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Abstract

We investigate a class of partially linear functional additive models (PLFAM) that pre-
dicts a scalar response by both parametric effects of a multivariate predictor and nonpara-
metric effects of a multivariate functional predictor. We jointly model multiple functional
predictors that are cross-correlated using multivariate functional principal component anal-
ysis (mFPCA), and model the nonparametric effects of the principal component scores as
additive components in the PLFAM. To address the high dimensional nature of functional
data, we let the number of mFPCA components diverge to infinity with the sample size, and
adopt the COmponent Selection and Smoothing Operator (COSSO) penalty to select rele-
vant components and regularize the fitting. A fundamental difference between our framework
and the existing high dimensional additive models is that the mFPCA scores are estimated
with error, and the magnitude of measurement error increases with the order of mFPCA.
We establish the asymptotic convergence rate for our estimator, while allowing the number
of components diverge. When the number of additive components is fixed, we also establish
the asymptotic distribution for the partially linear coefficients. The practical performance
of the proposed methods is illustrated via simulation studies and a crop yield prediction
application.
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1 Introduction

As new technology being increasingly used in data collection and storage, many variables

are continuously monitored over time and become multivariate functional data (Ramsay and

Silverman, 2005; Zhou et al., 2008; Kowal et al., 2017). Extracting useful information from

such data for further regression analysis has become a challenging statistical problem. There

has been significant amount of recent work devoted to regression models with functional

predictors and the most popular model is the functional linear model (James, 2002; Cardot

et al., 2003; Müller and Stadtmüller, 2005; Cai and Hall, 2006; Crainiceanu et al., 2009; Li

et al., 2010; Cai and Yuan, 2012), where the scalar response variable is assumed to depend

on an L2 inner product of the functional predictor with an unknown coefficient function.

Functional data are infinite dimensional vectors in a functional space (Hsing and Eubank,

2015). Due to the richness of information in such data, a simple linear model is often found

inadequate and many researchers have investigated nonlinear functional regression models.

The most widely used approach is to project functional data into a low-rank functional sub-

space and use the projections as predictors in a nonlinear model (James and Silverman, 2005;

Li and Hsing, 2010a; Yao et al., 2016). The most popular and best understood dimension

reduction tool for functional data is the functional principal component analysis (FPCA)

(Yao et al., 2005; Hall et al., 2006; Li and Hsing, 2010b). A recent development in nonlinear

functional regression model is the functional additive model (Müller and Yao, 2008; Zhu

et al., 2014), where FPCA scores are used as predictors in an additive model.

Our research is motivated by a crop yield prediction application in agriculture. Agri-

culture is a major industry in the U.S., the source of livelihood for millions of farmers and

a vital contributor to global food security. Getting timely and reliable predictions on crop

production is crucial for planners and policy makers to create appropriate strategies for the
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storage, distribution, and trade of agricultural products. The US National Agricultural Sta-

tistical Service is the federal agency responsible for providing such statistics to the public,

and their in-season crop yield forecast is primarily based on survey data. It is well known

that weather has a significant impact on crop yield, and statistical models can be used to

relate weather forcast to crop yield prediction (Cadson et al., 1996; Hansen, 2002; Prasad

et al., 2006; Lobell and Burke, 2010). Since measurements of meteorological variables, such

as maximum and minimum temperatures, are typically available on a daily basis and their

effects on yield vary at different growing stage of the crop, it is natural to treat them as

functional predictors. Besides the functional predictors, scalar predictors, such as crop man-

agement methods, also have a great impact on yield and need to be included in the prediction

model.

We propose a partially linear functional additive model (PLFAM) to predict a scalar

response variable using both scalar and functional predictors. We use such a model to predict

crop yield using the temperature trajectories. Such a model is of fundamental importance in

plant science and agricultural economics: it advances our understanding of the relationship

between weather conditions and crop yield, help to evaluate the impact of climate change on

crop production and assist farmers and stake holders to better predict the future prices of

agricultural commodity products and plan their actions accordingly. In many applications

including our motivating data example, the functional predictors are strongly correlated

to each other. To extract information more efficiently, we jointly model these predictors

as a multivariate functional predictor, and perform dimension reduction using multivariate

functional principal component analysis (mFPCA) (Ramsay and Silverman, 2005; Chiou

et al., 2014). The proposed PLFAM includes the parametric effects of the scalar predictors

and additive nonparametric effects of the mFPCA scores. To automatically select significant

additive components, we impose COSSO penalties (Lin and Zhang, 2006) to the component
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functions and estimate the model in a reproducing kernel Hilbert space (RKHS) framework.

Our approach is different from that of Zhu et al. (2014) in a few important perspectives.

On the methodology side, we consider multiple functional predictors, extract informative sig-

nals from the functional predictors using mFPCA, and we adopt a semiparametric partially

linear structure in our model to take into account the effects of scalar predictors. On the the-

ory side, we allow the number of additive components in the model to diverge to infinity with

the sample size, to acknowledge the fact that functional data have infinite number of prin-

cipal components. Our theory is fundamentally different from those in the high dimensional

additive model literature, since our predictors in the additive model are estimated mFPCA

scores that are contaminated with measurement errors (Carroll et al., 2006). As we show,

the magnitude of measurement error gets higher for higher order principal components. In

contrast, Zhu et al. (2014) only allow finite number of principal components in their model.

To bound the effect of measurement errors, they also impose some very restrictive conditions

which, in effect, limit their estimator in a finite dimensional subspace of the Sobolev space.

Our results, on the other hand, does not rely on such artificial assumptions.

The rest of the paper is organized as follows. We describe the model and assumptions

in Section 2 and the estimation procedure in Section 3. In Section 4 we investigate the

asymptotic properties of the proposed estimator. We illustrate the proposed method with

simulation studies in Section 5 and apply it to the motivating data example in Section 6.

Some final remarks are collected in Section 7. Technical proofs and additional numerical

results are relegated to the supplementary material.
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2 Model and Assumptions

Let Y be a scalar random variable associated with a predictor Z ∈ Rp and a multivariate

functional predictor X = (X1, . . . , Xd)
⊺, where p and d are positive integers, and Xj(t) is a

stochastic process defined on the time domain Tj for j = 1, . . . , d. For simplicity, we focus

on the case Tj ≡ T , but having different domains does not affect our methodological nor

theoretical developments. Let {zi,xi}ni=1 be i.i.d. copies of {Z,X}. Their relationship with

the response {yi}ni=1 are modeled as

yi = m(zi,xi) + εi, i = 1, . . . , n, (1)

where m is the regression function and εi are zero mean errors independent with {xi}ni=1 and

{zi}ni=1. Further we assume var(εi) = σ2
ε/πi, where σ

2
ε is an unknown variance parameter

and πi’s are known positive weights. In our application, the response yi is the averaged crop

yield per acre obtained from a survey, and πi is proportional to the size of the harvest land.

2.1 Multivariate functional principal component analysis

We assume that, with probability 1, the trajectory of Xj is contained in a Hilbert space

Xj, with inner product ⟨·, ·⟩Xj
and norm ∥ · ∥Xj

. We will focus on the case that Xj’s are L
2

functional spaces and the inner products are ⟨f, g⟩Xj
=

∫
T f(t)g(t)dt for any f, g ∈ Xj. Let

X =
⨁d

j=1 Xj be the direct sum of the functional spaces, which is a bigger Hilbert space

equipped with the induced inner product and norm, i.e. ⟨x1,x2⟩X =
∑d

j=1 ⟨x1j, x2j⟩Xj
and

∥x1∥X = ⟨x1,x1⟩1/2X for any xi = (xi1, . . . , xid)
⊺ ∈ X, i = 1, 2.

Define the mean function of the multivariate functional predictor as µ(t) = E{X(t)} =

{µ1(t), . . . , µd(t)}⊺ where µj(t) = E{Xj(t)}. The cross-covariance function between Xj and

Xj′ is Cjj′(s, t) = E[{Xj(s) − µj(s)}{Xj′(t) − µj′(t)}], and the covariance of X is a d × d
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matrix of cross-covariance functions

C(s, t) = E[{X(s)− µ(s)}{X(t)− µ(t)}⊺] = {Cjj′(s, t)}dj,j′=1.

We assume that C defines a bounded, self-adjoint, positive semi-definite integral operator

(Hsing and Eubank, 2015). Standard operator theory warrants a spectral decomposition

C(s, t) =
∞∑
k=1

λkψk(s)ψ
⊺
k(t),

where λ1 ≥ λ2 ≥ . . . > 0 are the eigenvalues and ψk = (ψk1, . . . , ψkd)
⊺ ∈ X are the cor-

responding eigenfunctions such that ⟨ψk,ψk′⟩X =
∫
T ψk(t)

⊺
ψk′(t)dt = I(k = k′). By a

standard Karhunen-Loève expansion

X(t) = µ(t) +
∞∑
k=1

ξkψk(t),

where ξk = ⟨X −µ,ψk⟩X are zero-mean random variables with E(ξkξk′) = λkI(k = k′). The

variables ξk are the mFPCA scores of X.

2.2 Partially linear functional additive model

Direct estimation of Model (1) suffers from the “curse-of-dimensionality” and is unpractical.

Many popular alternative approaches are based on dimension reduction through FPCA and

the effects of the functional predictors are modeled through their principal component scores,

including the functional linear models (FLM) and the functional additive models (FAM). Our

PLFAM model follows a similar strategy and can be considered as a special case of Model

(1) with additional structural assumptions.

We denote the sequence of mFPCA scores of xi by ξi,∞ = (ξi1, ξi2, . . . )
⊺. Even though
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in theory there are infinite number of principal components, the number of eigenfunctions

estimated from the sample is at most n − 1, and as shown in our theory in Section 4.1

even fewer of eigenfunctions are estimated consistently. For these practical reasons, it is

a common practice to only use the low-order FPCA scores as predictors in a regression.

Denote the truncated mFPCA scores as ξi = (ξi1, . . . , ξis)
⊺, with a positive integer s. To

avoid possible scale issues, we instead use the standardized version ζik = Φ(λ
−1/2
k ξik), where

Φ(·) is a continuously differentiable map from R to [0, 1]. We let Φ(·) be the standard

Gaussian cumulative distribution function (CDF) in all of our numerical studies. When the

distribution of ξ is close to Gaussian, ζ is approximately uniform in [0, 1], which is convenient

for nonparametric modeling on the effect of ζ. Other continuous CDFs can also be used as

Φ(·), such as the logistic function. Write ζi,∞ = (ζi1, ζi2, . . . ) and ζi = (ζi1, . . . , ζis).

Assuming that all useful information in the multivariate functional predictor is contained

in the first s principal components, which are related to the response in an additive form,

and the covariate effect is linear, then model (1) becomes the following Partially Linear

Functional Additive Model (PLFAM)

yi = m0(ui, ζi) + εi = u
⊺
i θ0 + f0(ζi) + εi = u

⊺
i θ0 +

s∑
k=1

f0k(ζik) + εi, (2)

where θ0 ∈ Rp+1 and ui = (1, z⊺i )
⊺. Model (2) bears the functional additive model (FAM) of

Müller and Yao (2008) and Zhu et al. (2014) as a special case when the functional predictor

X(t) is univariate (d = 1) and there are no scalar covariates. The partially linear structure

is widely used in many popular semiparametric models because it combines the flexibility

of nonparametric modeling with easy interpretation of the covariate effects (Carroll et al.,

1997; Liu et al., 2011; Wang et al., 2014). In practice, u can include interactions, quadratic

terms and any other low order nonlinear terms as long as their effects are interpretable and
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parametric. We show in Section 4 the estimated partially linear coefficient θ̂ (also referred

to as the parametric component of the model) is
√
n-consistent and has an asymptotically

normal distribution, despite the existence of nonparametric components which converge in

a slower rate. This is particularly useful if inference on the parametric effects is of primary

interest in the study.

Following Lin and Zhang (2006) and Zhu et al. (2014), we assume that each f0k belongs

to a reproducing kernel Hilbert space (RKHS). We refer interested readers to Wahba (1990)

for an introduction of RKHS for penalized regression. The most widely used RKHS is the

Sobolev Hilbert space. In such context, an l-th order Sobolev Hilbert space F(l)[0, 1] is the

collection of functions on [0, 1] whose first (l − 1)-th derivatives are absolutely continuous

and the l-th derivative belongs to L2[0, 1], and the corresponding norm is chosen as

∥g∥2 =
l−1∑
v=0

{∫ 1

0

g(v)(t)dt

}2

+

∫ 1

0

g(l)(t)2dt for any g ∈ F(l)[0, 1].

Let Fk, k = 1, . . . , s, be a sequence of l-th order Sobolev spaces on [0, 1] with reproducing

kernels Rk, and we assume f0k ∈ Fk. However, the fact that constant functions belongs to

each Fk leads to an identifiability issue. To provide an identifiable parametrization, we note

that each Fk has an orthogonal decomposition Fk = {1} ⊕ F̄k where {1} is the space of all

constant functions. From now on, we assume m0 ∈ M = I ⊕
∑s

k=1 F̄k, where f0k ∈ F̄k for

k = 1, . . . , s, and I = {u⊺θ : θ ∈ Rp+1}. For the rest of the paper, we focus on the second

order Sobolev space with l = 2.
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3 Estimation and Computation

3.1 Estimation in mFPCA

To start with, we assume that the trajectories of xi(t)’s are fully observed. Then the mean

and covariance of X can be estimated by

µ̂(t) = n−1

n∑
i=1

xi(t), Ĉ(s, t) = n−1

n∑
i=1

{xi(s)− µ̂(s)}{xi(t)− µ̂(t)}⊺. (3)

Since Ĉ has rank n− 1, it has a spectral decomposition Ĉ(s, t) =
∑n−1

k=1 λ̂kψ̂k(s)ψ̂
⊺
k(t), where

λ̂k and ψ̂k(t) are the sample eigenvalues and eigenfunctions. The estimated mFPCA scores

are

ξ̂ik = ⟨xi, ψ̂k⟩X =
d∑

j=1

∫
T
xij(t)ψ̂kj(t)dt, ζ̂ik = Φ(λ̂

−1/2
k ξ̂ik), k = 1, . . . , d. (4)

In practice, we only have discrete noisy observations on xi

wijk = xij(tijk) + eijk, i = 1, . . . , n, j = 1, . . . , d, k = 1, . . . , Nij,

where eijk’s are independent measurement errors with mean 0 and variance σ2
e,j, j = 1, . . . , d.

We will focus on the case where dense measurements are made on each curve such that each

functional predictor can be effectively recovered by passing a linear smoother through the

discrete observations. Let the recovered functions be x̃ij(t) = S(t; tij)wij, where wij =

(wij1, . . . , wij,Nij
)⊺ and S(t; tij) is a linear smoother depending on the design points tij =

(tij1, . . . , tijNij
)⊺, e.g. local polynomial or regression splines. The eigenvalues, eigenfunctions

and mFPCA scores are estimated by replacing xij(t) with x̃ij(t) in (3) and (4).

For univariate functional data, this pre-smoothing approach is theoretically justified by

Hall et al. (2006), who show that, when S is a local linear smoother and Nmin = mini,jNij >
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Cn1/4, the error incurred by approximating xij(t) with x̃ij(t) is negligible in λ̂k and ψ̂k; Li

et al. (2010) further show that this approximation error is negligible to ξ̂ik if Nmin > Cn5/4.

As commented in Li et al. (2010), there are two sources of error in ξ̂ik: the error caused by

approximating xij with x̃ij and the error in ψ̂k. If the first type of error prevails, regression

analysis using ξ̂ik will be inconsistent even for linear models. The second type of error, on

the other hand, is diminishing to zero as n → ∞. There are mFPCA methodologies for

sparse multivariate functional data (see e.g. Chiou et al. (2014)), but how to consistently

estimate FAM or PLFAM when the estimated scores are contaminated with non-diminishing

errors is not clear and calls for further research.

In all of our numeric studies, we smooth and register each xij on B-splines, pool spline

coefficients for each component in xi into a longer vector, then the operator Ĉ is represented as

a high dimensional matrix, and the mFPCA problem reduces to a multivariate PCA problem.

For detailed algorithm, we refer the readers to Section 8.5 in Ramsay and Silverman (2005).

3.2 Estimation of PLFAM with COSSO penalty

Let ζ̂i = (ζ̂i1, . . . , ζ̂is)
⊺ be a vector of standardized mFPCA scores for xi estimated using the

procedure in Section 3.1. Since there are potentially infinite number of principal components

for X, we choose the truncation point s to be a large positive number and use a penalized

regression method to select the relevant components.

The proposed estimator m̂ is the minimizer of the following penalized loss ℓw(m) with

respect to m ∈ M. The loss function is defined as

ℓw(m) =
1

n

n∑
i=1

πi{yi −m(ui, ζ̂i)}2 + τ 2nJ(m), (5)

where πi are the survey weights defined in (1). Here τ 2n is a tuning parameter and J(m) =
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∑s
i=1 ∥Pkm∥ with Pk being the projection operator to F̄k. The penalty J(m) is first proposed

in the COSSO framework (Lin and Zhang, 2006) for simultaneous estimation and selection

of the nonparametric functions f0k’s.

Following Lin and Zhang (2006), we minimize (5) by iteratively minimizing its equivalent

form

1

n

n∑
i=1

πi{yi −m(ui, ζ̂i)}2 + κ0

s∑
k=1

ϕ−1
k ∥Pkm∥2 + κ

s∑
k=1

ϕk (6)

over ϕ = (ϕ1, . . . , ϕs)
⊺ ∈ [0,∞)s and m ∈ M, where κ0 > 0 is a pre-determined constant and

κ is a tuning parameter.

The relationship between (5) and (6) is stated in the following lemma, which is an exten-

sion of Lemma 2 in Lin and Zhang (2006) to partially linear additive model under a weighted

least square loss. Its proof is omitted for brevity.

Lemma 1 (Lemma 2 of Lin and Zhang (2006)) Set κ = τ 4n/(4κ0). (i) If m̂ minimizes

(5), set ϕ̂k = κ
1/2
0 κ−1/2∥Pkm̂∥; then the pair (ϕ̂, m̂) minimizes (6). (ii) If (ϕ̂, m̂) minimizes

(6), then m̂ minimizes (5).

By representer theorem, the minimizer m̂(u, ζ) takes the form u⊺θ+
∑s

k=1 ϕk

∑n
i=1 aiRk(ζ̂ik, ζk),

for u = (1, z1, . . . , zp)
⊺ ∈ Rp+1, (ζ1, . . . , ζs)

⊺ ∈ Rs, where a = (a1, . . . , an)
⊺ ∈ Rn is a vector

of unknown parameters. Then, minimization of (6) is equivalent to minimizing

1

n
∥Π1/2(y −Uθ −

s∑
k=1

ϕkRka)∥2E + κ0

s∑
k=1

ϕka
⊺Rka+ κ

s∑
k=1

ϕk, (7)

where ∥ · ∥E represents the Euclidean norm, Π = diag{π1, . . . , πn}, y = (y1, . . . , yn)
⊺, U =

[uij]i=1,...,n,j=1,...,p+1 is a n × (p + 1) design matrix and Rk = [Rk(ζ̂ik, ζ̂jk)]i,j=1,...,n is a n × n

matrix for k = 1, . . . , s. For a fixed ϕ, minimizing (7) with respect to (θ,a) is similar to

solving a weighted ridge regression. For fixed θ and a, let D be the n× s matrix with the
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k-th column being Rka, then minimization of (7) with respect to ϕ ∈ [0,∞)s becomes

min
1

n

[
ϕ⊺D⊺ΠDϕ− 2

{
D⊺Π(y −Uθ)− 1

2
nκ0D

⊺a

}⊺

ϕ

]
subject to

s∑
k=1

ϕk < G and ϕ ∈ [0,∞)s,

for some G > 0, which is a typical quadratic programming. The practical minimization of

(5) is done by iterating over these two minimizations by fixing (θ,a) and ϕ in turn. The

algorithm starts with solving (θ,a) while fixing ϕ = 1. Empirically, the objective function

decreases quickly in the first iteration, which was also observed in Lin and Zhang (2006) and

Storlie et al. (2011). To reduce the computational cost, we limit the number of iterations,

and follow a one-step update procedure similar to Lin and Zhang (2006).

As discussed in Lin and Zhang (2006) and Storlie et al. (2011), κ0 can be fixed at any

positive value. We select κ0 that minimizes the GCV of the partial spline problem when

ϕ = 1. Let ϕ̂(τn) = (ϕ̂
(τn)
1 , . . . , ϕ̂

(τn)
n )⊺, â(τn) and θ̂(τn) be the minimizer of (7) for a fixed τn. To

select the smoothing parameter τn (or equivalently G), we minimize the Bayesian information

criterion n log(RSSw(τn)/n) + df(τn) log(n), where the effective degress of freedom df(τn)

is the trace of the smoothing matrix in the partial spline problem (7) when ϕ is set to

ϕ̂(τn), and the weighted residual sum of squares is RSSw(τn) = n∑n
i=1 πi

∥Π1/2(y − Uθ̂(τn) −∑s
k=1 ϕ̂

(τn)
k Rkâ

(τn))∥2E.

4 Theoretical Results

4.1 Basic results for mFPCA

By the theory of Dauxois et al. (1982), ∥Ĉ − C∥op = Op(n
−1/2) where the operator norm is

defined as ∥A∥op = supx∈X
∥Ax∥X
∥x∥X

for any bounded linear operator A on X. To derive the
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asymptotic expansion for ξ̂iks, we use the asymptotic expansion of λ̂k and ψ̂k provided by

Hsing and Eubank (2015), which is a generalization of those by Hall and Hosseini-Nasab

(2006) for univariate functional data to more general Hilbert space random variables. We

adopt the following assumptions:

Assumption 1 (Cai and Hall (2006))

C−1
λ k−α ≤ λk ≤ Cλk

−α, λk − λk+1 ≥ C−1
λ k−1−α, k = 1, 2, . . . . (8)

To ensure that
∑∞

k=1 λk <∞, we assume that α > 1.

Assumption 2 E(∥X∥4X) < ∞ and there exists a constant Cξ > 0 such that E(ξ2kξ2k′) ≤

Cξλkλk′ and E(ξ2k − λk)
2 < Cξλ

2
k for all k and k′ ̸= k.

The polynomial decay rate described in Assumption 1 is a slow decay rate assumption on

the eigenvalues and allows X(t) to be flexibly modeled as a multivariate L2 process without

strong constraints on the roughness of its sample path. Assumption 2 is a weak moment

condition on the functional predictors and is satisfied if X(t) is a multivariate Gaussian

process. Both assumptions are widely used in the functional linear model literature (Cai and

Hall, 2006; Cai and Yuan, 2012; Hsing and Eubank, 2015). Define δk =
1
2
mink′ ̸=k|λk′ − λk|,

which is no less than 1
2
C−1

λ k−1−α under condition (8) and denote ∆ = n1/2(Ĉ − C). By

Dauxois et al. (1982), ∆ converges weakly to a Gaussian variable in the space of linear

operators and hence ∥∆∥op = Op(1).

Proposition 1 (Transformed FPC scores) Suppose the transformation function Φ(·)

has bounded derivative. Under Assumptions 1 and 2, there is a constant C > 0 such that

E(ζ̂ik − ζik)
2 ≤ Ck2/n uniformly for k ≤ Jn, where Jn = ⌊(2Cλ∥∆∥op)−1/(1+α)n1/(2+2α)⌋.
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The proof of Proposition 1 is given in Appendix A in the supplementary material. It implies

that the estimation error of the principal component score increases as the order of the

principal component gets higher. Interestingly, the estimation error is of order Op(n
−1/2k),

which does not depend on the decay rate α of the eigenvalues.

4.2 Asymptotic theory for PLFAM

For simplicity, we assume that πi = 1 for i = 1, . . . , n. We begin by introducing several

notations. We write Pn as the empirical distribution of (Z, ζ). That is, Pn =
∑n

i=1 δzi,ζi/n,

where δz,ζ is the delta function at (z, ζ). Moreover, we denote the distribution of (Z, ζ) by

P . We define the corresponding (squared) empirical norm and inner product as

∥m1∥2n =

∫
m2

1dPn and (m1,m2)n =

∫
m1m2dPn, for any m1,m2 ∈ M.

These notations are extended to measurement errors {εi}. For instance, (ε,m1)n =∑n
i=1 εim1(ui, ζi)/n. Moreover, we write the Euclidean norm for vector as ∥ · ∥E. To derive

the asymptotic properties, we assume that the parametric component is identifiable. More

specifically, Σ =
∫
uu⊺dP is non-singular.

Theorem 1 Suppose, for some β > 0, E(ζ̂ik − ζik)
2 ≤ Cn−1k2β uniformly for all k ≤ s.

Assume 0 < J(m0) < ∞, Σ is non-singular and τ−1
n = Op(min{n2/5s−6/5, n1/2s−( 1

2
+β)}), we

have ∥m̂−m0∥n = Op(τn) and J(m̂) = Op(1). If J(m0) = 0 and τn ≍ n−1/4s3, ∥m̂−m0∥n =

Op(n
−1/2) and J(m̂) = Op(n

−1/2s−6).

Remarks:

1. Under the framework laid out in Assumptions 1 and 2, with s = Op(n
1/{2(1+α)}), we have

E(ζ̂ik − ζik)
2 ≤ Cn−1k2 uniformly for all k ≤ s followed from Proposition 1. The results in

Theorem 1 can be further simplified by identifying β = 1. In this case, if 0 < J(m0) < ∞
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and τ−1
n = Op(n

2/5s−6/5), we have ∥m̂ −m0∥n = Op(n
−2/5s6/5). If s is fixed, ∥m̂ −m0∥n =

Op(n
−2/5) is the optimal nonparametric convergence rate assuming each f0k belongs to a

second order Sobolev space.

2. Our result can be considered as an extension of Theorem 1 in Zhu et al. (2014), where we

allow s→ ∞ in a rate no faster than Op(n
1/{2(1+α)}). The reason for setting such a restriction

on the rate of s is that, in order to estimate the principal components consistently, we need

the distance between two adjacent eigenvalues to be no smaller than ∥Ĉ − C∥op. This is a

fundamental difference with classic high dimensional additive models (Meier et al., 2009;

Ravikumar et al., 2009; Liu et al., 2011; Wang et al., 2014).

3. The key issue in achieving consistent estimation of PLFAM is to bound the estimation

error in ζ̂ik. To achieve this goal, Zhu et al. (2014) assumed (see their Assumption 1)

⏐⏐⏐⏐∂f(ζi)∂ζik

⏐⏐⏐⏐ = |f ′
k(ζik)| ≤ Bi∥f∥2 with probability 1

for some independent variables {Bi}ni=1 with E(B2
i ) < ∞, where ∥ · ∥2 is the L2(P )-norm.

This is a strong assumption that eliminates the possibility fk belonging to the space spanned

by high order Fourier or Demmler-Reinsch basis functions. As an effect, their estimation is

restricted in a low dimensional functional space. We, on the other hand, show in Lemma 2

that supζ∈[0,1] |f ′
k(ζ)| is bounded by the RKHS norm of fk for all k ≤ s, and such a result

help to control the error caused by the error-contaminated predictor ζ̂i.

When s is fixed, better asymptotic results can be derived for the regression coefficients
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γ = (γ1, . . . , γp)
⊺ = (θ2, . . . , θp+1)

⊺. Define

w(ζ) = (w1(ζ), . . . , wp(ζ))
⊺ = argmin

wj ∈ {1} ⊕
∑s

k=1 F̄k

j = 1, . . . , p

E∥Z −w(ζ)∥2,

w̃(z, ζ) = (w̃1(z, ζ), . . . , w̃p(z, ζ))
⊺ = z −w(ζ),

M = (Mij)
p
i,j=1, where Mij =

∫
w̃iw̃jdP. (9)

It is easy to see that w(ζ) defines a additive regression of Z on ζ, and it can be considered

as the projection of E(Z|ζ) on the additive regression space, and therefore

E{w̃⊺(z, ζ)g(ζ)} = 0 (10)

for any g(ζ) = (g1, . . . , gp)
⊺(ζ) such that gj(ζ) ∈ {1} ⊕

∑s
k=1 F̄k for j = 1, . . . , p.

Theorem 2 Assume the conditions of Theorem 1 hold with s <∞ being fixed, ζ has a non-

degenerate joint density on [0, 1]s which is bounded above and below, τn = Op(n
−1/4), and

that M defined in (9) is non-singular. Then n1/2(γ̂−γ0) → Normal(000,M−1(V1+V2)M
−1)

in distribution, where V1 and V2 are defined in (S.14) of the supplementary material.

Remark: As shown in our proof, V1 = cov{n1/2(ε, w̃)n}, and M−1V1M
−1 is the typical

asymptotic covariance matrix of γ̂ in classic literature of partially linear additive model

(Wang et al., 2014), where ζ is directly observed. The covariance V2 is the extra variation,

caused by the estimation error in the FPCA score ζ̂. The two sources of variation are

asymptotically independent to each other because the model error ε is independent with the

error in ζ̂. A similar effect of FPCA estimation error was discovered by Li et al. (2010), who

investigated a simpler functional linear regression model and found that the FPCA error

tends to inflate the asymptotic variance of the parametric component even if the functional

predictors are fully observed. Our result in Theorem 2 shows the same phenomenon also
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exists for nonlinear functional regression models such as the PLFAM.

5 Simulation study

We extend the simulation setting of Zhu et al. (2014) to a multivariate functional data

setting with an additional vector predictor Z. The multivariate functional predictor is

xi(t) = {xi1(t), xi2(t)}⊺ with

xi1(t) = t+ sin(t) +
∑10

k=1 ξ
(1)
ik ψ

(1)
k (t), xi2(t) = t+ cos(t) +

∑10
k=1 ξ

(2)
ik ψ

(2)
k (t),

where ξ
(1)
ik ∼ N(0, ς2k−1), ξ

(2)
ik ∼ N(0, ς2k), ςk = 45.25k−2, corr(ξ

(j)
ik , ξ

(j)
ik′ ) = 0 for k′ ̸= k, and

ψ
(j)
k (t) = (1/

√
5) sin(πkt/10) for t ∈ T = [0, 10], j = 1, 2. The equations above define the

univariate Karhunen-Loève expansions for the two functional predictors respectively, scores

within the same functional predictor are independent, however we allow the scores from

different functional predictors to be cross-correlated. We let corr(ξ
(1)
ik , ξ

(2)
ik′ ) = ϱ for k′ = k

and 0 otherwise, where ϱ is a cross-correlation parameter between 0 and 1.

The mFPCA eigenfunctions are defined through an orthogonalization of the univariate

eigenfunctions, as described in Proposition 5 in Happ and Greven (2017). More specifi-

cally, suppose the covariance matrix pooling all univariate FPCA scores has the eigenvalue

decomposition var
(
{(ξ(1)i )⊺, (ξ

(2)
i )⊺}⊺

)
= PQP ⊺, where ξ

(j)
i = (ξ

(j)
i1 , . . . , ξ

(j)
i10)

⊺, j = 1, 2,

Q = diag{λ1, . . . , λ20} and P ⊺P = I. The k-th mFPCA score ξik ∼ N(0, λk) is a linear

function of the univariate scores {(ξ(1)i )⊺, (ξ
(2)
i )⊺}pk, where pk = {(p(1)k )⊺, (p

(2)
k )⊺}⊺ is the k-th

column of P , and the corresponding mFPCA eigenfunction is ψk(t) = (ψk1, ψk2)
⊺(t), where

ψkj(t) = {ψ(j)(t)}⊺p(j)k , ψ(j)(t) = (ψ
(j)
1 , . . . , ψ

(j)
10 )

⊺(t), j = 1, 2.

Frommodel (2), we simulate 1000 i.i.d. copies of {Y,Z,X(·)}, denoted as {yi, zi,xi(·)}1000i=1 ,

with the first 200 used as training data and the rest as testing data. Observations on xi are
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obtained on a regular grid of 100 points in T = [0, 10] with independent measurement errors

following N(0, 0.22). For the regression function, we set f0(ζ) = f01(ζi1) + f02(ζi2) + f04(ζi4),

where f01(ζ1) = 3ζ1 − 3/2, f02(ζ2) = sin{2π(ζ2 − 1/2)} and f04(ζ4) = 8(ζ4 − 1/3)2 − 8/9.

There are only three non-zero additive component functions in our simulation: f0k(ζk) = 0

for k /∈ {1, 2, 4}. Moreover, we generate the vector predictor zi independently from the

bivariate uniform distribution over [0, 1]2. We consider two settings for the partially linear

coefficient θ0: (I) (1.4, 0, 0)
⊺ and (II) (1.4, 3,−4)⊺ and two settings of the correlation param-

eter ϱ: (i) 0.3 (low correlation) and (ii) 0.9 (high correlation). Combining different setups for

ϱ and θ0, we have four settings: {(i), (I)}, {(i), (II)}, {(ii), (I)} and {(ii), (II)}. The errors

εi’s in the regression model (2) are distributed independently as N(0, σ2) with σ2 being 1 for

setting (I) and 1.9470 for (II) to achieve the signal-to-noise ratio (SNR) of approximately

2.2. The SNR is defined as var(m0(ζ))/var(ε). For simplicity, all sampling weights πi are set

to be 1. The simulation is repeated 200 times and we fit the following two models to each

simulated data set: FAM of Zhu et al. (2014), which is also based on COSSO but ignores

the effect of Z, and the proposed PLFAM. Throughout this simulation study, s is chosen to

recover at least 99.9% of the total variation in {xi} and the COSSO tuning parameters are

selected by the Bayesian information criterion.

Tables 1 and 2 summarize the results related to component function selection in FAM

and PLFAM under the four settings. Due to space constraint, only percentages of model sizes

up to 8 and selection percentages of the first 8 component functions are shown. In Table 2,

Column “% correct set” corresponds to the percentages of fittings achieving exact selection

of f̂1 f̂2 and f̂4, while Column “% super set” gives the percentages of fittings that include

nonzero f̂1, f̂2 and f̂4. Despite a small tendency of over-selection, the COSSO component

selection mechanism tends to select parsimonious models and, for each correct component

function, the selection percentage is high.
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To assess the estimation quality of f0k’s, Table 3 shows the averaged integrated squared

errors (AISEs) of the first eight component functions and the overall function f̂ =
∑s

k=1 f̂k

(without constant term). The integrated squared errors are defined as

ISE(f̂k) =

∫ 1

0

{f̂k(t)− f0k(t)}2dt and ISE(f̂) =
s∑

k=1

∫ 1

0

{f̂k(t)− f0k(t)}2dt.

Notice that, under setting (I) where Z has zero effect and FAM is the correct model, the

PLFAM estimators perform comparably to those of FAM. However, under setting (II), where

Z has non-zero effects, FAM performs significantly worse than PLFAM. This demonstrates

the possible risk of ignoring important vector predictors.

We also summarize the prediction errors, and the mean squared errors (MSE) for the

estimated partially linear coefficients in Table 4. To show the advantage of mFPCA, we

further compare two methods to obtain FPCA scores: the “joint” approach is the mFPCA

approach that we advocate; and the “separate” approach is to perform univariate FPCA to

each component of X, standardize these scores separately, and then pool all standardized

scores together as covariates in the additive model. Both FPCA approaches can be used in

conjunction with FAM and PLFAM. The prediction error is computed by n−1
∑n

i=1(yi − ŷi)
2

on the testing data set. To compute the prediction ŷi in the test data, we first compute

the transformed FPCA scores of xi in the test set using the estimates of mean function,

eigenvalues and eigenfunctions from the training data, and then plug these scores into the

estimated regression m̂. The results in Table 4 suggest that jointly modeling multiple func-

tional predictors leads to smaller MSE’s for θ̂, and lower prediction errors, as opposed to

modeling each functional predictor separately using univariate FPCA. In addition, PLFAM

has significant lower prediction errors than FAM under setting (II) when there is a non-zero

effect from Z.
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In Section C of the supplementary material, we also report the simulation results when s

chosen to recover 90% of the total variation. Under this setting, one important component

related to Y is close to the 90% cut-off line and often not included as a candidate for

COSSO. As a results, a non-zero component function is often failed to be selected, and the

resulted models yield higher prediction errors in the test data sets. Based on these results,

we recommend to include a large number of components and let the built-in model selection

mechanism of COSSO determine the size of the model.

6 Real Data Application

The practical utility of the proposed method is illustrated through an analysis of a crop yield

data set from the National Agricultural Statistics Agency (https://quickstats.nass.usda.gov/),

which consists of several yield-related variables at the county level (such as annual crop yield

in bushels per acre, size of harvested land and the proportion irrigated land to the total har-

vested land) from 105 counties in Kansas from 1999 to 2011. We have yield-related variables

for the two major crops in Kansas, corn and soybean, which are analyzed separately. Vari-

ables such as total harvest land and proportion of irrigated land are crop-specific. The

weather data (annual averaged precipitation, daily maximum temperature and daily min-

imum temperature) are gathered from 1123 weather stations in Kansas provided by the

National Climatic Data Center (https://www.ncdc.noaa.gov/data-access) and aggregated at

the county level.

To apply our model, let Y be the average crop yield per acre (corn or soybean) for

a specific year and county; X1(t) and X2(t) are the daily maximum and daily minimum

temperature trajectories for the same year and county with the time domain T = [0, 365];

Z includes proportion of irrigated land in that county and for that particular type of crop,
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averaged annul precipitation, and the interaction between the two. In the past several

decades, due to sustained improvements in genetics and production technology, there is a

consistent increasing trend in the yields of both corn and soybean. To take this effect into

consideration, we also include year indicators into Z.

Since the response is an average obtained from an agricultural survey, the errors are

heteroscedastic with weights π equal to the sizes of harvested land. Some earlier work

(Smith, 1938; Beran et al., 2013) suggests crop yield may exhibit long range dependency on

a scale measured in feet. Our study on the other hand is based on county level aggregated

data. The crop yields are usually averaged over tens of thousands of acres within a county

and not from a continuous piece of land. At this scale, the spatial correlation is already

quite weak and therefore it is reasonable to assume the variance of the average crop yield is

proportional to the inverse of the total harvest land. Furthermore, land use rotates between

the major crops across years: land used to grow corn this year is usually used to grow soybean

the next year. Variables such as the proportion of irrigated land and size of harvest land are

different in different years even for the same crop and same county. Even though our theory

and methods are developed under the independence assumption, they can still be applied

as long as the crop yields are conditionally independent across counties and years, given the

local meteorology information, which seems reasonable because of the rotation in land use

and because crops of different genotypes are planted in different years.

To illustrate the functional predictors, we show in Figure 1 50 randomly selected trajec-

tories for X1(t) and X2(t), with the mean functions µ1(t) and µ2(t) marked as solid curves

in the two panels. As one can see, there are a lot of local fluctuations in the temperature

trajectories, which is normal since heat and chill alternate throughout the year. In Figure

2, we show the heat plots for the (cross-) covariance functions. The kernel function for C12

shows great resemblance to C11 and C22, which implies that the two functional predictors
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are strongly correlated. This also suggests mFPCA would achieve more efficient dimension

reduction than univariate FPCA done separately to the two processes, and the latter would

include too much redundant information into the regression model.

6.1 Crop yield prediction experiment

Since our goal of this study is to find the best model for yield prediction, we divide the data

into smaller training and validation data sets and compare the prediction of the following

10 competing models.

1. PLFAM(joint): the proposed PLFAM based on mFPCA scores;

2. PLFAM(separate): PLFAM based on univariate FPCA scores from X1 and X2 sepa-

rately;

3. FAM(joint): FAM based on mFPC scores (without Z);

4. FAM(separate): FAM based on univariate FPC scores (without Z);

5. FLM-Cov(joint): functional linear model (FLM) based on mFPCA scores, with covari-

ates;

6. FLM-Cov(separate): FLM based on separate univariate FPCA scores, with covariates;

7. FLM(joint): FLM based on joint mFPCA scores (without Z);

8. FLM(separate): FLM based on separate FPCA scores (without Z);

9. LM: linear model on Z only;

10. LM-GDD: linear model on Z and Growing Degree Days (GDD), to be explained below.
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The models we consider can be divided into three categories: (a) functional additive models

(Models 1-4), (b) functional linear models (Models 5-8) and (c) non-functional model (Models

9 - 10). For all functional regression models, including those in categories (a) and (b),

FPCA scores that account up to 99.9% of the total variation are admitted into the model.

For the methods based on separate FPCA on X1 and X2, we include FPCA scores that

explain 99.9% of total variation in each functional predictor and thus use twice as many

FPCA scores in the regression analysis as the joint modeling methods. For all models in

category (a), we rely on the model selection mechanism of COSSO to prevent overfitting

and select the tuning parameters by 5-fold cross-validation; for the functional linear models

in category (b), we avoid overfitting by introducing ridge penalties, the tuning parameters

of which are chosen by generalized cross-validation. It is worth noting that Model 10 serves

as the benchmark model for yield prediction with temperature information enters into the

model as the GDD variable. GDD is a measure of heat accumulation commonly used to

predict plant development (Gilmore and Rogers, 1958; Yang et al., 1995; McMaster and

Wilhelm, 1997). Here we adopt the definition used in the EPIC (Erosion Productivity

Impact Calculator) plant growth model (Williams et al., 1989), in which GDD is defined as

the sum of [{X1(t) +X2(t)}/2− Tbase]+ over growing season, where Tbase is the crop-specific

base temperature in ◦C. For corn Tbase = 8, and for soybean Tbase = 10. To account for

heteroscedasticity, the sizes of harvested land are used as weights in fitting all models.

For each five-year window (i.e., 1999-2003, 2000-2004, . . . , 2007-2011), we pull the data

from those five years into a smaller data set. For each five-year data set, we randomly divide

it into five subsets, hold out one subset at a time as a validation set, fit the ten models

described above to the remaining four subsets, and then use the trained models to predict

the responses in the validation data. The mean squared prediction errors are weighted

by the sizes of harvested land, averaged over the five validation sets and over all five-year
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periods. The averaged overall prediction errors are reported in Table 5. From the table,

models without the covariate effects, including FAM(separate), FAM(joint), FLM(separate)

and FLM(joint), perform significantly worse than the rest. These results agree with the

general belief that irrigation and precipitation are informative in yield prediction, which also

stress the importance of extending the FAM of Müller and Yao (2008) to our PLFAM. We

can also see that including the functional predictors can reduce the prediction error, and

functional regression model such as PLFAM(separate), PLFAM(joint), FLM-Cov(separate) and

FLM-Cov(joint) perform better than the non-functional models (LM and LM-GDD). Joint

modeling the two functional predictors using mFPCA also leads to lower prediction error

for both PLFAM and FLM-Cov. Overall, PLFAM(joint) performs the best in corn yield

prediction and achieves comparable result to FLM-Cov(joint) for soybean.

Part of the reason that PLFAM performs slightly worse than FLM in soybean yield

prediction is that the nonlinear effect is less significant for soybean and PLFAM requires

a larger sample size. In another experiment where we include more years of data in the

training set, PLFAM predicts soybean yield better than FLM.

In addition to the 10 models described above, we also consider another 12 models that

use X1, X2 or (X1 + X2)/2 alone. These models yield higher prediction errors than the

proposed PLFAM(joint) model, which utilizes both functional predictors. Even though the

two functional covariates in the real data are strongly correlated as suggested by Figure 2,

these results show that each covariate does provide additional information that complements

the other and it is beneficial to jointly model them. Due to space limitation, these results

are presented in Section D of the supplementary material.
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6.2 Regression analysis of the whole data

We now apply PLFAM(joint) to the whole data set pooling all available years. For corn

yield prediction, we include 52 principal components in the regression model which account

for ∼ 99% of variation in the temperature trajectories, and 10 principal components are

selected by COSSO. In Figure 3, we show the top 6 most significant principal components;

and in Figure 4, we show the corresponding additive component functions f̂k(ζ). These

components are ranked by the importance of their contribution to Y . More specifically, we

sort the principal components by the RKHS norm of the component function f̂k. The dashed

curves in Figure 4 are the pointwise confidence bands f̂k(ζ)± 2× se{f̂k(ζ)}, and the dotted

curves are the 3 times standard error bands. The standard errors are estimated using a

bootstrap procedure detailed in the supplementary material.

Since each principal component in mFPCA is a vector of functionsψk(t) = {ψk1(t), ψk2(t)}⊺,

we show ψk1(t) as the solid curve and ψk2(t) as the dashed curve in each panel of Figure

3. It is not surprising that ψk2(t) largely coincides with ψk1(t), given the observation from

the covariance functions that the two processes are strongly correlated. However, the plots

do reveal subtle differences between the two temperature trajectories. The component most

related to corn yield ψ5 features a temperature pattern with near average daily minimum

temperature and lower than average daily maximum temperature during the summer months

from May to September. A higher loading on ψ5 means a milder summer, less heat stress

and less chance of draught, and corn yield is an increasing function of ζ5 in Figure 4. In

contrast, ψ1 and ψ8 represent hot summers, and crop yield is a decreasing function of their

loadings ζ1 and ζ8. These are consistent with the findings in Westcott et al. (2013), which

conclude that hot July - August weather lowered the corn yield. A prominent feature in ψ3

is warm spring months from January to March. Hollinger et al. (1994) showed that warmer

temperature during the period from planting to tassel initiation (the first 20 to 30 days after
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planting) resulted in lower corn yields. This may be due to less snow coverage on the ground

and more early insect activities. Our estimated f3(ζ) in Figure 4 confirmed this finding,

with corn yield a decreasing funciton of ζ3 when ζ3 is greater than 0.6. For soybean yield

prediction, graphs of the selected eigenfunctions and the corresponding additive component

functions are similar to those in Figures 3 and 4, and are hence omitted.

The estimated partially linear coefficients and their bootstrap standard errors for both

corn and soybean yield models are summarized in Table 6. As we can see, both the proportion

of irrigated land (Irrigate) and precipitation (Prec) have signifiant positive effects on

crop yield. The significant negative interaction means the effect of Prec is mitigated when

a big portion of the lands in the county are equipped with irrigation systems. For corn

yield prediction, the first and third quartiles for Irrigate are 0.027 and 0.485 respectively.

Changing Irrigate from its first quartile to the third, the partial slope on Prec reduces

from 167.47 to 151.95.

The bootstrap procedure, provided in the supplementary material, is based on the as-

sumption that the errors in model (2) are independent. To validate this assumption, we also

estimate the spatial variogram for each year and temporal autocorrelation for each county

based on the residuals of the fitted model, see Figures S.1 and S.2 in the supplementary

material. The variograms and ACF’s are contained in their confidence bands based on the

assumption of no dependency, which means there is no significant evidence for spatial or

temporal correlation.
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7 Concluding Remarks

7.1 Our contributions

We have extended the FAM of Müller and Yao (2008) to a class of PLFAM which takes

into account of the effects of a multivariate covariate Z. As demonstrated in our crop yield

application, including the covariate effects significantly improves the prediction accuracy.

The effect of functional predictors are modeled through an additive model on the principal

component scores. Since the FPC scores are estimated with error, our theory and methods

also shine a new light on the area of additive models with covariate measurement errors.

We have also made a number of important theoretical contributions. First, we develop

a more general model framework which includes multivariate functional predictors and mul-

tivariate covariates. Second, we allow the number of principal components admitted in the

additive model to diverge to infinity, which is fundamentally different from Zhu et al. (2014).

Third, we are able to quantify and bound the nuisance from the estimation errors in mF-

PCA scores without the artificial assumption in Zhu et al. (2014). Finally, when the number

of principal components does not diverge to infinity, we establish root-n consistency and

asymptotic normal distribution for the partially linear regression coefficients.

7.2 Interpretability of the model

Functional regression models based on principal components are in general hard to interpret,

because FPC’s are the maximum modes of variation in the functional predictors which are

not necessarily the features most related to the response variable. This is part of the reason

that many authors focused on prediction using functional linear model (Cai and Hall, 2006;

Cai and Yuan, 2012). Our proposed PLFAM adopts the philosophy of semiparametric statis-

tics: we model the effects of functional covariates nonparametrically to increase the model
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flexibility and prediction performance, and model the effects of the multivariate covariates

parametrically for better interpretations and statistical inference. Our Theorem 2 provides a

basis for statistical inference on the parametric component γ. There is also another class of

functional additive regression models proposed by Müller et al. (2013); McLean et al. (2014);

Kim et al. (2017), which offer an alternative view on modeling nonlinear effects of functional

covariates.

7.3 mFPCA versus separate FPCA

For multivariate functional data, mFPCA usually provides more efficient dimension reduction

than separate FPCA to each functional covariate. However, mFPCA estimates are subject to

higher variability due to the need of estimating all cross-covariance functions and performing

eigenvalue decomposition on a much larger covariance matrix. When the sample size is small,

the extra variation in mFPCA can offset its benefit. There are also other situations where

separate FPCA is more preferable, such as when different functional covariates are of different

scales or even defined on different domains (Happ and Greven, 2017). Under these situations,

our theory and methods can also be easily extended to the model based on separate FPCA

scores. A separate FPCA version of model (2) is

yi = u
⊺
i θ0 +

s∑
k=1

d∑
j=1

f0jk(ζijk) + εi, (11)

where ζijk is the kth standardized principal component score for xij. The model can be

fitted using the same COSSO algorithm described in Section 3.2 except that the mFPCA

scores are replaced by the separate FPCA scores. As long as the separate FPC scores can be

estimated with a similar accuracy as assumed in Theorem 1, i.e. E(ζ̂ijk − ζijk)
2 ≤ Cn−1k2β

uniformly for all j = 1, . . . , d and k ≤ s, the same asymptotic results in Theorems 1 and 2
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hold for the model in (11).
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Table 1: Percentages of fitted model sizes.

Setting Model % for the following model sizes
1 2 3 4 5 6 7 8

{(i), (I)} FAM 0 0 28 49.5 20.5 1.5 0.5 0
PLFAM 0 0 24 57.5 17 1 0.5 0

{(ii), (I)} FAM 0 0 20.5 58 16.5 4 1 0
PLFAM 0 0 19 58.5 18 3.5 0 1

{(i), (II)} FAM 0 6.5 41 39.5 12 0.5 0.5 0
PLFAM 0 0 22.5 56 18 3 0.5 0

{(ii), (II)} FAM 0 3 44.5 38 12.5 2 0 0
PLFAM 0 0 22.5 61 12.5 3 1 0

Table 2: Percentages of selected components and, correct and super selection.

Setting Model % for the following component functions % correct % super

f̂1 f̂2 f̂3 f̂4 f̂5 f̂6 f̂7 f̂8 set set

{(i), (I)} FAM 100 100 14 93 51.5 2 6 1.5 27 93
PLFAM 100 100 14 93 51.5 3 5 1.5 23 93

{(ii), (I)} FAM 100 100 20.5 97 51 5.5 1.5 2 18.5 97
PLFAM 100 100 20 97.5 53 5.5 1.5 2.5 17.5 97.5

{(i), (II)} FAM 100 90 8.5 93.5 34.5 2.5 4.5 4.5 35 83.5
PLFAM 100 100 16 97.5 54.5 3.5 3.5 1.5 21.5 97.5

{(ii), (II)} FAM 100 93.5 12 94 31.5 2.5 3 1 37.5 88
PLFAM 100 99.5 22.5 98 47.5 2.5 2.5 1.5 22.5 97.5



Table 3: Averaged integrated squared errors.

Setting Model AISEs for the following component functions

f̂1 f̂2 f̂3 f̂4 f̂5 f̂6 f̂7 f̂8 f̂

{(i), (I)} FAM 0.0172 0.1073 0.0057 0.1689 0.1204 0.0001 0.0015 0.0001 0.4292
PLFAM 0.0175 0.1070 0.0056 0.1689 0.1205 0.0004 0.0014 0.0002 0.4289

{(ii), (I)} FAM 0.0198 0.1038 0.0109 0.1290 0.0890 0.0018 0.0004 0.0007 0.3633
PLFAM 0.0198 0.1046 0.0111 0.1279 0.0896 0.0016 0.0005 0.0011 0.3638

{(i), (II)} FAM 0.0330 0.2208 0.0064 0.2197 0.0782 0.0008 0.0026 0.0021 0.5780
PLFAM 0.0177 0.1072 0.0064 0.1320 0.1130 0.0011 0.0009 0.0005 0.3858

{(ii), (II)} FAM 0.0290 0.2035 0.0087 0.2170 0.0841 0.0017 0.0024 0.0005 0.5642
PLFAM 0.0179 0.1084 0.0103 0.1398 0.0978 0.0007 0.0008 0.0005 0.3821

Table 4: Prediction errors and mean squared errors for FAM and PLFAM, using separate
univariate FPCA scores (columns labelled “separate”) or mFPCA scores (columns labelled
“joint”). For prediction errors, means are presented with corresponding standard deviations
in parentheses.

Setting Model Prediction error Mean squared errors
separate joint separate joint

θ̂1 θ̂2 θ̂3 θ̂1 θ̂2 θ̂3

{(i), (I)} FAM 1.55 (0.10) 1.32 (0.13) - - - - - -
PLFAM 1.57 (0.11) 1.33 (0.13) 0.0746 0.0911 0.1076 0.06 0.0751 0.0831

{(ii), (I)} FAM 1.65 (0.09) 1.33 (0.12) - - - - - -
PLFAM 1.66 (0.09) 1.35 (0.13) 0.0678 0.1095 0.0827 0.0585 0.0888 0.0681

{(i), (II)} FAM 3.84 (0.22) 3.63 (0.21) - - - - - -
PLFAM 1.59 (0.10) 1.34 (0.13) 0.0639 0.1023 0.0894 0.0545 0.0935 0.0696

{(ii), (II)} FAM 3.89 (0.24) 3.60 (0.24) - - - - - -
PLFAM 1.68 (0.12) 1.35 (0.14) 0.0642 0.0879 0.1092 0.0526 0.069 0.0851



Table 5: Average of 5-year overall prediction errors.

corn soybean

(a) functional additive models PLFAM(joint) 298.43 35.64
PLFAM(separate) 306.50 38.85

FAM(joint) 830.17 48.54
FAM(separate) 839.00 51.06

(b) functional linear models FLM-Cov(joint) 303.81 35.29
FLM-Cov(separate) 308.57 35.69

FLM(joint) 704.19 47.31
FLM(separate) 767.42 50.42

(c) non-functional model LM 391.18 61.74
LM-GDD 389.76 49.58

Table 6: Estimated regression coefficients (bootstrap standard error) in the PLFAM for crop
yield prediction.

Irrigate Prec Irrigat*Prec

corn 168.38 (6.42) 20.98 (2.72) -33.87 (3.32)
soybean 33.30 (3.35) 3.91 (0.70) -4.88 (1.65)

Note: Irrigate: proportion of irrigated land in a county for the specific crop and growing year;
Prec: averaged precipitation for county and year; Irrigat*Prec: the interaction.
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Figure 1: 50 randomly selected trajectories for daily maximum and daily minimum temper-
ature. The solid dark curve in each panel is the mean function.



50 150 250 350 50 150 250 350

50
15

0
25

0
35

0
50

15
0

25
0

35
0

s
t

da
ys

s' t'
days

−20

0

20

40

Figure 2: Heat plot for the covariance and cross-covariance functions. From bottom to top
and from left to right are the kernel functions of the (cross-) covariance operators Cjj′ .
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Figure 3: Corn yield prediction: top 6 principal components selected by COSSO for corn yield
prediction, sorted by the decreasing order of the RKHS norm of f̂k(ζ) (k = 5, 3, 1, 7, 8, 10).
Each principal component is a vector ψk(t) = {ψk1(t), ψk2(t)}⊺. The solid curve in each
panel is ψk1(t) and the dashed curve is ψk2(t).
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The supplementary material is organized as follows. We provide a proof for Proposition

1 in Section A, theory for PLFAM (including proofs of Theorems 1 and 2) in Section B,

additional simulation and data analysis results in Sections C and D, and the bootstrap

procedure for standard error estimation in Section E.

A Theory for mFPCA

Proof of Proposition 1 We use C as a generic notation for positive constant. For two

sequences {an} and {bn}, we use an ≲ bn to denote that an is bounded by bn omitting

some negligible terms. Recall that ∆ = n1/2(Ĉ − C), and under Assumption 2 we have

E∥∆∥2op <∞.

Asymptotic expansions for the empirical eigenfunctions and eigenvalues similar to (2.8)

and (2.9) in Hall and Hosseini-Nasab (2006) also hold for multivariate FPCA. For any k

such that δk > n−1/2∥∆∥op,

λ̂k − λk = n−1/2⟨∆ψk,ψk⟩X + Λnk × {1 + Op(1)},

ψ̂k(t)−ψk(t) =

{
n−1/2

∑
j ̸=k

(λk − λj)
−1ψj⟨∆ψk,ψk⟩X

}
× {1 +Op(n

−1/2δ−1
k )}, (S.1)

S.1



where Λnk = n−1
∑

j ̸=k(λk − λj)
−1(⟨∆ψj,ψk⟩X)2 = n−1

∑
j ̸=k(λk − λj)

−1(n−1/2
∑n

i=1 ξijξik)
2.

It is easy to see that E|Λnk| ≤ (nδk)
−1

∑
j ̸=k λjλk ≤ C(nδk)

−1λk for all k.

Since ξ̂ik = ⟨xi,ψk⟩X, by the expansion (S.1),

ξ̂ik − ξik = Aik × {1 + Op(1)} for all k ≤ Jn,

where Aik = n−1/2
∑

j ̸=k(λk − λj)
−1ξij⟨∆ψk,ψj⟩X =

∑
j ̸=k(λk − λj)

−1ξij(
1
n

∑n
i1=1 ξi1kξi1j).

Next, we calculate the order of Aik. Denote [x] as the integer part of x. By Assumption

1, λj − λj+1 ≥ C−1
λ j−α−1,

λj − λk ≥ C−1
λ

k−1∑
l=j

l−α−1 ≥ C−1
λ

∫ k

j

x−α−1dx ≥ 1

Cλα
(j−α − k−α) for j < k;

λk − λj ≥ C−1
λ

j−1∑
l=k

l−α−1 ≥ C−1
λ

∫ j

k

x−α−1dx ≥ 1

Cλα
(k−α − j−α) for j > k. (S.2)
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By Assumption 2 E( 1
n

∑n
i1=1 ξi1kξi1j)

2 ≤ Cλkλj/n for all k and j, and by (S.2)

E(A2
ik) ≲

C

n

∑
j ̸=k

(λk − λj)
−2λkλ

2
j

=
C

n
(
∑
j<k

+
∑
j>k

)(λk − λj)
−2λkλ

2
j

≤ Cλk
n

{ [(1−a)k]∑
j=1

(
C2

λαj
−α

j−α − k−α

)2

+

( k−1∑
j=[(1−a)k]+1

+

[(1+b)k]∑
j=k+1

)
C2

λj
−2α

C−2
λ k−2α−2

+
∞∑

j=[(1+b)k]+1

(
C2

λαj
−α

k−α − j−α

)2}
(for some a, b ∈ (0, 1) )

≲
Cλk
n

{ [(1−a)k]∑
j=1

(
1

1− (j/k)α

)2

+
∞∑

j=[(1+b)k]+1

(
1

(j/k)α − 1

)2

+ [(a+ b)k]k2
}

≲
Ckλk
n

{∫ 1−a

0

(1− xα)−2dx+

∫ ∞

(1+b)

(xα − 1)−2dx

}
+ C(a+ b)k3−α/n

≲
Ck1−α

n

{∫ (1−a)

0

(1− y)−2dy +

∫ ∞

(1+b)

(y − 1)−2dy

}
+ C(a+ b)k3−α/n

≲
Ck1−α

n
{a−1 − 1 + b−1 + (a+ b)k2}.

We select a ∼ k−1 and b ∼ k−1, we get EA2
ik ≤ Ck2−α/n for all k. This implies ξ̂ik − ξik =

Op(n
−1/2k1−α/2) uniformly for k ≤ Jn.

On the other hand, by (S.1) we can show

E
⏐⏐⏐λ̂k − λk − n−1/2⟨∆ψk,ψk⟩

⏐⏐⏐ ≲ E|Λnk| ≤ Cn−1λkδ
−1
k ,

E(n−1/2⟨∆ψk,ψk⟩)2 = E
{
1

n

n∑
i=1

(ξ2ik − λk)

}2

≤ Cλ2kn
−1.

This also means λ̂k − λk = Op(n
−1/2λk) uniformly for all k ≤ Jn. Since Φ(·) is differentiable

S.3



transformation function, using the delta method

ζ̂ik ≈ Φ[(ξik + Aik){λ−1/2
k − (1/2)λ

−3/2
k (λ̂k − λk)}]

≈ ζik + Φ′(ξikλ
−1/2
ik ){λ−1/2

k Aik −
1

2
ξikλ

−3/2
k (λ̂k − λk)} (S.3)

= ζik +Op(n
−1/2k).

By the assumption that |Φ′(x)| < C for all x and the mean-value theorem, one can verify

that E(ζ̂ik − ζik)
2 ≤ Cn−1k2 uniformly for all k ≤ Jn.

B Theory for PLFAM

Throughout the theoretical development, we utilize the following representation of a generic

function m ∈ M:

m(u, ζ) = u⊺ν + h(u, ζ) = u⊺ν +
∑s

k=1 hk(u, ζk),

where hk ∈ Hk = {hk ∈ I ⊕ F̄k :
∑n

i=1 hk(ui, ζ̂ik)uij = 0, j = 1 . . . , p + 1} for k = 1, . . . , s.

Note that the set Hk depends on {ui} and {ζ̂i} and thus is a random set with randomness

inherited from them. Write U = [uij]i=1,...,n,j=1,...,p+1. Given m(u, ζ) = u⊺θ +
∑s

k=1 fk(ζk),

where fk ∈ F̄k, one can transform it into the aforementioned representation by setting

ν = θ −
∑s

k=1ωk and hk(u, ζk) = u
⊺ωk + fk(ζk), where ωk fulfills

1

n
U ⊺Uωk = − 1

n
U ⊺(fk(ζ̂k1), . . . , fk(ζ̂kn))

⊺.

Similarly, m0(u, ζ) = u⊺ν0 + h0(u, ζ) = u⊺ν0 +
∑s

k=1 h0k(u, ζk) and m̂(u, ζ) = u⊺ν̂ +

ĥ(u, ζ) = u⊺ν̂ +
∑s

k=1 ĥk(u, ζk). Moreover, write H =
∑s

k=1Hk.

Similar to Pn, we write Pn,∗ as the empirical distributions of (Z, ζ̂). That is, Pn,∗ =

S.4



∑n
i=1 δzi,ζ̂i/n. Moreover, we define the corresponding version of (squared) empirical norm

and inner product as

∥m1∥2n,∗ =
∫
m2

1dPn,∗ and (m1,m2)n,∗ =

∫
m1m2dPn,∗, for any m1,m2 ∈ M.

First, we prove the following proposition about the convergence with respect to the

empirical norm ∥ · ∥n,∗ rather than the intended ∥ · ∥n.

Proposition 2 Suppose s = Op(n
1/{2(1+α)}) and E(ζ̂ik − ζik)

2 ≤ Cn−1k2β uniformly for all

k ≤ s. Further, assume J(m0) <∞ and Σ is non-singular. If τ−1
n = Op(min{n2/5s−6/5, n1/2s−( 1

2
+β)}),

we have ∥m̂ − m0∥n,∗ = Op(τn) and J(m̂) = Op(1). If J(m0) = 0 and τn ≍ n−1/4s3,

∥m̂−m0∥n,∗ = Op(n
−1/2) and J(m̂) = Op(n

−1/2s−6).

The proof of Proposition 2 is given in Section B.1. By Taylor expansion arguments and

convergence of ζ̂, the convergence results based on ∥·∥n (Theorem 1) is implied by those based

on ∥ · ∥n,∗ (Proposition 2). See Section B.2 for the proof of Theorem 1. With convergence

of m̂, we study the parametric part in details and obtain the optimal
√
n-consistency for γ̂.

The details is shown in Section B.3.

For ease of reading, we collect all other lemmas that are used throughout the subsequent

proofs here. Their proofs are deferred to Section B.4.

Lemma 2 For any f(ζ) =
∑s

k=1 fk(ζk) ∈
∑s

k=1 Fk, there exists C2 (independent of s) such

that

max
1≤k≤s

sup
ζk∈[0,1]

⏐⏐⏐⏐∂fk(ζk)∂ζk

⏐⏐⏐⏐/∥fk∥ ≤ C2. (S.4)

Lemma 3 (Entropy result) Assume Σ is non-singular. Then there exists constants C1

and C ′
1 such that the events

lim inf
n

{
sup
δ>0

δ1/2H∞(δ, {hk ∈ Hk : J(hk) ≤ 1}) ≤ C1

}
,
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lim inf
n

{
sup
δ>0

δ1/2H∞(δ, {h ∈ H : J(h) ≤ 1}) ≤ C1s
3/2

}
and

lim inf
n

{
sup

h∈H:J(h)≤1

|h|∞ ≤ C ′
1s

}
are of probability 1.

Lemma 4 Assume Σ is non-singular. We have

sup
h∈H

|(ε, h− h0)n,∗|
∥h− h0∥3/4n,∗{J(h) + J(h0)}1/4

= Op(n
−1/2s3/2),

where m0(u, ζ) = u
⊺ν0 + h0(u, ζ) with ν0 ∈ Rp+1 and h0 ∈ H.

B.1 Proof of Proposition 2

Proof of Proposition 2

Expanding the objective function, we have

ℓ(m) =
1

n

n∑
i=1

{yi −m(ui, ζ̂i)}2 + τ 2nJ(m)

=
1

n

n∑
i=1

{u⊺
iν0 + h0(ui, ζi) + εi − u⊺

iν − h(ui, ζ̂i)}2 + τ 2nJ(h)

=
1

n

n∑
i=1

{u⊺
i (ν0 − ν)}2 +

2

n

n∑
i=1

{u⊺
i (ν0 − ν)}{h0(ui, ζi) + εi}

+
1

n

n∑
i=1

{h0(ui, ζi) + εi − h(ui, ζ̂i)}2 + τ 2nJ(h).
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Minimizing ℓ is equivalent to the following two minimizations:

ν̂ = argminν∈Rp+1

{
1

n

n∑
i=1

{u⊺
i (ν0 − ν)}2 +

2

n

n∑
i=1

{u⊺
i (ν0 − ν)}{h0(ui, ζi) + εi}

}
,

ĥ = argminh∈H

{
1

n

n∑
i=1

{h0(ui, ζi) + εi − h(ui, ζ̂i)}2 + τ 2nJ(h)

}
.

The first one leads to

1

n
U ⊺U(ν̂ − ν0) =

1

n
U ⊺(h0 + ε),

where U = [uij]i=1,...,n,j=1,...,p+1, h0 = (h0(u1, ζ1), . . . , h0(un, ζn))
⊺ and ε = (ε1, . . . , εn)

⊺. By

Taylor expansion of h0 with respect to ζ at ζ̂i and the fact that Dζh0 = Dζf0,

1

n

n∑
i=1

uijh0(ui, ζi) =
1

n

n∑
i=1

uijDζf0(ζ
∗
i )(ζi − ζ̂i) = J(f0)Op(n

−1/2s
1
2
+β) (S.5)

where ζ∗i lies on the line segment joining ζi and ζ̂i; and the last equality follows from the

assumption E(ζ̂ik − ζik)
2 ≤ Cn−1k2β, Lemma 2 and the following calculation

|Dζf0(ζ
∗
i )(ζi − ζ̂i)| =

⏐⏐⏐⏐ s∑
k=1

∂

∂ζk
f0k(ζ

∗
ik)(ζ̂ik − ζik)

⏐⏐⏐⏐
≤

{ s∑
k=1

⏐⏐⏐⏐ ∂∂ζk f0k(ζ∗ik)
⏐⏐⏐⏐2}1/2{ s∑

k=1

(ζ̂ik − ζik)
2

)1/2

≤
( s∑

k=1

∥f0k∥2
}1/2

×
{
Op

( s∑
k=1

n−1k2β
)}1/2

= ∥f0∥ × Op(n
−1/2sβ+

1
2 ).

Moreover,

1

n

n∑
i=1

uijεi = Op(n
−1/2).

Since U ⊺U/n → Σ almost surely (element-wisely) and Σ is non-singular, we have ∥ν̂ −

ν0∥E = Op(n
−1/2s

1
2
+β). Note that if J(f0) = 0, we have U ⊺h0 = 0 and ∥ν̂ − ν0∥E =
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Op(n
−1/2).

In sequel, we focus on the second optimization. Since ĥ is the minimizer,

1

n

n∑
i=1

{h0(ui, ζi) + εi − ĥ(ui, ζ̂i)}2 + τ 2nJ(ĥ) ≤
1

n

n∑
i=1

{h0(ui, ζi) + εi − h0(ui, ζ̂i)}2 + τ 2nJ(h0),

which leads to

∥h0 − ĥ∥2n,∗ + 2
n

∑n
i=1{h0(ui, ζi)− h0(ui, ζ̂i)}{h0(ui, ζ̂i)− ĥ(ui, ζ̂i)}+ τ 2nJ(ĥ)

≤ (ε, ĥ− h0)n,∗ + τ 2nJ(h0). (S.6)

Now, we utilize the previous Taylor expansions: For i = 1, . . . , n,

h0(ui, ζi) = h0(ui, ζ̂i) +Dζf0(ζ
∗
i )(ζi − ζ̂i).

Thus (B.1) becomes

∥ĥ−h0∥2n,∗+
2

n

n∑
i=1

{ĥ(ui, ζ̂i)−h0(ui, ζ̂i)}{Dζf0(ζ
∗
i )(ζ̂i−ζi)}+τ 2nJ(ĥ) ≤ 2(ε, ĥ−h0)n,∗+τ 2nJ(h0).

(S.7)

Now we derive asymptotic order of the following two terms:⏐⏐⏐⏐⏐ 2n
n∑

i=1

{ĥ(ui, ζ̂i)− h0(ui, ζ̂i)}{Dζf0(ζ
∗
i )(ζ̂i − ζi)}

⏐⏐⏐⏐⏐
≤ 2∥ĥ− h0∥n,∗

⎛⎝ 1

n

n∑
i=1

{
s∑

k=1

∂f0k(ζ
∗
ik)

∂ζik
(ζ̂ik − ζik)

}2
⎞⎠1/2

≤ J(h0)∥ĥ− h0∥n,∗Op(n
−1/2s

1
2
+β);
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and by Lemma 4,

2(ε, ĥ− h0)n,∗ = Op(n
−1/2s3/2)∥ĥ− h0∥3/4n,∗{J(ĥ) + J(h0)}1/4.

Collecting the above results, (S.7) leads to

∥ĥ− h0∥2n,∗ + τ 2nJ(ĥ) ≤ Op(n
−1/2s3/2)∥ĥ− h0∥3/4n,∗{J(ĥ) + J(h0)}1/4 + τ 2nJ(h0)

+J(h0)∥ĥ− h0∥n,∗Op(n
−1/2s

1
2
+β).

Next, we investigate the following three scenarios where one particular term on the right

hand side dominates the other two.

(A) The term Op(n
−1/2s3/2)∥ĥ− h0∥3/4n,∗{J(ĥ) + J(h0)}1/4 is the largest: Thus

∥ĥ− h0∥2n,∗ + τ 2nJ(ĥ) ≤ Op(n
−1/2s3/2)∥ĥ− h0∥3/4n,∗{J(ĥ) + J(h0)}1/4.

If J(ĥ) ≥ J(h0), one can deduce that ∥ĥ − h0∥n,∗ = Op(n
−2/3s2)τ

−2/3
n and J(ĥ) =

Op(n
−4/3s4)τ

−10/3
n . As for J(ĥ) < J(h0), we have ∥ĥ − h0∥n,∗ = Op(n

−2/5s6/5)J(h0)
1/5 and

J(ĥ) = Op(1)J(h0).

(B) The term τ 2nJ(h0) is the largest: Thus

∥ĥ− h0∥2n,∗ + τ 2nJ(ĥ) ≤ τ 2nJ(h0)Op(1),

which leads to ∥ĥ− h0∥n,∗ = Op(τn)J
1/2(h0) and J(ĥ) = Op(1)J(h0).

(C) The term J(h0)∥ĥ− h0∥n,∗Op(n
−1/2s

1
2
+β) is the largest: Thus

∥ĥ− h0∥2n,∗ + τ 2nJ(ĥ) ≤ J(h0)∥ĥ− h0∥n,∗Op(n
−1/2s

1
2
+β),
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which leads to ⎧⎪⎨⎪⎩∥ĥ− h0∥n,∗ ≤ J(h0)Op(n
−1/2s

1
2
+β),

τ 2nJ(ĥ) ≤ ∥ĥ− h0∥n,∗Op(n
−1/2s

1
2
+β).

Thus ∥ĥ− h0∥n,∗ = Op(n
−1/2s

1
2
+β)J(h0) and J(ĥ) = Op(n

−1s(1+2β))τ−2
n J2(h0).

By carefully comparing the stochastic orders of terms arising from the above three cases,

if τ−1
n = Op(min{n2/5s−6/5, n1/2s−( 1

2
+β)}), we have ∥ĥ − h0∥n,∗ = Op(τn) and J(ĥ) = Op(1).

If J(h0) = 0 and τn ≍ n−1/4s3, ∥ĥ− h0∥n,∗ = Op(n
−1/2) and J(ĥ) = Op(n

−1/2s−6).

B.2 Proof of Theorem 1

Proof of Theorem 1. Let q = m̂−m0. By Taylor expansion,

∥q∥2n =
1

n

n∑
i=1

{q(ui, ζ̂i) +Dζq(ui, ζ̃i)(ζi − ζ̂i)}2

= ∥q∥2n,∗ +
1

n

n∑
i=1

{Dζq(ui, ζ̃i)(ζi − ζ̂i)}2 +
1

n

n∑
i=1

2q(ζ̂i){Dζq(ui, ζ̃i)(ζi − ζ̂i)}

where ζ̃i lies in the line segment joining ζi and ζ̂i. By calculation similar to (S.5), we have

1
n

∑n
i=1{Dζq(ui, ζ̃i)(ζi − ζ̂i)}2 = J(q)Op(n

−1s(1+2β)),

1
n

∑n
i=12q(ζ̂i){Dq(ui, ζ̃i)(ζi − ζ̂i)} = ∥q∥n,∗J(q)Op(n

−1/2s
1
2
+β).

By Proposition 2, if τ−1
n = Op(min{n2/5s−6/5, n1/2s−( 1

2
+β)}), J(m̂) = Op(1) and

∥q∥2n = ∥q∥2n,∗ +Op(n
−1s(1+2β)) + ∥q∥n,∗Op(n

−1/2s
1
2
+β) = Op(τ

2
n).

If J(m0) = 0 and τn ≍ n−1/4s3, J(m̂) = Op(n
−1/2s−6) from Proposition 2. Similarly as

the proof of Proposition 2, write m̂(u, ζ) = u⊺ν̂ + ĥ(u, ζ). In its proof, we show that

∥ν̂ − ν0∥E = Op(n
−1/2) and ∥h0∥n = 0 (due to U ⊺h0 = 0). By Lemma 3, we have |ĥ|∞ =
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J(ĥ)Op(1) = Op(n
−1/2s−6) since J(ĥ) = J(m̂)Op(n

−1/2s−6). Since u ∈ [0, 1]p+1, ∥q∥n ≤

∥ν̂ − ν0∥E + ∥ĥ∥n = Op(n
−1/2).

B.3 Proof of Theorem 2

We first introduce a few Lemmas, the proof of which is relegated to Section B.4.

Lemma 5 Under the conditions of Theorem 2, ∥m̂−m0∥2 = Op(n
−1/4), where ∥·∥2 represents

the L2(P )-norm..

Lemma 6 For any k = 1, . . . , s and gk ∈ F̄k, we have

sup
gk∈F̄k

⏐⏐⏐∥g(1)k ∥2n − ∥g(1)k ∥22
⏐⏐⏐

∥gk∥2
= Op(1).

Lemma 7 Under the conditions of Theorem 2, ∥f̂ ′
k − f ′

0k∥2n = Op(1) for all k = 1, . . . , s.

Proof of Theorem 2. Write m̂(u, ζ) = z⊺γ̂ + ĝ(ζ) and m0(u, ζ) = z⊺γ0 + g0(ζ) where

ĝ, g0 ∈
∑s

k=1 Fk and u = (1, z⊺)⊺. We also write ĝk = Pkĝ ∈ F̄k and g0k = Pkg0 ∈ F̄k

for k = 1, . . . , s. Note that ĝ and
∑s

k=1 ĝk may differ by a constant. Similarly for g0 and∑s
k=1 g0k.

By expanding ∥m̂ − m0∥22 = ∥w̃⊺(γ̂ − γ0)∥22 + ∥w⊺(γ̂ − γ0) + ĝ − g0∥22, we show that

∥w̃⊺(γ̂ − γ0)∥22 = Op(n
−1/4) using Lemma 5. By the condition that M is non-singular, we

have

∥γ̂ − γ0∥E = Op(n
−1/4) and ∥ĝ − g0∥2 = Op(n

−1/4). (S.8)

Recall that w̃(z, ζ) = z −w(ζ). We then define

m̂ρ(z, ζ) = m̂(u, ζ) + ρ⊺w̃(z, ζ) = z⊺(γ̂ + ρ) + {ĝ(ζ)− ρ⊺w(ζ)},
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for ρ = (ρ1, . . . , ρp)
⊺ ∈ Rp. Note that we assume that wj ∈

∑s
k=1 Fk and hence w̃j ∈

I+
∑s

k=1 Fk. Since m̂ρ ∈ I+
∑s

k=1 Fk, there exists a subgradient c = (c1, . . . , cp)
⊺ of J(m̂ρ)

with respect to ρ at ρ = 0 such that

∂

∂ρ

[
1

n

n∑
i=1

{yi − m̂ρ(ui, ζ̂i)}2
]⏐⏐⏐⏐⏐

ρ=0

+ τ 2nc = 0. (S.9)

We first analyze the order of the subgradient c. Note that J(m̂ρ) =
∑s

k=1 ∥ĝk −∑p
j=1 ρjwjk∥ where wjk = Pkwj. Now we study two cases, ∥ĝk∥ > 0 and ∥ĝk∥ = 0, sep-

arately.

Suppose ∥ĝk∥ > 0. Then ∥ĝk −
∑p

j=1 ρjwjk∥ is differentiable at ρ = 0 and its partial

derivative with respect to ρl at ρ = 0 is

−
∫ 1

0
ĝk(t)dt

∫ 1

0
wlk(t)dt+

∫ 1

0
ĝ′k(t)dt

∫ 1

0
w′

lk(t)dt+
∫ 1

0
ĝ′′k(t)w

′′
lk(t)dt

∥ĝk∥
,

for l = 1, . . . , p. The numerator is less than or equal to ∥ĝk∥∥wlk∥. Hence the absolute value

of this partial derivative is smaller than or equal to ∥wlk∥ < ∞ by the assumption that

J(wl) <∞.

Suppose ∥ĝk∥ = 0, which implies that ĝk = 0. Then

ĝk −
p∑

j=1

ρjwjk


2

=
(∫ 1

0

∑p
j=1 ρjwjk(t)dt

)2

+
(∫ 1

0

∑p
j=1 ρjw

′
jk(t)dt

)2

+
∫ 1

0

(∑p
j=1 ρjw

′′
jk(t)

)2

dt

= ρ⊺Nkρ,

where Nk is a p × p matrix with (i, j)-entry being
∫
wik

∫
wjk +

∫
w′

ik

∫
w′

jk +
∫
w′′

ikw
′′
jk.

Note that Nk is positive semi-definite. Using subgradient chain rule and the subgradient
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formulation of Euclidean norm, the subgradient of
√
ρ⊺Nkρ with respect to ρ is

⎧⎪⎨⎪⎩
Nkρ

∥N1/2
k ρ∥E

, if N
1/2
k ρ ̸= 0;

∈ {N 1/2
k a : ∥a∥E ≤ 1}, otherwise.

Recall that we are interested in the case of ρ = 0. For any a = (a1, . . . , ap)
⊺ such that

∥a∥E ≤ 1, ∥N 1/2
k a∥∞ ≤ ∥N 1/2

k a∥E = ∥
∑p

j=1 ajwjk∥ ≤
∑p

j=1 |aj|∥wjk∥ ≤
∑p

j=1 ∥wjk∥ < ∞,

where ∥ · ∥∞ is the max norm of a vector. Combining results from both cases, ∥ĝk∥ > 0 and

∥ĝk∥ = 0, we conclude that all entries of c are O(1).

Now, we go back to (S.9) and study the first term on the right hand side. For l = 1, . . . , p,

1

2

∂

∂ρl

[
1

n

n∑
i=1

{yi − m̂ρ(zi, ζ̂i)}2
]⏐⏐⏐⏐⏐

ρ=0

= − 1

n

n∑
i=1

{yi − m̂(ui, ζ̂i)}w̃l(zi, ζ̂i)

= − 1

n

n∑
i=1

[
{yi −m(ui, ζi)}+ {m(ui, ζi)−m(ui, ζ̂i)}+ {m(ui, ζ̂i)− m̂(ui, ζ̂i)}

]
w̃l(zi, ζ̂i),

= −(ε, w̃l)n + ((γ̂ − γ0)⊺w, w̃l)n + ((γ̂ − γ0)⊺w̃, w̃l)n + (ĝ − g0, w̃l)n,∗

+
1

n

n∑
i=1

s∑
k=1

w̃l(zi, ζi)f
′
0k(ζik)(ζ̂ik − ζik) +Op(n

−1)

= −I + II + III + IV + V +Op(n
−1).

By the asymptotic expansions (S.1) and (S.3),

V =
1

n

n∑
i=1

s∑
k=1

w̃l(zi, ζi)f
′
0k(ζik)Φ

′(ζik)

{
n−1/2

∑
j ̸=k

ζijλ
1/2
j

(λk − λj)λ
1/2
k

⟨∆ψk,ψj⟩

−1

2
n−1/2ζikλ

−1
k ⟨∆ψk,ψk⟩

}
= n−1/2

s∑
k=1

⟨∆ψk,ϖk,l⟩ × {1 +Op(n
−1/2)},
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where

ϖk,l =
∑
j ̸=k

E{w̃l(z1, ζ1)f
′
0k(ζ1k)Φ

′(ζ1k)ζ1j}λ1/2j λ
−1/2
k (λk − λj)

−1ψj

−1

2
E{w̃l(z1, ζ1)f

′
0k(ζ1kΦ

′(ζ1k)ζ1k}λ−1
k ψk. (S.10)

Since ∆ converge weakly to a Gaussian random field, it is easy to see that V = Op(n
−1/2)

and is asymptotically normal.

By (10), E{wj(ζ)w̃l(Z, ζ)} = 0,

II =

p∑
j=1

(γ̂j − γ0j)(wj, w̃l)n =

p∑
j=1

Op(n
−1/2)(γ̂j − γ0j).

Similarly, by law of large numbers,

III =

p∑
j=1

(γ̂j − γ0j)(w̃j, w̃l)n =

p∑
j=1

(Mlj + Op(1))(γ̂j − γ0j).

Similarly as before, we can show that the event lim infn{|ĝ−g0|∞/(1+J(ĝ)+J(g0)) ≤ C1+1}

is of probability 1.

It is easy to see that

IV = (ĝ − g0, w̃l)n +
1

n

n∑
i=1

s∑
k=1

{f̂ ′
k(ζik − f ′

k0(ζik)}w̃l(ζik)(ζ̂ik − ζik) + Op(n
−1/2)

= (ĝ − g0, w̃l)n + Op(n
−1/2) ( by Lemma 7).

Next, we study the behavior of
√
n(g− g0, w̃l)n as a function of ∥(g− g0)w̃l∥2. We are going

to apply Theorem 2.4 of Mammen and van de Geer (1997). To prepare this, we first derive
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some entropy results. Let

K =

{
(g − g0)w̃l : J(g − g0) ≤ 1, g ∈

s∑
k=1

Fk

}
.

Since w̃l ∈ M, write K6 = |w̃l|∞ <∞. Therefore

H∞(δ,K) ≤ H∞

(
δ

K6

, K̃
)

with K̃ =

{
g − g0 : J(g − g0) ≤ 1, g ∈

s∑
k=1

Fk

}
.

For any m ∈ M, we can write it in two ways:

m(u, ζ)−m0(u, ζ) = z
⊺(γ − γ0) + g(ζ)− g0(ζ) = u

⊺(ν − ν0) + h(u, ζ)− h0(u, ζ).(S.11)

Note that J(m−m0) = J(g − g0) = J(h− h0). If J(m−m0) ≤ 1, we can represent g − g0

and h− h0 uniquely as follows:

g(ζ)− g0(ζ) = µ+
s∑

k=1

r̃k(ζk), (S.12)

h(u, ζ)− h0(u, ζ) =
s∑

k=1

h̃k(u, ζk) with h̃k(u, ζk) = u
⊺ω̃k + r̃k(ζk) ∈ Hk,

where r̃k ∈ F̄k such that
∑n

i=1 r̃k(ζik) = 0 and J(r̃k) ≤ 1. Plugging them into (S.11), we

show that µ is the first element of ν − ν0 +
∑s

k=1 ω̃k. Write µ̂ as µ in (S.12) for ĝ − g0.

Recall that the event lim inf{∥ν̂ − ν0∥E ≤ K1} is of probability 1. Moreover, from the proof

of Lemma 3, we have the event lim inf{maxk=1,...,s ∥ωk∥E ≤ L} is of probability 1. Thus

lim inf{|µ̂| ≤ K7} for some constant K7. Thus we focus on the set

K̄ =

{
g(ζ)− g0(ζ) = µ+

s∑
k=1

r̃k(ζk) : |µ| ≤ K7, J(g − g0) ≤ 1, g ∈
s∑

k=1

Fk

}
,

where, with probability 1, ĝ − g0 will eventually falls into. We use similar trick in (S.16)
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to derive the entropy result for K̃ by the decomposition (S.12). It suffices to obtain bound

for H∞(·, {g(ζ) = µ : |µ| ≤ K7}) and H∞(·, {
∑s

k=1 r̃k : u⊺ω̃k + r̃k(ζk) ∈ Hk,
∑n

i=1 r̃k(ζik) =

0, J(r̃k) ≤ 1}). The bound for the first entropy is from Lemma 2.5 of van de Geer (2000),

while that for the second entropy is derived similarly in the proof of Lemma 3. For simplicity,

we skip those details. In the end, we get the event lim infn{supδ>0 δ
1/2H∞(δ, K̄) ≤ K8} is of

probability 1. Combining with the above results, we obtain an entropy bound for the set

K̂ =

{
(g − g0)w̃l

1 + J(g) + J(g0)
: g − g0 = µ+

s∑
k=1

r̃k, |µ| ≤ K7, g ∈
s∑

k=1

Fk

}
.

That is, the event lim infn{supδ>0 δ
1/2H∞(δ, K̂) ≤ K9} is of probability 1.

Note that E(g − g0, w̃l)n = 0 since E(g(ζ)w̃l(z, ζ)) = 0 for any g ∈
∑s

k=1 Fk. Applying

Theorem 2.4 of Mammen and van de Geer (1997) to K̂, we have

IV = Op(n
−1/2),

since J(ĝ) = Op(1) (Theorem 1) and ∥ĝ − g0∥2 = Op(1).

Also, it is simple to show that
∑n

i=1(yi− m̂(ui, ζ̂i))Op(n
−1/2)/n = Op(n

−1/2) since ∥m̂−

m0∥n = Op(τn) = Op(n
−1/4). Collecting all the above results, we have, for l = 1, . . . , p,

−(ε, w̃l)n +

p∑
j=1

(Mlj + Op(1))(γ̂j − γ0j) + n−1/2

s∑
k=1

⟨∆ψk,ϖk,l⟩+ 2τ 2ncl + Op(n
−1/2) = 0,

with cl = O(1). Since M is non-singular, we have

n1/2(γ̂ − γ0) =M−1(q1 + q2) + Op(1), (S.13)
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where qj = (qj1, . . . , qjp)
⊺, j = 1, 2, with q1l = n1/2(ε, w̃l)n, q2l = −

∑s
k=1 ⟨∆ψk,ϖk,l⟩. Put

V1 = cov(q1) and V2 = cov(q2), (S.14)

by the central limit theorem q1 → Normal(000,V1) in distribution, and since ∆ converge

weakly to a Gaussian random field (Dauxois et al., 1982), q2 → Normal(000,V2) in distribu-

tion. It is easy to see that q1 and q2 are asymptotically independent because ε and ∆ are

independent. The results of the theorem follows from (S.13).

B.4 Proofs of Lemmas

Proof of Lemma 2. For fk ∈ Fk which is a RKHS with the reproducing kernel Rk(·, ·)

⏐⏐⏐⏐∂fk(ζk)∂ζk

⏐⏐⏐⏐ = ⏐⏐⏐⏐⟨fk(·), ∂Rk(ζk, ·)
∂ζk

⟩⏐⏐⏐⏐ ≤ ∥fk∥
∂Rk(ζk, ·)

∂ζk

 .
The reproducing kernel of 2nd order Sobolev Hilbert spaces are Rk(s, t) = h1(s)h1(t) +

h2(s)h2(t)−h4(|s− t|) where h1(t) = t− 1/2, h2(t) = {h21(t)− 1/12}/2 and h4(t) = {h41(t)−

h21(t)/2 + 7/240}/24. Note that

∂2Rk(s, t)

∂s∂t
=

13

12
+

(
s− 1

2

)(
t− 1

2

)
− 1

2
|s− t|+ 1

2
(s− t)2. (S.15)

Now, for any k ≤ s,

sup
ζ∈[0,1]

∂Rk(ζ, ·)
∂ζ

2

= sup
ζ∈[0,1]

⟨
∂Rk(ζ, ·)

∂ζ
,
∂Rk(ζ, ·)

∂ζ

⟩
= sup

ζ∈[0,1]

∂2Rk(s, t)

∂s∂t

⏐⏐⏐⏐
s=t=ζ

≤ 4

3
.

Proof of Lemma 3. We will study the entropy result for H̃k := {hk ∈ Hk : J(hk) ≤ 1} first.

For hk ∈ H̃k, we can represent it uniquely as hk(u, ζ) = u
⊺ωk+rk(ζ), where

∑n
i=1 rk(ζik) = 0

and rk ∈ F̄k with J(rk) ≤ 1. Note that if S1 and S2 are two sets of functions, we can bound
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the uniform entropy of S1 + S2:

H∞(δ,S1 + S2) ≤ H∞(δ/2,S1) +H∞(δ/2,S2). (S.16)

Take

Sk,1 =

{
rk : hk(u, ζ) = u

⊺ωk + rk(ζ),
n∑

i=1

rk(ζik) = 0, hk ∈ H̃k

}
and

Sk,2 =

{
g(u) = u⊺ω : hk(u, ζ) = u

⊺ωk + rk(ζ),
n∑

i=1

rk(ζik) = 0, hk ∈ H̃k

}
.

Note that H̃k ⊆ Sk,1 + Sk,2 and thus H∞(δ, H̃k) ≤ H∞(δ/2,Sk,1) + H∞(δ/2,Sk,2). By the

proof of Lemma A.1 in Lin and Zhang (2006), |rk|∞ ≤ 1 and there exists a constant A such

that H∞(δ,Sk,1) ≤ Aδ−1/2 for all δ > 0.

Now, it remains to obtain results about H∞(δ, Sk,2). The constraints of Hk can be written

as

1

n
U ⊺Uωk = − 1

n
U ⊺(rk(ζ̂k1), . . . , rk(ζ̂kn))

⊺

where U = [uij]i=1,...,n,j=1,...,p+1. Note that U ⊺U/n → Σ almost surely (element-wisely)

and Σ is non-singular. Write the smallest eigenvalue of Σ as σ1. Let En be the event that

maxk=1,...,s ∥ωk∥E ≤ L = 2
√
p+ 1/σ1. Combining with |rk|∞ ≤ 1 and |uij| ≤ 1, we have

 1nΣ−1U ⊺(rk(ζk1), . . . , rk(ζkn))
⊺


E

≤ 1

σ1

 1nU ⊺(rk(ζk1), . . . , rk(ζkn))
⊺


E

≤
√
p+ 2

σ1

for all k. Therefore P (lim infn→∞ En) = 1. We note that this result hinges on the convergence

of U ⊺U/n, which does not depend on s, and thus still holds even s grows with n. Next, for

any u ∈ [0, 1]p+1 and ω,ω∗ ∈ Rp+1, |u⊺ω − u⊺ω∗| ≤
√
p+ 1∥ω − ω∗∥E. Therefore, on En,

H∞(δ,Sk,2) ≤ H(δ/
√
p+ 1, {ω : ∥ω∥E ≤ L}, ∥·∥E). From Lemma 2.5 of van de Geer (2000),

there exists a constant B such that H(δ/
√
p+ 1, {ω : ∥ω∥E ≤ L}, ∥ · ∥E) ≤ (p + 1) log(1 +

S.18



4L
√
p+ 1/δ) ≤ Bδ−1/2. Thus H∞(δ, {hk ∈ Hk : J(hk) ≤ 1}) ≤ (A + B)

√
2δ−1/2 = C1δ

−1/2

where C1 = sqrt2(A+B). As a result, on En, H∞(δ, {δ, {h ∈ H : J(h) ≤ 1}}) ≤ C1s
3/2δ−1/2

since J(h) ≤ 1 implies J(hk) ≤ 1 for all k. Moreover, on En, sup{h∈H:J(h)≤1} |h|∞ < sC ′
1 due

to |hk| ≤ C ′
1 :=

√
p+ 1L+ 1 for all k.

Proof of Lemma 4. Suppose

H∞(δ, {h ∈ H : J(h) ≤ 1}) ≤ C1s
3/2δ−1/2, (S.17)

for all δ > 0, n ≥ 1 and some constant C1 > 0 not depending on n and s. Then,

H

(
δ,

{
h− h0

J(h) + J(h0)
: h ∈ H

}
, ∥ · ∥n,∗

)

has the same entropy bound (S.17). The rest follows from the proof of Lemma 8.4 in van de

Geer (2000) and Lemma 3 that (S.17) holds eventually with probability 1.

Proof of Lemma 5. By Theorem 1, we have ∥m̂ −m0∥n = Op(n
−1/4). We will show that

∥m̂−m0∥n and ∥m̂−m0∥2 have the same order.

Recall that, in the proof of Proposition 2, we write m̂(u, ζ) = u⊺ν̂+ĥ(u, ζ) andm(u, ζ) =

u⊺ν + h(u, ζ). In its proof, using strong laws of large number, we show that ∥ν̂ − ν0∥E

converges to zero almost surely and hence the event lim infn{∥ν̂−ν0∥E ≤ K1} is of probability

1 for some constant K1. Consider the set

J = {m−m0 : ∥ν − ν0∥E ≤ K1, J(h− h0) ≤ 1,m(u, ζ) = u⊺ν + h(u, ζ) ∈ M} .

We can use the similar trick in (S.16) to derive the entropy result for J by decomposing a

function in J : m−m0 = u
⊺(ν − ν0) + h− h0. Next, it suffices to derive uniform entropies

H∞(·, {u⊺(ν − ν0) : ∥ν−ν0∥E ≤ K1,ν ∈ Rp}) and H∞(·, {h−h0 : J(h−h0) ≤ 1, h ∈ H}).
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The first one can be handled by Lemma 2.5 of van de Geer (2000) similary as in the proof

of Lemma 3 while the second one can be handled by Lemma 3. For simplicity, we skip those

details. In the end, we have lim infn{supδ>0 δ
1/2H∞(δ,J ) ≤ K2} is of probability 1 for some

constant K2. And this implies the entropy results for the set

J̃ =

{
m−m0

1 + J(m) + J(m0)
: ∥ν − ν0∥E ≤ K1,m(u, ζ) = u⊺ν + h(u, ζ) ∈ M

}
.

Namely, lim infn{supδ>0 δ
1/2H∞(δ, J̃ ) ≤ K3} is of probability 1 for some constant K3.

Using Lemma 3, we can show that the event lim infn{|ĥ−h0|∞/(1+J(ĥ)+J(h0)) ≤ K4}

is of probability 1 for some constant K4. (Note that s is assumed to be fixed and thus is

assimilated into the constant.) Combining with P(lim infn{∥ν̂ − ν0∥E ≤ K1}) = 1, we can

simply focus on the set

J̄ =

{
m−m0

1 + J(m) + J(m0)
: ∥ν − ν0∥E ≤ K1,

|ĥ− h0|∞
1 + J(ĥ) + J(h0)

≤ K4,m ∈ M

}
, (S.18)

where, with probability 1, (m̂ −m0)/(1 + J(m̂) + J(m0)) will eventually fall into. Clearly,

we also have that lim infn{supδ>0 δ
1/2H∞(δ, J̄ ) ≤ K3} is of probability 1. It is also easy to

show that J̄ is uniformly bounded.

From Theorem 1, we have ∥m̂ − m∥n = Op(n
−1/4). Hence, by applying Lemma 5.16

of van de Geer (2000) on J̄ , with δn = K5n
−2/5 for some constant K5, we can show that

∥m̂−m0∥n and ∥m̂−m0∥2 have the same order and thus ∥m̂−m0∥2 = Op(1).

Proof of Lemma 6.

Consider F̂′
k = {f (1)/∥f∥ : f ∈ F̄k}. By Lemma 2, we have the uniform boundedness of

F̂′
k: supf∈F̂′

k
supt∈[0,1] |f(t)| ≤ C2. Using Lemma 2.4 of van de Geer (2000), it is easy to show

that there exists a constant C3 such that supδ>0 δH∞(δ, F̂′
k) ≤ C3. Owing to the uniform

boundedness of F̂′
k, supδ>0 δH∞(δ, {f 2 : f ∈ F̂′

k}) ≤ 2C2C3. The desired result then follows
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from Lemma 3.6 of van de Geer (2000).

Proof of Lemma 7. Put qk = f̂k−f0k, then f̂−f0 =
∑s

j=1 qj. Since qj ∈ F̄j,
∫ 1

0
qj(t)dt = 0,

and therefore ∥f̂ − f0∥2L2[0,1]s =
∑s

j=1 ∥qj∥2L2[0,1]. By (S.8), ∥ĝ − g0∥2 = Op(1). By the

assumption that ζ has non-degenerate, bounded joint density on [0, 1]s, ∥ · ∥2 and ∥ · ∥L2[0,1]s

are equivalent norms, and therefore ∥qj∥L2[0,1] = Op(1) for j = 1, . . . , s. By Gagliardo-

Nirenberg interpolation inequality (Nirenberg (1959) and Brezis (2010, pp. 313-314)), there

exists a constant C4 such that

∥q(1)k ∥L2[0,1] ≤ C4∥qk∥1/2∥qk∥1/2L2[0,1].

By Theorem 1, J(m̂) = Op(1) and therefore ∥qk∥ = Op(1). Therefore ∥q(1)k ∥L2[0,1] = Op(1).

Again, because ∥ ·∥L2[0,1] and ∥ ·∥2 are equivalent norms, ∥q(1)k ∥2 = Op(1). Finally, by Lemma

6 and ∥qk∥ = Op(1), we have ∥q(1)k ∥2n = ∥q(1)k ∥22,k+∥q(1)k ∥2n−∥q(1)k ∥22,k = ∥q(1)k ∥22,k+∥qk∥2Op(1) =

Op(1).

C Additional results for Section 5

Following the suggestion of a referee, we also provide results when s is set to recover 90%

of the total variation in {xi}, instead of 99.9%. The results are presented in Tables S.1-S.4,

which should be compared with Tables 1-4 in the main text. When such a smaller percentage

is used, the 4th component, which is related to Y , is near the cut-off point and often not

included in the model. As a result, f4 is often falsely excluded from the model (see Table

S.2), and there is a much lower chance for COSSO to select the correct model. We also see

much bigger prediction errors in Table S.4 than those in Table 4. Our conclusion is it is

best to include as many components as possible and let the model selection mechanism of

COSSO determine the size of the model.
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D Additional Results for Section 6

Since the two functional predictors in our real data are strongly correlated, we also compare

the prediction performance for models using only one functional predictor. Recall that X1(t)

and X2(t) are the daily maximum and daily minimum temperature trajectories respectively.

We denote by X̄(t) = {X1(t) + X2(t)}/2 the mean trajectory. In addition to the models

presented in Section 6, we also compare the yield prediction performance of the following

12 models, which use only one of X1(t), X2(t) and X̄(t) as the functional predictor. In the

prediction experiment described in Section 6.1, the prediction errors of these 12 models are

presented in Table S.5. As we can see, the models using only one functional predictor or the

average yield higher prediction errors than PLFAM(joint) which jointly model both functional

predictors.

1. PLFAM(max): PLFAM based on univariate FPCA scores from X1;

2. FAM(max): FAM based on univariate FPCA scores from X1;

3. FLM-Cov(max): FLM based on univariate FPCA scores from X1, with covariate effects;

4. FLM(max): FLM based on univariate FPCA scores from X1 (without Z);

5. PLFAM(min): PLFAM based on univariate FPCA scores from X2;

6. FAM(min): FAM based on univariate FPCA scores from X2;

7. FLM-Cov(min): FLM based on univariate FPCA scores from X2, with covariate effects;

8. FLM(min): FLM based on univariate FPCA scores from X2 (without Z);

9. PLFAM(mean): PLFAM based on univariate FPCA scores from X̄;

10. FAM(mean): FAM based on univariate FPCA scores from X̄;
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11. FLM-Cov(mean): FLM based on univariate FPCA scores from X̄, with covariate effects;

12. FLM(mean): FLM based on univariate FPCA scores from X̄ (without Z).

We also made the assumption that crop yields in different counties and years are con-

ditional independent given the local meteorology information. To check for possible spatial

dependency, we calculate the spatial variograms for each year based on the residuals from

the fitted yield prediction model; to check for possible temporal dependency, we also calcu-

late the autocorrelation function (ACF) for each county. Because of limited space, we show

the spatial variograms for the first 4 years in Figure S.1 and ACF for the first 4 counties in

Figure S.2. These plots are based on the residuals of the corn yield prediction model. Plots

for other years and counties and those based on the soybean prediction model are similar.

All variograms and ACF’s are contained in the confidence band based on the assumption of

no dependency, which supports the conditional independence assumption that we make.

E Standard Error Estimation by Bootstrap

To quantify the uncertainties in the estimated model, we estimate the standard errors of

both θ̂ and f̂(ζ) using bootstrap. In addition to the uncertainties in the regression step,

our bootstrap procedure also takes into account the variation in mFPCA. The bootstrap

samples are obtained by resampling residuals from both the observations on the functional

covariates and the response variables. The procedure is as follows.

1. (Resampling the functional covariates) Recall that the discrete noisy observations on

xi are

wijk = xij(tijk) + eijk, i = 1, . . . , n, j = 1, . . . , d, k = 1, . . . , Nij,
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and the recovered functions from the discrete observations are x̃ij(t). Let êijk = wijk−

x̃ij(tijk) and resample with replacement e∗ijk from {êijk : k = 1, . . . , Nij} to obtain a

bootstrap sample w∗
ijk = x̃ij(tijk) + e∗ijk. Repeat for all i, j, k, to obtain the bootstrap

sample W∗ = {w∗
ijk : i = 1, . . . , n, j = 1, . . . , d, k = 1, . . . , Nijk} for the functional

data.

2. (Resampling the response) Denote ŷi as the fitted value of yi from the original data

and define the residuals ε̂i = π
1/2
i (yi− ŷi). Sample with replacement ε∗i uniformly from

{ε̂i : i = 1, . . . , n} to obtain a bootstrap sample y∗i = ŷi + π
−1/2
i ε∗i of yi. Denote the

bootstrap sample as Y∗ = {y∗i : i = 1, . . . , n}.

3. Apply the mFPCA procedure on W∗ to obtained mFPC scores ζ∗, and then fit the

propose PLFAM to Y∗ using ζ∗ and the original Z. Denote the estimates from the

bootstrap sample as θ̂∗ and f̂ ∗(ζ).

4. Repeat Steps 1- 3 a large number of times and use the sample standard deviations of

θ̂∗ and f̂ ∗(ζ) as estimates of the standard errors for θ̂ and f̂(ζ).

Table S.1: Percentages of fitted model sizes.

Setting Model % for the following model sizes
1 2 3 4 5 6 7 8

{(i), (I)} FAM 1 40 58.5 0.5 0 0 0 0
PLFAM 1 40 58.5 0.5 0 0 0 0

{(ii), (I)} FAM 2.5 95.5 2 0 0 0 0 0
PLFAM 2.5 95.5 2 0 0 0 0 0

{(i), (II)} FAM 5.5 50 42 2.5 0 0 0 0
PLFAM 0 37.5 62.5 0 0 0 0 0

{(ii), (II)} FAM 15 84 1 0 0 0 0 0
PLFAM 2 97 1 0 0 0 0 0
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Table S.2: Percentages of selected components and, correct and super selection.

Setting Model % for the following component functions % correct % super

f̂1 f̂2 f̂3 f̂4 f̂5 f̂6 f̂7 f̂8 set set

{(i), (I)} FAM 100 99 2.5 57 0 0 0 0 56.5 57
PLFAM 100 99 2.5 57 0 0 0 0 56.5 57

{(ii), (I)} FAM 100 97.5 2 0 0 0 0 0 0 0
PLFAM 100 97.5 2 0 0 0 0 0 0 0

{(i), (II)} FAM 100 81 3 57.5 0 0 0 0 41.5 44
PLFAM 100 100 2.5 60 0 0 0 0 60 60

{(ii), (II)} FAM 100 85 1 0 0 0 0 0 0 0
PLFAM 100 98 1 0 0 0 0 0 0 0

Table S.3: Averaged integrated squared errors.

Setting Model AISEs for the following component functions

f̂1 f̂2 f̂3 f̂4 f̂5 f̂6 f̂7 f̂8 f̂

{(i), (I)} FAM 0.0257 0.0903 0.0020 0.4682 0.0000 0.0000 0.0000 0.0000 0.5861
PLFAM 0.0258 0.0907 0.0018 0.4682 0.0000 0.0000 0.0000 0.0000 0.5865

{(ii), (I)} FAM 0.0321 0.1364 0.0026 0.9508 0.0000 0.0000 0.0000 0.0000 1.1219
PLFAM 0.0324 0.1352 0.0027 0.9508 0.0000 0.0000 0.0000 0.0000 1.1210

{(i), (II)} FAM 0.0439 0.2211 0.0056 0.4902 0.0000 0.0000 0.0000 0.0000 0.7609
PLFAM 0.0252 0.0855 0.0015 0.4348 0.0000 0.0000 0.0000 0.0000 0.5470

{(ii), (II)} FAM 0.0423 0.2158 0.0014 0.9508 0.0000 0.0000 0.0000 0.0000 1.2102
PLFAM 0.0278 0.1341 0.0009 0.9508 0.0000 0.0000 0.0000 0.0000 1.1136

Table S.4: Prediction errors and mean squared errors for FAM and PLFAM, using separate
univariate FPCA scores (columns labelled “separate”) or mFPCA scores (columns labelled
“joint”). For prediction errors, means are presented with corresponding standard deviations
in parentheses.

Setting Model Prediction error Mean squared errors
separate joint separate joint

θ̂1 θ̂2 θ̂3 θ̂1 θ̂2 θ̂3

{(i), (I)} FAM 1.68 (0.11) 1.68 (0.40) - - - - - -
PLFAM 1.69 (0.11) 1.70 (0.41) 0.0763 0.0975 0.1097 0.0756 0.1047 0.1095

{(ii), (I)} FAM 1.68 (0.10) 2.13 (0.12) - - - - - -
PLFAM 1.69 (0.10) 2.15 (0.13) 0.0667 0.1108 0.0858 0.0767 0.1388 0.1100

{(i), (II)} FAM 3.94 (0.24) 3.94 (0.36) - - - - - -
PLFAM 1.71 (0.11) 1.69 (0.39) 0.0688 0.1091 0.0973 0.0686 0.1181 0.0818

{(ii), (II)} FAM 3.91 (0.25) 4.29 (0.27) - - - - - -
PLFAM 1.71 (0.11) 2.13 (0.13) 0.0675 0.0897 0.1156 0.079 0.1332 0.1284
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Table S.5: Average of 5-year overall prediction errors.

corn soybean

(a) functional additive models PLFAM(joint) 298.43 35.64
PLFAM(separate) 306.50 38.85

PLFAM(max) 324.27 38.22
PLFAM(min) 338.51 44.09

PLFAM(mean) 330.17 40.93
FAM(joint) 830.17 48.54

FAM(separate) 839.00 51.06
FAM(max) 898.12 51.92
FAM(min) 997.27 65.48

FAM(mean) 916.80 57.79
(b) functional linear models FLM-Cov(joint) 303.81 35.29

FLM-Cov(separate) 308.57 35.69
FLM-Cov(max) 317.83 37.52
FLM-Cov(min) 338.88 42.43

FLM-Cov(mean) 310.02 37.27
FLM(joint) 704.19 47.31

FLM(separate) 767.42 50.42
FLM(max) 779.56 51.49
FLM(min) 842.12 61.42

FLM(mean) 790.96 52.38
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Figure S.1: Spatial variograms for each year from 2008 to 2011, based on the residuals from
the corn yield prediction model. The unit in the horizontal axis is degree (in longitude or
latitude). The dotted curves are confidence bands based on the assumption of no spatial
dependency.
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Figure S.2: The ACF plot for the first four counties, based on the residuals from the corn
yield prediction model. S.28
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