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On Linear Precoding of Nonregenerative MIMO
Relay Networks for Finite- Alphabet Source

Xiao Liang

Abstract—Multiple input and multiple output (MIMO) relay
could provide broader wireless coverage, better diversity, and
higher throughput. Most existing precoder designs for either source
or relay node are based on the assumption of Gaussian input sig-
nals. However, recent works have revealed possible performance
loss of MIMO systems originally optimized for Gaussian source
signals when applied to practical finite-alphabet source signals.
In this work, we investigate the design problem of joint MIMO
precoding for wireless two-hop nonregenerative cooperative relay
networks under finite-alphabet source signals. We identify several
structural properties of optimal precoders. Specifically, we pro-
vided the optimal left singular vectors of the relay precoder, and
proved the convexity of mutual information with respect to the
square of relay precoder singular value. These results generalize
the two-hop relay networks in Gaussian input assumption to the co-
operative relay networks in arbitrary finite-alphabet input signals.
Furthermore, we propose gradient-based numerical iterative opti-
mization algorithms not only for arbitrary finite-alphabet source
signal precoding but also for cooperative relay networks which may
or may not have a direct source to destination link. Qur results
demonstrate substantial performance improvement over existing
precoder designed traditionally under Gaussian input assumption,
which indicates that the waterfilling based precoding strategy is
not suitable for finite-alphabet constellation source inputs.

Index Terms—Amplify-and-forward, mutual information, min-
imum mean-square error, convex.

1. INTRODUCTION

ELAY stations have already been widely deployed in wire-
less networks, such as 4G long-term evolution (LTE) and
wireless local area networks [1], [2]. Specifically, when the des-
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tination is far from the source (e.g. at the edge of cell), a relay
station activated between the source and destination can sub-
stantially improve source-to-destination transport. Compared
with point-to-point transmissions, such a three-node coopera-
tive relay networks [3], [4] is a promising approach to offer
higher power efficiency and throughput, deliver better reliabil-
ity through diversity, reduce potential interference among users
and provide broader wireless coverage. Generally, there exist
three different types of relays: amplify-and-forward (AF) [5],
decode-and-forward (DF) [6] and compress-and-forward (CF)
retransmissions [7]. AF protocol is usually the simplest realiza-
tion with shorter processing delay and potential lower cost.

Therefore, the problem of optimum cooperative AF relay
networks design has attracted substantial research attention in
recent years as a simple form of cooperative wireless network-
ing topology [8]. Many researches have attempted to jointly
optimize source and relay transmission, especially in MIMO
scenarios. For instance, Behbahani and coauthors [9] investi-
gated MIMO relay network design to minimize MMSE and
maximize signal-noise ratio (SNR). Tang, et al. in [10] stud-
ied relay precoder design for maximizing channel capacity by
providing a closed form solution without direct source to des-
tination link. Source precoding was also jointly optimized with
relay precoder in [11]. Rong, et al. in [12] further extended
this three-node relay prototype with a unified work for MMSE
and capacity criterion. [13] presented semi-analytical deriva-
tions of the achievable rate of relay networks. To accommodate
a generalized configuration with multiple sources, multiple re-
lays, and multiple destinations, a unified approach to optimal
transceiver design for AF MIMO relaying has been investigated
in [14]. Meanwhile, without dropping the source-destination
link, [15] further presented a semi-closed form solution for AF
MIMO relay. By considering the impact of imperfect channel
state information (CSI), [16] studied the precoder design and
the achieved information rate for AF MIMO relay network.

It should be noted that the aforementioned works were im-
plicitly based on the well known assumption of Gaussian source
signals. However, practical communication modulate source
signals use a finite constellation alphabet (e.g. QAM). In
such case, [17] proposed a mercury/waterfiling (MWF) power
allocation algorithm for parallel channels, and illustrated severe
performance loss when using traditional waterfilling algorithm.
[18] and [19] further investigated the optimal precoder design
for point-to-point MIMO channel. To reduce the computational
burden of precoder design, [20] derived a lower bound of mutual
information. Recently, the precoder design with finite constel-
lation alphabet constraints has been studied for scenarios of the
generalized spatial modulation [21], MIMO H-ARQ channel
[22], multiple access channel [23], relay networks [24], cogni-
tive radio networks [25], interference channel [26], multi-input
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single-output downlink multicasting channel [27], and coopera-
tive multi-cell MIMO downlink channel [28], among others. All
results have exhibited the potential performance loss in terms of
achievable mutual information between source and destination
if designs optimized for Gaussian sources are naively applied
to practical systems driven by finite-alphabet input signals.

In this work, we consider the well known two-hop three-
node relay network of multi-antenna transceivers under finite-
alphabet inputs. The source signal are first precoded before
transmission. Then, an AF node relays its received signals after
linear precoding to destination. Both source and relay nodes
are under the sum power constraints, respectively. We study
optimal designs of source-relay precoders that maximize the
system mutual information.

Unlike the case involving Gaussian inputs, the literature does
not contain much work on rate maximization for relay networks
with finite-alphabet inputs. Since the mutual information of re-
lay networks is generally non-concave with respect to either
source precoder or relay precoder, this maximization of mutual
information for rate increase is a more challenging problem.
Moreover, the mutual information generally lacks closed-form
expression, and it also involves higher computational complex-
ity. In this work, we present several important insights and
propose a gradient based iterative numerical optimization al-
gorithm for a heuristic precoder structures for source and relay
precoders with and without source-to-destination channel. More
specifically,

1) We prove that the left singular vectors of the relay precoder
coincide with the right singular vectors of the relay-to-
destination MIMO channel.

2) Extending results of [19] for point-to-point MIMO
transceiver, we further prove that the mutual information
is a concave function with respect to a quadratic function
of the singular values of the relay precoder.

3) By adopting the optimal singular vectors generated ac-
cording to Gaussian input assumption, we prove that the
mutual information is also a concave function of source
precoder power. Thus, we extend results in [12] to the
same system under finite-alphabet constellations.

Our contributions differ from two published works on relay
networks with finite-alphabet constraints. In comparison with
the works in [24], we consider the more general MIMO relay
channels whereas [24] considers single antenna transceivers.
Second, the problem in [24] can be completely transformed
into a point-to-point MIMO problem whereas our focus is on
a more general relay problem which poses practical challenges
and cannot be similarly mapped. Our results also extend the
work of [29], which only targets the design of relay precoder
but not at the source. Furthermore, due to the space limitation
of conference paper, the proof of those conclusions are absent.
In this work, we provide a full proof for those conclusions.
Moreover, we present a joint source-relay precoders design that
can achieve substantial performance improvement.

We organize this manuscript as follows. Section II describes
the three-node relay networks model and presents the basic
problem formulation and preliminary information. Section III
presents our main results on the convexity of some singular-
value decomposition (SVD) components of precoders and re-
sults on the derivatives of mutual information with respect to
some percoder parameters. In Section IV, we propose a special
precoder structure and utilize our main results to design gradi-
ent based optimization algorithms. We present the simulation
results in Section V before concluding with Section VI.
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Fig. 1. A two-hop three-node orthogonal MIMO relay model.

II. SYSTEM MODEL AND PRELIMINARIES

A. Notations

Normal fonts denote scalars. Bold lower and bold upper case
symbols denote vectors and matrices, respectively. The super-
scripts (-)*, (-)7 and (-)' denote conjugate, transpose and conju-
gate transpose operation, respectively. Vector e; is the standard
column vector whose elements are zero except for its ¢—th unit

element. Tr(A) is the trace of matrix A. ||A|| = y/Tr(AAT)
is the Frobenius norm of A. E{-} denotes statistical expecta-
tion. (b). = max(b,0). vec(A) returns a column vector from
matrix A by stacking its column vectors. ® and ® are the
Kronecker product and Hadamard product, respectively. & is
the Kronecker sum operator. For A and B as m-by-m and
n-by-n matrices respectively, A @& B is an mn-by-mn matrix
(A®IL,)+ (I, ®B). [A];, with one subscript, extracts the i-
th column from A whereas [A];; denotes the (4, j) —th element
of A. Suppose A is positive semi-definite, and the correspond-
ing eigen-decomposition of A is Ua X4 UX . Then the square-

1
root of A is defined as A? 2 U A EZ UX . Furthermore, when

_1
A is strict positive definite, A3 2 UpaX,’ UK.

B. System Model

Consider a two-hop three-node MIMO relay network shown
in Fig. 1. Assume the source-to-destination channel Hy and
relay-to-destination channel H, are orthogonal, either in time
or frequency. Source node broadcasts signals sequentially. When
the source-to-destination channel is unreliable, relay may assist
destination by amplifying and forwarding its received signals.
Based on both sets of signal received from the source and the
relay, the destination can jointly detect the source signals. Our
focus is the design of linear MIMO precoders R and S, respec-
tively, for relay and source, under individual power constraints.

In our design, we assume that the precoder optimization is
carried out at the destination. Before the finite-precision effect
evaluations on CSI and precoders in Section V-E, we suppose
that the destination feedbacks the accurate source and relay
precoders to relay node, and the relay node forwards the accurate
source-to-relay CSI and feedbacks the accurate source precoder,
respectively, to the destination and source through a dedicated,
band unlimited and error free channel, respectively.

We denote the numbers of antennas at source, destination and
relay to be M, L and N, respectively. For reasons stated in [12],
we consider square precoders R € CV>*V and S € CM>*M  Our
diagram denotes the source-to-destination channel, the source-
to-relay channel and the relay-to-destination channel as Hy €
Ch>M H, € ¢N*M and H, € C**V, respectively.

Let x be the source signal vector whose elements are in-
dependent, zero mean with unit power from finite alphabets.
Let n, € CN(0,021I) be the relay channel noise vector. The
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received signal vector at relay is

P. —
vy, = UMSHlsx—l—nT (1)
Ps

where 37 is the normalized average power on each transmit
antenna such that P; is the total source transmission power.
At the destination, the received vectors from source and AF

relay, respectively, are

P. _
Ya1 =/ MbHOSX +ng )

yor = bRy, + ng» 3)

where ng; € CN(0,02,I)andng, € CN(0, 03,1) are the noise
vectors for the orthogonal source-destination channel and relay-
destination channel, respectively. We can first whiten the noise
in y4» by applying an invertible noise whitening filter

L _\—1)2
F2 (0521 + afﬂzRRfﬂg)

without loss of any signal information.

Thus, the overall received vector ¥ at destination is obtained
by applying the noise whitening filter F' into (3) and stacking
received vectors of (2) and (3),

_ P S HO _
y % [FHzRﬂl ] Sx+1n 4)
where n, the equivalent 2L x 1 noise vector at the destination,
follows CN (0, diag (o3,L,1)).

Our goal is to design the source precoder S and the relay
precoder R under individual power constraints to maximize the
mutual information between source and destination:

max I(x;y) (5a)

S.R

st.  E(|Sx|) <M (5b)
E (I[Ry.[]*) < P . (5¢)

Obviously, the relay power constraint (5¢) can be written as
_ P. _ L
Tr [R(aZI + A}HISSTH{)RT] <P .

To simplify the constraint, we define a new precoder matrix R,

oz N - 1
R 2 5RO+ H,SS'H|): (6)
where we define the equivalent channel H; £ %ﬁl.
Hence, the constraint (5¢) is converted into
E ([Ry:|*) <P = |R[F < N. (7)

From (6), we can easily compute R once R is found. The
relationship among R, R and relay ‘whitening’ filter, which
whitens the received signal y,., could be shown in Fig. 2.
Henceforth, unless explicitly specified otherwise, we would
focus on the new defined relay precoder R and the associated
power constraint (7).
To further simplify our formulation, we also define Hy =

Ps 1 A VO & :
\/“;17 Hjy and H, = SN H,. Consequently, the receive
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Fig. 2.
pre-filter.

Relay precoder concatenated with the received vector y, whitening

vector y is equivalently reformulated by substituting definitions
F, R, Hy, H, and H, into (4) as follows

y=Wx+n ®)

where n € CN(0,I) is normalized with unit variance, and we
define

2 Ho 1 S
(I + TTT)7E TH,
. -3
T2 H,R (1 + HISSTH'f) " ©)
Our problem of (5a)—(5c) is equivalently
max I(xy)
st. [IS|IP<M
IRIP<N. (10)

From now on, unless explicitly specified otherwise, we shall
work on the equivalent model defined in (8), (9) and (10).

C. Preliminaries

Before we present our main results, it is necessary to first
introduce some basic facts. Consider a complex-field vector
channel model in (11), where A is the equivalent channel matrix,
x is the source vector with arbitrary distributions, the vector n
is CN(0,1) and observed vector y is

y = Ax + n. (11

The MMSE estimation of x based on the observation of output
y is the conditional mean X (y) = E(x]y) and the corresponding
MMSE matrix and companion matrix conditioned on a specific
observation y [19], respectively, are defined as

P (y) 2E{x—x)x-x)' ly} (2

Voo ) 2 E{x—x)] x =% Iy} . (13)

X

Furthermore, we can obtain the MMSE matrix and companion
matrix by averaging over the observation y,

Qxx'* = ]}I? [(ﬁxx't (Y)]
q:IXXT = IE [‘I’xxT (y)} .

Note that p(y|x) o exp (—||y — Ax]|[?). The mutual informa-
tion between x and y is
g 202

p(y)

For Gaussian input, a unitary transformation U on the input
and a unitary transformation V on the output does not change the

I(x;y) = E

X,y

(14)
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mutual information between channel input and output signals.
However, for non-Gaussian input, unitary U no longer preserves
mutual information, i.e.,

I(x; Vy) = I(xy) # Z(Uxyy) -

III. MAIN RESULTS

In this section, we will present some properties for the com-
ponents of SVD of source and relay precoders. Before giving a
review of our results, we first take precoders and channels apart
by SVD, respectively, as

s Y U,z Vi

SVD
H, =

R U, 2, Vi

SVD
Uy, 3y, Vi, Hy = Uy 3, VI

As a preview, in this section, Proposition 1 characterizes the
optimal left singular vectors for relay precoder R. Theorem 2
highlights the convexity of the mutual information with respect
to the power allocations for relay precoder. To develop algo-
rithms of gradient search, Subsection III-B presents the deriva-
tives of the mutual information with respect to the right singular
vectors of S, the precoder S and R, respectively. These prop-
erties are useful in the next section when searching for optimal
precoders for the relay networks.

A. Structural Properties of Optimal Precoders

To begin, we recite a useful theorem discovered by Xiao, et al.
in [19]. In particular, we simply let H = I and replace G with
A in Theorem 1 of [19].

Theorem 1: For the general model of (11), the mutual in-
formation Z(x;y) depends on A only through Q = ATA. The
gradient of Z(x;y) with respect to Q is

0
TQ*I(X; y) = Puxi
where @, is the MMSE matrix. Furthermore, Z(x;y) is a
concave function of Q.

Note that, Theorem 1 states that the derivative of mutual
information with respect to Q is always the MMSE matrix
P . It is indeed the general (vector) form of the well-known
relationship between the mutual information and MMSE of x
in the following scalar channel [30]

y=pz+n
by replacing Q and ®,,; with p and mmse(z), respectively, in
(15).

This theorem is very useful. If A = HG, it captures the
point-to-point MIMO precoding problem in [19]. If A =
[(H;S))"--- (HkSk)T]T, it can be applied for an MIMO H-
ARQ problem in [22]. In our formulation, defining

B2 WwWiw

s)

(16)

we conclude that

0
@I(X; y) = <§xxT .
Furthermore, Z(x;y) is a concave function of B.

Proposition 1: For the optimization problem in (10), the left
singular vectors of the optimal precoder R, can be always chosen
to coincide with the right singular vectors of channel Hp, i.e.,
Up = Vy,.
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Proof: See Appendix A. |
Theorem 2: When Uy = Vy,, the mutual information

Z(x;y) of (8) is a concave function of X2 . Furthermore, the
gradient of the mutual information with respect to 32 is given by

iI(x; y) = diag (2, VIK'®, [ KV, Zy,)

17
55 (17)
in which
1
K 2 S'H] (1+HSS™H] )’
, 3 —1
X (I+H1SSTH§ +R*H§H2R) (18)
Proof: See Appendix B. |

Furthermore, consider the scenario without direct link. Sup-
pose the singular vectors of source and relay precoders are set
with the value shown in (20). We could obtain the follows by
substituting the values in (20) into (28) (defined in Appendix A),

B =
—1
VIS T B, I+ 35 32+ 3 5;) Vi. 19)

Obviously, the singular vectors of source and relay precoders are
structural symmetric. Combining the result of Theorem 2, we
conclude that the mutual information is also a concave function
of 2. This result is summarized in the following corollary.

Corollary 1: Consider the scenario without direct link, i.e.,
H, = 0. If source and relay precoders select what are optimal
for Gaussian source signals [12], i.e.,

Us :VH17 Vi = UH17 U :VH2 (20)

then the mutual information Z (x; y) of (8) is a concave function
of 32. Moreover, the partial derivative of the mutual information
with respect to 32 is given by

o) . .
8—ZgZ(x; y) = diag { VI ®, V2] l zgzzg (I+ zizzg)

x(1+33, 3+ 3 32) 7 e

Remark 1: It should be emphasized that Corollary 1 strongly
depends on the choice of singular vector of source and relay
precoders. Once the choices in (20) is violated, the convexity of
mutual information with respect to X2 could not be preserved.
Note that our convexity results on power allocation for source
and relay are more general than that in [12] because

1) Both Theorem 2 and Corollary 1 state that the individual
power allocation for source precoder and relay precoder
are convex problems under certain conditions.

2) For relay power allocation, we obtain a looser condition
of Up = Vy, versus the condition in [12] which requires
diagonalizing the relay networks without direct link, and
further requires the Gaussian source assumption.

3) For the source power allocation, we obtain the same con-
clusion as in [12] but without requiring the Gaussian signal
assumption.

B. Gradient Properties of the Mutual Information

Thus far, we have presented the convex properties of separate
power allocations for source and relay. However, the joint power
allocation problem for source and relay is generally not convex,
as shown in [12]. As a result, we would like to impose some
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Fig. 3. General joint source and relay precoders design.

structural constraints on the precoders and propose specially
designed numerical algorithms to search for good power alloca-
tion under the precoder structural constraints. We will present
our gradient based numerical algorithms in the next section. For
gradient based methods, we present the following results that
can be helpful. Details are in Appendix C.

1) The gradient of the mutual information Z(x;y) with

respect to V of the source precoder S is

0
———Z(x;y) = Vi B®,,: .
av; (va) S XX

2) The gradient of the mutual information Z(x;y) with
respect to source precoder R is

(22)

o .
@I(x; y) = HH,RK'®, K .

3) The gradient of the mutual information Z(x;y) with
respect to the source precoder S is

0
aS*I(Xa Y) -

[HgHO +HITIT(I+TIT)'H, | S®,. — C (24)

(23)

in which the element of matrix C can be obtained via

Ci; = [vec(®L)]" (D" ®@ D)(L* @ L)

x[(0"®© 0) (0" ®0)] "' ([H{); ® [H,S];)

and matrices D, L and O are defined as follows to simplify

C
D 2 STH{([1+ T/T)™! (25)
L2 T'H,R (26)
S <I+HlsSTHD§ @7)

IV. ITERATIVE PRECODER DESIGNS

The joint source-relay precoder design has been shown in
Fig. 3. Both precoders have been decomposed by SVD. Based
on Proposition 1 and Theorem 2, we can always choose the
optimal Uy = Vy,, which converts the power allocation for
relay precoder into a convex problem. However, the remaining
three unitary transformations Vg, Ug and V have no known
simple relationships with respect to the mutual information.
They pose challenges to the precoder optimization problem that
we seek to tackle. We now address them differently.

We have learned from existing works [17], [19] that, in point-
to-point MIMO communications, the linear transformation by
'V at the source before power allocation is highly critical when
non-Gaussian source signals and mutual information are con-
sidered. It is therefore intuitive to conclude that Vy is equally
vital in our relay network and must be handled with extra cau-
tion. In particular, Vg should be optimized without imposing
structural assumptions.

9765

Relay

Power Allocate

Whitening |

R Ch

Fig. 4. The precoders design with direct link Hy.

Observe from the diagram of Fig. 3, that the source sig-
nal vector x is processed sequentially by these three unitary
transformations. Based on the Central Limit Theorem, linear
transformation of even the non-Gaussian source signals leads
to random variables that are more Gaussian-like. For this rea-
son, later transformations in this diagram are likely to be more
tolerant of the Gaussian assumption without causing substantial
performance loss. Therefore, to simplify our relay design, we
let Vi = Uy, which is the optimal selection under Gaussian
source signals [12]. Under this selection, we reduce the relay
precoder design to the power allocation problem.

Next is the choice of Ug. It turns out that the two cases arising
from relay networks with and without direct links need to be
considered separately.

1) When there is no direct link, based on Corollary 1, we
assume that the transformation by V¢ has been optimized
so that the transformed signal arriving at Uy is closer to
Gaussian. Thus, we set Us = Vy, which is optimal with
Gaussian source inputs. With this special precoder con-
straint, the power allocation problem of source precoder
has been proven convex and can be optimized. Therefore,
without direct link, we will optimize Vg by constraining
the selection of Ug and Vy to take the forms optimal
under Gaussian.

2) When there exists the direct link Hy, the design of S is
more complex as it depends on two channels. We should
note that even for the well known Gaussian source as-
sumption, the optimal solution remains elusive. For this
reason, we do not further assume any extra structural con-
straint on S. Instead, we will optimize S by applying gra-
dient search algorithms based on the gradient properties in
Section III-B.

Before we discuss our precoder designs for these two cases in
more detail, it should be noted that, our next proposed alternative
optimization benefits from the new defined relay precoder in
(6), which decouples the original coupled source-relay power
constraint.

A. Relay Networks With Direct Link H

Our proposed design of relay network precoders with direct
link Hy is based on the choices of Uy and Vi as discussed
earlier. The structure of the relay network precoding is illus-
trated in Fig. 4. More specifically, for relay precoder, we reduce
the problem into the optimal power allocation X% . For source
precoder S, we apply the gradient descending method to search
for the optimal S.

Although the joint problem maxg 52 Z(x;y) is not convex,
we still could optimize these two unknown matrices iteratively.
Hence, we have two optimization sub-problems as follows.

max Z(xy|S3)

max Z(x;y|S)
R
st. E(|ISIP) <M st Te(Z2)< N
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Fig. 5. Proposed joint source-relay precoder design without direct link H.

Similar to the method proposed in [12], we can obtain good
results by optimizing these two sub-problems iteratively.

The classic text [31] established that a gradient descend-
ing algorithm for constrained optimization problem can consist
of three steps: the gradient calculation, the projection of vari-
ables on constraint surface, and setting the stepsize. Based on
Theorem 2 and Appendix C, the gradient of these two sub-
problems are

B
aS*I(X’ y)

0 1 0

The projections for S and 32 are

[ M N ,
TS = W'& Wz%Zm(ER)Jr

respectively. We acquire a proper gradient descending stepsize
according to the Armijo scheme [31]. Our iterative algorithm
begins with randomly generated S and X2 . Because this itera-
tive process promises improvement after each optimization step
with the power constraint, it ensures local convergence.

Vs =

B. Relay Networks Without Direct Link Hy

Although we may treat the case of three-node relay network
without direct link as a special case of Hy = 0, we can in fact
do better by utilizing its special properties and structure. More
specifically, we choose the singular vectors of source and relay
precoders to match the singular vector of corresponding chan-
nels. Therefore, the overall channel has been diagonalized as
shown in Fig. 5.

To optimize, we have three unknown matrices to acquire: »2,
32 and V. Again, since the joint problem

max  Z(x;y)

Vs, 22,52

is not convex, we may optimize them one-by-one in an iterative
fashion by freezing the remaining ones when optimizing one
matrix.

Applying Theorem 2 and Corollary 1, we find that the sub-
problem of optimizing 32 and the sub-problem of optimizing
32 while freezing the remaining two unknown matrices are both
convex. This convex property makes the respective sub-problem
iteration easier. However, the optimization of Vy itself is not
convex. Similar to the method for the first case with direct link
Hy, we divide the design problem into three sub-problems to
solve in Fig. 6.

Because the gradient and the corresponding projection for
32 have been given in the previous subsection for networks
with direct link, we will only provide the gradients for X2
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n}_agx I(x;y|Vs,Eé) rr;%x I(x;y\VS,Eé) n{[zilx Z(x;y\Z;,Zf{)

st Tr(E)<M st Tr(Z3)sN st VW =1

Fig. 6. Three sub-optimization problems.

Qi) Qe (Gpime5)

Iteratively Update
Fig. 7. Iterative optimization for the case without direct link H.
and Vy,
0 1 0
) f )
Vv, = Vs [ —Z(x; Ve — —1T.

Accordingly, the constraint projections are

M 2
™ T o

Tve = arg min |[V5 —P|*.
PPi=I

Noting that the optimization for Vy is defined on the Stiefel
manifold, we adopted the gradient and projection for Vg from
[32]. We also adjust the stepsizes for the three matrices by apply-
ing the Armijo algorithm. To summarize, these three unknown
matrices are iteratively and sequentially updated in the manner
shown in Fig. 7.

It should be noted that, despite in the proof of our Theorem 2
that the mutual information of cooperative system is convex with
respect to the power vector of relay precoder, the overall joint
source-relay precoder design problem is still non-convex. As
our special case, the problem with Gaussian input [12], [33] has
already reported this non-convexity. Consequently, all our pro-
posed algorithms optimizing parameters alternatively are inher-
ent sub-optimal. Nevertheless, we could pick the best precoders
as final solution by applying optimizing under sufficiently many
random initializations.

V. SIMULATION RESULTS

A. Test Setup and Comparisons

In our simulations, we adopt the definition of [10] and de-
fine the signal-noise ratio (SNR) for the source and the relay as
ps = Ps /oM and py = Py /03, N, respectively. Essentially
the SNR is the ratio of average power on each transmit antenna
to average additive Gaussian noise power on each receiver an-
tenna. Without loss of generality, we set all noise variances
to one and examine the effect on the mutual information be-
tween source and destination with respect to different pg and
pr designs. As described in Section II, the elements of three
MIMO channel, source-destination channel Hy, source-relay
channel H, and relay-destination channel Hj, are independent
and identically distribution (i.i.d) zero-mean and unit variance
Gaussian entries following CN(0, 1). They are also assumed
to be block independent and will not change within one relay
phase. We measure the ergodic mutual information by averaging
over more than 200 independent random channels.
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Fig. 8. Capacity performance of none direct-link relay networks with Gaus-
sian source signals.

For comparison, we will evaluate our results against the algo-
rithm by Rong in [12]. Under the Gaussian source assumption,
Rong’s algorithm is designed for MIMO relay systems without
direct link. We directly apply this precoder design to the case
of finite-alphabet signals, and label the results by GP (Gaussian
source Precoder). The results of our proposed algorithms for
networks with and without direct link are denoted by NGP-DL
and NGP-ND, respectively.

In addition, we also compare the result of NGP-DL with those
obtained by a pure gradient (PG) method (labeled by PG-NGP),
which directly applies the gradient results in Section III-B to
evaluate the gradient of mutual information with respect to S
and R. The PG algorithm iteratively optimizes S and R by
applying gradient algorithm search in two iterative steps to find
the optimum precoders in a ping-pong fashion.

B. Gaussian Source Test

Firstly, consider the networks without direct link. We set the
antenna number of each node to 4 and evaluate the performances
of NGP-ND and GP algorithms. Applying our relay precoder
defined in (6), which moves the whitening filter outside relay
precoder, the capacity optimization problem in (10) for Gaussian
signals could be written as follows,

M
max E In
2

U%.S’JLR i=1
2 2 2 2
1 + )‘i,Hlai,s + )“i,Hzo-i,R
2 2 2 2 2 2 42 2
1+ )‘i,Hlai,s + )\i‘Hzo-i,R + )“i,HIUi,SA‘i,Hzai,R
M M
s.t. > ol <M, > ol <N.

i=1 i=1

We observe that, along with our reformulated systems, source
precoder S and relay precoder R actually play symmetric roles
in the term of ergodic capacity because the random source-relay
channel H; and relay-destination channel H, share the same
distribution. Consequently, we will only need to illustrate the
resulting network capacity with a fixed relay precoder power.

In Fig. 8, we illustrate the performance of relay networks
with the fixed relay precoder power at 10 dB, 20 dB, and
30 dB, respectively. We observe that although the system ca-
pacity is an increasing function of the source and relay powers,
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the overall capacity remains bounded once the power of source
precoder is fixed. Simulations show that our generic NGP-ND
precoder achieves nearly the same performance as Rong’s algo-
rithm specifically designed for Gaussian input. When py is set
to 30 dB, a noticeable small gap is merely a result of numerical
choices in optimization termination and gradient step selection.

Next, we consider networks with a direct link and carry out
the evaluation of NGP-DL and PG-NGP algorithms. A fixed
10 dB attenuation is added to the source-destination channel
to model the path loss. We first test networks with fixed relay
power pp = 10 dB, 20dB and 30 dB, respectively.

As Fig. 9 shows, with the aid of direct link, the mutual infor-
mation now continues to grow as the source power increases.
Our results illustrate that the convergence speed of NGP-DL is
much faster than that of PG-NGP. Our simulation also demon-
strates that NGP-DL has almost the same performance as PG-
NGP when the effective relay link (source-relay-destination)
channel dominates the direct source-destination link channel.
On the other hand, we recognize that by fixing the right singular
vectors of R, NGP-DL has a stronger structure constraint than
pure-gradient search of PG-NGP. Indeed, NGP-DL suffers up to
1 dB loss if the source-destination channel is dominant. How-
ever, such case is rare in reality as relays are typically activated
and utilized only when the direct link is nominally weak.

In Fig. 10, we freeze instead the source power ps to 10 dB,
20 dB and 30 dB, respectively. The networks capacity is shown
for different relay power pr . When the source power is fixed,
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Fig. 11.  QPSK with fixed source power and without direct link.

the network capacity increases with growing relay power but
becomes bounded instead. As the relay power increases, the
network changes from source-destination channel dominant to
relay dominant. As such, we see that the gain achieved by the
direct link Hj also narrows with increasing relay power. Similar
as the case when relay power fixed, when the overall channel is
relay channel dominant, our proposed NGP-DL and PG-NGP
achieve nearly the same results.

For comparison, the performance without direct link are also
plotted. Obviously, with the help of direct link, the achieved
capacity is better than those without direct link.

Despite the structural constraints we introduced, our test re-
sults on Gaussian input signals show that, the proposed NGP-DL
and NGP-ND algorithms can achieve close to optimized perfor-
mance by precoders specifically designed for Gaussian inputs
(using pure gradient search). The newly proposed precoders not
only converges faster, they are also not sensitive to the type of
input signals to the relay network.

Next we move to test the case involving finite-alphabet
signals.

C. Simulations With Non-Gaussian Sources

First, consider the case that without direct link. Based on
our choice for the singular vectors in NGP-ND, the B matrix
could be written as (19). Similar to the case for Gaussian source
signals, the singular value for source and relay precoders play
symmetric roles. Combining this observation with Theorem 1,
we conclude that the ergodic capacity for source precoder with
fixed power of relay is same as that for relay precoder with fixed
power of source. Therefore, without direct link, we only need
to show results with fixed source power.

The results in Fig. 11 are driven by QPSK source. The antenna
number of each node is 4. Four independent streams are sent.
Without direct link Hy, source power are fixed at p; = 14 dB
and ps = 30 dB, respectively.

We observe from Fig. 11 that NGP out-performs GP precoder.
Indeed, the GP precoder exhibits a greater performance loss,
especially under medium-to-high relay SNR. It should be noted
that as long as the source power is high enough, the ceiling of
achieved mutual information is limited by the constellation size
of source signal; therefore, the performance loss between NGP
and GP is reduced to zero, as shown with ps = 30 dB. On the
other hand, at pg = 14 dB, regardless of high relay power, the
achieved mutual information of GP saturates at 6.7 bit since
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the mutual information is mainly limited by the source-relay
channel H; with the waterfilling power allocation. In fact, the
GP precoder requires much higher value of pg (as high as 30 dB)
in order to close the transmission rate gap.

In Fig. 12, we change the input signals to 8PSK without direct
link. To save computation time, we consider three antennas
at each node to carry three independent data symbol streams.
Setting source node power to 30 dB, we find that the GP precoder
requires more than 5 dB excess relay power in order to achieve
the same mutual information rate (> 7 bit/s/Hz) of NGP-ND.

The performance degradation of the GP precoder is primarily
due to the difference of power allocation for Gaussian signals
versus for finite-alphabet signals. With Gaussian source, it is
always advantageous to allocate more power (as in waterfiling)
to the stronger channels and less power to the weaker channels
to achieve better channel capacity. However, when transmitting
non-Gaussian source signals, due to limited constellation size,
larger power allocation does not necessarily lead to larger mu-
tual information gain. Consequently, Gaussian power allocation
policy for some signals of finite alphabet may be worse. A sec-
ond reason is that, for Gaussian sources, the choice of V¢ does
not affect the final result. However, for finite-alphabet signals,
this unitary transformation is critical [18] [19].

Next, we change the input signals to 16-QAM for the relay
network without direct link. In Fig. 13, we test the case when
each node has 2 antennas to support two parallel data streams.
We find that NGP-ND precoder not only requires 5 dB lower
source node power than GP precoder, but also exhibits a more
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than 4 dB performance gain over GP precoder when the mutual
information rate is greater than 7bit/s/Hz.

Finally, we also consider the effect of source-destination link
H,. With non-negligible Hy, the symmetric ergodic mutual in-
formation performances between source and relay precoders no
longer holds. So we will individually evaluate the performances
with fixed ps and different pp and the performances with fixed
pr and different pg. Our proposed NGP-DL algorithm and the
pure gradient algorithm PG-NGP algorithms will be tested.

In Fig. 14, the results are driven by QPSK source. Each node
has 4 antennas to send four independent streams. The attenua-
tion of source-destination channel is 15 dB. Solid curves are for
fixed relay transmit power (py = 14 dB), and dotted curves are
for fixed source transmit power (ps = 14 dB). We observe that
due to finite-alphabet source, the mutual information could not
go unbounded even driven with infinite source and relay power.
Moreover, the performances under fixed source power and un-
der fixed relay power are no longer same (symmetric). We also
observe a similar performance relationship between NGP-DL
and PG-NGP curves, which has been shown in Gaussian sig-
nals. In particular, our NGP-DL algorithm achieves almost the
same performance with PG-NGP algorithm when the effective
relay link channel dominates the direct source-destination link
channel. On the other hand, NGP-DL suffers around 0.5 dB
performance loss due to our fixed right singular vectors of relay
precoder.

We also present 8PSK and 16-QAM performances in Figs. 15
and 16, respectively. For the case of 8PSK signal, each node
has three antennas to carry three independent streams. While
evaluating mutual information with different relay transmission
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Fig. 16.  The performance of 16-QAM inputs with direct link networks.
power, the power of source precoder is 15 dB and the attenuation
of source-destination channel is set to 15 dB. On the other hand,
while evaluating performance with different source transmission
power, the power of relay precoder is 15 dB and the attenuation
of source-destination channel is set to 10 dB. Similarly, for
the case of 16-QAM signal, to save computation time each
node is equipped with two antennas to support two independent
streams. To obtain the performances with different relay power,
ps = 30 dB and the attenuation of source-destination channel
is set to 20 dB. On the other hand, to get the performances
with different source power, pr = 30 dB and the attenuation
of source-destination channel is set to 10 dB. We observe that
both Figs. 15 and 16 exhibit similar performances as those for
QPSK.

Finally, we conclude that our proposed NGP-ND and NGP-
DL algorithm are efficient. Despite we have imposed some struc-
tural constraints on our precoders, they achieve a fairly close
performance by precoders designed for Gaussian input signals.
With finite-alphabet input signals, they illustrate a substantial
performance improvement over the existing precoder designed
with Gaussian signals assumption. Even when there exists di-
rect link between source and destination, the performance of
our proposed algorithm is still comparable to that of with full
gradient search results, especially when the effective relay link
channel is dominant.

D. The Convergence of Proposed Algorithms

Next, we will plot the mutual information evolution proce-
dure with random initializations for NGP-ND in Fig. 17. The
pure gradient-based alternative optimization method (PG-ND
algorithm), is also considered as a benchmark.

Since there are multiple variables to be optimized, our pro-
posed algorithm works by optimizing one while freezing the
others in a round-robin fashion. Therefore, in each turn we
would not obtain a worse solution. In addition, since the power
of two precoders are limited, our proposed algorithms promise
to be converge.

It should be noted that since the original problem is non-
concave, a gradient-based optimization may be trapped into a
local maximum. Therefore, it is necessary to run optimization
enough times with random initialization and select the best one.
In Fig. 18, a histogram of optimized mutual information with
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Fig. 18. A histogram of optimized mutual information with 100 random trials.
There is no source-destination link. The antenna number is four for each node,
and the modulation is QPSK. The power of source node is 14 dB and the power
of relay node is 10 dB.

100 random initializations is depicted for a scenario of 4 antenna
relay system without source-destination link at 14 dB source
signal power and 10 dB relay power. We observe that all results
except for one fall in a small range of 7.65—7.7 bit/Hz/s. It shows
that our proposed algorithm is not sensitive to the initial points.
The probability of the optimized mutual information falls in the
maximum range is around 20%.

Clearly, because our proposed NGP-ND algorithm utilizes the
special precoder structure, it converges much faster than those
pure gradient-based algorithm. Usually, the NGP-ND algorithm
require 20-40 iterations to reach the maximum, whereas the PG-
ND algorithm demands more than 200 iterations to approach a
similar mutual information result.

E. Frame Error Rate With Non-Gaussian Sources

Finally, we evaluate and compare the frame error rate (FER) of
our proposed precoders with those designed under the assump-
tion of Gaussian inputs. For channel error correction, a LDPC
code with length 2304 and rate R = 5/6 is employed. Before
carrying out source precoding, the coded bits are Gray-mapped
to symbol (e.g. QPSK, 8PSK or 16QAM). In receiver, a maxi-
mum a posteriori (MAP) detector provides soft information to
LDPC decoder. The decoder utilizes the standard sum-product

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 66, NO. 11, NOVEMBER 2017

—B— 4QAM NGP
O 4QAM GP
V| —&—8PSK NGP
Y 8PSK GP
—¥— 16QAM NGP
/' 16QAM GP

30 35

10 15

20 25
Es/NO (dB)

Fig. 19. The FER comparison with Gray-mapped 4QAM, 8PSK and 16QAM
modulations.

algorithm (SPA) [34] in which the maximum iteration number
of decoding is fixed to 50. To ultimately exploit the extra infor-
mation provided by source and relay precoders, LDPC decoder
also feedbacks soft information to MAP detector to form a joint
detection and decoding. Such iteration number in joint detection
and decoding is fixed to 10 in our test.

In Fig. 19, the case that without direct source-destination link
is considered. Same as Figs. 11-13, the antenna number of each
node are 4, 3 and 2, respectively, for 4QAM, 8PSK and 16QAM
sources. Consider the case of fixed source power with 30 dB.
We observe the FER performance with respect to the variation
of relay node power. The ergodic FER performance is obtained
by averaging over 200 independent channel samples.

The simulation clearly demonstrates the FER performance
gain achieved by our proposed NGP precoders. The gaps
are 10 dB for QPSK, 8 dB for 8PSK and 5 dB for
16QAM, respectively, which also slightly greater than the cor-
responding gap of mutual information shown in Figs. 11-13,
respectively.

F. The Finite-Precision Effects on CSI Hy and Precoders

Our previous performances are obtained under the assump-
tions of accurate CSI at destination and accurate source and
relay precoders known by source and relay, respectively. Gener-
ally, such assumptions may not be fully practical. In this section,
we will demonstrate the finite-precision effects on both CSI and
precoders.

In our setup, a joint source-relay precoder optimization is car-
ried out at the destination node. Hence, the relay should forward
a quantized source-relay CSI H; to the destination. After opti-
mization, the destination should feedback the quantized source
and relay precoders to relay, and relay sends the quantized source
precoder to source. We further assume that the relay-destination
CSI forward channel, the destination-relay precoder feedback
chanel, and the relay-source precoder feedback channel are error
free without severe delay.

In Fig. 20, we evaluate the finite-precision effects on CSI H;
for 4QAM, 8PSK and 16QAM constellations, respectively. The
real and image parts of each element of H; are individually
quantized. Therefore, considering an N-bit quantization, the
total bit number for M-by-M H, is 2M?N. The quantizer is
following the fixed-point definition in Matlab, e.g. (n,m) means
that the total signed word is n bit and the fraction part is m bit.

Our simulations show that, a 4-bit quantization is much better
than a 2-bit quantization. For the 2-bit quantization, the mutual
information degradation appears large in the middle range of
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Fig.20. Finite-precision effects on the source-relay channel state information
(H) feed-forwards from relay node to destination node. In each sub-figure,
the source-relay CSI is quantized to 4-bit length (4,2) and 2-bit length (2,0),
respectively. There is no source-destination link. In sub-figure (a), (b) and (c),
the modulation are 4QAM, 8PSK and 16QAM, respectively, and the antenna
number is 4, 3 and 2, respectively. In each sub-figure, the antenna number of
source, relay and destination are same. The power levels of source node are
14 dB, 30 dB and 30 dB for sub-figure (a), (b) and (c), respectively.
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Fig. 21.  Finite-precision effects on source and relay precoder feedbacks from
destination node to relay and source node. For one curve, source and relay
precoders are quantized with same bit length. There is no source-destination
link. In sub-figure (a), (b) and (c), the modulation is 4QAM, 8PSK and 16QAM,
respectively, and the antenna number is 4, 3 and 2, respectively. In each sub-
figure, the antenna number of source, relay and destination are same. The power
of source node is 14 dB, 30 dB and 30 dB for sub-figure (a), (b) and (c),
respectively.

tested SNR. Also as the constellation size grows, such quantiza-
tion degradation also becomes greater. Finally, our simulations
show that a 4-bit (4,2) quantization is good enough for H; with
the constellations of 4QAM, 8PSK and 16QAM. And the corre-
sponding forward bit number are 128, 72 and 32, respectively,
for 4QAM (4 antennas), 8PSK (3 antennas) and 16QAM (2
antennas).

Next, since the source precoder and the relay precoder should
also be feedback to source and relay nodes, respectively. In
Fig. 21, we evaluate the finite-precision effects on precoders.
At the same time, H, is quantized with (4,2) quantizer. Sim-
ilar with the previous quantization processes, we illustrate the
mutual information performances with (4,2), (3,1) and (2,0)
quantizer, respectively, at different modulations. Simulations
show that the (2,0) quantization has the worst performance. The
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degradation becomes more serious with the increase of relay
SNR. It should be noted that, based on our current setup, the
amount of CSI feedback through the destination-relay feedback
channel is two times larger than those through the relay-source
feedback channel.

VI. CONCLUSION

This work has studied the joint source-relay linear precod-
ing method for a three-node two-hop MIMO cooperative re-
lay networks. Dropping the unrealistic the Gaussian source
assumption, we incorporated the more general and practical
finite-alphabet signals such as M-QAM and M-PSK. Our goal
is to maximize the achievable rate by maximizing mutual in-
formation between source signal and the destination output. We
derived the optimal left singular vector of relay precoder and
proved the concavity of mutual information with respect to the
power vector of relay precoder. Utilizing such results, we devel-
oped effective numerical optimization algorithms to iteratively
search for the optimal solution. Monte Carlo simulation results
under finite-alphabet input have demonstrated significant per-
formance gain achieved by the proposed methods in terms of
the ergodic mutual information and the coded FER over designs
optimized for Gaussian input signals.

APPENDIX
A. Proof of Proposition 1

From Theorem 1, we conclude that the mutual information
Z(x;y) only depends on B of (16). This proposition further
shows that B does not depend on the left singular vectors of R.

First, definition (9) states that

B =S [H(T)Ho +HITH(I+ TTT)’ITHI} S. (28

Applying the matrix inversion lemma [35], (I + TTT)_l =1I-
T (I+TIT) ' T to (28) yields

B = sf (H(T)H0
+H] [T'T-T'T (1+T'T) ' T'T| H,) S
= ! (HjH + H|T'T 1+ T'T) 'H,)S.  (9)

Here we can see that B depends on the basic element TiT,

_1
T'T - (1+H;SS'H]) *R'H]

1
2

x HoR I+ H,SS'H] ) (30)

Borrowing a result from [36] (Proposition 1), given any R,
we can always find R, with the left singular vectors coinciding
with the right singular vectors of channel H; such that

RIH/H,R, = RIHIH,R, .

Consequently, we can always choose the right singular vectors
of H, as the left singular vectors of R. |
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B. Proof of Theorem 2

First, we will restate the definitions in [37] useful to obtain
our proof. Let F(Z,Z*) be a complex-valued matrix function
of Z and Z*. The Jacobian matrices of F with respect to Z and
Z* are respectively given

A Ovec(F)

D, (F) = Ovecl (Z) aveC(F)

and D,.(F) £ Dvecl (Z7)

Let Zy and Z; be two complex-valued matrices, and let f be
a real-valued scalar function of Z( and Z,. Then, the complex
Hessian of f with respect to Zj and Z; is defined as

Hyyn f =

9 of 1"
dvect (Zo) |:8V€CT(ZI):| .

We now introduce two Lemmas as intermediate results.
Lemma 1: The following results on matrix calculus hold:

(1-a) : dvec(ZZ') = (Z* @ Iy) dvec(Z)

+ Ky n (Z®1Iy)dvec(Z")
where K v is the commutation matrix satisfying
Ky vvec(A) = vec(AT)

(I-b) : dvec(Z™') = — ((Z") '@ Z7") dvec(Z)

(1-¢) : dvec(Z’%) S (Z*TT ® Z*%)

X (z% ® z%)_l dvec(Z) .

Proof: Equalities (1-a) and (1-b) are directly from [37]. We
prove equality (1-c) here. Since Z = 727>, we have
dvec(Z) = (Z7 @ Z3)dvec(Z?)

or, equivalently,
-1
dvec(Z%) = (ZT7 @ Z%) dvec(Z) .
Consequently,

dvec(Z %) = — (Z_% ®Z ”l) dvec(Z?)

[ |
Directly applying Lemmas 1-7 of [19], we have
Lemma 2: The following second-order derivatives of
Z(x;y) are given by
DB (Qxx%)

= Mo Z(xY) = —E{ @51 (y) © ot ()}

DB*((Dxxf) = HB*.B*I(X;y) = - E{‘IIXXT ( ) ® ‘lexT (y)}
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Now we are ready to start the proof of Theorem 2. Following
the definition of first derivation in [38]-[40], since

B o S,
o, Y =T {(aB ) a[za]kkB}

= (vec(®L ))T D[

XX'

€29

according to [19], we need to evaluate D[ ]M (B).

Obviously, B in (29) is required to be rewritten as a function
of Zﬁ. From Proposition 1, we have Uy = Vy,. Then B could
be given as

B = STH{H,S + L¥2 %2 (J + % 52) 'JL

where the new notations L and J are defined below for brevity
of expressions,

2 S'Hi(I+H,SSTH]) 7V, (32)

J2 Vvi(I+HSSH)V, (33)

Based on the chain rule provided by Theorem 1 of [37], we
have

. (B)

E

o

+((OU) eLs2 52) Dy [(4+52,52)

(25, 20)

R kK

zﬁ)“JLT)T®L] Dy |

L] !

I
—N

[(@+3232)°
OLI(I+ 33 32) " D (B2 32)

= vec (KV, By ere] T, VIK') . (34)

Note that the second step follows the results of Lemma 1; the
last step is from the definition of K in (18). Substituting (34)
into (31), we have the final result (17).

Next, we will investigate the concavity of Z(x; y) with respect
to 32 by fixing V and S. The Hessian of mutual information
with respect to E% will be evaluated. First, by the chain rule,
the element-wise second order derivative is

R

s (o)~ (P ®) P, @0

C1

+ (vee (®1,)) Ppa ) (Ppsz)

Ji Rlkk

(B)) . 69

12
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Based on the chain rule and Lemma 2,

cr = <D[E%{]M (B))T HB,B*I(X§Y)D[E§] (B)

Ji

C11

T
(B)) Hen-Z(x;y) Drs2 ] (B*) . (36)

Y
Rlkk Rljj

Cl2

Let us define

g2 3, ViKix. (37)

Applying Lemma 2 and (34), we obtain the next equation after
some manipulations.

e =—E [eLEHZVgKT@xxf (¥)KVy S e
y
xel 2, VIKI®!_ (y)KV, szek_}

= — ]}E [eTk ‘I’gg* (y)ej e} q)ggf (y)ek}

- [ {wm ooy, w0} G9)

kj

where ®,,(y) in the second step follows the definition in (12).
Similarly, with definitions (37) and (13), we could express

e = - {E {Taer ) 0 Wy (y)}] (39)

y kj

Furthermore, utilizing the identity rs' ® (rsf)* =[r®
r*][s ® s*]' with s and r being complex-valued column vec-
tors, and defining vector zy as

zy =E{lg-g(y)olg-&) Iy} (40)

g

we have the following conclusions,

q’gg*()’) © (I);g?(Y) = ZyZ; =0
Yoot (y)© \I’;gT (y) = Zyzg =0
where the second positive-semidefinite property is from z, €

RE. Hence, we have obtained the first part of the Hessian of
mutual information with respect to Eﬁ, which is

T
cr=—|E {zyz; + ZyZy
y k.j

Next, we will evaluate the Jacobian D[Eg ] (D[22 ] (B)) in
Rljj Rlkk

¢,. For conciseness, we define vector ¢, where cc' is exactly
Dy,.» B
=& (B)

c2LIJ+ 24,30 'Sye . (41)
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If we apply (41) and Lemma 1, we can write

& = (e (@L,))" (€ & TP,

i)
Rljj

C21

+ (vec (<I>§xf))T Kam (€@ Iu)Dpsa) (7). (42)

Ji

€22

Utilizing (41), D[E 2] (c) could be easily obtained as follows,
R

J7

— vec {KVR EH2eje} Y,

< (@+T)  See} . @)

Let us define
M3, Vi (I +H,SSH| + R*‘H§H2R) VRS, .
Applying (43) and some simplification, we can write
e = —e} 3y VEKI®, KV, 3, e;
X {eLEHZ (J+ 2%122%)_1 EHzejr

=—[®gg OM'], ;. (44)
Since ®,,+ and M are positive-semidefinite matrices, according
to the Schur Product Theorem in [41], we conclude that

Dy O M*>=0.
Similarly, we can obtain

0 =~ @}, OM] (45)

ki
The Hessian of mutual information is eventually obtained as
follows by combining ¢y, ¢12, ¢21, and ¢,

Mg 53 I(6) = —E (22 +2y2)
~ (@t OM+ By ©M') <0

which has been shown to be negative-semidefinite. Therefore,
the mutual information is a concave function of X2, which

conclude the proof of Theorem 2. |

C. The Derivation of Gradients in III-B

Observing the definition in (9), the matrix T in fact is irrel-
evant to V. Therefore, applying the result of (22) in [42], we
could directly obtain the first derivative in III-B, the gradient
of mutual information with respect to the right vector of source
precoder.

According to (31) in the proof of Theorem 2, the second
derivative, the gradient of mutual information with respect to
relay precoder, easily follows from the chain rule and the fol-
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lowing derivatives: (46) and (47),
_ T
Dn;, (B) = ([1+T'T) 'H;S]

® STHI (I + TTT)”) Dy (T'T) (46)

_1
Duy (T'T) = vec{(1+HlssTH{) “ejel HY

x HbR (I+HISSTH1')2} . @7

To derive the third derivative, the gradient of mutual infor-
mation with respect to relay precoder, we need to evaluate
D5+ (B). According to the chain rule, we have

ij

D5+ (B)=vec {e]-ej (HZ)HO + H];TfT I+ TTT)71 Hl) S}

ij

+[s'Hj 1+ TTT)*T

© [SH| 1+ T'T) | Dy, (T'T). @®)
The derivative term in (48) is
Dy (T'T) = [(T'HR)" @ (T'HR)]
-
X D[s];], (I + H]SS}LHJ{) (49)

Applying Lemma 1, the derivative term in (49) is expanded into

_1
2

Dy (1+HSS'H])

T

2

o [(HHISSTHD ® (T+H;SS'H])

I
[ —

x [(1 +H,SS'HY ) "o (1+H,ss'H])

l—
[ —

x D5, (I+H;SS™H]) . (50)
We easily obtain that
Dy, (I+ H,SS'H]) = vec(H, Sele;H))
= [H]; ® [H,S]; . (51)

Substitute (51), (50), and (49) into (48). Following the steps
in Theorem 2 and by applying the definitions (25), (26), and
(27), we hence obtain the final result in (24).
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