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Abstract—' Learning network topology from partial knowl-
edge of its connectivity is an important objective in practical
scenarios of communication networks and social-media networks.
Representing such networks as connected graphs, exploring and
recovering connectivity information between network nodes can
help visualize the network topology and improve network utility.
This work considers the use of simple hop distance measurement
obtained from a fraction of anchor/source nodes to reconstruct
the node connectivity relationship for large scale networks of
unknown connection topology. Our proposed approach consists
of two steps. We first develop a tree-based search strategy to
determine constraints on unknown network edges based on the
hop count measurements. We then derive the logical distance
between nodes based on principal component analysis (PCA) of
the measurement matrix and propose a binary hypothesis test
for each unknown edge. The proposed algorithm can effectively
improve both the accuracy of connectivity detection and the
successful delivery rate in data routing applications.

Index Terms—Graph, Connectivity, hop distance, PCA

I. INTRODUCTION

Information characterizing network topology for purposes
such as routing and node localization can often be categorized
into two types depending on practical constraints and appli-
cations: geographical coordinate systems (GCS) where node
locations are characterized by physical coordinates based on
various signal or delay measurements, and virtual coordinate
systems (VCS) [1], [2], [3], [4] where the network topology
is characterized by the binary inter-node connectivity infor-
mation (also known as adjacency matrix). Often, virtual node
coordinates can be determined from simple measurements
such as hop counts from each network node with respect
to a set of source (anchor) nodes. Unlike GCS, VCS is less
sensitive to path estimation errors since hop distances (counts)
are easier to measure according to a simple controlled flooding
[5], and hop measurement is much more reliable than physi-
cal distance measurement that critically depends on received
signal quality, channel disturbances such as noise, multipath
interference, co-channel interference, fading or shadowing, and
clock synchronization.

Nevertheless, network topology in terms of VCS also poses
several unique challenges in practice. In particular, it is always
desirable to utilize fewer anchor nodes and measurements
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for practical purposes. Hence, the selection with respect to
the number and the placement of anchor nodes [6] within
a network is a critically important open problem. On one
hand, if the number of anchors is small or their placement
is not diverse enough, the reconstruction of network topology
will degrade, thereby leading to poor routing performance.
Also, by deploying only a small number of anchor nodes,
temporary malfunction or outage of certain nodes can lead
to critical loss of measurement and performance. On the other
hand, using many anchors and measurements will substantially
increase the cost, the complexity, and the network traffic load
in practical applications.

Several published works exist on the use of VCS for appli-
cations such as network topology preservation and routing. In
[1] and [7], virtual coordinates are analyzed through principal
component analysis (PCA) in order to produce a Cartesian
coordinate map that is homomorphic to the network physical
configuration while preserving information about the physical
layout and the voids of the network. The authors suggested
that the second and the third principal components of the hop
count measurement matrix appear to provide a 2-dimonsional
(2-D) coordinates of the topology preserving map. Examining
the resulting visual 2-D graphs, various examples indicate
this approach appears to be topology preserving. Nevertheless,
such visually based approach does not provide quantitative
metrics regarding the successful recovery of the node connec-
tivity matrix of the network. A similar work [2] also aims to
construct a virtual topology instead of trying to approximate
the physical coordinates. The author of [2] proposed to exploit
hop counts from three selected anchors to define zones of
nodes assigned with the same (similar) coordinates without
assigning virtual coordinates to each node. Applying more
quantitative outputs instead of relying on visual 2-D display
of network maps, the authors of [8] suggested a PCA-based
dimension reduction in VCS to perform routing in networks
with landmark nodes (i.e., anchor nodes) which provide hop
count measurements with respect to the remaining network
nodes. They normalized the first two principal components of
the hop count measurement matrix, similarly to the reduced
dimension virtual coordinates [7], in order to construct a
routing algorithm [8]. Several other routing algorithms also
rely on VCS [3], [9], [10]. The protocol developed in [3] lets
each node forward its packets to the neighbor node nearest to
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the packet destination node in VCS. Loop and void avoidance
techniques can further increase the percentage of successful
delivery. One practical challenge lies in local minima during
routing. The idea of [9] is to dynamically select anchors
such that the distance function between source and destination
is convex. This approach favors network edge (boundary)
anchors over interior ones. Another connectivity-based routing
protocol proposed in [10] to apply a tree based recovery
method in order to avoid local minimum solutions. We note
that all previous routing methods do not provide any global
information about the adjacency matrix of the network.

Other recent works on network topology inference utilized
various measurements different from hop counts. In [11],
graph signal processing is used to identify networks topology
by exploiting the spectral characteristics of graphs as well
as graph filter dynamics in order to model network diffusion
processes. In [12], nonlinear structural equations are proposed
to model signal propagation and diffusion processes in sparse
networks in order to infer unknown network topologies. The
authors of [13] exploited Traceroute operations to probe paths
within the network to infer the network topology.

In this work, our objective is to utilize the hop-count
measurement more efficiently for network topology inference.
Instead of utilizing visual graphs and 2-D homomorphic
topology maps [7] [1] that do not provide any information
about the adjacency matrix, we use the anchor hop measure-
ments to reconstruct the adjacency matrix of the networked
nodes. The reconstructed adjacency matrix can provide a
full connectivity description of the network topology that
reveals the relationship between nodes and facilitates packet
routing. More specifically, our new approach shall adopt the
VCS and improve the utility of PCA results to infer the
unknown topology of connected networks based only on hop
count measurements at a subset of anchor nodes. We first
reduce the number of unknown edges based on pre-processing
the hop count matrix before applying PCA to generate the
virtual nodal coordinates. The proposed pre-processing is a
low complexity tree-based search method that establishes the
maximum number of node connectivities that can be directly
determined from the available hop count measurements. These
detected edges are then analyzed to determine a threshold
e that defines a binary hypothesis test for each unknown
edge between two nodes based on the logical distance. Our
novel approach presents two key advantages: (a) reduction
of problem size by lowering the number of unknown edges
for detection; (b) determination of an empirically derived
threshold € for the binary hypothesis test.

The rest of the paper is organized as follows. In Section II,
we describe the system model and present the basics PCA for
analyzing the hop count matrix. Next, we present our proposed
topology inference method in Section III. We discuss traffic
routing based on the recovered topology in Section IV. Finally,
we provide some test results in Section V before conclusions.

Notations: Lower-case letters, bold lower-case, and bold
upper-case letters, respectively, designate scalars, vectors, and
matrices. If A is a matrix, then AT denotes the transpose of

A. A(i, j) denotes the entry in the i row and j" column of
matrix A.

II. VIRTUAL DISTANCE AND TOPOLOGY INFERENCE

We consider a wireless network consisting of /N nodes
denoted as {ni,na,...ny} which form a connected graph
and from which we pick up a subset of M anchors denoted as
{Ay,Ay,..., Ay} where M typically is much smaller than
N. To explore the unknown topology of the network, we
collect the hop distance of each node n; to the M anchor
nodes. The results form an N x M hop count matrix P
such that P(i,j) = hy,, o, where hy,, 4, is the hop distance
between node n; and anchor A;. Ay, A, specifies the minimum
number of hops through the shortest path linking node n; to
anchor A;. Each node n; generates a vector p; of size M
which contains the hop distances from node n; to the set of
M anchors, given by
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p; represents the i'” row of the hop count matrix P which
can be written as

Pi = [h"iw‘h ) hnmAza s
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The redundancy of the virtual coordinate vectors could be
reduced from M to k by performing PCA and taking the &
first most significant principal components. The PCA-based
method starts with a singular value decomposition (SVD) of
the hop count matrix P as follows

P=USVT =QV7, 3)

P = [p17p27"'

where S = Diag(s1, s2,...,s)) is a diagonal matrix con-
taining the singular values of matrix P sorted in a decreasing
order and matrix Q is given by

Q:PV:[QMQ%--wQM]y (4)

where q; is the i principal component of the matrix P. The
final step in the PCA is to keep from the matrix Q only the
k first most significant components which gives

P O)
where the " row p¥ of the matrix Q¥ is the vector of
virtual coordinates of the node n; using only k principal
components. Q" can be seen as the projection of the hop count
matrix P into the space spanned by its first £ most significant
eigenvectors.

The Euclidean distance between the virtual coordinates of
the nodes obtained from the PCA is then used to estimate the
logical distance between each pair of nodes (n;, ;) as follows

d(ns,n;) = |[pf — pflla- (6)

Notice that by over reducing the dimensions of P (for
visualizations purposes), the authors in [7] degraded the
performance of the logical distance because they neglected
important singular values. Curiously enough, their method
provided a homomorphic map that has a similar shape to the
original network.

Qk = [q17q2""7qk] = [p’f7p§7"'



In routing applications [3], [4], [9], this logical distance
d is directly used to identify the neighbor nearest to a given
destination node for the next link in traffic routing. We propose
a new use of the distance d to estimate the connectivity
between network nodes.

Let us examine an exemplary distribution of the logical
distances between each possible pair of nodes of a ran-
domly generated network composed of 400 nodes in Fig.
1. From this example, we can clearly see the distinction of
distance distributions between connected nodes (denoted by
Dy = {d(n;,n;); E(i,j) = 1}) and non connected nodes
(denoted by Dy = {d(n;,n;); E(i,j) = 0}). This observation
motivates our design of a binary hypothesis test based on the
logical distance d(n;,n;) between nodes. Thus, we propose
PCA binary hypothesis testing (PCA-BHT) that compares the
logical distance against a threshold e to decide whether the
nodes n; and n; are connected. For the symmetric N x N
adjacency matrix E that we want to recover, our hypothesis
testing should be

E(i,j) = 1, ifd(n;,n;) <e -
0, if d(ni,n;) >e€
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Fig. 1. Distribution of logical distance

IIT. PROPOSED NETWORK TOPOLOGY INFERENCE METHOD
A. Tree-based search method using hop count measurements

In this section, we aim to extract information about the
connectivity between the networked nodes using the hop count
matrix P in order to formulate constraints on the values of the
unknown connectivity relationships. The proposed method is
applicable to any connected graph and it is based on generation
of a tree for each anchor node. We begin by assigning a given
anchor node A,, to the root of a tree T},,. Next, based on the
hop measurements provided by anchor A,, we construct T,
by placing all the nodes which are k hops away from anchor
node A,, in the k' layer of the tree 7,,, which is denoted
as Ly, 1.e. Ly p = {ni; hn, a4, = k}. Finally, we draw
the edges between the placed nodes by respecting the rules
stated in Algorithm 1 which utilizes the following constraints
to specify the connectivity between nodes n; and n;:

e n; and n; are disconnected if their hop count, with respect
to a same anchor A,,, differs by more than one hop.

e n; and n; are connected if their hop count, with respect
to a same anchor A,,, differs by exactly one hop say
for example hy,; a,, = hn, a,, +1 and the cardinality of
Lm,hn,,, 4, 18 equal to 1 i.e. contains only one node.

The output of Algorithm 1 is a set of constraints on the
connectivity information that can be seen as an incomplete
adjacency matrix E' where E’(i,7) is equal to ’1” if n; and
n; are connected, ’0” if not and ’?’ if the connectivity cannot
be determined given the set of anchor nodes.

Data: P
Result: E’

for each anchor A,, do
Generate a tree T},, by assigning the node A,, to the

root and the remaining nodes to lower layers based
on their hop distance to A,, ;
for each pair of nodes n; and n; do

Denote L p,, 4, and L p, ., the respective
layers of n; and n; ;
if |hm,Am — hnj,AmI > 1 then
| E'i,j)=0
else if 7, A, —hnj o, | =1 &
Card(Lm,mm{hni’Am,hnj‘Am}) =1 then
| Eig) =1
else
| E'(i,5)="7
end
end
end
Merge the obtained adjacency matrix from each anchor
Ams

Algorithm 1: Proposed tree based search algorithm

As an illustrative example, we consider a simple network in
Fig. 2 with one anchor (node n1) and the generated hop count
matrix P corresponding to that anchor. The tree generated for
anchor n; is shown in Fig. 3 where

o solid edge between n; and n; means E’(i,j) =1
o absence of edge between n,; and n; means E'(4,j) =0
o dotted edge between n; and n; means unknown E’(i, j)

Using these constraints, we obtain the incomplete adjacency
matrix in Fig. 3. It is clear that by using the measurements
from multiple anchors at the same time we can reduce the
number of unknown edges furthermore. Therefore, the ob-
tained incomplete adjacency matrix E’ represents a set of
constraints on the connectivity relationships between the net-
worked nodes. Next, we will exploit the obtained constraints
in order to improve the PCA-BHT and provide the complete
adjacency matrix E and thus recover the topology of the
network.
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Fig. 2. Graph representing anchored network node and anchor measurements
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Fig. 3. Tree generation and incomplete adjacency matrix

B. Modified PCA-based binary hypothesis testing (MPCA-
BHT)

We show hereafter that the pre-processing step, detailed in
Section III-A, can be used to achieve two goals. First, we
reduce the number of unknowns for PCA-BHT. Second, we
provide a reasonable value of ¢ to use in (7) in order to recover
the complete network topology.

We showed in the previous section that the simple infor-
mation of hop measurements provided by a set of anchor
nodes contains some constraints about the edges that we can
extract using Algorithm 1. However, the output of Algorithm
1 is an incomplete adjacency matrix since it may contain
unknown entries. An unknown entry in the (,j) position of
the incomplete adjacency matrix E’ means that Algorithm
1 is not able to decide whether node n; and node n; are
connected. To remove this ambiguity, we propose to use
the PCA-based method presented in Section II to generate
virtual coordinates of the networked nodes then determine the
connectivity relationships by applying the binary hypothesis
test (7).

We start by reducing the number of unknowns involved
in the PCA by extracting fully determined nodes from the
incomplete adjacency matrix E’. We define a node n; to be
fully determined if the connectivity relationships between n;
and the remaining networked nodes are known. In other words,
n; is fully determined if the i*” row and i*" column of the

incomplete adjacency matrix E’ do not contain any unknown
entries. For example, Fig. 4 shows the incomplete adjacency
matrix of the network used in the example of Fig. 2. We notice
that nodes {n1, na, n3, ng} (green diagonal elements) are fully
determined since their connectivity with the remaining nodes
of the network is known. However, nodes {n4, ns, ng, nz,ng}
(red diagonal elements) are clearly not fully determined.
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Fig. 4. Example of incomplete adjacency matrix

Since the fully determined nodes have known adjacency
relationship with all the nodes in the network, it is no longer
necessary to include them as unknowns in the PCA. Suppose
we have a network of N nodes and M anchors. If we obtain
N’ fully determined nodes from Algorithm 1, then the hop
count matrix P used in PCA will be of dimension (N — N') x
M instead of N x M. Consequently, this will further reduce
the complexity of PCA and PCA-BHT.

The second advantage of the pre-processing step is to
provide a value for the threshold e which is used in the binary
hypothesis test (7). After applying Algorithm 1 and obtaining
the incomplete adjacency matrix E’, we can define D, as
the set of pair of nodes that are whether connected or have
unknown connectivity relationship

D.={(i,§); E'(i,j) =1 or E'(i,j) ="7}. (8)
Next we define € as

e = max {d(n;n;)}. )
e {dns,n;)}

Note that the number of connected pairs of nodes that are
obtained from the incomplete adjacency matrix E’ could not
be enough to estimate the value of e. Hence, it is reasonable
to add the unknown edges to the set D..

IV. TRAFFIC ROUTING IN THE NETWORK

One of the most important applications of network topology
inference is to execute traffic routing operations optimally.
There exist a few routing strategies that were previously
developed for connected networks. We distinguish between
algorithms that are based on simple hop counts [3] versus algo-
rithms that are based on known geographical coordinates [14].
We consider in this section two existing methods known as the
Logical coordinate routing (LCR) [3] and Greedy Perimeter
Stateless Routing (GPSR) [14] for benchmark comparison.
LCR method uses the hop count measurements provided



by a set of anchors. LCR simply forwards packets to the
neighbor that is closest to their destination nodes in terms
of logical distance. The shortcomings of LCR include the
risk of infinite loop and local minima due to the ambiguity
of virtual coordinates. On the other hand, GPSR is a more
efficient routing algorithm but it requires accurate geographical
node locations. Such requirement is costly and less practical
in networks with limited resource. Nevertheless, because of its
accuracy, we include the GPSR method in our performance
comparisons as a benchmark.

The proposed network topology inference can be used to
perform routing in networks. In fact, the adjacency matrix E
obtained from the MPCA-BHT can be used to find the shortest
path for traffic routing from a source node n, to a destination
node ngz. When the recovered adjacency matrix is obtained
without edge error the shortest path is guaranteed and can be
found by using a simple algorithm such as Dijkstra. Hence, the
only source of delivery failure in our case can be attributed
to an error in the recovered adjacency matrix. Such routing
failure becomes less likely as the number of anchor increases,
to be seen in the next numerical simulation section.

Regarding communication overhead, we note that both LCR
and the proposed MPCA-BHT must account for the cost of
communication associated with obtaining the hop count matrix
P although they differ in ways of utilzing the hop count
information. LCR iteratively explores the neighbors until a
packet reaches its destination which may lead to not only a
suboptimal path and a possibly infinite loop, but also addi-
tional communication overhead arising from the local neighbor
exploration step. On the other hand, the proposed MPCA-
BHT method does not require such additional communication
overhead because the obtained adjacency matrix provides a
global information with respect to the topology of the network.
Hence, it allows us to apply Dijkstra’s shortest path algorithm
on the obtained adjacency matrix with a computational com-
plexity of order O(M log(N)).

V. SIMULATIONS

We now test the efficiency of our proposed MPCA-BHT to
recover the network topology based only on knowledge of hop
count measurements between the networked nodes and a set
of anchor nodes. Consider a wireless network. We randomly
deploy N nodes in a coverage area. Edges between the nodes
are generated based on the communication range R of the
nodes. Thus, for any node located at the position (z,y) in the
2-dimensional plane, we allow edges to exist from that node
to all other nodes located within a radius K. This leads to a
network with random unknown topology.

First, we run the proposed tree-based search (Algorithm 1)
to determine the incomplete adjacency matrix. Second, we
test the PCA-BHT method given in Section II. Finally, we
apply the MPCA-BHT method developed in Section III-B. For
each method, we calculate and plot the percentage of edge
reconstruction error as a function of the number of anchors
and the number of nodes in the network. We average over
500 Monte Carlo runs in all the figures otherwise stated. The

test results are given in Figs. 5 and 6. It is worth noting
that an edge reconstruction error in the PCA-based methods
is a flipped 1 or O in the reconstructed adjacency matrix
of the network. However, in the proposed tree based search
(Algorithm 1), because it is not possible to commit an error
by flipping a 0 or 1 in the adjacency matrix, we only show
the percentage of unknown edges rather than the percentage
of edge reconstruction error.

The simulation results show that the tree-based search alone
is not enough to recover the full connectivity information of
the network as there still is a high percentage of unknown
edges especially for low number of anchors. However, after
applying our tree search as preprocessing to estimate the
suitable value of threshold e before using the PCA-BHT
method, the error percentage is substantially reduced. Clearly
the MPCA-BHT algorithm outperforms the original PCA-
BHT method. In Fig. 5, we notice that the performance of
connectivity recovery of every tested method improves as the
number of anchors grows. In fact, by increasing anchors, we
can form more constraints on the connectivity relationships
using Algorithm 1. Thus, we have a better estimate of the
threshold e, thereby enabling us to utilize the PCA-based
method more efficiently. Fig. 6, shows that the performance
of connectivity recovery degrades when the total number of
networked nodes N becomes large, since it results in more
unknowns.

For traffic routing applications, we generate random net-
works with random anchor locations. We also randomly
choose the starting and destination nodes for traffic routing.
Applying our proposed topology inference algorithm to rout-
ing (Section IV), Fig. 7 shows the resulting packet delivery
rates (percentage of successfully delivered packets) of different
routing methods. Our proposed method outperforms LCR and
approaches the benchmark GPSR performance as the number
of anchors increases. Higher number of anchors allows more
efficient recovery of the network edges, as shown in Fig.
5. Thus the shortest path between any two nodes can be
found with higher probability. In Fig. 8, we are interested
in examining the routing path length. We let p be the ratio
between the routing path length and the shortest path length
given successful packet delivery. As expected, given successful
delivery, our proposed method always succeeds in finding the
shortest path (p = 1). However, LCR often results in longer
routing paths (p > 1) and therefore requires more resource
usage.

VI. CONCLUSION

Our investigation studies the recovery of unknown network
connectivity without prior topology information. Our specific
goal is to recover the adjacency matrix of networked nodes by
adopting a very simple measurement of hop distance between
network nodes and designated anchor nodes. We developed a
tree-based search algorithm to establish certain connectivity
constraints between network nodes. Applying principal com-
ponent analysis, we formulated each unknown edge decision
as a binary hypothesis problem based on logical euclidean
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distance between two nodes. We developed a modified PCA-
based method with improved performance. We successfully
applied the proposed network topology inference method
for traffic routing through the networks. Our planned future
research works include the use of robust PCA techniques to
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