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Abstract—Auction-based service provisioning and resource
allocation have demonstrated strong potential in Cloud-RAN
wireless network architecture and heterogeneous networks for
effective resource sharing. One major technical challenge is the
integration of interference constraints in auction-based solu-
tions. In this work we transform the interference constraint
requirement into a set of linear constraints on each cluster. We
tackle the generally NP-hard clustering problem by developing
a novel practical suboptimal solution that can meet our design
requirement. OQur novel algorithm utilizes the properties of
chordal graphs and applies Lexicographic Breadth First Search
(Lex-BFS) algorithm for cluster splitting. This polynomial time
approximate algorithm searches for maximal cliques in a graph
by generating strong performance in terms of subgraph density
and probability of optimal clustering without suffering from the
high complexity of the optimal solution.

Index Terms—auction design, clustering algorithm, graph the-
ory, chordal graphs, maximal clique, polynomial time algorithm

I. INTRODUCTION

Heterogeneous Networks (HetNets), through coordinated
coverage and resource sharing among macro cells and small
cells of various sizes, have demonstrated strong promises in
expanding network capacity of wireles networks including 4G
and the futuristic 5G. However, one bottleneck lies in the
limited backhaul speed for performing traffic balancing, radio
resource management, and interference mitigation. Hence,
in developing advanced wireless networks, the Cloud Radio
Access Network (C-RAN) architecture is increasingly gaining
traction [1]. In C-RAN, we have a centralized Baseband Unit
(BBU) formed by pooling remote radio head (RRH) units from
their respective base-stations (BS) for muliplexing gain [2].
We shall use RRH and BS interchangeabley since RRH
can be viewed as a simple BS. In HetNets, the coordinated
RRHs (BSs) are connected to the BBU for centralized signal
processing and resource control [3].

Resource management for heterogeneous BSs is key to
achieving the promised gains in practice. Existing works
include a joint sub-channel assignment and power control
scheme in an OFDMA-based network [4], a dynamic user
association framework [5] that silences small-cellgroups to
mitigate inter-cell interference. Network-utility maximization
can also handle user association, power allocation, and data
off-loading [6-9].
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Auction design in wireless networks can achieve joint
downlink UE (use equipment) association and resource al-
location for a centralized BBU. For example, in [10], a near
optimal algorithm was presented. However, these frameworks
must incorporate interference constraints within the auction
design. In general, interference constrained auction design
is a very challenging problem. To avoid strong inter-cell
interference of auction based heterogeneous networks, our
approach is to divide the associated BSs into clusters. BSs
within a cluster are sensitive to interference constraints and
cannot share spectrum resources. In this paper, we utilize
graph theory [11] by convert these interference constraints
into a set of linear constraints on each BS cluster, thereby
facilitating subsequent auction-based UE association and re-
source allocation. Existing algorithms are based on finding
maximal cliques in the graph. We also aim to approximate
exponential time optimal algorithm for finding cliques in a
graph with near-optimal polynomial time algorithm.

Practically, clique enumeration for any optimal algorithm
has worst-case time complexity O(3™/3) [12], which is too
complex even for moderate sized network. Very few ap-
proximation algorithms are available in the literature without
substantial performance loss. One example in [13] is the
proposal of a “’super-cliques” method. However, since the
interference graph in our problem is more restricted, the
algorithm does not apply. The algorithms proposed in [14]
can also be viewed as two polynomial-time approximation
algorithms, yielding the Node-ALL interference constraints
and Node-L interference constraints. As discussed in Section
III, we propose improved polynomial time algorithms to
approximately achieve suboptimal clustering algorithms to
satisfy the interference constraints.

In this work, we propose a suboptimal clusteirng algorithm
Alg.2 before cluster splitting with Alg.3. In our proposed
approach, we utilize the properties of chordal graphs since
most algorithms, though NP-hard for general graphs, can be
solved in polynomial time for chordal graphs. We use lexico-
graphic Breadth First Search (Lex-BFS) algorithm [15] [16]
to determine the maximal clique for a chordal graph, since
Lex-BFS returns maximal clique if the graph is chordal. The
subsequent channel assignment from Alg.1 can henceforce
take into account the interference constraints in auction design.
Our results illustrate that our algorithm performs better than
the existing algorithms in terms of optimal clustering proba-
bility and graph density of induced subgraphs. Furthermore,
our algorithm has polynomial time complexity O(N?) which
is similar to the complexity of several existing algorithms.

978-1-5090-5019-2/17/$31.00 ©2017 IEEE



Our manuscript is organized as follows. Section II presents
the problem formulation of interference constraints and es-
tablishes the equivalence to the linear constraints on station
clusters. Section III describes the fundamentals of exist-
ing polynomial time algorithms and proposes a new low-
complexity suboptimal algorithm for clustering based on
chordal cliques. We demonstrate important properties of our
approximate algorithm in Section I'V and test the performance
of our algorithm and its complexity in Section V-A. Section
VI concludes this paper.

II. PROBLEM FORMULATION

We now formulate the BS clustering problem by trans-
forming the important interference constraints in resource
allocation to a set of linear constraints on each BS cluster.
To begin, we list the following notations and symbols that
are needed to capture the heterogeneous resource allocation
problem and the associated BS clustering problem.

TABLE I: Notations for Problem Formulation
M Number of UEs (User Equipments)
N Number of BSs
B Set of BSs
M Set of UEs
Ny
Ny

Number of available channels

Maximal number of channels that can be allocated to
one UE

Tm Rate requirement for UE-m

Transmission power of BS-i for UE-m.

Umi | Valuation of the link between BS-: and UE-m

Vi Valuation of the ith BS

Link association indicator between BS-¢ and UE-m
bm: | The bid for the link between BS-¢ and UE-m

nm | Number of channel required for UE-m.

C [th BS cluster

L Set of all clusters

L Number of clusters obtained by executing suboptimal
clustering algorithm

A. Interference Constraints and Clustering

First, within a heterogenous network, UE-m with rate re-
quirement 7, can be served by BS-i if there is link association
(am; = 1) using power P,,;. By bidding price b,,;, BS-i serves
UE-m and receives a value v,,;. The important constraints
in such spectrum auction is to enforce the (low) interference
constraints. Based on the submitted bids, the BBU has the
following objective:

Elea} Z Z Amibmi (1a)
meM ieB
subject to interference constraints (1b)
DD (mi+ amg)nm < N,
i,jEB,i#j meM
Vi, j with Distance(B;, B;) < r; + 1 (1¢)
and > ami <1 am; €{0,1}. (1d)

i€B
The interference constraints state that, when the distance be-
tween B; and B is smaller than the sum of their interference

radii 7; and 7, then the two BSs must not share any channels
when serving UE-m.

In this work, we study the problem of finding the set of
clusters such that the interference constraints can be converted
to a series of linear constraints. For better description of our
problem, we apply the following definitions in graph theory
[11].

Definition 1 (Clique). A clique in an undirected graph is a
subset of its vertices such that every two vertices in the subset
are connected pairwise by an edge.

Definition 2 (Maximal Clique). A maximal clique is a clique
that is not fully contained in a larger clique.

The goal of clustering BSs is to identify BS clusters,
denoted as {C;,l € L} with L being the set of indices of all
clusters such that BSs within the same cluster can not share
any spectral components, also knwon as resource blocks (or
RBs) in OFDMA. In terms of constraints, this is equivalent

to
Z Z N Gy S Nb»

i€C; meM
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where Ny, is the number of channels available at the cloud and
am; 1S some feasible assignment satisfying Zie B 0mi < 1and
Qi € {O, 1}

The need for an effective algorithm is illustrated by the
two trivial cases: A single cluster of all BSs versus each
BS forming its own cluster. If there is a single cluster of all
base stations, then no two BSs can share any RB, leading to
excessive requirement of bandwidth that is likely to exceed the
overall availability N. If each BS forms a cluster on its own,
then interference among any interference BSs is neglected. As
a result, common RB assigned to interference BSs within close
proximity will lead to strong interference and failed network
links. Thus an optimal clustering strategy is to achieve suffi-
cient number of clusters to utilize NV}, resource blocks without
mutual interference among BSs Dist(B;, B;) < r; + ;.

B. Equivalent Maximal Clique Enumeration Problem

Before designing algorithms for clustering, we first provide
the theoretical analysis to link our problem to the famous
maximal clique enumeration problem in graph theory given
by the following proposition.

Proposition 1. Let {C/',] € L*} be the set of all maximal
cliques for the interference-conflict graph G(B, E). Then the
interference constraint (lc) is equivalent to the following
linear constraints

Z Z N Gmig < Nba

1€Cf meM

Vi e £*. 3)

Furthermore, given any feasible association decision a € A
satisfying (3), there exists a feasible resource allocation strat-
egy for each UE-m.

Proof. To prove (3) as both necessary and sufficient in guar-
anteeing interference-free channel assignment, denote the set



of all feasible assignments @ € A specified by constraints
(1c) as P* and that by the constraints formed by replacing
(1c) with (3) as Py. Our equivalence proof must show two
parts: 1) P* C Py and 2) Py C P*.

The first part follows readily from the definition of a clique.
Since two end nodes of an edge cannot share any RBs and all
nodes are connected with other nodes in a clique, all UEs
allocated to BS-i with i € C/ need to be assigned non-
overlapping RBs. Therefore, any point in P* needs to at least
satisfy (3), which implies that P* C P.

For the second part, we can show that for Va € Py, we can
construct a feasible resource allocation for all admitted UEs by
sequentially assigning each admitted UE-m n,,, channels from
|£] containers, each storing available resources for one cluster
of BSs. For each a,,; = 1, we fetch n,,, resources of the same
indices from all containers [ with ¢ € C;. The algorithm is
summarized in Alg. 1. Due to (3), any two users allocated to
adjacent BSs should be allocated orthogonal resources and we
can never have starving UE with a,,; = 1 in Py.

Note that we only utilized the clique property for each
cluster, the reason is that any non-maximal clique is always
a subset of some maximal clique and the corresponding
constraints would be redundant. O

Algorithm 1 Channel Assignment

Initialize a set A = N, for each | € L.
for each i € B do
Find all cluster indices [ with 7 € C;, denoted as Z;
end for
for each i € B do
for each m with a,,; = 0 do
Pick arbitrary n,,, channels from the set M;ez,N; for
assignment to UE-m.
Remove the channels assigned to UE-m from each
cluster [ € Z,.
end for
end for

III. POLYNOMIAL-TIME APPROXIMATIONS

Proposition 1 effectively transforms the interference con-
straint (1c) by (3) based on maximal clique enumeration.
The maximal-clique-enumeration problem, however, is NP-
hard except for some special graphs. In fact, for general
graphs, there may be an exponential number of maximal
cliques and the best worst-time complexity of any optimal
algorithm is shown to be O(3"/3) [12], which is high even for
a moderate-size network. Moreover, the goal of clustering in
our particular application is to form linear constraints. Finding
all maximal cliques could be an unnecessary over-kill as it
may complicate our subsequent optimization procedure by
including exceedingly large number of constraints. Thus, for
practical reasons of transforming interference constraints for
auction design, we would like to develop practical sub-optimal
algorithms that at least satisfies the following properties:

1) It generates clusters with dense! induced subgraphs.

2) Any user association satisfying constraints formed by
the sub-optimal clusters {C;, ! € L} has feasible
interference-free resource allocation schemes.

3) The number of constraints, or equivalently, the number
of clusters, is polynomial in the number of nodes.

A. Several Known Suboptimal Methods

Only a few approximation algorithms available in the
literature can meet all three properties. One method [13]
proposes a polynomial time algorithm to approximate an
exponential number of maximal cliques with a polynomial-
number of ‘super-cliques’, which is possibly the union of
several nearby cliques. The algorithm itself, however, does
not apply to our scenario due to a more restricted interference
graph. The algorithms proposed in [14] can also be viewed
as two possible polynomial-time approximation algorithms,
yielding the Node-ALL interference constraints and Node-L
interference constraints.

e Node-ALL constraints are formed by clustering each node

with all its neighbors. Mathematically, this is equivalent
to forming constraints

Z Z Nm Amyj <Ny, Vi€ B,

j€{Neighbors of BS—i} meM
“)

where {neighbors of BS-i} includes BS-i itself and all
BSs that are connected with BS-i through some edge.

e Node-L strategy, on the other hand, only clusters each
node with neighbors on the left of the node. Equivalently,

we have
Z Z Nmam; < Ny, Vi € B,
j€{Left neighbors of BS—i} meM
(5)

where {left neighbors of BS-i} contains itself and all
BSs that are geometrically not to the right of BS-i but
are connected with BS-5 through some edge. Thus, for
both strategies, we will form exactly NV clusters including
either the neighbors of each BS-i or all left neighbors of
each BS-i.
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Fig. 1: Examples for clustering illustration.

G
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Because of heterogeneous capabilities among different
nodes, neither algorithm can yield a good approximation of

!For undirected simple graphs, the density is defined as the ratio of the
number of edges over the maximum number of edges for a complete graph.
A dense graph has number of edges close to the maximum number of edges.



the original problem. In HetNet, a BS with a higher transmit
power is called a macro-cell base-station (MBS) and the
one with a lower power is called a femtocell base-station
(FBS). Let us consider two simple networks, each consisting
of one MBS (node-0) and 6 FBSs within the coverage of the
macrocell. As shown in Fig. 1, there is an edge between node 0
and each of the other nodes. In this case, the Node-All strategy
clusters node 0 with all its neighbors and forms a super cluster
as {0,1,2,3,4,5,6} and all other clusters will be dominated
and deleted, which implies that no BS can share any re-
sources in this case. Node-L algorithm can perform better by
clustering nodes with its “left neighbors”. For example, by
removing dominated sets, the clustering results for Fig. 1a and
Fig.1b are {{0,1,4,5},{0,1,2,3},{0,2,3,4},{0,2,3,6}}
and {{0,1,2,3}, {0,1,2,6},{0,1,3,4,6},{0,2,3,4,5,6}},
respectively. Although neither result is optimal, they allow
some limited sharing of resources. The performance of the
Node- L algorithm, however, may vary for equivalent interfer-
ence graphs. For example, a horizontal flip of Fig. lb puts
nodes 1-6 to the left of node 0, then the Node-L algorithm
trivially clusters all nodes.

B. A New Practical and Suboptimal Clustering

Motivated by the illustrated shorcomings of existing meth-
ods, we present a new sub-optimal algorithm to generate a
higher quality polynomial number of super-cliques. To get
started with our algorithm, we introduce another definition.

Definition 3 (Chordal Graph). An undirected chordal graph
is an undirected graph in which all cycles of four or more
vertices have a chord, which is an edge that is not part of the
cycle but connects two vertices of the cycle.

Since many NP-hard problems on general graphs are
polynomial-time solvable for chordal graphs, we will use
this to design our sub-optimal algorithms. Our suboptimal
clustering procedure is designed as follows:

Algorithm 2 Sorting and Cluster Splitting (SACS) Algorithm

Step-1: Sort the nodes according to their degrees d(-) in
the conflict graph. Let vy, vs, ... denote the sorted BSs
with d(vq) > d(vg) > -+ > d(vn).

Step-2: Let C denote the set of clusters initialized to be
empty. For each node, form the cluster

C; = {Ul} U {’Uj S B|E|edge (Ui,vj)vj < Z}

Step-3: Check each cluster in C and try to split the cluster
into smaller clusters if the subgraph induced by the
cluster is not a clique, but is a chordal graph. Remove
any dominated clusters if there is any split.

Intuitively, our SACS algorithm first forms a series of
clusters based on an ordering of nodes in Step-1. The last step
tries to split sub-optimal super-cliques into maximal cliques.

Let us revisit the clustering using our algorithm for
the two examples in Fig.1. For Fig.la, one possible
ordering of the nodes by Step-1 is {0,1,2,3,4,5,6}.

The initial clustering from Step-2 is then given by
{{0,1,2},{0,2,3},{0,1,3,4},{0,1,4,5},{0,2,3,6}}.

Step-3 finds that all clusters are cliques except for
{0,1,3,4}. Since the induced subgraph is a chordal graph, it
can be split into two maximal cliques {0,1,4} and {0, 3,4}.
In fact, for this case, we have already found the optimal
clustering. This follows from the properties of the cluster-
ing algorithm introduced later, and can also be verified by
exhaustively listing all subgraphs to find all maximal cliques
associated with it.

Alg.2 does not always guarantee optimality. For ex-
ample, in Fig.1lb, after Step-2, we will get -clusters
{{0,1,2,3},{0,1,3,4},{0,2,3,4,5}, {0,1,2,4,5,6}}, in
which both {0, 2, 3,4,5} and {0,1,2,4,5,6} are not cliques.
However, in this example, only the first cluster is a chordal
graph and is splittable in Step-3 into {0,2,3}, {0,3,4},
{0,5}, each dominated by other clusters. Since cluster
{0,1,2,4,5,6} is flagged to be non-splittable in Step-3, we
will have a sub-optimal solution. In fact, this topology is a spe-
cial worst case scenario where we have an exponential number
of cliques in the graph [13]. Therefore, any polynomial-time
algorithm is expected to be sub-optimal in this case.

The algorithm is polynomial time in Step-1 and Step-2.
Step-3 is a best effort approach to only split a non-clique
cluster when the induced subgraph is a chordal graph. Since
the detection and the split of a chordal graph both take
polynomial time, Alg. 2 is a polynomial-time algorithm.

The procedure to perform a cluster split is given in Alg. 3.
Due to limited space, we omit the pseudo-code for lexi-

Algorithm 3 Cluster Split

for all C; €¢C do
if C; is not a maximal clique then
Perform Lex-BFS on the induced subgraph of C;.
(Lex-BFS can be used to check whether a graph
is a chordal graph and to list all maximal cliques
from a chordal graph [16]). If the subgraph is a
chordal graph, by letting I be the number of maximal
cliques, the set of maximal cliques can be denoted as
{Cz(lv C£27 tr Cz/I}
Replace C; by {C};,Cl,,...,Cl;} in C and remove
any redundant set if the split is successful.
end if
end for

cographic Breadth First Search (Lex-BFS) and the detailed
procedure of how the maximal cliques can be generated.
Please refer to [15] [16] and book [17] for the pseudo-code or
related discussions. By running the Lex-BFS, we can either
decide the graph is non-chordal along the process or return all
its maximal cliques after it is finished. This is because Lex-
BFS returns a perfect elimination order for a chordal graph.
To list all maximal cliques of a chordal graph, on can form a
clique for each node v together with the neighbors of v that
are later than v in the perfect elimination ordering, and test
whether each of the resulting cliques is maximal.



IV. PROPERTIES OF THE SACS ALGORITHM

In this section, we will establish that the proposed SACS
clustering algorithm generates a set of linear constraints that
are stricter with the feasible region no larger than the original
feasible region defined in (3). The property guarantees re-
source allocation feasibility in terms of interference avoidance
as shown in the following proposition.

Proposition 2. Let C be the clusters generated by Alg. 2. Then
any maximal cliqgue C/ € C* of the same interference conflict
graph is a subset of some cluster C; € C.

Proof. To show this, it suffices to show that any maximal
clique is a subset of some cluster in the cluster set obtained
in Step-2. The reason is that any additional clusters obtained
in Step-3 come from splitting existing clusters from Step-2 by
successfully enumerating all possible maximal cliques in the
induced chordal subgraph. With a small abuse of notation, we
also denote the cluster set as C at the end of Step-2.

Step-1 returns an ordering of nodes and let v,,,, be the
node of the highest label in C/. Then we know that when
node vy,q, enters, all nodes in C;° will be included to form a
cluster by the definition of a clique. Therefore, we know there
has to exist some C; with C} C (. O

Proposition 2 implies that the constraints

DD nmami <Ny, V€L 6)

1€Cp meM

generated from the sub-optimal cluster set C are more restric-
tive than the optimal ones, including no infeasible association.

V. NUMERICAL RESULTS
A. Complexity Analysis

Step-1 has a complexity of O(|E| + N log(N)) to get the
degrees and sorting. Step-2 is O(|E|) in complexity and the
potential split of clusters takes at most O(|E|+ N ). Removing
dominated sets takes at most O(N?). Note that, even when
dominated sets are not deleted from the cluster set, the feasible
region stays the same. However, it is still preferable to remove
redundant constraints for later optimization design.

Note that the complexity of both Node-All and Node-L
algorithms is also dominated by the complexity of removing
unnecessary clusters of complexity O(N?3). Without this extra
step, our proposed algorithm is only slightly more complex
due to the sorting procedure, but the performance improve-
ment is quite impressive in terms of both the induced graph
densities® of clusters and optimality probabilities.

Since in Node-ALL or Node-L strategies, a node with a
higher degree® is more likely to cluster with neighbors that
belong to more than one maximal cliques, the intuition for the
sorting in the first step is to reduce the possibility of making

2For undirected simple graphs, the density is defined as the ratio of the
number of edges over the maximum number of edges for a complete graph.
The denser the graph is, the closer it is to a maximal clique.

3In an undirected graph, the degree of a node is defined as the number of
neighbors of the node.

the cluster much bigger than a maximal clique in Step-2.
The split in Step-3 is a best-effort strategy. The probability
of getting chordal subgraphs is high when the subgraph size
is small; therefore, the split is most effective if Step-1 and
Step-2 can produce small clusters.

B. Performance and Comparison

500
FBS 3
S
£ 0
S
-500
-500 0 500

Unit: m
Fig. 2: Interference conflict graph of an example network with
10 FBS and 1 MBS (edges between MBS and any other FBS

are omitted for clearer view.)

An example of interference conflict graph (omitting the
edges from macro-BS to each femto-BS) can be seen in
Fig.2. The value of d used in this graph is 200m. Using
Alg.2, we can successfully find the optimal clustering given
by {{0,1,2,4,5,6}, {0,1,7,9}, {0,7,8,9,10}, {0,3,9},
{0,2,8}}.

To compare the proposed algorithm with the existing meth-
ods, we consider an example network with a mixture of one
high-power BS, called a macro-BS (MBS) and several low-
power BSs termed as the femto-BS (FBS) within the coverage
of the MBS (rp = 500m). All of these BSs are controlled
by the cloud. Label the MBS as node O and assume that
it interferes with each FBS as shown in the examples in
Fig. 1. Assume that the FBSs have the same coverage radius
denoted as r; = d for any ¢ # 0. Averaging over 1000
randomly generated topologies*, the performance comparisons
are shown in Fig.3a and Fig.3b. It can be seen that our
algorithm performs better than existing algorithms by yielding
optimal clustering with higher probability and higher average
subgraph densities.

VI. CONCLUSION

In this paper, we investigate the problem of coordinated
enforcement of interference constraint in heterogeneous cloud
RAN for auction based service provisioning and resource
allocation. For effective resource sharing. One major tech-
nical challenge is the integration of interference constraints
in auction-based solutions. In this work we transform the
interference constraints into a set of linear constraints on each

“Random topologies are generated with MBS position fixed at (0, 0), while
FBS and UE positions are randomly distributed according to a uniform point
distribution over a circular area with radius 500 m
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Fig. 3: Comparison of different clustering algorithms.

cluster. We tackle the generally NP-hard clustering problem

by

developing a novel practical suboptimal solution that can

meet our design requirement. Our polynomial time approxi-
mate algorithm demonstrates strong performance in terms of
subgraph density and probability of optimal clustering without
requiring the high complexity of the optimal solution.
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