grassmannian.

A simple example, important for intuition, is the case n = 1, for which (Jz, y)g2 = 0 if and only if 2 and y
are linearly dependent. In this case, we see that any line through the origin is a Lagrangian subspace of R2.
As a foreshadowing of further discussion, we note that each such Lagrangian subspace can be identified with
precisely two points on the unit circle S*.

More generally, any Lagrangian subspace of R?" can be spanned by a choice of n linearly independent
vectors in R?". We will generally find it convenient to collect these n vectors as the columns of a 2n x n
matrix X, which we will refer to as a frame for £. Moreover, we will often write X = (i,(), where X and Y
are n X n matrices.

Given any two Lagrangian subspaces ¢ and /5, with associated frames X; = ();11) and Xo = ();22), we
can define the complex n x n matrix

W = —(X1 +i¥1)(X1 — V1) "M (Xo — iV2)(Xa +i¥a) !, (1.1)

which we will see in Section 3 is unitary. (We will also verify in Section 3 that (X; —4Y7) and X5 + iY> are
both invertible, and that W is independent of the choice of frames we take for ¢; and l5.) Notice that if
we switch the roles of ¢1 and £ then W will be replaced by W1, and since W is unitary this is W*. We
conclude that the eigenvalues in the switched case will be complex conjugates of those in the original case.

Remark 1.2. We use the tilde to distinguish the n x n complex-valued matrix W from the Souriau map (see
equation (3.8) below), which is a related 2n x 2n matrix often—as here—denoted W. The general form of
W appears in a less general context in [9,12]. For the special case X = (?) (associated, for example, with
Dirichlet boundary conditions for a Sturm—Liouville eigenvalue problem) we see that

W = (X1 +iY7) (X1 — Y1), (1.2)

which has been extensively studied, perhaps most systematically in [2] (particularly Chapter 10). If we let
Wp denote (1.2) for X; = (?) and for j = 1,2 set

Wi = (X; +iY)(X; —i¥)) ™",
then our form for W can be viewed as the composition map
AW (WalVp) ! = — 1 (W)~ (1.3)
For a related observation regarding the Souriau map see Remark 3.3.

Combining observations from Sections 2 and 3, we will establish the following theorem (cf. Lemma 1.3
in [4]).

Theorem 1.3. Suppose £1,¢> C R?*" are Lagrangian subspaces, with respective frames X, = ()121) and Xo =
();;), and let W be as defined in (1.1). Then

dimker(W 4 I) = dim(¢; N £).
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That is, the dimension of the eigenspace of W associated with the eigenvalue —1 is precisely the dimension
of the intersection of the Lagrangian subspaces {1 and {s.

Given a parameter interval I = [a, ], which can be normalized to [0, 1], we consider maps £ : I — A(n),
which will be expressed as £(t). In order to specify a notion of continuity, we need to define a metric on
A(n), and following [10] (p. 274), we do this in terms of orthogonal projections onto elements ¢ € A(n).
Precisely, let P; denote the orthogonal projection matrix onto ¢; € A(n) for i = 1,2. Le., if X; denotes a
frame for ¢;, then P; = X;(X!X;) 1 X!. We take our metric d on A(n) to be defined by

d(€1,£2) = ||P1 — P2,

where |- || can denote any matrix norm. We will say that ¢ : I — A(n) is continuous provided it is continuous
under the metric d. Likewise, for £ = (¢1,¢2) € A(n) x A(n) and M = (mq,m2) € A(n) x A(n), we take

p(L, M) = (d(br,ma)? + d(l2, m2)?) 2. (1.4)
Given two continuous maps ¢ (t), ¢2(t) on a parameter interval I, we denote by L£(t) the path

L(t) = ((x(1), L2(1)).

In what follows, we will define the Maslov index for the path £(t), which will be a count, including both
multiplicity and direction, of the number of times the Lagrangian paths ¢; and ¢y intersect. In order to be
clear about what we mean by multiplicity and direction, we observe that associated with any path L(t)
we will have a path of unitary complex matrices as described in (1.1). We have already noted that the
Lagrangian subspaces ¢; and ¢, intersect at a value ¢y € I if and only if W(to) has —1 as an eigenvalue. In
the event of such an intersection, we define the multiplicity of the intersection to be the multiplicity of —1
as an eigenvalue (since W is unitary the algebraic and geometric multiplicities are the same). When we talk
about the direction of an intersection, we mean the direction the eigenvalues of W are moving (as t varies)
along the unit circle S as they pass through —1 (we take counterclockwise as the positive direction). We
note that the eigenvalues certainly do not all need to be moving in the same direction, and that we will need
to take care with what we mean by a crossing in the following sense: we must decide whether to increment
the Maslov index upon arrival or upon departure.

Following [4,10,17], we proceed by choosing a partition a =ty < t; < --- < t, = b of I = [a, b], along with
numbers ¢; € (0,7) so that ker (W (t) — e!"*<)T) = {0} for t;_1 <t < t;; that is, e!"*%) € C\ o(W(2t)),

for t;_y <t <t;and j =1,...,n. Moreover, for each j = 1,...,n and any t € [t;_i,t;] there are only
finitely many values 6 € [0, ¢;] for which ' ("9 ¢ (W (t)).
Fix some j € {1,2,...,n} and consider the value
k(t,e;) == > dimker (W(t) — '), (1.5)
0<60<e;

for t;_y <t < t;. This is precisely the sum, along with multiplicity, of the number of eigenvalues of W(t)
that lie on the arc

Aji={e"temm+e)}

The stipulation that e ("*<) € C\ o(W(t)), for t;_, < t < t; asserts that no eigenvalue can enter A; in the
clockwise direction or exit in the counterclockwise direction during the interval ¢;_; < ¢t < t;. In this way, we
see that k(t;,€;) —k(tj—1,€;) is a count of the number of eigenvalues that entered A; in the counterclockwise
direction minus the number that left in the clockwise direction during the interval (t;_1,t;).
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In dealing with the catenation of paths, it’s particularly important to understand this quantity if an
eigenvalue resides at —1 at either t = t;_; or t = t; (i.e., if an eigenvalues begins or ends at a crossing).
If an eigenvalue moving in the counterclockwise direction arrives at —1 at ¢t = t;, then we increment the
difference forward, while if the eigenvalue arrives at —1 from the clockwise direction we do not. On the
other hand, suppose an eigenvalue resides at —1 at ¢ = t;_; and moves in the counterclockwise direction.
There is no change, and so we do not increment the difference, but we decrement the difference if the
eigenvalue leaves in the clockwise direction. In summary, the difference increments forward upon arrivals
in the counterclockwise direction, but not upon arrivals in the clockwise direction, and it decrements upon
departure in the clockwise direction, but not upon departure in the counterclockwise direction.

We are now ready to define the Maslov index.

Definition 1.4. Let L£(t) = (¢1(t),¢2(t)), where ¢1,¢5 : I — A(n) are continuous paths in the Lagrangian—
Grassmannian. The Maslov index Mas(L; I) is defined by

Mas(L; 1) =Y (k(t;, €;) — k(tj—1,€;)). (1.6)

Jj=1

Remark 1.5. In [6] the authors provide a list of six properties that entirely characterize the Maslov index for
a pair of Lagrangian paths. Our definition satisfies their properties, except for the choice of normalization
(their Property VI), which is reversed. In our notation, their normalization is specified for n = 1 with
reference to Lagrangian subspaces ¢; and ¢, with respective frames X; = ((1)) and Xy = (zfrf f) For this
choice, we have

~ cost —isint

cost +isint
for which we see immediately that W(—2) = —i, W(0) = —1, and W(Z) = 4. This path is mono-
tonic, so the following three values are immediate: Mas(f1,fo;[—7, F]) = —1, Mas(él,fz,[ T0) =0,

and Mas(/1, £2; [0, §]) = —1. (Cf. equation (1.7) in [6].)

We also note two additional definitions of the Maslov index for paths. In Section 3 of [18] the authors
give a definition based on crossing forms, and in Section 3.5 of [10] the author gives a definition based on a
direct sum of the Lagrangian pairs. In Section 3 (of the current paper) we clarify how these two definitions
are related to our Definition 1.4.

One of the most important features of the Maslov index is homotopy invariance, for which we need to
consider continuously varying families of Lagrangian paths. To set some notation, we denote by P(I) the
collection of all paths L(t) = (¢1(t), £2(t)), where £1,¢s : I — A(n) are continuous paths in the Lagrangian—
Grassmannian. We say that two paths £, M € P(I) are homotopic provided there exists a family H so
that Ho = L, H1 = M, and H,(¢) is continuous as a map from [a, b] x [0,1] into A(n).

The Maslov index has the following properties (see, for example, Theorem 3.6 in [10]).

(P1) (Path Additivity) If @ < b < ¢ then
Mas(L; [a, ¢]) = Mas(L; [a, b]) + Mas(L; [b, c]).

(P2) (Homotopy Invariance) If £, M € P(I) are homotopic, with £(a) = M(a) and L(b) = M(b) (i.e., if
L, M are homotopic with fixed endpoints) then

Mas(L; [a, b]) = Mas(M; [a, b]).
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Remark 1.6. For (P1), the only issue regards cases in which there is an intersection at ¢t = b. For example,
suppose the intersection is an arrival in the clockwise direction, followed by departure in the same direction.
Then at this intersection, Mas(L;[a,c]) decrements by 1, Mas(L;[a,b]) is unaffected, and Mas(L; [b, c])
decrements by 1. Other cases are similar.

Verification of (P2) requires more work, and we leave that discussion to an appendix.

2. Framework for W and W

In Section 3, we will use the formulation of [4,10] to derive our form of W, and in preparation for that
we will briefly discuss the nature of this formulation. This material has all been covered in a much more
general case in [4,10], and our motivation for including this section is simply to allow readers to understand
this framework in the current setting.

We record at the outset an important property of Lagrangian frames.

Proposition 2.1. A 2n x n matrizx X = ();) 1s a frame for a Lagrangian subspace if and only if the columns
of X are linearly independent, and additionally

XY -Y'X =0. (2.1)
We refer to this relation as the Lagrangian property for frames.

Proof. To see this, we observe by definition that X is the frame of a Lagrangian subspace if and only if its

columns are linearly independent, and each of its column pairs (;’), (Zj) satisfies

(J<y)7 (y]'>)R2" = 07 Le., (( ‘ry )7 (y]_))R2” = (‘r’ia yj)]R2” - (.73]‘, yi)RQ” =0.
i 7 ? J

Observing that
(XY = Y'X)ij = (i, y5)rn — (25, 4:)rn,
we obtain the claim. O
Remark 2.2. It is clear that the Lagrangian property can alternatively be expressed as
X'JX =0.

We next observe that for a given pair of Lagrangian subspaces £ = (¢1,¢3) € A(n) x A(n) we can change
our choice of frames without changing either the associated W or the projection matrices P; and Ps.

Proposition 2.3. Suppose X1 = ()éll) and Xy = ()}(,j) are any two frames for the same Lagrangian subspace

¢ C R2". Then
(X1 4+iY7) (X1 —iY7) 7! = (Xp +iYs)(Xy — iYa) 7,
and likewise

X (XEX,) 71X = X (XEX,) X5,
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Proof. Under our assumptions, there exists an invertible n x n matrix M so that X; = Xy M. In particular,
we must have X1 = XoM and Y; = Yo M. But then

(X1 +iY1)(Xy — Y1) ™! = (XoM +iYoM)(Xo M — iY, M) ™!
= (Xo +iYo) MM Y (X —iYVs) ™ = (Xo 4+ iY3)(Xy — iYs) L.
Likewise,
X (XEX) 71X = Xo M (Xo M) Xy M) H(XoM)!
= XoM (MY (XEX) M) MPXE = Xo MM~ (XEX,) (M)~ MPXE
=X,(X5X,) X, O

Next, we introduce a complex Hilbert space, which we will denote R%". The elements of this space
will continue to be real-valued vectors of length 2n, but we will define multiplication by complex scalars
y=a+if as

(a+if)u = au+ fJu, u€R*™ a+ifcC,
and we will define a complex scalar product
(u, v)gzn = (U, v)ge2n —iw(u,v), u,vE R2"

(recalling w(u,v) = (Ju,v)gen). It is important to note that, considered as a real vector space, R?" is
identical to R?", and not its complexification R?" @g C. (In fact, RZ* = C" while R?" @g C = C>".)
However, it is easy to see that R%" = (®g C for any Lagrangian subspace ¢ € A(n), and we’ll take advantage
of this correspondence.

For a matrix U acting on R?]”, we denote the adjoint in R?,” by U”’* so that

(Uu, 'U)]RZJ” = (u, UJ*’U)Ran,

for all u,v € R%”. We denote by il the space of unitary matrices acting on R?]” (i.e., the matrices so that
UU’* = U’*U = I). In order to clarify the nature of {;, we note that we have the identity

(UU, U’U)R?}n = ('LL, ’U)R?,n,
from which
(UU, U'U)]RZ?L — Z(JUU, U'U)]R2n = ('U,, 'U)RQ'/L — Z(Ju, U)]R2n .

Equating real parts, we see that U must be unitary as a matrix on R?", while by equating imaginary parts
we see that UJ = JU. We have, then,

Uy ={U e R | U'U = UU* = I,, UJ = JU}.

Fix some Lagrangian subspace £, C R?", and notice that J({) is orthogonal to fy; i.e., if Xg = ()ég) is

a frame for £y then JX, = (;(Yob) is a frame for J(¢y), and we have

Y,
(Xt YY) < X00> = —XLYo + Y{Xo =0,
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by the Lagrangian property. In this way, we see that
R?" = (o © J(4p),

so that given any z € R?" we can express z uniquely as z = = + Jy for some z,y € fo. We define the
conjugate of z in R%" by

Tz = x — Jy.

Notice that we can compute 79 = 2I1y — I5,,, where Il is the orthogonal projection onto ¢y. For any U € il;,
we define

UT = 1oU'ry, (2.2)
which is also in 4; (as follows easily from our next proposition).

Proposition 2.4. Let Xy = (ﬁ?) be a frame for a Lagrangian subspace €y C R?*™. Then the matriz Xt Xo+Y{ Yy
is symmetric and positive definite, and if we set My := (X Xo + YY) ~Y/? we have

L (XoMEX) XoM3Y

O \voMExt YoMy

| (2XoMEXL -1 2XMZY{
T\ ovoM2XE 2voM2YE—1)°

with additionally ¢ = 10, 78 = I, and J19 = —7oJ.

Proof. These claims can all be proven in a straightforward manner, using the following identities, which are
established in the proof of Lemma 3.3 in [12]:

XoMEXE+YoM3YE =1, 2.3
2.3
XoMZY{ — YoM X{ = 0.

Noting that
) = XSXO + Yvotyv()7

we see that

_ Xo Xt
o= = (5 (3

(XoMBYY XoMEY{
O\ YoMEXE YoM@yE )

The remaining claims follow in a straightforward manner. 0O
Now, given a second Lagrangian subspace ¢, let U € il; satisfy

(= U(JI(k)), (2.4)
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or equivalently

Ut(l) = J(Ly). (2.5)
(Such a matrix U is not uniquely defined.) We define

W =UU" = UroU'r,
and it follows from Proposition 2.4 that W € U;.
Lemma 2.5. For {y, £, and W as above
ker(W + 1) = (£nNty) ® J(ENL).

Proof. As a start, take any z € (¢N{y) ® J(¢NLy), and write z = x+ Jy for some z,y € £N{y. We compute

Wz = UrU'ro(z + Jy)
= UnU'(x — Jy)
=Ur(U'z — JU'y)
ZU(-Uls — JUY) = -z — Jy = —2,
where in obtaining the equality indicated with * we have observed from (2.4) and (2.5) that Ulx € J({g)
and JU'y € 4.
On the other hand, suppose z € R?" satisfies Wz = —z. We can write z = x + Jy for some z,y € £y, and
we would like to show that x,y € £ so that in fact x,y € £ N £y. We compute
—(z+ Jy) = UngU'ro(x + Jy) = UrgU"(z — Jy)
=Ury(U'x — U'Jy),

which implies
—(Ulz + U Jy) = 10(Utz — U'Jy).

It’s straightforward to see that this can only hold if UtJy € ¢y and Ulz € J({), which according to (2.4)
and (2.5) implies that z,y € £. O

For a similar statement in a more general context, see equation (2.37) in [10].

The relationship between {y, ¢, and U € i; provides a natural and productive connection between
the elements ¢ of the Lagrangian Grassmannian and elements U € il;. However, the associated unitary
matrices are not uniquely specified, and consequently the spectrum of U contains redundant information.
For example, in the simple case of R? this redundant information corresponds with our previous observation
that each element ¢ € A(1) corresponds with two points on S'. We overcome this difficulty by defining a
new (uniquely specified) unitary matrix W in R%" by W = UUT.

We observe that the unitary condition UJ = JU implies U must have the form

Un U21) (Un 0 > (U21 0 >
U = = +J .
<U21 Ui 0 Un 0 Uxn

In addition, we have the scaling condition
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U{llUll + UQtlUQl = I

Ulth + U21U2tl =] (2 6)

(from UU" = U'U = I). In this way, there is a natural one-to-one correspondence between matrices U € 8
and the n x n complex unitary matrices U = Uy + iUsy (i-e., the U € C" ™ so that U*U = UU* = I). It
follows that the matrix W = UU7, which can be expressed as

Wi —W21>
W = ,
<W21 Wi

has a natural corresponding matrix W = Wiy + iWs;. We will see in section 3 that our matrix W in (1.1)
is constructed in precisely this way.

Proof of Theorem 1.3. Let W and W be as in the preceding paragraph, and suppose z = x + Jy, x,y € ¥,

is an eigenvector for W, associated to the eigenvalue A = —1. If we write x = (2) and y = (" ) then the

1
Y2
equation Wz = —z becomes

Wii(z1 —y2) — War(za + 1) = — (21 — y2)
Wai(z1 — y2) + Wi (z2 + 1) = — (22 + y1).

We see that if w = u + v, with v = 1 — y2 and v = x2 + y1, then Ww = —w. Moreover, w cannot be
trivial, because if w = 0 then z; = y» and x2 = —y3, so that

0= W(l',y) = (Ji[,’,y) = |:L'1|2 + |$2|27

which would imply z = 0, and consequently y = 0. This contradicts our assumption that z is an eigenvector
of W.

On the other hand, notice that if w = u+14v is any eigenvector of W associated to the eigenvalue A = —1,
then

W11u — ngv = —Uu
Wiiv + Waou = —w.

If we set z = (i;) = () then Wz = —z, and likewise if we set y = (Z;) = (%) then WJy = —Jy.
We see that each eigenvector of W associated to A = —1 corresponds with precisely two eigenvectors of
W associated to A = —1. Since dimker(W + I) = 2dim(4y N ¢) (from Lemma 2.5), the theorem follows

immediately. O
3. Derivation of W and W

In this section, we will use our general formulation from Section 2 to derive the form of W expressed
n (1.1). We begin by collecting some straightforward observations that will be used throughout our deriva-
tion.

Lemma 3.1. If X = (i,() is a frame for a Lagrangian subspace { C R2™ then X'X + Y'Y is a symmetric
positive definite matriz, and the matrices X — 1Y and X + 1Y are both invertible.
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Proof. First, if X is the frame for a Lagrangian subspace £ C R?? then the columns of X must be linearly
independent. Positive definiteness (and hence invertibility) of X'X = X*X + Y*Y follows (see, e.g., p. 28
in [14]; also, note that it’s clear that this matrix is symmetric).

Turning to invertibility of X +4iY", we focus on X +14Y’, noting that if this matrix has zero as an eigenvalue
then there will be a vector w = u + iv so that (X +4Y)(u + ¢v) = 0, which means

Xu—Yv=0
(3.1)
Yu+ Xv=0.

If we multiply the first of these equations by Y* and the second by X' and subtract the results (recalling
the Lagrangian property of frames (2.1)) we obtain (X'X + Y'Y )v = 0. But we've already seen that
(XX + YY) is invertible, so we must have v = 0. Likewise, if we multiply the first equation in (3.1) by
X!t and the second by Y*! we find that u = 0, which contradicts our assumption that w = u + iv is an
eigenvector associated with zero. O

To begin our construction of W, we let £; and 5 denote two Lagrangian subspaces of R2", with associated
frames X; = ();11) and Xy = ();22) As discussed in Section 2, we proceed by associating this pair of
Lagrangian subspaces with a matrix U € ;. In particular, U should map ¢3 = J(f3) to ¢;. In terms of
frames, this asserts that

X, = UJXo,

where in order to ensure the unitary normalization U} ,Uy1 + US,Usy = I, we note that for each i = 1,2 we
can choose the frame X; to be ();,’ 11\\/1/11) for any n x n invertible matrix M;. With this choice, we find that U

should solve
(X1M1> _ <U11 —U21> <—Y2M2>. (3.2)
Y, M, Uy Un XoMo
We will verify below that the choices
M; = (XIX; + YY) ~/?

suffice. We can express (3.2) as

() = G ) v (el i) o

Using identities of the form (2.3), we can check that V is orthogonal, allowing us to solve for U and see
that

XM, Y1 M,y —MyY]  MyX}

U= t ¢ = U1U2.
WM, XiM; —Ms X5 —MsY;

We now compute

W =UU" = UnU'ry = UyUs o ULU 1,

where 75 denotes the conjugation operator obtained as in Section 2, with £, replaced by £5. As in Proposi-
tion 2.4, we have
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C(2XMEXL T 2X, M3V
2 WoM2XE  2YaM2Y{—1)°

and computing directly we can show that

., (-1 0
U2T2U2: 0 I .

Using this intermediate step, and computing directly again we arrive at

it = (Vo
2X, M2V X, M2Xt — Yy M2YY}
<Y2M22th - Xo M3 X} —2Xo M3V, ) WA
2X, M2V} YoM2YY— XoM2XE)

Last, we identify the matrix W, which we can compute as W = W, Ws. First, it’s clear that

Wy = XiM2X! — Vi M2Y] + i2X, M2Y] 5.4
3.4
= (X + Y1) M (X! 44Y)),

where we've used the identity X1 M7Y{ = Y1 M7 X! (see the proof of Proposition 2.4). Using the Lagrangian
property (2.1), we see that

-1

(X1 — Y1)~ H(XE + iV~ = ((X{ FiVH (X — m))

) (3.5)
- (Xle FYEY 4 i(YEX — X{Yl)) — M2,
Continuing with our calculation of W, we conclude
Wi = (X1 +iY1)(Xy — Y1) H(XT + V) N (X + YY)
= (X1 +iY1)(X; — V1)~
Proceeding similarly, we find
Wy = —(Xp — iYa)(Xy +iY2) "1,
from which the form of W in (1.1) is immediate.
Using the argument leading to (3.5), we obtain the identities
(X; —iY;) "t = M?(X! +iY))
b e (3.6)

(X +14Y)) ™" = M7 (X} —iYy),
for j = 1,2. This provides us with the alternative form
W = —(X1 + V1) MP (X} +iY]) (X3 = i¥a) M3 (X3 —iYy).
Using (3.4) (and the fact that M? is self-adjoint), we compute
WiW; = (X1 +iY1)M
= (X1 +iY1)M

Ll V)

(X] +iY))(Xy — iV MP(X] — YY)
(X{ - int) = Ia

=

verifying that W is unitary. Likewise, W5 is unitary, and so W is unitary.
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Remark 3.2. We can now extend Arnol’d’s Det? map to the current setting (see, for example, Section 1.3
in [1]). We define a map Det? : A(n) x A(n) — S* as follows: given any Lagrangian pair 1, ¢, € A(n) and
respectively any frames X; = ()1511)’ Xy = (f,;), we set

Det?(61, () 1= det W = —det { (X1 + Vi) ME(X] +i¥]) ) - ((Xz — i¥2) ME(XS - i¥3)) }

L det?(Xy 4 iYh)  det?(Xy — i) (3.7)

T det(XIXy 4+ Y{Y))  det(XEX, + ViV

We have already seen that W does not depend on the choice of frames, and so the map Det? is well-defined.

For some calculations, it’s productive to observe that we can express our matrix W in the coordinate-free
form

W =—Q2P1 - I)(2P; — I), (3.8)
sometimes referred to as the Souriau map. Here, P; and P are respectively orthogonal projections onto 1

and £», and given particular frames X; = (§') we can express these as
k3

X;
Pi = Xi(X{X,) "X} = (Y ) ME (X YY) = (

(3

X;M2Xt X, M2Y}
VMPX! YMPYE)

where M; = (X!X; + YY;)~/2. We see that

OX,M2X!— I,  2X,M2Y}
2P; — I, =

2V, M2X! 2V, M2Y}! -1,
Using the relations
X;M2X!E+ Y, MY} =1,
X;MEX! - Y, MY} =0,
and temporarily setting
Ay = X;MEX! — Y, M2Y}
B; = 2X; MY},

we can check that

Al B1 AQ BQ
2P — I,)(2Py — I,) =
er-mer -t =5 O ) (5 %
_ A1 —Bl —A2 —B2 I
B1 A1 BQ —AQ
In order to clarify the relationship between W and W, we recall that since W € $l; we have the corre-
spondence

Wi W
W:< 11 21

= W =W +iWs.
W W11) 11 21
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We can easily check that W and W have precisely the same eigenvalues, and indeed we have
W(u +iv) = e (u + iv)

if and only if

() e ( ) g () (),
Vv — U UV — U U+ U+

? is an eigenvalue of W with multiplicity k if and only if it is an eigenvalue of W with multiplicity 2k.

Le., €
Notice that this simply generalizes our observations from the proof of Theorem 1.3.

Remark 3.3. We are now in a position to observe that our composition relation from Remark 1.2 corresponds

with Corollary 2.45 in [10]. In particular, if we let Pp denote projection onto the Dirichlet Lagrangian

subspace (i.e., the Lagrangian subspace with frame (?)), and we set

Wip =—2P1 —I)(2Pp — 1)
Wpa = =(2Pp = I)(2P2 — 1),
then Corollary 2.45 in [10] asserts
W = -WipWpa,
which corresponds with the composition (1.3). (Here, W is from (3.8).)

3.1. Relation to Furutani’s development

In [10] (Section 3.5), the author takes a different approach to computing the Maslov index for a pair of
evolving Lagrangian subspaces, and we verify here that the two approaches are equivalent in the current
setting. As a starting point, we denote by H, the symplectic Hilbert space obtained by equipping R?"
with the symplectic form w(z,y) = (Jx, y)gen, and likewise we denote by H_,, the symplectic Hilbert space
obtained by equipping R?" with the symplectic form —w(z,y) = (—Jx, y)ge~. Following [10], we denote the
direct sum of these spaces

H=H,BH_,.

X2).

Now let 41,5 C R?™ denote two Lagrangian subspaces with associated frames X; = (i(,ll) and X, = (Y2

We can identify the direct sum £; & £, with a subspace of R*". For 21, z, € R*", we set
J 0
wy(z1,22) = (J21, 22)Ran; I = <0 —J) -
It follows immediately from the assumption that ¢; and ¢y are Lagrangian subspaces in R?" that
7 — ( Xl 02n><n>
02n><n X2
is a frame for a Lagrangian subspace in R*". We denote this Lagrangian subspace £, and note that we can
associate it with ¢ @ #5.
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In [10], the author detects intersections between ¢; and ¢y by identifying intersections between ¢ and the
diagonal in H: i.e., the Lagrangian subspace A C R*" with frame Zx = (g") The orthogonal projection
associated with ¢ can be expressed as

Py 0
=Z(Z'7)Z" =
7DZ ( ) (O PQ),

and likewise the orthogonal projection associated with A can be expressed as

1 IQn IQn
Pa = .
8 2 (IQn 12n>
We can now compute the Souriau map for £ and A as

0 Iy, — 2P
W:—(2P2—14n)(2m—14n):( 2 1).

Is, — 2P> 0

We see that the eigenvalues of W will satisfy

det ( L. A_IZT;)Q IQi \ Ij?) = det ()\21 — (Inn — 2P1) (Ion — 2792)).
We see that the values —\? will be the eigenvalues of the Souriau map (3.8).

According to Lemma 2.5 we have an intersection of ¢; and /5 if and only if —1 is an eigenvalue of W,
and the multiplicity of —1 as an eigenvalue of W is twice the dimension of the intersection. In this case,
we will have eigenvalues A of W satisfying —A\? = —1. We see that WV has two corresponding eigenvalues
A = —1,+1, each with the same multiplicity for W as —1 has for W. Reversing the argument, we conclude
that —1 is an eigenvalue of W if and only if it is an eigenvalue of W, and its multiplicity as an eigenvalue
of these two matrices agrees.

Finally, we will be able to conclude that the spectral flow through —1 is the same for W and W if the
directions associated with crossings agree. Suppose €!("=¢) is an eigenvalue of W for some small € > 0 (i.e.,
an eigenvalue rotated slightly clockwise from —1). If \ is the associated eigenvalue of W then we will have
—X\2 =™ and so A = €™ %) ¢ (27=3) f the eigenvalue of W rotates through —1 then its counterpart
e (™= %) will rotate through —1 in the same direction. Other cases are similar, and we see that indeed the
directions associated with the crossings agree.

4. Monotonicity

For many applications, such as the ones discussed in Section 5, we have monotonicity in the following
sense: as the parameter ¢ € [ varies in a fixed direction, the eigenvalues of W(t) move monotonically
around S'. In this section, we develop a general framework for checking monotonicity in specific cases.

As a starting point, we take the following lemma from [12] (see also Theorem V.6.1 in [2]):

Lemma 4.1 (/12], Lemma 3.11). Let W (t) be a smooth family of unitary n X n matrices on some inter-
val I, satisfying the differential equation LW (t) = iW (t)Q(t), where Q(t) is a continuous, self-adjoint and
negative-definite n X n matrixz. Then the eigenvalues of W(t) move (strictly) monotonically clockwise on the
unit circle as T increases.

In order to employ Lemma 4.1 we need to obtain a convenient form for %. For this, we begin by writing
W (t) = =Wy (t)Wa(t), where
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Wi(t) = (X1 (t) + Y1 () (Xa(t) —iYa(t) ™

Wa(t) = (Xa(t) — iYa(t)) (Xa(t) + i¥a(t)) "

For W, (t) we have
dW;
dt

= (X1(t) +aY{ (1)) (Xa (1) —iYa (1)~
— (X1 (1) + Y2 () (X1 (1) — Y (1) " (X1 () — Y (1) (X (t) — Vi ()"
= (X1(t) +3Y{ (1) (X1 (t) =Y (1)~
= W(X1(t) —iY{ (1) (X1 () —iva(t) ™!
= Wiy (X1 (t) +iY{ () (X1 () —iva(t) ™!
— Wh(X{(t) = iY{ () (X1 () — iva (1)~
(

= WA {7 (X1(0) + Y] () = (X{(8) =] () (X () = v ()~

)
(

where we have liberally taken advantage of the fact that W is unitary. Here,

{ )= XM +iYi(t)") (X ()" — ¥ () ) (X7 () + Y] () — (X1(1) — Y (1))

= (Xa(t)' + V(0 (X () — i (0))(X] (1) + Y] (1)
— (X (1) + )X @) — i (0)],

and

We conclude that

where
20 =2((6 0 -Mm)) (KOVO - nEOXO) (G0 -vo)).

Proceeding similarly for Wy(t) we find

where

() = -2((Xa(0) + 1¥2() 1) (01 (0) - Ve X50) (Xa(0) + 1¥a(e) ).
Combining these observations, we compute

AW AW s dW
da a0 Ul dt
= —iW () (1) Wa(t) — iW (£)Wa (£)Qa(t)
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i(= W (8) Wa (£)) Wa (£)* Qu () Wa (1) + i (=W () Wa (1)) Qa(t)
WO { W) 2 (W2 () + () |-

That is, we have

where

We notice particularly that we can write
Wi = 2( (X1 - i)W ) (X1Y] = Vix)) (0 - iva) "W).

We see that the nature of Q(t) will be determined by the matrices (X (t)'Y{(t) — Y1 (t)'X}(t)) and
(X2(t)'Y5(t) — Ya(t)' X5(¢)). In order to check that these matrices are symmetric, we differentiate the La-
grangian property

X1()Y1(t) — Yi(#)' X1 (t) =0
to see that
X1()'Y{(t) = Ya(t) Xi(t) = Y{(8) X1 (t) — X7 () Vi (t).
Symmetry of (Xy(¢)'Y{(t) — Yl(t)tX{(t)) is immediate, and we proceed similarly for (Xo(t)'Yy(t) —
Yo (t)! X5 (t)). We conclude that Q(t) is self-adjoint.

Finally, for monotonicity, we need to check that Q(t) is definite. We show how to do this in certain cases
in Section 5. For convenient reference, we summarize these observations into a lemma.

Lemma 4.2. Suppose {1,¢5 : I — A(n) denote paths of Lagrangian subspaces with C' frames X; = (ifj) and
Xo = (f,:) (respectively). If the matrices

~X1JX] = X (1) (t) - Ya(t) X1 (t)
and (noting the sign change)
X5JXy = —(Xa(t) Y3 (t) - Ya(t)' X5(t))

are both mon-negative and at least one is positive definite then the eigenvalues of W(t) rotate in the coun-
terclockwise direction as t increases. Likewise, if both of these matrices are non-positive, and at least one is
negative definite then the eigenvalues of W(t) rotate in the clockwise direction as t increases.

4.1. Monotonicity at crossings

We are often interested in the rotation of eigenvalues of W through —1; i.e., the rotation associated with
an intersection of our Lagrangian subspaces. Let ¢, denote the time of intersection. As discussed in [12], if
we let P denote projection onto ker(W + I), then the rotation of eigenvalues through —1 is determined by
the eigenvalues of the matrix PQ(t,)P. Notice that if & € ker(W + I) we will have
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—(X1(t) + Y1 (8) (Xa(t) — Y1 (6)) 7 (X2 () — i¥a(t)) (Xa(te) + Y2 (t))7'0 = —0,
and correspondingly
(X1 (t) = Y1 (8) T Wa(ta)o = (Xa(te) + @Y1 ()10
Recalling relations (3.6), we find that
(X1(8) + iY1(t)) 710 = My (£)2(X1(t)" — Vi ()1

We see that if Q(t,) acts on ker(W + I) we can replace it with

O (t) i= 2( My (12 (Xa (1) = Yi(t)) (X ()Y (1) = V()X (1))
x M (80 (X ()" — Ya(t.)")

=2 M ()2 (Xa(t)! — Va(ta))) (Xa(ta) V(1) — VE() X3 (1))
x Ma(t)*(Xa(t.)! — Ya(t.)").

If we express © = vy + ivo, We can write

(X1 (ts) — iY1(te) " Wa(t)d = My ()% (X1 (t)! — iY1(t)Y) (01 + vg)
= M, (t*)Z{Xl(t*)tvl Y3 () s + (X0 () s — Y (t*)tvl)}

— M, (t*)2{X1(t*)tv1 + Yl(t*)tvg}.

Here, we have observed that it follows from the Lagrangian property that Xj(t.)'va — Yi(t.)'vs = 0.
Likewise,

My(t.)* (Xa(t)" = Ya(1)")(B) = Ma(t.*{ Xa(t) vy + Ya(t.) s }.

If we now write

Qp(t.) = QP (t.) + QP (¢.),

then the quadratic form associated with Qg)(t*) will take the form

(90 (5.7) = 2((X0(E) ¥ (1) = V()X (DM (1) {Ka(0) 01 + V(1) e

Cn

My P{Xa (k) o+ Vi) 0 })

and likewise the quadratic form associated with Qg )(t*) will take the form
(9 )5.5) = 2((Ka(t)¥3(8) = Y3 (1) X5 (0)) Ma(t)*{ Xalt) vr + Ya(t) 2 .
(4.2)
MQ(t*)Q{XQ(t*)tvl n Yg(t*)tvg}>cn
We will use (4.1) and (4.2) in our next section in which we relate our approach to the development of [18§],
based on crossing forms.
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4.2. Relation to crossing forms
In this section, we discuss the relation between our development and the crossing forms of [18]. As a

starting point, let ¢1(¢) denote a path of Lagrangian subspaces, and let ¢5 denote a fixed target Lagrangian
subspace. Let the respective frames be

Xy(t)

Il
VS
=
==
N

o

Il
VRS
s
N————

and let t, denote the time of a crossing; i.e.,

Oy (te) Ny # {0},
The corresponding matrix W (t) will be
W(t) = —(X1(t) + Y1 () (X1(t) — i1 (t) (KXo — iYVa)(Xy +iYa) L.

Our goal is to compare the information obtained by computing W’ (t.) with the information we get from
the crossing form at t,.
Following [18], we construct the crossing form at ¢, as a map

F(fl,gz;t*) : gl(t*) n 162 — R
defined as follows: given v € ¢1(t,) N £y, we find u € R™ so that v = X (¢, )u, and compute

L (£, o5 t.) (v) = (Xa(te)u, Y (B )w)rn — (Xa(t)u, Y (8 )u)gn

= (X2 (L)Y (t2) = Vi) X (), ).

Since v € l1(tx) N ¥y C £1(ts) the vector w is uniquely defined and we can compute it in terms of the
Moore—Penrose pseudo-inverse of X1,

u= (XiX) "X = ME(XTv, + Yiv),

where v = (Z;)

Comparing with (4.1), and taking X5 in this setting to be Xz (t,) in the setting of (4.1), we see that

(b, b9:4.) (v) = %(Qg)(t*)ﬂ,ﬁ>m. (4.3)

When computing the Maslov index with crossing forms, the rotation of eigenvalues of W through —1 is
determined by the signature of the crossing form. We see from (4.3) that this information is encoded in the
eigenvalues of Qg )(t*).

Turning now to path pairs, we recall that in [18] the crossing form for a pair of Lagrangian paths ¢;(t)
and #5(t) is defined as

Dby, boti) = D(€r, bo(ts); ti) — Dl a () te).
Here, l5(t,) is viewed as a constant Lagrangian subspace, so that our previous development can be applied

to I'(¢1, €a(tx); tx), and similarly for I'(¢a, €1 (t«); t«), in which case ¢;(t.) is viewed as a constant Lagrangian
subspace. In the previous calculations, we have already checked that
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D(e ot )it )0) = 5 (0 (0)5)

(C n

and we similarly find that

F(£27 4 (t*)§ t*)(“) = % (Q’(Pz) (t*)7~}> IN))C”

Combining these expressions, we see that the crossing form for the Lagrangian pair (¢1(t), ¢2(t)) at a crossing
point ¢, is

1/ L
F(gl,fg;t*) = 5 (Qp(t*)v,’l})cn.
5. Applications

Although full applications will be carried out in separate papers, we indicate two motivating applications
for completeness.

Application 1. In [12], the authors consider Schrodinger equations

—y" +V(r)y =Xy
a1y(0) + a2y’ (0) = (5.1)
Bry(1) + B2y’ (1) =0,
where V € C([0,1]) is a real-valued symmetric matrix,
rank [0 2] =n; rank[B1 B2] =n, (5.2)

and we assume separated, self-adjoint boundary conditions, for which we have

arab — apal = 0;

(5.3)
5155 - 525% =0.

By a choice of scaling we can take, without loss of generality,

t t
1o + agoy = I

BBy + B85 =1.

In order to place this system in the current framework, we set p =y, ¢ =%’, and p = (5), so that it can
be expressed as a first-order system

dp 0 I
P w40 = (pr o) (5.4)
Since rank [ov;  ag] = n, there exists an n-dimensional space of solutions to the left boundary condition
[a1 az2]p(0) =0

(i.e., the kernel of [a; az]). In particular, we see from (5.3) that we can take
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t
«
X000 =( 2.
—at

By virtue of the Lagrangian property, we see that X;(0; A) is the frame for a Lagrangian subspace.

Let X;(x, ) be a path of frames created by starting with X;(0, A) and evolving according to (5.4). In
order to see that X;(z, \) continues to be a frame for a Lagrangian subspace for all € [0, 1], we begin by
setting

Z(z,A\) = X1(z,\)'Y1 (2, \) — Vi (2, \)' X (2, 0),
and noting that Z(0,A) = 0. Also (using prime to denote differentiation with respect to z),
Z' = (X)) + X7Y] = (V) X0 - Y X]

=YV + X7 (V(2) X1 — AX1) — (V(2) X1 — A X1)'X; — Y7

= O’
where we have observed X| = Y7, Y/ = V(2)X; — AX;, and have used our assumption that V' is symmetric.
We see that Z(z, ) is constant in x, and since Z(0,\) = 0 this means Z(x,\) = 0 for all z € [0,1]. We
conclude from Lemma 2.1 that Xj(z, A) is the frame for a Lagrangian subspace for all z € [0,1]. As usual,

we denote the Lagrangian subspace associated with X; by #;.
In this case, the second (“target”) Lagrangian subspace is the one associated with the boundary conditions

X\ (B
X2 = (n) - (—Ef)’

which is Lagrangian due to our boundary condition and the Lagrangian property. We denote the Lagrangian
subspace associated with X5 by £5. We find that

at x = 1. lLe.,

W(z,A) = =(Xa(2,A) + Y12, ) (X (2, A) = i¥a (2, )7 (83 + B (B; — i6])
For comparison with [12], we observe that
(85 +iB1) (B3 — iB1) ™" = P5Pa — B1B1 + 2i(B36), (5.5)

and this right-hand side, along with the negative sign, is the form that appears in [12] (see p. 4517). In
order to verify (5.5), we directly compute

(B2 + 1) (B — iB1) = Ba5 + P15 +i(B1Bs — B = 1,
showing that
(B — 1) " = (B2 +if1).
But then
(B +14B1)(B5 — iB1) ™" = (B5 +iB1)(B2 + i)
= B50> — BiS1 + (51 + BiBa)
= B> — B} 1 + 2i(B5P1).

(These are the same considerations that led to (3.6).)
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Turning to the important property of monotonicity, we see that we can consider monotonicity as x
varies or as \ varies (or, in principle, we could consider any other path in the z—\ plane). We find that
while monotonicity doesn’t generally hold as x varies (except in special cases, such as Dirichlet boundary
conditions), it does hold generally as A varies. In order to see this, we observe that in light of Section 4 we

can write
W _ e,
where
0 =2((x, - in)_ll/T/g)* (Xtoavi = Vionx, ) (% — iva) 110,
and

Wa = (85 +ip1) (B — iB1) ™"
We see that monotonicity is determined by the matrix
A(l‘, >\) = Xl (LE, A)ta)\yl (1’, )‘) - Yl (377 A)ta)\Xl (‘T7 >‘)7

where our introduction of the notation A(x, \) is simply for the convenience of the next calculation. Differ-
entiating with respect to x, we find
A = (X{)t&\Yl + X{@,\Y{ — (Yl’)t8AX1 — Yf@,\X{
= }/f(?)\}/l + X{&A(V(JJ)Xl — )\Xl) — (V(l‘)Xl — )\Xl)ta)\Xl — Yf@AYl
= -XIXx.

Integrating on [0, z], we find
Al ) = X2 (0.0 BYA(0.3) = V(0.0 X000 — [ X1 )'Xa 0 Ny
0
We observe that since X1(0,\) = o and Y1(0,\) = —a}, we have 9, X1(0,\) = 0 and 9,Y7(0,\) = 0, and
so

xT

Al A) = — / X1y A)' X1 (9, V),

which is negative definite. We conclude that Qis negative definite, and so for any = € [0, 1], as A increases
the eigenvalues of W rotate monotonically in the clockwise direction.

In order to summarize the result that these observations lead to, we will find it productive to fix sg > 0
(taken sufficiently small during the analysis) and A, > 0 (taken sufficiently large during the analysis), and
to consider the rectangular path

I=T,UT,UT3UTYy,

where the paths {T;}?_, are depicted in Fig. 1 (taken from [12]).
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Fig. 1. Schematic of the path ' =T'; UT, U T3 UTy,.

Due to path additivity,
Mas({y,£€2;T) = Mas(ly,02; 1) + Mas(€y, £2; ) + Mas(£y, €5; T'3) + Mas(fy, £5;Ty),
and by homotopy invariance the Maslov index around any closed path will be 0, so that
Mas(4;,¢2;T") = 0.

In order to deal efficiently with our self-adjoint boundary conditions, we adapt an elegant theorem from [3]
(see also an earlier version in [15]).

Theorem 5.1 (Adapted from [3]). Let aqn and ag be as described in (5.2)-(5.3). Then there exist three
orthogonal (and mutually orthogonal) projection matrices Pp (the Dirichlet projection), Pn (the Neumann
projection), and Pr = I — Pp — Py (the Robin projection), and an invertible self-adjoint operator A acting
on the space PRR™ such that the boundary condition

a1y(0) + a2y’ (0) = 0

can be expressed as

Ppy(0)
PNy’ (0)
Pry'(0) = APry(0).

0
0

Moreover, Pp can be constructed as the projection onto the kernel of as and Py can be constructed as the
projection onto the kernel of ay. Construction of the operator A is discussed in more detail in [3], and also
in [12]. Precisely the same statement holds for 51 and By for the boundary condition at x = 1.

We also take the following from [12].

Definition 5.2. Let (Pp,, Pn,, Pr,,Ao) denote the projection quadruplet associated with our boundary
conditions at x = 0, and let (Pp,, Pn,, Pr,,A1) denote the projection quadruplet associated with our
boundary conditions at = 1. We denote by B the self-adjoint operator obtained by restricting (Pg, Ao Pr, —
Pg, A1 Pg,) to the space (ker Pp,) N (ker Pp,).

The main result of [12] is the following theorem.
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Theorem 5.3. For system (5.1), let V € C([0,1]) be a symmetric matriz in R™*™, and let a1, as, 1, and Po
be as in (5.2)—(5.3). In addition, let Q@ denote projection onto the kernel of B, and make the non-degeneracy
assumption 0 ¢ o(Q(V (0) — (Pr,AoPr,)*)Q). Then we have

Mor(H) = — Mas(¢, £1;T'5) + Mor(B) + Mor(Q(V (0) — (Pr,AoPr,)?)Q).

In order to clarify the nature of the terms Mor(B) + Mor(Q(V (0) — (Pr,AoPr,)?)Q), we show here how
they easily arise from a naive perturbation argument; for a rigorous treatment, the reader is referred to [12].
First, we observe that a crossing at a point (s, \) corresponds with a solution to the system

—y" +V(z)y
a1y(0) + azy’(0) = (5.6)
Bry(s) + B2y’ (s)

Ay

Setting £ = z/s and u(§) = y(x), we obtain the system
H(s)u:= —u" + s*V(s&)y = s*\u
1
aru(0) + Ea2U/<O) =0 (5.7)
1
Bru(l) + ;Bgu’(l) =0.

Employing a straightforward energy estimate similar to the proof of Lemma 3.12 in [12], we find that there
exists a constant ¢ so that any eigenvalue of (5.6) satisfies

C
A(s) > - IVl o< 0,1)-

This means that by taking A\, sufficiently large we can ensure that there are no crossings along the left shelf.
In order to understand crossings along the bottom shelf we set A = 52\(s) and take the naive expansions
;\(3) = :\0+/~\18+5\282+"'

(5.8)
D& 8) = do(&) + ¢1(E)s + 2()s” + -+ -,

where ¢(&; s) is an eigenfunction corresponding with eigenvalue A(s). We emphasize that the spectral curves
we are looking for will have the corresponding form

oo A
A@:l+i+&+ (5.9)

Using Theorem 5.1, we can express the boundary conditions for (5.7) as

Pp,u(0) = Pp,u(1) = 0;
PNOU (0) PNlu’(l) = 0;

Pryu'(0) = sAgPryu(0); Pr,u'(1) = sA1 Pr,u(1).

0;
0;

Upon substitution of (5.8) into (5.7) with projection boundary conditions, we find that the zeroth order
equation is —¢) = Ao with boundary conditions
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Pp,¢0(0) = 0; Pp, ¢o(1) = 0;
Py #p(0) = 0; P, ¢p(1) = 0;
Pr,¢5(0) = 0; Pr,¢p(1) = 0.

Taking an L2(0,1) inner product of this equation with ¢y we obtain

5\0||f/50‘|%2(0,1) = gv¢0>
= [16611720,1) — (6(1), Po(1))rn + (65(0), 0(0))rn-

Observing that

(¢0(1), do(1))rm = (¢6(1), Pp,do(1) + Prny do(1) + Pr, do(1))rn

(5.10)
= (Pn, ¢0(1) + Pr,¢0(1), do(1))rn =0,

and noting that similarly (¢{(0), $o(0))gr» = 0, we see that

:\0||¢0||2L2(0,1) = ||¢6||2L2(0,1)-

Clearly, we must have Xo > 0, and if Ag > 0 the associated spectral curve will lie in the right quarter-plane
and will not cross into the Maslov Box. On the other hand, if Ay = 0 then 19611201y = 0 and ¢ will be
a constant function. In this case, the only requirement on the constant vector ¢q is (from the projection
boundary conditions)

¢o € (ker Pp,) N (ker Pp,).
Let P denote the orthogonal projection onto the space (ker Pp,) N (ker Pp,) and set
B = P(Pg,AoPr, — Pr,A1Pg,)P

(i.e., B is the matrix defined in (5.2)). Since B is symmetric and maps (ker Pp,) N (ker Pp,) to itself, we can
create an orthonormal basis for (ker Pp,) N (ker Pp,) from the eigenvectors of B. Moreover, let @) denote
the orthogonal projection onto ker B (as in the statement of Theorem 5.3) and create an orthonormal basis
for ker B from the eigenvectors of Q(V(0) — (Pr,AoPr,)?)Q.

Now, we are ready for the order 1 equation, assuming already that Xo = 0. For any ¢ selected from
our chosen basis for (ker Pp,) N (ker Pp,), we obtain the equation —¢f = A1y, with projection boundary
conditions

Pp,¢1(0) = 0; Pp,¢1(1) = 0;
P, ¢ (0) = 0; Py, ¢ (1) = 0; (5.11)
Pr,¢1(0) = Ao Pr,¢o; Pr, ¢ (1) = Ay PR, ¢o. (5.12)

Upon taking an L2(0,1) inner product with ¢g, we find

Ml olzn = —(@, ¢o)

= ((PR(JAOPRO — PR1A1PR1)¢’07¢’0>R" = <B¢0’¢O)Rn’
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using a calculation similar to (5.10). Since ¢q is an eigenvector for B, A\; will be an eigenvalue of B. If

A1 > 0 this eigenvalue will be in the right half-plane for s small and so won’t cross into the Maslov Box.
On the other hand, if A\; < 0 we will obtain a spectral curve with the asymptotic form A(s) ~ 2%, and (for

Aoo chosen sufficiently large) this will enter the Maslov Box through the bottom shelf. These crossings are
precisely counted by the term Mor(B) in Theorem 5.3.

Finally, if \; = 0 we need to proceed with the next order of our perturbation argument. For this step, we
note that we have \yg = 0 and A\; = 0, and that we now restrict to ¢y € ker B. Our second order perturbation
equation is —¢4 + V(0)po = A2y subject to the conditions

Pp,$2(0) = 0; Pp,¢2(1) = 0;
P, $5(0) = 0; P, ¢5(1) = 0;

Pry¢5(0) = AgPr,¢1(0);  Pgr,¢5(1) = A1 Pr, ¢1(1).

We take an L?(0,1) inner product of this equation with ¢y and compute

Aol ol — (V(0)o, do)re = —(95, 60) = —(¢5(1), do) + (65(0), bo)e

= (PryAoPRry#1(0) — Pr,A1Pr,¢1(1), do)rn.
In order to understand this last inner product, we note that for Ay = 0 we have ¢! = 0 with boundary
conditions (5.11). We can write ¢ (z) = ax+b for constant vectors a,b € R™, and the conditions Pg,}(0) =

AoPpr,do and Pr, ¢ (1) = A1 Pr, ¢o imply Pr,a = PryAoPr,®o and likewise Pr,a = Pg, A1 Pg, ¢o. Noting
also that ¢1(1) — ¢1(0) = a, we compute

(ProAoPr,$1(0) — Pry A1 PR, ¢1(1), ¢o)rr = (¢1(0), ProAoProdo)rr — (61(1), Pry A1 PR, do)rn
= (¢1(0) — ¢1(1), ProAoPro¢o)rn = —(a, PryAoPr,¢0)r~
= —(PRroa, Pro Ao Pr,¢0)rr = —(ProAoPRr, 0, Pro Mo PRy %0)r
= —((ProMoPr,)? 0, P0)Rn-

We see that

Aa|o

2= ((V(0) = (PrAoPr,)*)b0, 00 )

n

Recalling that we have selected the vectors ¢y to be orthonormal eigenvectors for the matrix Q(V(0) —
(Pr,AoPr,)?)Q, we see that we have a spectral curve entering the Maslov Box if and only if A is a negative
eigenvalue of this matrix.

In principle, if Ay = 0 we can proceed to the next step in the perturbation argument, but this is the case
that we have eliminated by our non-degeneracy assumption.

Application 2. In [11], the authors consider Schrédinger equations on R,

Hy = —y" +V(z)y = Ny,

(5.13)
dom(H) = H*(R),

where y € R™ and V € C(R) is a symmetric matrix satisfying the following asymptotic conditions:
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(A1) The limits lim,—, 100 V(2) = V4 exist, and for all M € R,

[e¢) M
/ (1+ |2))|V(z) — Vi|de < oo /(1 + 2|V (z) = V_|dz < co.

-M —o0

(A2) The eigenvalues of Vi are all positive.

As verified in [11], if A < 0 then (5.13) will have n linearly independent solutions that decay as x — —oo
and n linearly independent solutions that decay as * — +o00. We express these respectively as

Gy (@A) = etnta VT (s 4 £ (23 0))

+ x
¢ (73 ) = el » (rasa—j + & (230),

with also

Oy s (@i ) = elnei V(s e+ €5 (a50))

0o (w5 0) = e V(4 EF (3 \),

for j =1,2,...,n, where the nature of the ,ujE i , and 5i(x A), Si(ac A) are developed in [11], but won’t
be necessary for this brief discussion, except for the observation that under assumptions (A1) and (A2)

lim EF(z;0) =0; lim EX(x;0) =0. (5.14)

z—+oo J z—+oo 7

If we create a frame X~ (x;\) = (i:éii;) by taking {¢,,;}7_; as the columns of X~ and {¢n+] [
as the respective columns of Y~ then it is straightforward to verify that X~ is a frame for a Lagranglan

subspace, which we will denote £~ (see [11]). Likewise, we can create a frame X (z;)\) = ()}f + (;” i‘;) by
taking {(;S;F} _, as the columns of X+ and {¢+ _, as the respective columns of Y*. Then X7 is a frame
for a Lagrangian subspace, which we will denote £+

In either case, we can view the exponential multipliers e“ii * as expansion coefficients, and if we drop
these off we retain frames for the same spaces. That is, we can create an alternative frame for ¢~ by
taking the expressions r;” + £ (2;A) as the columns of X~ and the expressions p,,, ;r; + (‘fj_ (x;\) as the
corresponding columns for Y ~. Using (5.14) we see that in the limit as x tends to —oo we obtain the frame
R (\)= (SI_?‘(_/\)), where

ST = (o1t HpgaTz oo HoaTh ) -
As discussed in [11], R~ is the frame for a Lagrangian subspace, which we will denote ¢_ . Proceeding
similarly with ¢, we obtain the asymptotic Lagrangian subspace ¢Z, with frame RT()\) = ( Sf(+>\))7 where
N | . (5.15)
ST = (piry m3rg_y oo mari)-
We can now construct W(z, \) in this case as

W(z;\) = —(X (@3 0) + 1Y (5 D)X (25 0) — iV~ (23 0) H(RT —iST\)(RT +4ST(\)7L (5.16)



820 P. Howard et al. / J. Math. Anal. Appl. 451 (2017) 794-821

We will be interested in a closed path in the z—\ plane, determined by a sufficiently large value \.,. First,
if we fix A = 0 and let  run from —oo to 400, we denote the resulting path 'y (the right shelf). Next, we
let Ty denote a path in which A decreases from 0 to —A\s. (We can view this as a path corresponding with
the limit z — 400, but the limiting behavior will be captured by the nature of the Lagrangian subspaces;
we refer to this path as the top shelf.) Continuing counterclockwise along our path, we denote by I's the
path obtained by fixing A = —A, and letting « run from 400 to —oo (the left shelf). Finally, we close
the path in an asymptotic sense by taking a final path, T'_, with A running from —\,, to 0 (viewed as the
asymptotic limit as @ — 400; we refer to this as the bottom shelf).
The principal result of [11] is as follows.

Theorem 5.4. Let V € C(R) be a symmetric real-valued matriz, and suppose (A1) and (A2) hold. Then
Mor(H) = — Mas(¢~,¢2;Ty).
Remark 5.5. As discussed in Section 5 of [11], Theorem 5.4 can be extended to the case
Hyy = —y" + sy +V(x)y = Ay, (5.17)

for any s € R. This observation—for which the authors are indebted to [5]—allows the application of these
methods in the study of spectral stability for traveling wave solutions in Allen—-Cahn equations.
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Appendix A

In this brief appendix, we verify (P2) (homotopy invariance) for our definition of the Maslov index.
We assume L(s,t) = (¢1(s,1),%2(s,t)) is continuous on a cartesian product of closed, bounded intervals
I'xJ=][0,1] x [a,b], and that L(s,a) = L, for all s € I and likewise L(s,b) = Ly, for all s € I, for some fixed
La, Ly € A(n) x A(n). We denote by W (s, t) the matrix (1.1) associated with £(s,t). It’s straightforward to
see from our metric (1.4) that continuity of £ implies continuity of the associated frame X(s, ¢), which in
turn (and along with non-degeneracy) implies continuity of W(s,t). We know from Theorem I1.5.1 in [13]
that the eigenvalues of I/T/’(s7 t) must vary continuously with s and ¢. Moreover, we see from Theorem I1.5.2
in the same reference that these eigenvalues can be tracked as n continuous paths {u*(s,t)}?_,, which in
our case will be restricted to S*.

For notational convenience, let’s fix s1, s € I suitably close together (in a manner that we make precise
below) and set W, (t) :== W(s1,t) and Wa(t) := W(sa,t).

Claim A.1. Suppose pu(t) and v(t) are any two continuous eigenvalue paths of Wi (t) and Wo(t) respectively,
with p(a) = v(a) and pw(b) = v(b). Then there exists € > 0 sufficiently small so that if

max (1) — v(t)| < e

then the spectral flow of u(t) is the same as the spectral flow of v(t).
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Proof. First, suppose neither p(a) nor u(b) is —1 (and so the same is true for v(a) and v(b)). Take € small
enough so that B.(u(a)) (the ball in C centered at p(a) with radius €) does not contain —1, and similarly
for u(b). According to our hypothesis, we will have u(t),v(t) € Be(u(t)) for all ¢t € J, and so the spectral
flows for u(t) and v(t) will both match the flow for Be(u(t)).

Suppose next that p(a) = —1, but u(b) does not. In this case, there must be a first time, t,, at which
B (11(t«)) does not contain —1. By assumption, we must have v(t.) € Be(pu(t«)), and this allows us to apply
an argument on [t,, b] similar to our argument on [a, b] in the previous paragraph. A similar argument holds
if u(b) = —1, but p(a) does not.

Last, suppose p(a) = —1 and p(b) = —1. If u(t) and v(t) are both —1 for all ¢t € J then we’re finished. If
not, i.e., if there exists a time ¢, at which one or both p(t,) and v(t.) is not —1, then we can apply one of
the first two cases to complete the proof. O

Since I x J is closed and bounded, the matrices W(s, t) are uniformly continuous on I x J. This means
that given any € > 0 we can find § > 0 sufficiently small so that

51— 82| <& = max |Wi(t) — Wa(t)|| < &

Fix any k € {1,2,...,n}, and set uf(t) = p¥(s1,t) and p5(t) = p¥(s2,t). By eigenvalue continuity, this
means we can take  small enough to ensure that

k k
m t) — t
tea}dﬂl() ps ()] < e

for all k € {1,2,...,n}. But since € is arbitrary, we see from our claim that the flow associated with each of

these eigenvalue pairs must be the same, and so the spectral flow for W, (t) must agree with that of Wa (t).

Finally, then, by starting with s; = 0, and proceeding to sy = g, s3 = 0 etc., we see that the Maslov

index will be the same at each step, and that since the steps have fixed length we eventually arrive at s = 1.
This concludes the proof of property (P2).
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