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Abstract—Auction-based service provisioning and resource
allocation have demonstrated strong potential in Cloud-RAN
wireless network architecture and heterogeneous networks for
effective resource sharing. One major technical challenge is the
integration of interference constraints in auction-based solu-
tions. In this work we transform the interference constraint
requirement into a set of linear constraints on each cluster. We
tackle the generally NP-hard clustering problem by developing
a novel practical suboptimal solution that can meet our design
requirement. Our novel algorithm utilizes the properties of
chordal graphs and applies Lexicographic Breadth First Search
(Lex-BFS) algorithm for cluster splitting. This polynomial time
approximate algorithm searches for maximal cliques in a graph
by generating strong performance in terms of subgraph density
and probability of optimal clustering without suffering from the
high complexity of the optimal solution.

Index Terms—auction design, clustering algorithm, graph the-
ory, chordal graphs, maximal clique, polynomial time algorithm

I. INTRODUCTION

Heterogeneous Networks (HetNets), through coordinated

coverage and resource sharing among macro cells and small

cells of various sizes, have demonstrated strong promises in

expanding network capacity of wireles networks including 4G

and the futuristic 5G. However, one bottleneck lies in the

limited backhaul speed for performing traffic balancing, radio

resource management, and interference mitigation. Hence,

in developing advanced wireless networks, the Cloud Radio

Access Network (C-RAN) architecture is increasingly gaining

traction [1]. In C-RAN, we have a centralized Baseband Unit

(BBU) formed by pooling remote radio head (RRH) units from

their respective base-stations (BS) for muliplexing gain [2].

We shall use RRH and BS interchangeabley since RRH

can be viewed as a simple BS. In HetNets, the coordinated

RRHs (BSs) are connected to the BBU for centralized signal

processing and resource control [3].

Resource management for heterogeneous BSs is key to

achieving the promised gains in practice. Existing works

include a joint sub-channel assignment and power control

scheme in an OFDMA-based network [4], a dynamic user

association framework [5] that silences small-cellgroups to

mitigate inter-cell interference. Network-utility maximization

can also handle user association, power allocation, and data

off-loading [6–9].
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Auction design in wireless networks can achieve joint

downlink UE (use equipment) association and resource al-

location for a centralized BBU. For example, in [10], a near

optimal algorithm was presented. However, these frameworks

must incorporate interference constraints within the auction

design. In general, interference constrained auction design

is a very challenging problem. To avoid strong inter-cell

interference of auction based heterogeneous networks, our

approach is to divide the associated BSs into clusters. BSs

within a cluster are sensitive to interference constraints and

cannot share spectrum resources. In this paper, we utilize

graph theory [11] by convert these interference constraints

into a set of linear constraints on each BS cluster, thereby

facilitating subsequent auction-based UE association and re-

source allocation. Existing algorithms are based on finding

maximal cliques in the graph. We also aim to approximate

exponential time optimal algorithm for finding cliques in a

graph with near-optimal polynomial time algorithm.

Practically, clique enumeration for any optimal algorithm

has worst-case time complexity 𝑂(3𝑁/3) [12], which is too

complex even for moderate sized network. Very few ap-

proximation algorithms are available in the literature without

substantial performance loss. One example in [13] is the

proposal of a ‘’super-cliques” method. However, since the

interference graph in our problem is more restricted, the

algorithm does not apply. The algorithms proposed in [14]

can also be viewed as two polynomial-time approximation

algorithms, yielding the Node-ALL interference constraints

and Node-L interference constraints. As discussed in Section

III, we propose improved polynomial time algorithms to

approximately achieve suboptimal clustering algorithms to

satisfy the interference constraints.

In this work, we propose a suboptimal clusteirng algorithm

Alg.2 before cluster splitting with Alg.3. In our proposed

approach, we utilize the properties of chordal graphs since

most algorithms, though NP-hard for general graphs, can be

solved in polynomial time for chordal graphs. We use lexico-

graphic Breadth First Search (Lex-BFS) algorithm [15] [16]

to determine the maximal clique for a chordal graph, since

Lex-BFS returns maximal clique if the graph is chordal. The

subsequent channel assignment from Alg.1 can henceforce

take into account the interference constraints in auction design.

Our results illustrate that our algorithm performs better than

the existing algorithms in terms of optimal clustering proba-

bility and graph density of induced subgraphs. Furthermore,

our algorithm has polynomial time complexity 𝑂(𝑁3) which

is similar to the complexity of several existing algorithms.
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Our manuscript is organized as follows. Section II presents

the problem formulation of interference constraints and es-

tablishes the equivalence to the linear constraints on station

clusters. Section III describes the fundamentals of exist-

ing polynomial time algorithms and proposes a new low-

complexity suboptimal algorithm for clustering based on

chordal cliques. We demonstrate important properties of our

approximate algorithm in Section IV and test the performance

of our algorithm and its complexity in Section V-A. Section

VI concludes this paper.

II. PROBLEM FORMULATION

We now formulate the BS clustering problem by trans-

forming the important interference constraints in resource

allocation to a set of linear constraints on each BS cluster.

To begin, we list the following notations and symbols that

are needed to capture the heterogeneous resource allocation

problem and the associated BS clustering problem.

TABLE I: Notations for Problem Formulation
𝑀 Number of UEs (User Equipments)
𝑁 Number of BSs
ℬ Set of BSs
ℳ Set of UEs
𝑁𝑏 Number of available channels
𝑁𝑈 Maximal number of channels that can be allocated to

one UE
𝑟𝑚 Rate requirement for UE-𝑚
𝑝𝑚𝑖 Transmission power of BS-𝑖 for UE-𝑚.
𝑣𝑚𝑖 Valuation of the link between BS-𝑖 and UE-𝑚
𝑣𝑖 Valuation of the 𝑖th BS
𝑎𝑚𝑖 Link association indicator between BS-𝑖 and UE-𝑚
𝑏𝑚𝑖 The bid for the link between BS-𝑖 and UE-𝑚
𝑛𝑚 Number of channel required for UE-𝑚.
𝒞𝑙 𝑙th BS cluster
ℒ Set of all clusters
𝐿 Number of clusters obtained by executing suboptimal

clustering algorithm

A. Interference Constraints and Clustering

First, within a heterogenous network, UE-𝑚 with rate re-

quirement 𝑟𝑚 can be served by BS-𝑖 if there is link association

(𝑎𝑚𝑖 = 1) using power 𝑃𝑚𝑖. By bidding price 𝑏𝑚𝑖, BS-𝑖 serves

UE-𝑚 and receives a value 𝑣𝑚𝑖. The important constraints

in such spectrum auction is to enforce the (low) interference

constraints. Based on the submitted bids, the BBU has the

following objective:

max
𝑎𝑎𝑎∈𝒜

∑

𝑚∈ℳ

∑

𝑖∈ℬ

𝑎𝑚𝑖𝑏𝑚𝑖 (1a)

subject to interference constraints (1b)
∑

𝑖,𝑗∈ℬ,𝑖 ∕=𝑗

∑

𝑚∈ℳ

(𝑎𝑚𝑖 + 𝑎𝑚𝑗)𝑛𝑚 ≤ 𝑁𝑏,

∀𝑖, 𝑗 with Distance(𝐵𝑖, 𝐵𝑗) ≤ 𝑟𝑖 + 𝑟𝑗 (1c)

and
∑

𝑖∈ℬ

𝑎𝑚𝑖 ≤ 1 𝑎𝑚𝑖 ∈ {0, 1}. (1d)

The interference constraints state that, when the distance be-

tween 𝐵𝑖 and 𝐵𝑗 is smaller than the sum of their interference

radii 𝜏𝑖 and 𝜏𝑗 , then the two BSs must not share any channels

when serving UE-𝑚.

In this work, we study the problem of finding the set of

clusters such that the interference constraints can be converted

to a series of linear constraints. For better description of our

problem, we apply the following definitions in graph theory

[11].

Definition 1 (Clique). A clique in an undirected graph is a

subset of its vertices such that every two vertices in the subset

are connected pairwise by an edge.

Definition 2 (Maximal Clique). A maximal clique is a clique

that is not fully contained in a larger clique.

The goal of clustering BSs is to identify BS clusters,

denoted as {𝒞𝑙, 𝑙 ∈ ℒ} with ℒ being the set of indices of all

clusters such that BSs within the same cluster can not share

any spectral components, also knwon as resource blocks (or

RBs) in OFDMA. In terms of constraints, this is equivalent

to
∑

𝑖∈𝒞𝑙

∑

𝑚∈ℳ

𝑛𝑚𝑎𝑚𝑖 ≤ 𝑁𝑏, ∀𝑙 ∈ ℒ, (2)

where 𝑁𝑏 is the number of channels available at the cloud and

𝑎𝑚𝑖 is some feasible assignment satisfying
∑

𝑖∈ℬ 𝑎𝑚𝑖 ≤ 1 and

𝑎𝑚𝑖 ∈ {0, 1}.

The need for an effective algorithm is illustrated by the

two trivial cases: A single cluster of all BSs versus each

BS forming its own cluster. If there is a single cluster of all

base stations, then no two BSs can share any RB, leading to

excessive requirement of bandwidth that is likely to exceed the

overall availability 𝑁𝑏. If each BS forms a cluster on its own,

then interference among any interference BSs is neglected. As

a result, common RB assigned to interference BSs within close

proximity will lead to strong interference and failed network

links. Thus an optimal clustering strategy is to achieve suffi-

cient number of clusters to utilize 𝑁𝑏 resource blocks without

mutual interference among BSs Dist(𝐵𝑖, 𝐵𝑗) ≤ 𝑟𝑖 + 𝑟𝑗 .

B. Equivalent Maximal Clique Enumeration Problem

Before designing algorithms for clustering, we first provide

the theoretical analysis to link our problem to the famous

maximal clique enumeration problem in graph theory given

by the following proposition.

Proposition 1. Let {𝒞★
𝑙 , 𝑙 ∈ ℒ★} be the set of all maximal

cliques for the interference-conflict graph 𝐺(ℬ, 𝐸). Then the

interference constraint (1c) is equivalent to the following

linear constraints
∑

𝑖∈𝒞★

𝑙

∑

𝑚∈ℳ

𝑛𝑚𝑎𝑚𝑖 ≤ 𝑁𝑏, ∀𝑙 ∈ ℒ★. (3)

Furthermore, given any feasible association decision 𝑎𝑎𝑎 ∈ 𝒜
satisfying (3), there exists a feasible resource allocation strat-

egy for each UE-𝑚.

Proof. To prove (3) as both necessary and sufficient in guar-

anteeing interference-free channel assignment, denote the set



of all feasible assignments 𝑎𝑎𝑎 ∈ 𝒜 specified by constraints

(1c) as 𝒫★ and that by the constraints formed by replacing

(1c) with (3) as 𝒫0. Our equivalence proof must show two

parts: 1) 𝒫★ ⊆ 𝒫0 and 2) 𝒫0 ⊆ 𝒫★.

The first part follows readily from the definition of a clique.

Since two end nodes of an edge cannot share any RBs and all

nodes are connected with other nodes in a clique, all UEs

allocated to BS-𝑖 with 𝑖 ∈ 𝒞★
𝑙 need to be assigned non-

overlapping RBs. Therefore, any point in 𝒫★ needs to at least

satisfy (3), which implies that 𝒫★ ⊆ 𝒫0.

For the second part, we can show that for ∀𝑎𝑎𝑎 ∈ 𝒫0, we can

construct a feasible resource allocation for all admitted UEs by

sequentially assigning each admitted UE-𝑚 𝑛𝑚 channels from

∣ℒ∣ containers, each storing available resources for one cluster

of BSs. For each 𝑎𝑚𝑖 = 1, we fetch 𝑛𝑚 resources of the same

indices from all containers 𝑙 with 𝑖 ∈ 𝒞𝑙. The algorithm is

summarized in Alg. 1. Due to (3), any two users allocated to

adjacent BSs should be allocated orthogonal resources and we

can never have starving UE with 𝑎𝑚𝑖 = 1 in 𝒫0.

Note that we only utilized the clique property for each

cluster, the reason is that any non-maximal clique is always

a subset of some maximal clique and the corresponding

constraints would be redundant.

Algorithm 1 Channel Assignment

Initialize a set 𝒩𝑙 = 𝒩𝑏 for each 𝑙 ∈ ℒ.

for each 𝑖 ∈ ℬ do

Find all cluster indices 𝑙 with 𝑖 ∈ 𝒞𝑙, denoted as ℐ𝑖
end for

for each 𝑖 ∈ ℬ do

for each 𝑚 with 𝑎𝑚𝑖 = 0 do

Pick arbitrary 𝑛𝑚 channels from the set ∩𝑙∈ℐ𝑖
𝒩𝑙 for

assignment to UE-𝑚.

Remove the channels assigned to UE-𝑚 from each

cluster 𝑙 ∈ ℐ𝑖.
end for

end for

III. POLYNOMIAL-TIME APPROXIMATIONS

Proposition 1 effectively transforms the interference con-

straint (1c) by (3) based on maximal clique enumeration.

The maximal-clique-enumeration problem, however, is NP-

hard except for some special graphs. In fact, for general

graphs, there may be an exponential number of maximal

cliques and the best worst-time complexity of any optimal

algorithm is shown to be 𝑂(3𝑁/3) [12], which is high even for

a moderate-size network. Moreover, the goal of clustering in

our particular application is to form linear constraints. Finding

all maximal cliques could be an unnecessary over-kill as it

may complicate our subsequent optimization procedure by

including exceedingly large number of constraints. Thus, for

practical reasons of transforming interference constraints for

auction design, we would like to develop practical sub-optimal

algorithms that at least satisfies the following properties:

1) It generates clusters with dense1 induced subgraphs.

2) Any user association satisfying constraints formed by

the sub-optimal clusters {𝒞𝑙, 𝑙 ∈ ℒ} has feasible

interference-free resource allocation schemes.

3) The number of constraints, or equivalently, the number

of clusters, is polynomial in the number of nodes.

A. Several Known Suboptimal Methods

Only a few approximation algorithms available in the

literature can meet all three properties. One method [13]

proposes a polynomial time algorithm to approximate an

exponential number of maximal cliques with a polynomial-

number of ‘super-cliques’, which is possibly the union of

several nearby cliques. The algorithm itself, however, does

not apply to our scenario due to a more restricted interference

graph. The algorithms proposed in [14] can also be viewed

as two possible polynomial-time approximation algorithms,

yielding the Node-ALL interference constraints and Node-L

interference constraints.

∙ Node-ALL constraints are formed by clustering each node

with all its neighbors. Mathematically, this is equivalent

to forming constraints
∑

𝑗∈{Neighbors of BS−𝑖}

∑

𝑚∈ℳ

𝑛𝑚𝑎𝑚𝑗 ≤ 𝑁𝑏, ∀𝑖 ∈ ℬ,

(4)

where {neighbors of BS-𝑖} includes BS-𝑖 itself and all

BSs that are connected with BS-𝑖 through some edge.

∙ Node-L strategy, on the other hand, only clusters each

node with neighbors on the left of the node. Equivalently,

we have
∑

𝑗∈{Left neighbors of BS−𝑖}

∑

𝑚∈ℳ

𝑛𝑚𝑎𝑚𝑗 ≤ 𝑁𝑏, ∀𝑖 ∈ ℬ,

(5)

where {left neighbors of BS-𝑖} contains itself and all

BSs that are geometrically not to the right of BS-𝑖 but

are connected with BS-𝑗 through some edge. Thus, for

both strategies, we will form exactly 𝑁 clusters including

either the neighbors of each BS-𝑖 or all left neighbors of

each BS-𝑖.
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Fig. 1: Examples for clustering illustration.

Because of heterogeneous capabilities among different

nodes, neither algorithm can yield a good approximation of

1For undirected simple graphs, the density is defined as the ratio of the
number of edges over the maximum number of edges for a complete graph.
A dense graph has number of edges close to the maximum number of edges.



the original problem. In HetNet, a BS with a higher transmit

power is called a macro-cell base-station (MBS) and the

one with a lower power is called a femtocell base-station

(FBS). Let us consider two simple networks, each consisting

of one MBS (node-0) and 6 FBSs within the coverage of the

macrocell. As shown in Fig. 1, there is an edge between node 0

and each of the other nodes. In this case, the Node-All strategy

clusters node 0 with all its neighbors and forms a super cluster

as {0, 1, 2, 3, 4, 5, 6} and all other clusters will be dominated

and deleted, which implies that no BS can share any re-

sources in this case. Node-L algorithm can perform better by

clustering nodes with its “left neighbors”. For example, by

removing dominated sets, the clustering results for Fig. 1a and

Fig. 1b are {{0, 1, 4, 5}, {0, 1, 2, 3}, {0, 2, 3, 4}, {0, 2, 3, 6}}
and {{0, 1, 2, 3}, {0, 1, 2, 6}, {0, 1, 3, 4, 6}, {0, 2, 3, 4, 5, 6}},

respectively. Although neither result is optimal, they allow

some limited sharing of resources. The performance of the

Node-𝐿 algorithm, however, may vary for equivalent interfer-

ence graphs. For example, a horizontal flip of Fig. 1b puts

nodes 1-6 to the left of node 0, then the Node-𝐿 algorithm

trivially clusters all nodes.

B. A New Practical and Suboptimal Clustering

Motivated by the illustrated shorcomings of existing meth-

ods, we present a new sub-optimal algorithm to generate a

higher quality polynomial number of super-cliques. To get

started with our algorithm, we introduce another definition.

Definition 3 (Chordal Graph). An undirected chordal graph

is an undirected graph in which all cycles of four or more

vertices have a chord, which is an edge that is not part of the

cycle but connects two vertices of the cycle.

Since many NP-hard problems on general graphs are

polynomial-time solvable for chordal graphs, we will use

this to design our sub-optimal algorithms. Our suboptimal

clustering procedure is designed as follows:

Algorithm 2 Sorting and Cluster Splitting (SACS) Algorithm

Step-1: Sort the nodes according to their degrees 𝑑(⋅) in

the conflict graph. Let 𝑣1, 𝑣2, . . . denote the sorted BSs

with 𝑑(𝑣1) ≥ 𝑑(𝑣2) ≥ ⋅ ⋅ ⋅ ≥ 𝑑(𝑣𝑁 ).
Step-2: Let 𝒞 denote the set of clusters initialized to be

empty. For each node, form the cluster

𝒞𝑖 = {𝑣𝑖} ∪ {𝑣𝑗 ∈ ℬ∣∃edge (𝑣𝑖, 𝑣𝑗), 𝑗 < 𝑖}.

Step-3: Check each cluster in 𝒞 and try to split the cluster

into smaller clusters if the subgraph induced by the

cluster is not a clique, but is a chordal graph. Remove

any dominated clusters if there is any split.

Intuitively, our SACS algorithm first forms a series of

clusters based on an ordering of nodes in Step-1. The last step

tries to split sub-optimal super-cliques into maximal cliques.

Let us revisit the clustering using our algorithm for

the two examples in Fig. 1. For Fig.1a, one possible

ordering of the nodes by Step-1 is {0, 1, 2, 3, 4, 5, 6}.

The initial clustering from Step-2 is then given by

{{0, 1, 2}, {0, 2, 3}, {0, 1, 3, 4}, {0, 1, 4, 5}, {0, 2, 3, 6}}.

Step-3 finds that all clusters are cliques except for

{0, 1, 3, 4}. Since the induced subgraph is a chordal graph, it

can be split into two maximal cliques {0, 1, 4} and {0, 3, 4}.

In fact, for this case, we have already found the optimal

clustering. This follows from the properties of the cluster-

ing algorithm introduced later, and can also be verified by

exhaustively listing all subgraphs to find all maximal cliques

associated with it.

Alg. 2 does not always guarantee optimality. For ex-

ample, in Fig. 1b, after Step-2, we will get clusters

{{0, 1, 2, 3}, {0, 1, 3, 4}, {0, 2, 3, 4, 5}, {0, 1, 2, 4, 5, 6}}, in

which both {0, 2, 3, 4, 5} and {0, 1, 2, 4, 5, 6} are not cliques.

However, in this example, only the first cluster is a chordal

graph and is splittable in Step-3 into {0, 2, 3}, {0, 3, 4},

{0, 5}, each dominated by other clusters. Since cluster

{0, 1, 2, 4, 5, 6} is flagged to be non-splittable in Step-3, we

will have a sub-optimal solution. In fact, this topology is a spe-

cial worst case scenario where we have an exponential number

of cliques in the graph [13]. Therefore, any polynomial-time

algorithm is expected to be sub-optimal in this case.

The algorithm is polynomial time in Step-1 and Step-2.

Step-3 is a best effort approach to only split a non-clique

cluster when the induced subgraph is a chordal graph. Since

the detection and the split of a chordal graph both take

polynomial time, Alg. 2 is a polynomial-time algorithm.

The procedure to perform a cluster split is given in Alg. 3.

Due to limited space, we omit the pseudo-code for lexi-

Algorithm 3 Cluster Split

for all 𝒞𝑖 ∈ 𝒞 do

if 𝒞𝑖 is not a maximal clique then

Perform Lex-BFS on the induced subgraph of 𝒞𝑖.
(Lex-BFS can be used to check whether a graph

is a chordal graph and to list all maximal cliques

from a chordal graph [16]). If the subgraph is a

chordal graph, by letting 𝐼 be the number of maximal

cliques, the set of maximal cliques can be denoted as

{𝐶 ′
𝑖1, 𝐶

′
𝑖2, . . . , 𝐶

′
𝑖𝐼}.

Replace 𝒞𝑖 by {𝐶 ′
𝑖1, 𝐶

′
𝑖2, . . . , 𝐶

′
𝑖𝐼} in 𝒞 and remove

any redundant set if the split is successful.

end if

end for

cographic Breadth First Search (Lex-BFS) and the detailed

procedure of how the maximal cliques can be generated.

Please refer to [15] [16] and book [17] for the pseudo-code or

related discussions. By running the Lex-BFS, we can either

decide the graph is non-chordal along the process or return all

its maximal cliques after it is finished. This is because Lex-

BFS returns a perfect elimination order for a chordal graph.

To list all maximal cliques of a chordal graph, on can form a

clique for each node 𝑣 together with the neighbors of 𝑣 that

are later than 𝑣 in the perfect elimination ordering, and test

whether each of the resulting cliques is maximal.



IV. PROPERTIES OF THE SACS ALGORITHM

In this section, we will establish that the proposed SACS

clustering algorithm generates a set of linear constraints that

are stricter with the feasible region no larger than the original

feasible region defined in (3). The property guarantees re-

source allocation feasibility in terms of interference avoidance

as shown in the following proposition.

Proposition 2. Let 𝒞 be the clusters generated by Alg. 2. Then

any maximal clique 𝒞★
𝑙 ∈ 𝒞★ of the same interference conflict

graph is a subset of some cluster 𝒞𝑙 ∈ 𝒞.

Proof. To show this, it suffices to show that any maximal

clique is a subset of some cluster in the cluster set obtained

in Step-2. The reason is that any additional clusters obtained

in Step-3 come from splitting existing clusters from Step-2 by

successfully enumerating all possible maximal cliques in the

induced chordal subgraph. With a small abuse of notation, we

also denote the cluster set as 𝒞 at the end of Step-2.

Step-1 returns an ordering of nodes and let 𝑣𝑚𝑎𝑥 be the

node of the highest label in 𝒞★
𝑙 . Then we know that when

node 𝑣𝑚𝑎𝑥 enters, all nodes in 𝒞★
𝑙 will be included to form a

cluster by the definition of a clique. Therefore, we know there

has to exist some 𝒞𝑙 with 𝒞★
𝑙 ⊆ 𝒞𝑙.

Proposition 2 implies that the constraints
∑

𝑖∈𝒞𝑙

∑

𝑚∈ℳ

𝑛𝑚𝑎𝑚𝑖 ≤ 𝑁𝑏, ∀𝑙 ∈ ℒ (6)

generated from the sub-optimal cluster set 𝒞 are more restric-

tive than the optimal ones, including no infeasible association.

V. NUMERICAL RESULTS

A. Complexity Analysis

Step-1 has a complexity of 𝑂(∣𝐸∣ +𝑁 log(𝑁)) to get the

degrees and sorting. Step-2 is 𝑂(∣𝐸∣) in complexity and the

potential split of clusters takes at most 𝑂(∣𝐸∣+𝑁). Removing

dominated sets takes at most 𝑂(𝑁3). Note that, even when

dominated sets are not deleted from the cluster set, the feasible

region stays the same. However, it is still preferable to remove

redundant constraints for later optimization design.

Note that the complexity of both Node-All and Node-L

algorithms is also dominated by the complexity of removing

unnecessary clusters of complexity 𝑂(𝑁3). Without this extra

step, our proposed algorithm is only slightly more complex

due to the sorting procedure, but the performance improve-

ment is quite impressive in terms of both the induced graph

densities2 of clusters and optimality probabilities.

Since in Node-ALL or Node-L strategies, a node with a

higher degree3 is more likely to cluster with neighbors that

belong to more than one maximal cliques, the intuition for the

sorting in the first step is to reduce the possibility of making

2For undirected simple graphs, the density is defined as the ratio of the
number of edges over the maximum number of edges for a complete graph.
The denser the graph is, the closer it is to a maximal clique.

3In an undirected graph, the degree of a node is defined as the number of
neighbors of the node.

the cluster much bigger than a maximal clique in Step-2.

The split in Step-3 is a best-effort strategy. The probability

of getting chordal subgraphs is high when the subgraph size

is small; therefore, the split is most effective if Step-1 and

Step-2 can produce small clusters.

B. Performance and Comparison

−500 0 500
−500

0

500

MBS

FBS 1

FBS 2

FBS 3

FBS 4

FBS 5

FBS 6

FBS 7FBS 8

FBS 9FBS 10

Unit: m

U
n

it
: 
m

Fig. 2: Interference conflict graph of an example network with

10 FBS and 1 MBS (edges between MBS and any other FBS

are omitted for clearer view.)

An example of interference conflict graph (omitting the

edges from macro-BS to each femto-BS) can be seen in

Fig.2. The value of 𝑑 used in this graph is 200m. Using

Alg.2, we can successfully find the optimal clustering given

by {{0, 1, 2, 4, 5, 6}, {0, 1, 7, 9}, {0, 7, 8, 9, 10}, {0, 3, 9},

{0, 2, 8}}.

To compare the proposed algorithm with the existing meth-

ods, we consider an example network with a mixture of one

high-power BS, called a macro-BS (MBS) and several low-

power BSs termed as the femto-BS (FBS) within the coverage

of the MBS (𝑟0 = 500m). All of these BSs are controlled

by the cloud. Label the MBS as node 0 and assume that

it interferes with each FBS as shown in the examples in

Fig. 1. Assume that the FBSs have the same coverage radius

denoted as 𝑟𝑖 = 𝑑 for any 𝑖 ∕= 0. Averaging over 1000

randomly generated topologies4, the performance comparisons

are shown in Fig. 3a and Fig. 3b. It can be seen that our

algorithm performs better than existing algorithms by yielding

optimal clustering with higher probability and higher average

subgraph densities.

VI. CONCLUSION

In this paper, we investigate the problem of coordinated

enforcement of interference constraint in heterogeneous cloud

RAN for auction based service provisioning and resource

allocation. For effective resource sharing. One major tech-

nical challenge is the integration of interference constraints

in auction-based solutions. In this work we transform the

interference constraints into a set of linear constraints on each

4Random topologies are generated with MBS position fixed at (0, 0), while
FBS and UE positions are randomly distributed according to a uniform point
distribution over a circular area with radius 500𝑚
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(b) Graph density comparison.
Fig. 3: Comparison of different clustering algorithms.

cluster. We tackle the generally NP-hard clustering problem

by developing a novel practical suboptimal solution that can

meet our design requirement. Our polynomial time approxi-

mate algorithm demonstrates strong performance in terms of

subgraph density and probability of optimal clustering without

requiring the high complexity of the optimal solution.
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