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Abstract—1 Learning network topology from partial knowl-
edge of its connectivity is an important objective in practical
scenarios of communication networks and social-media networks.
Representing such networks as connected graphs, exploring and
recovering connectivity information between network nodes can
help visualize the network topology and improve network utility.
This work considers the use of simple hop distance measurement
obtained from a fraction of anchor/source nodes to reconstruct
the node connectivity relationship for large scale networks of
unknown connection topology. Our proposed approach consists
of two steps. We first develop a tree-based search strategy to
determine constraints on unknown network edges based on the
hop count measurements. We then derive the logical distance
between nodes based on principal component analysis (PCA) of
the measurement matrix and propose a binary hypothesis test
for each unknown edge. The proposed algorithm can effectively
improve both the accuracy of connectivity detection and the
successful delivery rate in data routing applications.

Index Terms—Graph, Connectivity, hop distance, PCA

I. INTRODUCTION

Information characterizing network topology for purposes

such as routing and node localization can often be categorized

into two types depending on practical constraints and appli-

cations: geographical coordinate systems (GCS) where node

locations are characterized by physical coordinates based on

various signal or delay measurements, and virtual coordinate

systems (VCS) [1], [2], [3], [4] where the network topology

is characterized by the binary inter-node connectivity infor-

mation (also known as adjacency matrix). Often, virtual node

coordinates can be determined from simple measurements

such as hop counts from each network node with respect

to a set of source (anchor) nodes. Unlike GCS, VCS is less

sensitive to path estimation errors since hop distances (counts)

are easier to measure according to a simple controlled flooding

[5], and hop measurement is much more reliable than physi-

cal distance measurement that critically depends on received

signal quality, channel disturbances such as noise, multipath

interference, co-channel interference, fading or shadowing, and

clock synchronization.

Nevertheless, network topology in terms of VCS also poses

several unique challenges in practice. In particular, it is always

desirable to utilize fewer anchor nodes and measurements

1This material is based on work supported by the National Science
Foundation under grants CNS1443870 and CNS1702752

for practical purposes. Hence, the selection with respect to

the number and the placement of anchor nodes [6] within

a network is a critically important open problem. On one

hand, if the number of anchors is small or their placement

is not diverse enough, the reconstruction of network topology

will degrade, thereby leading to poor routing performance.

Also, by deploying only a small number of anchor nodes,

temporary malfunction or outage of certain nodes can lead

to critical loss of measurement and performance. On the other

hand, using many anchors and measurements will substantially

increase the cost, the complexity, and the network traffic load

in practical applications.

Several published works exist on the use of VCS for appli-

cations such as network topology preservation and routing. In

[1] and [7], virtual coordinates are analyzed through principal

component analysis (PCA) in order to produce a Cartesian

coordinate map that is homomorphic to the network physical

configuration while preserving information about the physical

layout and the voids of the network. The authors suggested

that the second and the third principal components of the hop

count measurement matrix appear to provide a 2-dimonsional

(2-D) coordinates of the topology preserving map. Examining

the resulting visual 2-D graphs, various examples indicate

this approach appears to be topology preserving. Nevertheless,

such visually based approach does not provide quantitative

metrics regarding the successful recovery of the node connec-

tivity matrix of the network. A similar work [2] also aims to

construct a virtual topology instead of trying to approximate

the physical coordinates. The author of [2] proposed to exploit

hop counts from three selected anchors to define zones of

nodes assigned with the same (similar) coordinates without

assigning virtual coordinates to each node. Applying more

quantitative outputs instead of relying on visual 2-D display

of network maps, the authors of [8] suggested a PCA-based

dimension reduction in VCS to perform routing in networks

with landmark nodes (i.e., anchor nodes) which provide hop

count measurements with respect to the remaining network

nodes. They normalized the first two principal components of

the hop count measurement matrix, similarly to the reduced

dimension virtual coordinates [7], in order to construct a

routing algorithm [8]. Several other routing algorithms also

rely on VCS [3], [9], [10]. The protocol developed in [3] lets

each node forward its packets to the neighbor node nearest to
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the packet destination node in VCS. Loop and void avoidance

techniques can further increase the percentage of successful

delivery. One practical challenge lies in local minima during

routing. The idea of [9] is to dynamically select anchors

such that the distance function between source and destination

is convex. This approach favors network edge (boundary)

anchors over interior ones. Another connectivity-based routing

protocol proposed in [10] to apply a tree based recovery

method in order to avoid local minimum solutions. We note

that all previous routing methods do not provide any global

information about the adjacency matrix of the network.

Other recent works on network topology inference utilized

various measurements different from hop counts. In [11],

graph signal processing is used to identify networks topology

by exploiting the spectral characteristics of graphs as well

as graph filter dynamics in order to model network diffusion

processes. In [12], nonlinear structural equations are proposed

to model signal propagation and diffusion processes in sparse

networks in order to infer unknown network topologies. The

authors of [13] exploited Traceroute operations to probe paths

within the network to infer the network topology.

In this work, our objective is to utilize the hop-count

measurement more efficiently for network topology inference.

Instead of utilizing visual graphs and 2-D homomorphic

topology maps [7] [1] that do not provide any information

about the adjacency matrix, we use the anchor hop measure-

ments to reconstruct the adjacency matrix of the networked

nodes. The reconstructed adjacency matrix can provide a

full connectivity description of the network topology that

reveals the relationship between nodes and facilitates packet

routing. More specifically, our new approach shall adopt the

VCS and improve the utility of PCA results to infer the

unknown topology of connected networks based only on hop

count measurements at a subset of anchor nodes. We first

reduce the number of unknown edges based on pre-processing

the hop count matrix before applying PCA to generate the

virtual nodal coordinates. The proposed pre-processing is a

low complexity tree-based search method that establishes the

maximum number of node connectivities that can be directly

determined from the available hop count measurements. These

detected edges are then analyzed to determine a threshold

� that defines a binary hypothesis test for each unknown

edge between two nodes based on the logical distance. Our

novel approach presents two key advantages: (a) reduction

of problem size by lowering the number of unknown edges

for detection; (b) determination of an empirically derived

threshold � for the binary hypothesis test.

The rest of the paper is organized as follows. In Section II,

we describe the system model and present the basics PCA for

analyzing the hop count matrix. Next, we present our proposed

topology inference method in Section III. We discuss traffic

routing based on the recovered topology in Section IV. Finally,

we provide some test results in Section V before conclusions.

Notations: Lower-case letters, bold lower-case, and bold

upper-case letters, respectively, designate scalars, vectors, and

matrices. If A is a matrix, then A� denotes the transpose of

A. �(�, �) denotes the entry in the �th row and �th column of

matrix A.

II. VIRTUAL DISTANCE AND TOPOLOGY INFERENCE

We consider a wireless network consisting of � nodes

denoted as {�1, �2, . . . ��} which form a connected graph

and from which we pick up a subset of � anchors denoted as

{�1, �2, . . . , ��} where � typically is much smaller than

� . To explore the unknown topology of the network, we

collect the hop distance of each node �� to the � anchor

nodes. The results form an � × � hop count matrix P

such that � (�, �) = ℎ��,��
where ℎ��,��

is the hop distance

between node �� and anchor �� . ℎ��,��
specifies the minimum

number of hops through the shortest path linking node �� to

anchor �� . Each node �� generates a vector p� of size �

which contains the hop distances from node �� to the set of

� anchors, given by

p� = [ℎ��,�1
, ℎ��,�2

, . . . , ℎ��,��
]. (1)

p� represents the ��ℎ row of the hop count matrix P which

can be written as

P = [p1,p2, . . . ,p� ]� . (2)

The redundancy of the virtual coordinate vectors could be

reduced from � to � by performing PCA and taking the �

first most significant principal components. The PCA-based

method starts with a singular value decomposition (SVD) of

the hop count matrix P as follows

P = USV� = QV� , (3)

where S = Diag(�1, �2, . . . , �� ) is a diagonal matrix con-

taining the singular values of matrix P sorted in a decreasing

order and matrix Q is given by

Q = PV = [q1,q2, . . . ,q� ] , (4)

where q� is the ��ℎ principal component of the matrix P. The

final step in the PCA is to keep from the matrix Q only the

� first most significant components which gives

Q� = [q1,q2, . . . ,q�] = [p�
1 ,p

�
2 , . . . ,p

�
� ]� , (5)

where the ��ℎ row p�
� of the matrix Q� is the vector of

virtual coordinates of the node �� using only � principal

components. Q� can be seen as the projection of the hop count

matrix P into the space spanned by its first � most significant

eigenvectors.

The Euclidean distance between the virtual coordinates of

the nodes obtained from the PCA is then used to estimate the

logical distance between each pair of nodes (��, ��) as follows

�(��, ��) = ∥p�
� − p�

� ∥2. (6)

Notice that by over reducing the dimensions of P (for

visualizations purposes), the authors in [7] degraded the

performance of the logical distance because they neglected

important singular values. Curiously enough, their method

provided a homomorphic map that has a similar shape to the

original network.



In routing applications [3], [4], [9], this logical distance

� is directly used to identify the neighbor nearest to a given

destination node for the next link in traffic routing. We propose

a new use of the distance � to estimate the connectivity

between network nodes.

Let us examine an exemplary distribution of the logical

distances between each possible pair of nodes of a ran-

domly generated network composed of 400 nodes in Fig.

1. From this example, we can clearly see the distinction of

distance distributions between connected nodes (denoted by

�1 = {�(��, ��); �(�, �) = 1}) and non connected nodes

(denoted by �0 = {�(��, ��); �(�, �) = 0}). This observation

motivates our design of a binary hypothesis test based on the

logical distance �(��, ��) between nodes. Thus, we propose

PCA binary hypothesis testing (PCA-BHT) that compares the

logical distance against a threshold � to decide whether the

nodes �� and �� are connected. For the symmetric � × �

adjacency matrix E that we want to recover, our hypothesis

testing should be

�(�, �) =

{

1, if �(��, ��) ≤ �

0, if �(��, ��) > �
(7)

Fig. 1. Distribution of logical distance

III. PROPOSED NETWORK TOPOLOGY INFERENCE METHOD

A. Tree-based search method using hop count measurements

In this section, we aim to extract information about the

connectivity between the networked nodes using the hop count

matrix P in order to formulate constraints on the values of the

unknown connectivity relationships. The proposed method is

applicable to any connected graph and it is based on generation

of a tree for each anchor node. We begin by assigning a given

anchor node �� to the root of a tree ��. Next, based on the

hop measurements provided by anchor �� we construct ��

by placing all the nodes which are � hops away from anchor

node �� in the ��ℎ layer of the tree �� which is denoted

as ��,� i.e. ��,� = {��; ℎ��,��
= �}. Finally, we draw

the edges between the placed nodes by respecting the rules

stated in Algorithm 1 which utilizes the following constraints

to specify the connectivity between nodes �� and �� :

∙ �� and �� are disconnected if their hop count, with respect

to a same anchor ��, differs by more than one hop.

∙ �� and �� are connected if their hop count, with respect

to a same anchor ��, differs by exactly one hop say

for example ℎ�� ,��
= ℎ��,��

+1 and the cardinality of

��,ℎ��,��
is equal to 1 i.e. contains only one node.

The output of Algorithm 1 is a set of constraints on the

connectivity information that can be seen as an incomplete

adjacency matrix E′ where �′(�, �) is equal to ’1’ if �� and

�� are connected, ’0’ if not and ’?’ if the connectivity cannot

be determined given the set of anchor nodes.

Data: P

Result: E′

for each anchor �� do
Generate a tree �� by assigning the node �� to the

root and the remaining nodes to lower layers based

on their hop distance to �� ;

for each pair of nodes �� and �� do
Denote ��,ℎ��,��

and ��,ℎ��,��
the respective

layers of �� and �� ;

if ∣ℎ��,��
− ℎ�� ,��

∣ > 1 then
�′(�, �) = 0

else if ∣ℎ��,��
− ℎ�� ,��

∣ = 1 &

Card(��,���{ℎ��,�� ,ℎ��,��}) = 1 then

�′(�, �) = 1
else

�′(�, �) = ’?’

end

end

end

Merge the obtained adjacency matrix from each anchor

��;
Algorithm 1: Proposed tree based search algorithm

As an illustrative example, we consider a simple network in

Fig. 2 with one anchor (node �1) and the generated hop count

matrix P corresponding to that anchor. The tree generated for

anchor �1 is shown in Fig. 3 where

∙ solid edge between �� and �� means �′(�, �) = 1
∙ absence of edge between �� and �� means �′(�, �) = 0
∙ dotted edge between �� and �� means unknown �′(�, �)

Using these constraints, we obtain the incomplete adjacency

matrix in Fig. 3. It is clear that by using the measurements

from multiple anchors at the same time we can reduce the

number of unknown edges furthermore. Therefore, the ob-

tained incomplete adjacency matrix E′ represents a set of

constraints on the connectivity relationships between the net-

worked nodes. Next, we will exploit the obtained constraints

in order to improve the PCA-BHT and provide the complete

adjacency matrix E and thus recover the topology of the

network.



Fig. 2. Graph representing anchored network node and anchor measurements

Fig. 3. Tree generation and incomplete adjacency matrix

B. Modified PCA-based binary hypothesis testing (MPCA-

BHT)

We show hereafter that the pre-processing step, detailed in

Section III-A, can be used to achieve two goals. First, we

reduce the number of unknowns for PCA-BHT. Second, we

provide a reasonable value of � to use in (7) in order to recover

the complete network topology.

We showed in the previous section that the simple infor-

mation of hop measurements provided by a set of anchor

nodes contains some constraints about the edges that we can

extract using Algorithm 1. However, the output of Algorithm

1 is an incomplete adjacency matrix since it may contain

unknown entries. An unknown entry in the (�, �) position of

the incomplete adjacency matrix E′ means that Algorithm

1 is not able to decide whether node �� and node �� are

connected. To remove this ambiguity, we propose to use

the PCA-based method presented in Section II to generate

virtual coordinates of the networked nodes then determine the

connectivity relationships by applying the binary hypothesis

test (7).

We start by reducing the number of unknowns involved

in the PCA by extracting fully determined nodes from the

incomplete adjacency matrix E′. We define a node �� to be

fully determined if the connectivity relationships between ��

and the remaining networked nodes are known. In other words,

�� is fully determined if the ��ℎ row and ��ℎ column of the

incomplete adjacency matrix E′ do not contain any unknown

entries. For example, Fig. 4 shows the incomplete adjacency

matrix of the network used in the example of Fig. 2. We notice

that nodes {�1, �2, �3, �9} (green diagonal elements) are fully

determined since their connectivity with the remaining nodes

of the network is known. However, nodes {�4, �5, �6, �7, �8}
(red diagonal elements) are clearly not fully determined.

Fig. 4. Example of incomplete adjacency matrix

Since the fully determined nodes have known adjacency

relationship with all the nodes in the network, it is no longer

necessary to include them as unknowns in the PCA. Suppose

we have a network of � nodes and � anchors. If we obtain

� ′ fully determined nodes from Algorithm 1, then the hop

count matrix P used in PCA will be of dimension (�−� ′)×
� instead of � ×� . Consequently, this will further reduce

the complexity of PCA and PCA-BHT.

The second advantage of the pre-processing step is to

provide a value for the threshold � which is used in the binary

hypothesis test (7). After applying Algorithm 1 and obtaining

the incomplete adjacency matrix E′, we can define �� as

the set of pair of nodes that are whether connected or have

unknown connectivity relationship

�� = {(�, �);�′(�, �) = 1 or �′(�, �) = ’?’}. (8)

Next we define � as

� = max
(�,�)∈��

{�(��, ��)}. (9)

Note that the number of connected pairs of nodes that are

obtained from the incomplete adjacency matrix E′ could not

be enough to estimate the value of �. Hence, it is reasonable

to add the unknown edges to the set ��.

IV. TRAFFIC ROUTING IN THE NETWORK

One of the most important applications of network topology

inference is to execute traffic routing operations optimally.

There exist a few routing strategies that were previously

developed for connected networks. We distinguish between

algorithms that are based on simple hop counts [3] versus algo-

rithms that are based on known geographical coordinates [14].

We consider in this section two existing methods known as the

Logical coordinate routing (LCR) [3] and Greedy Perimeter

Stateless Routing (GPSR) [14] for benchmark comparison.

LCR method uses the hop count measurements provided



by a set of anchors. LCR simply forwards packets to the

neighbor that is closest to their destination nodes in terms

of logical distance. The shortcomings of LCR include the

risk of infinite loop and local minima due to the ambiguity

of virtual coordinates. On the other hand, GPSR is a more

efficient routing algorithm but it requires accurate geographical

node locations. Such requirement is costly and less practical

in networks with limited resource. Nevertheless, because of its

accuracy, we include the GPSR method in our performance

comparisons as a benchmark.

The proposed network topology inference can be used to

perform routing in networks. In fact, the adjacency matrix E

obtained from the MPCA-BHT can be used to find the shortest

path for traffic routing from a source node �� to a destination

node ��. When the recovered adjacency matrix is obtained

without edge error the shortest path is guaranteed and can be

found by using a simple algorithm such as Dijkstra. Hence, the

only source of delivery failure in our case can be attributed

to an error in the recovered adjacency matrix. Such routing

failure becomes less likely as the number of anchor increases,

to be seen in the next numerical simulation section.

Regarding communication overhead, we note that both LCR

and the proposed MPCA-BHT must account for the cost of

communication associated with obtaining the hop count matrix

P although they differ in ways of utilzing the hop count

information. LCR iteratively explores the neighbors until a

packet reaches its destination which may lead to not only a

suboptimal path and a possibly infinite loop, but also addi-

tional communication overhead arising from the local neighbor

exploration step. On the other hand, the proposed MPCA-

BHT method does not require such additional communication

overhead because the obtained adjacency matrix provides a

global information with respect to the topology of the network.

Hence, it allows us to apply Dijkstra’s shortest path algorithm

on the obtained adjacency matrix with a computational com-

plexity of order �(� log(�)).

V. SIMULATIONS

We now test the efficiency of our proposed MPCA-BHT to

recover the network topology based only on knowledge of hop

count measurements between the networked nodes and a set

of anchor nodes. Consider a wireless network. We randomly

deploy � nodes in a coverage area. Edges between the nodes

are generated based on the communication range � of the

nodes. Thus, for any node located at the position (�, �) in the

2-dimensional plane, we allow edges to exist from that node

to all other nodes located within a radius �. This leads to a

network with random unknown topology.

First, we run the proposed tree-based search (Algorithm 1)

to determine the incomplete adjacency matrix. Second, we

test the PCA-BHT method given in Section II. Finally, we

apply the MPCA-BHT method developed in Section III-B. For

each method, we calculate and plot the percentage of edge

reconstruction error as a function of the number of anchors

and the number of nodes in the network. We average over

500 Monte Carlo runs in all the figures otherwise stated. The

test results are given in Figs. 5 and 6. It is worth noting

that an edge reconstruction error in the PCA-based methods

is a flipped 1 or 0 in the reconstructed adjacency matrix

of the network. However, in the proposed tree based search

(Algorithm 1), because it is not possible to commit an error

by flipping a 0 or 1 in the adjacency matrix, we only show

the percentage of unknown edges rather than the percentage

of edge reconstruction error.

The simulation results show that the tree-based search alone

is not enough to recover the full connectivity information of

the network as there still is a high percentage of unknown

edges especially for low number of anchors. However, after

applying our tree search as preprocessing to estimate the

suitable value of threshold � before using the PCA-BHT

method, the error percentage is substantially reduced. Clearly

the MPCA-BHT algorithm outperforms the original PCA-

BHT method. In Fig. 5, we notice that the performance of

connectivity recovery of every tested method improves as the

number of anchors grows. In fact, by increasing anchors, we

can form more constraints on the connectivity relationships

using Algorithm 1. Thus, we have a better estimate of the

threshold �, thereby enabling us to utilize the PCA-based

method more efficiently. Fig. 6, shows that the performance

of connectivity recovery degrades when the total number of

networked nodes � becomes large, since it results in more

unknowns.

For traffic routing applications, we generate random net-

works with random anchor locations. We also randomly

choose the starting and destination nodes for traffic routing.

Applying our proposed topology inference algorithm to rout-

ing (Section IV), Fig. 7 shows the resulting packet delivery

rates (percentage of successfully delivered packets) of different

routing methods. Our proposed method outperforms LCR and

approaches the benchmark GPSR performance as the number

of anchors increases. Higher number of anchors allows more

efficient recovery of the network edges, as shown in Fig.

5. Thus the shortest path between any two nodes can be

found with higher probability. In Fig. 8, we are interested

in examining the routing path length. We let � be the ratio

between the routing path length and the shortest path length

given successful packet delivery. As expected, given successful

delivery, our proposed method always succeeds in finding the

shortest path (� = 1). However, LCR often results in longer

routing paths (� ≥ 1) and therefore requires more resource

usage.

VI. CONCLUSION

Our investigation studies the recovery of unknown network

connectivity without prior topology information. Our specific

goal is to recover the adjacency matrix of networked nodes by

adopting a very simple measurement of hop distance between

network nodes and designated anchor nodes. We developed a

tree-based search algorithm to establish certain connectivity

constraints between network nodes. Applying principal com-

ponent analysis, we formulated each unknown edge decision

as a binary hypothesis problem based on logical euclidean
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distance between two nodes. We developed a modified PCA-

based method with improved performance. We successfully

applied the proposed network topology inference method

for traffic routing through the networks. Our planned future

research works include the use of robust PCA techniques to

deal with missing and corrupted hop counts.
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