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Abstract

We investigate a class of partially linear functional additive models (PLFAM) that pre-
dicts a scalar response by both parametric effects of a multivariate predictor and nonpara-
metric effects of a multivariate functional predictor. We jointly model multiple functional
predictors that are cross-correlated using multivariate functional principal component anal-
ysis (mFPCA), and model the nonparametric effects of the principal component scores as
additive components in the PLFAM. To address the high dimensional nature of functional
data, we let the number of mFPCA components diverge to infinity with the sample size, and
adopt the COmponent Selection and Smoothing Operator (COSSO) penalty to select rele-
vant components and regularize the fitting. A fundamental difference between our framework
and the existing high dimensional additive models is that the mFPCA scores are estimated
with error, and the magnitude of measurement error increases with the order of mFPCA.
We establish the asymptotic convergence rate for our estimator, while allowing the number
of components diverge. When the number of additive components is fixed, we also establish
the asymptotic distribution for the partially linear coefficients. The practical performance
of the proposed methods is illustrated via simulation studies and a crop yield prediction
application.

Key Words: Additive model; Functional data; Measurement error; Reproducing kernel
Hilbert space; Principal component analysis; Spline.
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1 Introduction

As new technology being increasingly used in data collection and storage, many variables

are continuously monitored over time and become multivariate functional data (Ramsay and

Silverman, 2005; [Zhou et al., 2008; Kowal et al., 2017)). Extracting useful information from

such data for further regression analysis has become a challenging statistical problem. There

has been significant amount of recent work devoted to regression models with functional

predictors and the most popular model is the functional linear model (James, 2002; |Cardot|

let al.; 2003; Miller and Stadtmiiller, 2005; |Cai and Hall|, 2006}, |Crainiceanu et al.| 2009;

et al.| [2010; |(Cai and Yuan| [2012), where the scalar response variable is assumed to depend

on an L? inner product of the functional predictor with an unknown coefficient function.

Functional data are infinite dimensional vectors in a functional space (Hsing and Eubank,

2015). Due to the richness of information in such data, a simple linear model is often found
inadequate and many researchers have investigated nonlinear functional regression models.

The most widely used approach is to project functional data into a low-rank functional sub-

space and use the projections as predictors in a nonlinear model (James and Silverman), 2005}

Li and Hsing, 20104} [Yao et al., 2016)). The most popular and best understood dimension

reduction tool for functional data is the functional principal component analysis (FPCA)

(Yao et al.| |2005; Hall et al.| |2006; Li and Hsing,, 2010b)). A recent development in nonlinear

functional regression model is the functional additive model (Miiller and Yao| 2008; Zhul

, , where FPCA scores are used as predictors in an additive model.

Our research is motivated by a crop yield prediction application in agriculture. Agri-
culture is a major industry in the U.S., the source of livelihood for millions of farmers and
a vital contributor to global food security. Getting timely and reliable predictions on crop

production is crucial for planners and policy makers to create appropriate strategies for the



storage, distribution, and trade of agricultural products. The US National Agricultural Sta-
tistical Service is the federal agency responsible for providing such statistics to the public,
and their in-season crop yield forecast is primarily based on survey data. It is well known
that weather has a significant impact on crop yield, and statistical models can be used to
relate weather forcast to crop yield prediction (Cadson et al., [1996; [Hansen, 2002} |Prasad
et al., [2006; Lobell and Burke, [2010). Since measurements of meteorological variables, such
as maximum and minimum temperatures, are typically available on a daily basis and their
effects on yield vary at different growing stage of the crop, it is natural to treat them as
functional predictors. Besides the functional predictors, scalar predictors, such as crop man-
agement methods, also have a great impact on yield and need to be included in the prediction
model.

We propose a partially linear functional additive model (PLFAM) to predict a scalar
response variable using both scalar and functional predictors. We use such a model to predict
crop yield using the temperature trajectories. Such a model is of fundamental importance in
plant science and agricultural economics: it advances our understanding of the relationship
between weather conditions and crop yield, help to evaluate the impact of climate change on
crop production and assist farmers and stake holders to better predict the future prices of
agricultural commodity products and plan their actions accordingly. In many applications
including our motivating data example, the functional predictors are strongly correlated
to each other. To extract information more efficiently, we jointly model these predictors
as a multivariate functional predictor, and perform dimension reduction using multivariate
functional principal component analysis (mFPCA) (Ramsay and Silverman, [2005; Chiou
et al., [2014). The proposed PLFAM includes the parametric effects of the scalar predictors
and additive nonparametric effects of the mFPCA scores. To automatically select significant

additive components, we impose COSSO penalties (Lin and Zhang), 2006) to the component



functions and estimate the model in a reproducing kernel Hilbert space (RKHS) framework.

Our approach is different from that of Zhu et al.| (2014)) in a few important perspectives.
On the methodology side, we consider multiple functional predictors, extract informative sig-
nals from the functional predictors using mFPCA, and we adopt a semiparametric partially
linear structure in our model to take into account the effects of scalar predictors. On the the-
ory side, we allow the number of additive components in the model to diverge to infinity with
the sample size, to acknowledge the fact that functional data have infinite number of prin-
cipal components. Our theory is fundamentally different from those in the high dimensional
additive model literature, since our predictors in the additive model are estimated mFPCA
scores that are contaminated with measurement errors (Carroll et al., [2006). As we show,
the magnitude of measurement error gets higher for higher order principal components. In
contrast, |Zhu et al.| (2014) only allow finite number of principal components in their model.
To bound the effect of measurement errors, they also impose some very restrictive conditions
which, in effect, limit their estimator in a finite dimensional subspace of the Sobolev space.
Our results, on the other hand, does not rely on such artificial assumptions.

The rest of the paper is organized as follows. We describe the model and assumptions
in Section [2] and the estimation procedure in Section [3| In Section [4] we investigate the
asymptotic properties of the proposed estimator. We illustrate the proposed method with
simulation studies in Section [5] and apply it to the motivating data example in Section [6]
Some final remarks are collected in Section [7] Technical proofs and additional numerical

results are relegated to the supplementary material.



2 Model and Assumptions

Let Y be a scalar random variable associated with a predictor Z € RP and a multivariate
functional predictor X = (X3,..., X,)T, where p and d are positive integers, and X;(t) is a
stochastic process defined on the time domain 7; for 7 = 1,...,d. For simplicity, we focus
on the case 7; = T, but having different domains does not affect our methodological nor
theoretical developments. Let {z;, x;}?_; be i.i.d. copies of {Z, X }. Their relationship with

the response {y;}"; are modeled as
vi=m(z,x;) +ei, i=1,....n, (1)

where m is the regression function and ¢; are zero mean errors independent with {@;} ; and
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2 is an unknown variance parameter

{z;} ;. Further we assume var(e;) = o2/m;, where o
and 7;’s are known positive weights. In our application, the response y; is the averaged crop

yield per acre obtained from a survey, and 7; is proportional to the size of the harvest land.

2.1 Multivariate functional principal component analysis

We assume that, with probability 1, the trajectory of Xj is contained in a Hilbert space
X, with inner product (-,-)x and norm || - [|x;. We will focus on the case that X;’s are L?
functional spaces and the inner products are (f, g}Xj = [ f(t)g(t)dt for any f,g € X;. Let
X = @jzl X be the direct sum of the functional spaces, which is a bigger Hilbert space
equipped with the induced inner product and norm, i.e. (@1, x2)y = Z?:l <5E1j,$2j>xj and
|e1]|x = (azl,:cl&/? for any @; = (241, ...,24)7 € X, i =1,2.

Define the mean function of the multivariate functional predictor as p(t) = E{X (t)} =
{pa(t), ..., na(t)}7 where p;(t) = E{X;(¢)}. The cross-covariance function between X; and

Xy is Cjjr(s,t) = E[{X,(s) — pi(s) H{Xy(t) — pj(t)}], and the covariance of X is a d x d



matrix of cross-covariance functions

C(s.1) = EI{X(s) — (s)H{X (1) — ()] = {Cip(5. )}y

We assume that C defines a bounded, self-adjoint, positive semi-definite integral operator

(Hsing and Eubank, [2015]). Standard operator theory warrants a spectral decomposition

C(s,t) = Z Ak (s)Pp (1),

where A\; > Xy > ... > 0 are the eigenvalues and ¥, = (Ug1,...,¥ra)T € X are the cor-
responding eigenfunctions such that (v, ¥w)y = [ ¥w(t) Yw(t)dt = I(k = k). By a

standard Karhunen-Loeve expansion

X (1) = p(t) + ) &brlt),
k=1

where &, = (X — p, 9y)y are zero-mean random variables with E(&,&y) = A\l (k = k). The

variables & are the mFPCA scores of X.

2.2 Partially linear functional additive model

Direct estimation of Model suffers from the “curse-of-dimensionality” and is unpractical.
Many popular alternative approaches are based on dimension reduction through FPCA and
the effects of the functional predictors are modeled through their principal component scores,
including the functional linear models (FLM) and the functional additive models (FAM). Our
PLFAM model follows a similar strategy and can be considered as a special case of Model
with additional structural assumptions.

We denote the sequence of mFPCA scores of @; by & o = (&1,&i2,-..)7. Even though



in theory there are infinite number of principal components, the number of eigenfunctions
estimated from the sample is at most n — 1, and as shown in our theory in Section
even fewer of eigenfunctions are estimated consistently. For these practical reasons, it is
a common practice to only use the low-order FPCA scores as predictors in a regression.
Denote the truncated mFPCA scores as & = (&1, ..,&s)T, with a positive integer s. To
avoid possible scale issues, we instead use the standardized version (; = @(A,;l/ 2§z‘k), where
®(-) is a continuously differentiable map from R to [0,1]. We let ®(:) be the standard
Gaussian cumulative distribution function (CDF) in all of our numerical studies. When the
distribution of ¢ is close to Gaussian,  is approximately uniform in [0, 1], which is convenient
for nonparametric modeling on the effect of (. Other continuous CDF's can also be used as
®(-), such as the logistic function. Write ¢; 0o = (Gi1, Gio, - .- ) and § = (G, - -+, Gis)-
Assuming that all useful information in the multivariate functional predictor is contained
in the first s principal components, which are related to the response in an additive form,
and the covariate effect is linear, then model becomes the following Partially Linear

Functional Additive Model (PLFAM)

Yi = mo(wi, G;) + & = uj6p + fo($i) + i = ufbo + Z for(Gir) + i, (2)

k=1

where 6y € RP™! and u; = (1, 2])7. Model ({2)) bears the functional additive model (FAM) of
Miller and Yao (2008) and Zhu et al.| (2014]) as a special case when the functional predictor
X (t) is univariate (d = 1) and there are no scalar covariates. The partially linear structure
is widely used in many popular semiparametric models because it combines the flexibility
of nonparametric modeling with easy interpretation of the covariate effects (Carroll et al.|
1997; [Liu et al., |2011; [Wang et al., [2014)). In practice, u can include interactions, quadratic

terms and any other low order nonlinear terms as long as their effects are interpretable and



parametric. We show in Section [4| the estimated partially linear coefficient 0 (also referred
to as the parametric component of the model) is y/n-consistent and has an asymptotically
normal distribution, despite the existence of nonparametric components which converge in
a slower rate. This is particularly useful if inference on the parametric effects is of primary
interest in the study.

Following [Lin and Zhang] (2006) and [Zhu et al.| (2014), we assume that each fo, belongs
to a reproducing kernel Hilbert space (RKHS). We refer interested readers to Wahba/ (1990))
for an introduction of RKHS for penalized regression. The most widely used RKHS is the
Sobolev Hilbert space. In such context, an I-th order Sobolev Hilbert space F[0, 1] is the
collection of functions on [0, 1] whose first (I — 1)-th derivatives are absolutely continuous

and the [-th derivative belongs to L?[0, 1], and the corresponding norm is chosen as

-1

ot =3 { [ o 0ar}

v=0

2 1
+/ g(l)(t)zdt for any g € F [0, 1].
0

Let Fy, k = 1,...,s, be a sequence of [-th order Sobolev spaces on [0, 1] with reproducing
kernels Ry, and we assume fy, € Fr. However, the fact that constant functions belongs to
each Iy, leads to an identifiability issue. To provide an identifiable parametrization, we note
that each [F; has an orthogonal decomposition F, = {1} @ I, where {1} is the space of all
constant functions. From now on, we assume mg € M = 1@ 22:1 Fy, where for € Fy for
k=1,...,s,and I = {uT@ : @ € RPT'}. For the rest of the paper, we focus on the second

order Sobolev space with [ = 2.



3 Estimation and Computation

3.1 Estimation in mFPCA

To start with, we assume that the trajectories of x;(t)’s are fully observed. Then the mean

and covariance of X can be estimated by

)=n" sz Cls.t) = n Z{ml () Hazlt) — A} 3)

Since C has rank n — 1, it has a spectral decomposition 5(3, t) = Z;ll ink(s)@l(t), where
;\\k and @k(t) are the sample eigenvalues and eigenfunctions. The estimated mFPCA scores

are
S = (@i z / v (O0 (Odt, G = OO2E), k=1,....d (4)
In practice, we only have discrete noisy observations on x;
Wik = Tij(tigk) +eije, t=1,....n, j=1,...,d, k=1,...,N;,

where ;s are independent measurement errors with mean 0 and variance o2 pJ=1...,d
We will focus on the case where dense measurements are made on each curve such that each

functional predictor can be effectively recovered by passing a linear smoother through the

discrete observations. Let the recovered functions be z;;(t) = &(t;t;;)0,;, where w;; =

Wiit, -, WiinN )T and &(t;t;;) is a linear smoother depending on the design points t;; =
J Jy4Vij J g g ¥l

tii1, ..., tiin,. )T, e.g. local polynomial or regression splines. The eigenvalues, eigenfunctions
J 3Nij g y g g g

and mFPCA scores are estimated by replacing x;;(t) with Z;;(¢) in (3) and (4).
For univariate functional data, this pre-smoothing approach is theoretically justified by

Hall et al. (2006), who show that, when & is a local linear smoother and Ny, = min; ;/N;; >

8



Cn!/*, the error incurred by approximating x;;(t) with Z;;(¢) is negligible in A\ and @/Z)\k; Li
et al| (2010) further show that this approximation error is negligible to gk if N > Cnb/4,
As commented in [Li et al.| (2010)), there are two sources of error in @k the error caused by
approximating x;; with z;; and the error in @k If the first type of error prevails, regression
analysis using gk will be inconsistent even for linear models. The second type of error, on
the other hand, is diminishing to zero as n — oo. There are mFPCA methodologies for
sparse multivariate functional data (see e.g. (Chiou et al. (2014)), but how to consistently
estimate FAM or PLFAM when the estimated scores are contaminated with non-diminishing
errors is not clear and calls for further research.

In all of our numeric studies, we smooth and register each z;; on B-splines, pool spline
coefficients for each component in &; into a longer vector, then the operator Cis represented as

a high dimensional matrix, and the mFPCA problem reduces to a multivariate PCA problem.

For detailed algorithm, we refer the readers to Section 8.5 in [Ramsay and Silverman| (2005)).

3.2 Estimation of PLFAM with COSSO penalty

Let a = (@1, e ,@S)T be a vector of standardized mFPCA scores for x; estimated using the
procedure in Section [3.1} Since there are potentially infinite number of principal components
for X, we choose the truncation point s to be a large positive number and use a penalized
regression method to select the relevant components.

The proposed estimator m is the minimizer of the following penalized loss ¢, (m) with

respect to m € M. The loss function is defined as

alm) = 3 s — (s, E)Y + 727 (m), )

where 7; are the survey weights defined in . Here 72 is a tuning parameter and J(m) =



S5 [IPrm]| with Py, being the projection operator to Fy. The penalty J(m) is first proposed
in the COSSO framework (Lin and Zhang, 2006 for simultaneous estimation and selection
of the nonparametric functions fy’s.

Following |Lin and Zhang] (2006), we minimize by iteratively minimizing its equivalent

form
1 n R S B S
= iy = mlun QY 40 Y0 [Peml® + 5 o (6)
i=1 k=1 k=1
over ¢ = (¢1,...,05)T € [0,00)® and m € M, where k¢ > 0 is a pre-determined constant and

K is a tuning parameter.
The relationship between and (@ is stated in the following lemma, which is an exten-
sion of Lemma 2 in |Lin and Zhang (2006)) to partially linear additive model under a weighted

least square loss. Its proof is omitted for brevity.

Lemma 1 (Lemma 2 of [Lin and Zhang| (2006))) Set x = 7.}/(4k0). (i) If m minimizes
(@, set o, = kg kY2 Peii|; then the pair (¢, M) minimizes (@) (ii) If (¢, ™) minimizes

(@), then m minimizes (3).

By representer theorem, the minimizer m(u, ¢) takes the form w™@+> ;| ¢p > i, aiRk(@k, Cr),
for u = (1,21,...,2,)T € RPY ((y,...,¢)T € R, where a = (ay,...,a,)T € R" is a vector

of unknown parameters. Then, minimization of @ is equivalent to minimizing

1 S S S
|y U0 = > deRya)[f+ ko Y dva’Rea+r) o, (7)
k=1 k=1 k=1

where || - || represents the Euclidean norm, IT = diag{my,..., 7.}, ¥y = (y1, ..., yn)T, U =
[Wisliz1,. mj=1..p+1 18 an x (p+ 1) design matrix and Ry = [Ri(Cik, Gik)lij=1,.n IS an X n
matrix for k = 1,...,s. For a fixed ¢, minimizing with respect to (6, a) is similar to

solving a weighted ridge regression. For fixed 8 and a, let D be the n x s matrix with the
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k-th column being R;a, then minimization of with respect to ¢ € [0,00)* becomes

min% [QSTDTHqu —2 {DTH(y -U#0) — %TmoDTa}T (;b]

subject to Zgbk < G and ¢ € [0,00)°,

k=1

for some G > 0, which is a typical quadratic programming. The practical minimization of
is done by iterating over these two minimizations by fixing (6,a) and ¢ in turn. The
algorithm starts with solving (6, a) while fixing ¢ = 1. Empirically, the objective function
decreases quickly in the first iteration, which was also observed in |Lin and Zhang (2006) and
Storlie et al. (2011). To reduce the computational cost, we limit the number of iterations,
and follow a one-step update procedure similar to Lin and Zhang (2006)).

As discussed in Lin and Zhang (2006) and Storlie et al. (2011), k¢ can be fixed at any
positive value. We select ko that minimizes the GCV of the partial spline problem when
é =1. Let o) = ('™ ... 3"\ @) and ) be the minimizer of (7)) for a fixed 7,. To
select the smoothing parameter 7, (or equivalently ), we minimize the Bayesian information
criterion nlog(RSS,(7,)/n) + df(7,)log(n), where the effective degress of freedom df(7,)
is the trace of the smoothing matrix in the partial spline problem when ¢ is set to
™), and the weighted residual sum of squares is RSSy(7,) = w—||I1V2(y — UH™) —

T
i o Ra™) |3

4 Theoretical Results

4.1 Basic results for mFPCA

By the theory of [Dauxois et al. (1982), ||5— Cllop = O,(n~'/?) where the operator norm is

[ A||x
lllx

defined as || Allop = SUPgex for any bounded linear operator A on X. To derive the

11



asymptotic expansion for aks, we use the asymptotic expansion of /):k and f[ﬁk provided by
Hsing and Eubank (2015), which is a generalization of those by Hall and Hosseini-Nasab
(2006)) for univariate functional data to more general Hilbert space random variables. We

adopt the following assumptions:

Assumption 1 (Cai and Hall (2006)))
CoUk™ <M < CONE™ M= N > OR7 k=12, (8)

To ensure that Y o A\, < 00, we assume that a > 1.

Assumption 2 E(| X||%) < oo and there exists a constant C¢ > 0 such that E(€2) <

Cedpdw and E(EF — \)? < CeA? for all k and k' # k.

The polynomial decay rate described in Assumption 1 is a slow decay rate assumption on
the eigenvalues and allows X (¢) to be flexibly modeled as a multivariate L? process without
strong constraints on the roughness of its sample path. Assumption 2 is a weak moment
condition on the functional predictors and is satisfied if X (¢) is a multivariate Gaussian
process. Both assumptions are widely used in the functional linear model literature (Cai and
Hall, 2006; |Cai and Yuan, [2012; Hsing and Eubank, |2015). Define ¢, = %mink/#p\k/ — Al
which is no less than %C’;lk*ko‘ under condition @) and denote A = nl/z((?— C). By
Dauxois et al.| (1982), A converges weakly to a Gaussian variable in the space of linear

operators and hence ||Allop = Op(1).

Proposition 1 (Transformed FPC scores) Suppose the transformation function ®(-)
has bounded derivative. Under Assumptions[1] and[d, there is a constant C' > 0 such that

E(sz — Cir)? < CK? /n uniformly for k < J,, where J,, = L(?C’,\||A|]op)_1/(1+°‘)nl/(2+2“)J.
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The proof of Proposition [I]is given in Appendix[A]in the supplementary material. It implies
that the estimation error of the principal component score increases as the order of the
principal component gets higher. Interestingly, the estimation error is of order O,(n~1/2k),

which does not depend on the decay rate « of the eigenvalues.

4.2 Asymptotic theory for PLFAM

For simplicity, we assume that m; = 1 for ¢ = 1,...,n. We begin by introducing several
notations. We write P, as the empirical distribution of (Z,¢). That is, P, = >_1 | 0z,.¢,/7,
where d, ¢ is the delta function at (z, ). Moreover, we denote the distribution of (Z, ) by

P. We define the corresponding (squared) empirical norm and inner product as
lmy||2 = /mfdP and  (mq, ma)p /mlmzdPn, for any my, my € M.

These notations are extended to measurement errors {¢;}. For instance, (¢,mq), =
Yo eima(ug, §;)/n. Moreover, we write the Euclidean norm for vector as || - ||g. To derive
the asymptotic properties, we assume that the parametric component is identifiable. More

specifically, 3 = f uuTdP is non-singular.

Theorem 1 Suppose, for some 8 > 0, E(Ge — Gi)? < Cn*k* uniformly for all k < s.
Assume 0 < J(mg) < oo, 3 is non-singular and 7,' = Op(min{n2/5s*6/5,nl/zs_(%J“B)}), we
have || —mg ||, = Op(1,) and J(in) = O,(1). If J(mo) = 0 and 7, < n~ Y43 || —myg||, =
O,(n=Y2) and J(M) = O,(n~Y2s79).

Remarks:
1. Under the framework laid out in Assumptions|l|and , with s = O, (n'/120+)}) we have
E(Cir — Cip)? < Cn~ k2 uniformly for all k < s followed from Proposition . The results in

Theorem (1| can be further simplified by identifying 5 = 1. In this case, if 0 < J(mg) < oo
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and 7,1 = 0,(n*°s75/%), we have || — mol|, = O,(n~%/5s55). If s is fixed, || — mg||, =
O,(n™?/%) is the optimal nonparametric convergence rate assuming each for belongs to a
second order Sobolev space.

2. Our result can be considered as an extension of Theorem 1 in |Zhu et al. (2014), where we
allow s — oo in a rate no faster than O, (n'/{20+2)}) The reason for setting such a restriction
on the rate of s is that, in order to estimate the principal components consistently, we need
the distance between two adjacent eigenvalues to be no smaller than ||C — Cllop- This is a
fundamental difference with classic high dimensional additive models (Meier et al., 2009}
Ravikumar et all 2009; Liu et al., 2011; Wang et al., 2014]).

3. The key issue in achieving consistent estimation of PLFAM is to bound the estimation

error in .. To achieve this goal, Zhu et al. (2014) assumed (see their Assumption 1)

‘ 01 (&)

¢ = ’f]/g(Clk:)‘ < Bi|lfll2 with probability 1
ik

for some independent variables {B;}"; with E(B?) < oo, where || - ||2 is the Ly(P)-norm.
This is a strong assumption that eliminates the possibility fi belonging to the space spanned
by high order Fourier or Demmler-Reinsch basis functions. As an effect, their estimation is
restricted in a low dimensional functional space. We, on the other hand, show in Lemma
that supe¢po 1) [ f4(¢)| is bounded by the RKHS norm of f; for all k < s, and such a result
help to control the error caused by the error-contaminated predictor a

When s is fixed, better asymptotic results can be derived for the regression coefficients

14



7 - (717 A a’yp)T = (027 e 70p+1).r- Deﬁne

w(¢) = (wi(C), - - -, wp(C))" = argmin CElZ - w(O]

wje{1}@&>;_|F

ﬁ(z, C) = (7:[71(2, C)7 Tt 7@p(z7 C))T =z - ’LU(C),
M = (Mij)f,j:h where Mz’j = /fﬁzfﬁjdp (9)

It is easy to see that w(({) defines a additive regression of Z on ¢, and it can be considered

as the projection of E(Z|¢) on the additive regression space, and therefore
E{w'(z,¢)g(¢)} =0 (10)

for any g(¢) = (g1,---,9,)7(¢) such that g;(¢) € {1} &> ;_Frforj=1,...,p.

Theorem 2 Assume the conditions of Theorem[]] hold with s < co being fized, ¢ has a non-
degenerate joint density on [0,1]° which is bounded above and below, T, = 0,(n"'/*), and
that M defined in (@ is non-singular. Then n'/?(3 —~y) — Normal(0, M~ (V; + V)M ~1)

in distribution, where Vi and V4 are defined in of the supplementary material.

Remark: As shown in our proof, Vi = cov{n'/?(¢,w),}, and MV, M~ is the typical
asymptotic covariance matrix of 4 in classic literature of partially linear additive model
(Wang et al., 2014), where ¢ is directly observed. The covariance V5 is the extra variation,
caused by the estimation error in the FPCA score 23 . The two sources of variation are
asymptotically independent to each other because the model error ¢ is independent with the
error in E . A similar effect of FPCA estimation error was discovered by |Li et al. (2010)), who
investigated a simpler functional linear regression model and found that the FPCA error
tends to inflate the asymptotic variance of the parametric component even if the functional

predictors are fully observed. Our result in Theorem [2| shows the same phenomenon also
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exists for nonlinear functional regression models such as the PLFAM.

5 Simulation study

We extend the simulation setting of Zhu et al.| (2014) to a multivariate functional data

setting with an additional vector predictor Z. The multivariate functional predictor is

za(t) = t+sin(t) + 10 V0N @), () =t + cos(t) + S0, PP (1),

where €4 ~ N(0,05_1), E5) ~ N(0,521), o5 = 45.25k2, corr(€),€9)) = 0 for k' # k, and
w,gj)(t) = (1/+/5)sin(7kt/10) for t € T = [0,10], j = 1,2. The equations above define the
univariate Karhunen-Loeve expansions for the two functional predictors respectively, scores
within the same functional predictor are independent, however we allow the scores from
different functional predictors to be cross-correlated. We let corr(gi(,?,ﬁf,f,) ) =ofor k' =k
and 0 otherwise, where p is a cross-correlation parameter between 0 and 1.

The mFPCA eigenfunctions are defined through an orthogonalization of the univariate
eigenfunctions, as described in Proposition 5 in Happ and Greven (2017)). More specifi-
cally, suppose the covariance matrix pooling all univariate FPCA scores has the eigenvalue
decomposition var <{(£§1))T,(£§2))T}T> = PQPT, where £§j) = (le e 5110) ,J = 1,2
Q = diag{\,..., A»} and PTP = I. The k-th mFPCA score & ~ N(0,\;) is a linear
function of the univariate scores {(Egl))T, (Egz))T}pk, where p;, = {(plgl))T, (p,(f))T}T is the k-th
column of P, and the corresponding mFPCA eigenfunction is ¥ (t) = (Vk1, ¥i2)7(t), where
iy (0) = (VO w0 (0) = (@O0, = 1,2

From model (2)), we simulate 1000 i.i.d. copies of {Y, Z, X (-)}, denoted as {y;, z;, z;(-) }1°%°,

with the first 200 used as training data and the rest as testing data. Observations on x; are
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obtained on a regular grid of 100 points in 7 = [0, 10] with independent measurement errors
following N (0, 0.2?). For the regression function, we set fo(¢) = fo1(Ci1) + foa(Ci2) + foa(Cia),
where for1(G) = 3¢ — 3/2, fo2(C2) = sin{27(G — 1/2)} and fou(Ca) = 8(Ga — 1/3)* — 8/9.
There are only three non-zero additive component functions in our simulation: for(¢x) = 0
for k ¢ {1,2,4}. Moreover, we generate the vector predictor z; independently from the
bivariate uniform distribution over [0,1]%. We consider two settings for the partially linear
coefficient 8y: (I) (1.4,0,0)T and (II) (1.4, 3, —4)T and two settings of the correlation param-
eter o: (i) 0.3 (low correlation) and (ii) 0.9 (high correlation). Combining different setups for
o and 6y, we have four settings: {(i), (I)}, {(i), (II)}, {(ii), (I)} and {(ii), (II)}. The errors
g;’s in the regression model are distributed independently as N (0, %) with o2 being 1 for
setting (I) and 1.9470 for (II) to achieve the signal-to-noise ratio (SNR) of approximately
2.2. The SNR is defined as var(mg(¢))/var(e). For simplicity, all sampling weights 7; are set
to be 1. The simulation is repeated 200 times and we fit the following two models to each
simulated data set: FAM of [Zhu et al.| (2014]), which is also based on COSSO but ignores
the effect of Z, and the proposed PLFAM. Throughout this simulation study, s is chosen to
recover at least 99.9% of the total variation in {x;} and the COSSO tuning parameters are
selected by the Bayesian information criterion.

Tables [1] and [2| summarize the results related to component function selection in FAM
and PLFAM under the four settings. Due to space constraint, only percentages of model sizes
up to 8 and selection percentages of the first 8 component functions are shown. In Table 2]
Column “% correct set” corresponds to the percentages of fittings achieving exact selection
of ]/”\1 ]/““\2 and ﬁ, while Column “% super set” gives the percentages of fittings that include
Nnonzero ]/C\l, fg and ﬁ. Despite a small tendency of over-selection, the COSSO component
selection mechanism tends to select parsimonious models and, for each correct component

function, the selection percentage is high.
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To assess the estimation quality of fox’s, Table [3| shows the averaged integrated squared
errors (AISEs) of the first eight component functions and the overall function f= >y fk

(without constant term). The integrated squared errors are defined as

ISE(f,) = / (alt) = fue®P2dt and 1SE(F) =Y / (7t = forlt))t.

Notice that, under setting (I) where Z has zero effect and FAM is the correct model, the
PLFAM estimators perform comparably to those of FAM. However, under setting (II), where
Z has non-zero effects, FAM performs significantly worse than PLFAM. This demonstrates
the possible risk of ignoring important vector predictors.

We also summarize the prediction errors, and the mean squared errors (MSE) for the
estimated partially linear coefficients in Table 4l To show the advantage of mFPCA, we
further compare two methods to obtain FPCA scores: the “joint” approach is the mFPCA
approach that we advocate; and the “separate” approach is to perform univariate FPCA to
each component of X, standardize these scores separately, and then pool all standardized
scores together as covariates in the additive model. Both FPCA approaches can be used in
conjunction with FAM and PLFAM. The prediction error is computed by n=' """ | (y; — y;)?
on the testing data set. To compute the prediction y; in the test data, we first compute
the transformed FPCA scores of x; in the test set using the estimates of mean function,
eigenvalues and eigenfunctions from the training data, and then plug these scores into the
estimated regression m. The results in Table [4] suggest that jointly modeling multiple func-
tional predictors leads to smaller MSE’s for 5, and lower prediction errors, as opposed to
modeling each functional predictor separately using univariate FPCA. In addition, PLFAM
has significant lower prediction errors than FAM under setting (IT) when there is a non-zero

effect from Z.
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In Section [C] of the supplementary material, we also report the simulation results when s
chosen to recover 90% of the total variation. Under this setting, one important component
related to Y is close to the 90% cut-off line and often not included as a candidate for
COSSO. As a results, a non-zero component function is often failed to be selected, and the
resulted models yield higher prediction errors in the test data sets. Based on these results,
we recommend to include a large number of components and let the built-in model selection

mechanism of COSSO determine the size of the model.

6 Real Data Application

The practical utility of the proposed method is illustrated through an analysis of a crop yield
data set from the National Agricultural Statistics Agency (https://quickstats.nass.usda.gov/),
which consists of several yield-related variables at the county level (such as annual crop yield
in bushels per acre, size of harvested land and the proportion irrigated land to the total har-
vested land) from 105 counties in Kansas from 1999 to 2011. We have yield-related variables
for the two major crops in Kansas, corn and soybean, which are analyzed separately. Vari-
ables such as total harvest land and proportion of irrigated land are crop-specific. The
weather data (annual averaged precipitation, daily maximum temperature and daily min-
imum temperature) are gathered from 1123 weather stations in Kansas provided by the
National Climatic Data Center (https://www.ncdc.noaa.gov/data-access) and aggregated at
the county level.

To apply our model, let Y be the average crop yield per acre (corn or soybean) for
a specific year and county; X;(¢) and Xs(t) are the daily maximum and daily minimum
temperature trajectories for the same year and county with the time domain 7 = [0, 365];

Z includes proportion of irrigated land in that county and for that particular type of crop,
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averaged annul precipitation, and the interaction between the two. In the past several
decades, due to sustained improvements in genetics and production technology, there is a
consistent increasing trend in the yields of both corn and soybean. To take this effect into
consideration, we also include year indicators into Z.

Since the response is an average obtained from an agricultural survey, the errors are
heteroscedastic with weights 7 equal to the sizes of harvested land. Some earlier work
(Smithl |1938; Beran et al., 2013)) suggests crop yield may exhibit long range dependency on
a scale measured in feet. Our study on the other hand is based on county level aggregated
data. The crop yields are usually averaged over tens of thousands of acres within a county
and not from a continuous piece of land. At this scale, the spatial correlation is already
quite weak and therefore it is reasonable to assume the variance of the average crop yield is
proportional to the inverse of the total harvest land. Furthermore, land use rotates between
the major crops across years: land used to grow corn this year is usually used to grow soybean
the next year. Variables such as the proportion of irrigated land and size of harvest land are
different in different years even for the same crop and same county. Even though our theory
and methods are developed under the independence assumption, they can still be applied
as long as the crop yields are conditionally independent across counties and years, given the
local meteorology information, which seems reasonable because of the rotation in land use
and because crops of different genotypes are planted in different years.

To illustrate the functional predictors, we show in Figure |1| 50 randomly selected trajec-
tories for X (¢) and X,(t), with the mean functions y;(t) and po(t) marked as solid curves
in the two panels. As one can see, there are a lot of local fluctuations in the temperature
trajectories, which is normal since heat and chill alternate throughout the year. In Figure
2l we show the heat plots for the (cross-) covariance functions. The kernel function for Cyo

shows great resemblance to C;; and Cyg, which implies that the two functional predictors
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are strongly correlated. This also suggests mFPCA would achieve more efficient dimension

reduction than univariate FPCA done separately to the two processes, and the latter would

include too much redundant information into the regression model.

6.1

Crop yield prediction experiment

Since our goal of this study is to find the best model for yield prediction, we divide the data

into smaller training and validation data sets and compare the prediction of the following

10 competing models.

10.

. PLFAM(joint): the proposed PLFAM based on mFPCA scores;

. PLFAM(separate): PLFAM based on univariate FPCA scores from X; and X, sepa-

rately;
FAM(joint): FAM based on mFPC scores (without Z);
FAM(separate): FAM based on univariate FPC scores (without Z);

FLM-Cov(joint): functional linear model (FLM) based on mFPCA scores, with covari-

ates;

FLM-Cov(separate): FLM based on separate univariate FPCA scores, with covariates;
FLM(joint): FLM based on joint mFPCA scores (without Z);

FLM(separate): FLM based on separate FPCA scores (without Z);

LM: linear model on Z only;

LM-GDD: linear model on Z and Growing Degree Days (GDD), to be explained below.
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The models we consider can be divided into three categories: (a) functional additive models
(Models 1-4), (b) functional linear models (Models 5-8) and (c¢) non-functional model (Models
9 - 10). For all functional regression models, including those in categories (a) and (b),
FPCA scores that account up to 99.9% of the total variation are admitted into the model.
For the methods based on separate FPCA on X; and X5, we include FPCA scores that
explain 99.9% of total variation in each functional predictor and thus use twice as many
FPCA scores in the regression analysis as the joint modeling methods. For all models in
category (a), we rely on the model selection mechanism of COSSO to prevent overfitting
and select the tuning parameters by 5-fold cross-validation; for the functional linear models
in category (b), we avoid overfitting by introducing ridge penalties, the tuning parameters
of which are chosen by generalized cross-validation. It is worth noting that Model 10 serves
as the benchmark model for yield prediction with temperature information enters into the
model as the GDD variable. GDD is a measure of heat accumulation commonly used to
predict plant development (Gilmore and Rogers, 1958; Yang et al., 1995; McMaster and
Wilhelm, 1997). Here we adopt the definition used in the EPIC (Erosion Productivity
Impact Calculator) plant growth model (Williams et al., [1989), in which GDD is defined as
the sum of [{X(t) + Xo(t)}/2 — Thase]+ over growing season, where T is the crop-specific
base temperature in °C. For corn Ty, = 8, and for soybean Ty,,. = 10. To account for
heteroscedasticity, the sizes of harvested land are used as weights in fitting all models.

For each five-year window (i.e., 1999-2003, 2000-2004, ..., 2007-2011), we pull the data
from those five years into a smaller data set. For each five-year data set, we randomly divide
it into five subsets, hold out one subset at a time as a validation set, fit the ten models
described above to the remaining four subsets, and then use the trained models to predict
the responses in the validation data. The mean squared prediction errors are weighted

by the sizes of harvested land, averaged over the five validation sets and over all five-year
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periods. The averaged overall prediction errors are reported in Table [l From the table,
models without the covariate effects, including FAM(separate), FAM(joint), FLM(separate)
and FLM(joint), perform significantly worse than the rest. These results agree with the
general belief that irrigation and precipitation are informative in yield prediction, which also
stress the importance of extending the FAM of Miiller and Yao (2008) to our PLFAM. We
can also see that including the functional predictors can reduce the prediction error, and
functional regression model such as PLFAM(separate), PLFAM(joint), FLM-Cov(separate) and
FLM-Cov(joint) perform better than the non-functional models (LM and LM-GDD). Joint
modeling the two functional predictors using mFPCA also leads to lower prediction error
for both PLFAM and FLM-Cov. Overall, PLFAM(joint) performs the best in corn yield
prediction and achieves comparable result to FLM-Cov(joint) for soybean.

Part of the reason that PLFAM performs slightly worse than FLM in soybean yield
prediction is that the nonlinear effect is less significant for soybean and PLFAM requires
a larger sample size. In another experiment where we include more years of data in the
training set, PLFAM predicts soybean yield better than FLM.

In addition to the 10 models described above, we also consider another 12 models that
use X1, Xy or (X; + X3)/2 alone. These models yield higher prediction errors than the
proposed PLFAM(joint) model, which utilizes both functional predictors. Even though the
two functional covariates in the real data are strongly correlated as suggested by Figure [2]
these results show that each covariate does provide additional information that complements
the other and it is beneficial to jointly model them. Due to space limitation, these results

are presented in Section [D] of the supplementary material.
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6.2 Regression analysis of the whole data

We now apply PLFAM(joint) to the whole data set pooling all available years. For corn
yield prediction, we include 52 principal components in the regression model which account
for ~ 99% of variation in the temperature trajectories, and 10 principal components are
selected by COSSO. In Figure [3] we show the top 6 most significant principal components;
and in Figure , we show the corresponding additive component functions ﬁ;(C) These
components are ranked by the importance of their contribution to Y. More specifically, we
sort the principal components by the RKHS norm of the component function ﬁ The dashed
curves in Figure (4| are the pointwise confidence bands fk(é ) £2x se{fk({’ )}, and the dotted
curves are the 3 times standard error bands. The standard errors are estimated using a
bootstrap procedure detailed in the supplementary material.

Since each principal component in mFPCA is a vector of functions 4y (t) = {tx1(t), Yr2(t)}7,
we show 1 (t) as the solid curve and ¢y2(t) as the dashed curve in each panel of Figure
Bl It is not surprising that ¢ys(t) largely coincides with 1y (f), given the observation from
the covariance functions that the two processes are strongly correlated. However, the plots
do reveal subtle differences between the two temperature trajectories. The component most
related to corn yield 15 features a temperature pattern with near average daily minimum
temperature and lower than average daily maximum temperature during the summer months
from May to September. A higher loading on 15 means a milder summer, less heat stress
and less chance of draught, and corn yield is an increasing function of (5 in Figure 4. In
contrast, 11 and g represent hot summers, and crop yield is a decreasing function of their
loadings (; and (g. These are consistent with the findings in [Westcott et al.| (2013), which
conclude that hot July - August weather lowered the corn yield. A prominent feature in )3
is warm spring months from January to March. |Hollinger et al. (1994) showed that warmer

temperature during the period from planting to tassel initiation (the first 20 to 30 days after
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planting) resulted in lower corn yields. This may be due to less snow coverage on the ground
and more early insect activities. Our estimated f3(¢) in Figure 4 confirmed this finding,
with corn yield a decreasing funciton of (3 when (3 is greater than 0.6. For soybean yield
prediction, graphs of the selected eigenfunctions and the corresponding additive component
functions are similar to those in Figures [3] and [} and are hence omitted.

The estimated partially linear coefficients and their bootstrap standard errors for both
corn and soybean yield models are summarized in Table[6 As we can see, both the proportion
of irrigated land (Irrigate) and precipitation (Prec) have signifiant positive effects on
crop yield. The significant negative interaction means the effect of Prec is mitigated when
a big portion of the lands in the county are equipped with irrigation systems. For corn
yield prediction, the first and third quartiles for Irrigate are 0.027 and 0.485 respectively.
Changing Irrigate from its first quartile to the third, the partial slope on Prec reduces
from 167.47 to 151.95.

The bootstrap procedure, provided in the supplementary material, is based on the as-
sumption that the errors in model are independent. To validate this assumption, we also
estimate the spatial variogram for each year and temporal autocorrelation for each county
based on the residuals of the fitted model, see Figures and in the supplementary
material. The variograms and ACF’s are contained in their confidence bands based on the
assumption of no dependency, which means there is no significant evidence for spatial or

temporal correlation.
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7 Concluding Remarks

7.1 Our contributions

We have extended the FAM of Miiller and Yao| (2008) to a class of PLFAM which takes
into account of the effects of a multivariate covariate Z. As demonstrated in our crop yield
application, including the covariate effects significantly improves the prediction accuracy.
The effect of functional predictors are modeled through an additive model on the principal
component scores. Since the FPC scores are estimated with error, our theory and methods
also shine a new light on the area of additive models with covariate measurement errors.
We have also made a number of important theoretical contributions. First, we develop
a more general model framework which includes multivariate functional predictors and mul-
tivariate covariates. Second, we allow the number of principal components admitted in the
additive model to diverge to infinity, which is fundamentally different from Zhu et al. (2014]).
Third, we are able to quantify and bound the nuisance from the estimation errors in mF-
PCA scores without the artificial assumption in |Zhu et al. (2014). Finally, when the number
of principal components does not diverge to infinity, we establish root-n consistency and

asymptotic normal distribution for the partially linear regression coefficients.

7.2 Interpretability of the model

Functional regression models based on principal components are in general hard to interpret,
because FPC’s are the maximum modes of variation in the functional predictors which are
not necessarily the features most related to the response variable. This is part of the reason
that many authors focused on prediction using functional linear model (Cai and Hall, 2006}
Cai and Yuan| 2012)). Our proposed PLFAM adopts the philosophy of semiparametric statis-

tics: we model the effects of functional covariates nonparametrically to increase the model
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flexibility and prediction performance, and model the effects of the multivariate covariates
parametrically for better interpretations and statistical inference. Our Theorem [2| provides a
basis for statistical inference on the parametric component «. There is also another class of
functional additive regression models proposed by Miiller et al.| (2013)); | McLean et al. (2014]);
Kim et al.| (2017)), which offer an alternative view on modeling nonlinear effects of functional

covariates.

7.3 mFPCA versus separate FPCA

For multivariate functional data, mFPCA usually provides more efficient dimension reduction
than separate FPCA to each functional covariate. However, mFPCA estimates are subject to
higher variability due to the need of estimating all cross-covariance functions and performing
eigenvalue decomposition on a much larger covariance matrix. When the sample size is small,
the extra variation in mFPCA can offset its benefit. There are also other situations where
separate FPCA is more preferable, such as when different functional covariates are of different
scales or even defined on different domains (Happ and Greven, 2017)). Under these situations,
our theory and methods can also be easily extended to the model based on separate FPCA

scores. A separate FPCA version of model is

s d
v = u 6y + Z Z Jojr(Giji) + € (11)

k=1 j=1
where (5, is the kth standardized principal component score for x;;. The model can be
fitted using the same COSSO algorithm described in Section except that the mFPCA
scores are replaced by the separate FPCA scores. As long as the separate FPC scores can be
estimated with a similar accuracy as assumed in Theorem |1} i.e. E(ajk — Gijx)? < Cn~ k%

uniformly for all j = 1,...,d and k < s, the same asymptotic results in Theorems [I| and
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hold for the model in (11)).
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Table 1: Percentages of fitted model sizes.

Setting  Model % for the following model sizes
1 2 3 4 5 6 7 8
{(), (D)} FAM 0 0 28 495 205 15 05 0
PLFAM 0 0 24 575 17 1 05 0
{G11), (D} FAM 0 0 205 58 16.5 4 1 0
PLFAM 0 0 19 585 18 35 0 1
{(1), (I) } FAM 0 6.5 41 39.5 12 05 05 0
PLFAM 0 0 225 56 18 3 05 0
{(ii), (IT)} FAM 0 3 445 38 125 2 0 0
PLFAM 0 0 225 61 125 3 1 0

Table 2: Percentages of selected components and, correct and super selection.

Setting  Model % for the following component functions % correct % super

i fo fs  fa s fe fr fs set set

{(d), (D)} FAM 100 100 14 93 51.5 2 6 1.5 27 93
PLFAM 100 100 14 93 51.5 3 5 1.5 23 93

{(i), (D} FAM 100 100 20.5 97 51 55 1.5 2 18.5 97
PLFAM 100 100 20 97.5 53 55 1.5 25 17.5 97.5

{(1), (II)} FAM 100 90 85 935 345 25 45 45 35 83.5
PLFAM 100 100 16 975 545 35 35 1.5 21.5 97.5

{(ii), (IT)} FAM 100 93.5 12 94 31.5 2.5 3 1 37.5 88
PLFAM 100 99.5 22.5 98 475 25 25 1.5 22.5 97.5




Table 3: Averaged integrated squared errors.

Setting  Model AISEs for the following component functions
fi f2 f3 Ja 5 Jo f7 fs f

{(), M} FAM 0.0172 0.1073 0.0057 0.1689 0.1204 0.0001 0.0015 0.0001 0.4292
PLFAM 0.0175 0.1070 0.0056 0.1689 0.1205 0.0004 0.0014 0.0002 0.4289

{(1), ()} FAM 0.0198 0.1038 0.0109 0.1290 0.0890 0.0018 0.0004 0.0007 0.3633
PLFAM 0.0198 0.1046 0.0111 0.1279 0.0896 0.0016 0.0005 0.0011 0.3638

{@{), (ID)} FAM 0.0330 0.2208 0.0064 0.2197 0.0782 0.0008 0.0026 0.0021 0.5780
PLFAM 0.0177 0.1072 0.0064 0.1320 0.1130 0.0011 0.0009 0.0005 0.3858

{(i1), (I1)} FAM 0.0290 0.2035 0.0087 0.2170 0.0841 0.0017 0.0024 0.0005 0.5642
PLFAM 0.0179 0.1084 0.0103 0.1398 0.0978 0.0007 0.0008 0.0005 0.3821

Table 4: Prediction errors and mean squared errors for FAM and PLFAM, using separate
univariate FPCA scores (columns labelled “separate”) or mFPCA scores (columns labelled
“joint”). For prediction errors, means are presented with corresponding standard deviations
in parentheses.

Setting Model Prediction error Mean squared errors
separate joint separate joint

61 02 03 51 02 03

10, M} FAM 155 (0.10) 1.32
PLFAM 1.57 (0.11) 1.33
), M) FAM  1.65 (0.09) 1.33 (0.12
PLFAM  1.66 (0.09) 1.35 (0.13

(0.13)

(0.13)

(01)

@, any FAM  3.84 (0.22) 3.63 (0.21)
(0.13)

(0.24)

(0.14)

0.13

0.0746  0.0911 0.1076 0.06 0.0751  0.0831

0.0678 0.1095 0.0827 0.0585 0.0888 0.0681

PLFAM  1.59 (0.10) 1.34 (0.13) | 0.0639 0.1023 0.0894 0.0545 0.0935 0.0696
1), any FAM  3.89 (0.24) 3.60 (0.24
(

PLFAM  1.68 (0.12) 1.35 (0.14

0.0642 0.0879 0.1092 0.0526 0.069 0.0851




Table 5: Average of 5-year overall prediction errors.

corn soybean

(a) functional additive models PLFAM(joint) 298.43 35.64
PLFAM(separate) 306.50 38.85
FAM(joint) 830.17  48.54
FAM(separate) 839.00 51.06
(b) functional linear models FLM-Cov(joint) 303.81 35.29
FLM-Cov(separate) 308.57 35.69

)

FLM(joint) 704.19 47.31

FLM(separate) 767.42 50.42

(¢) non-functional model LM 391.18 61.74
LM-GDD 389.76 49.58

Table 6: Estimated regression coefficients (bootstrap standard error) in the PLFAM for crop
yield prediction.

Irrigate Prec Irrigat*Prec
corn 168.38 (6.42) 20.98 (2.72) -33.87 (3.32)
soybean  33.30 (3.35)  3.91 (0.70) -4.88 (1.65)

Note: Irrigate: proportion of irrigated land in a county for the specific crop and growing year;
Prec: averaged precipitation for county and year; Irrigat*Prec: the interaction.
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Figure 1: 50 randomly selected trajectories for daily maximum and daily minimum temper-
ature. The solid dark curve in each panel is the mean function.
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Figure 2: Heat plot for the covariance and cross-covariance functions. From bottom to top
and from left to right are the kernel functions of the (cross-) covariance operators C;jr.
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Figure 3: Corn yield prediction: top 6 principal components selected by COSSO for corn yield
prediction, sorted by the decreasing order of the RKHS norm of f(¢) (k =5,3,1,7,8,10).
Each principal component is a vector ¥y (t) = {¥x1(t), Yr2(t)}T. The solid curve in each
panel is ¥y (t) and the dashed curve is 1o (t).
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The supplementary material is organized as follows. We provide a proof for Proposition
in Section [A] theory for PLFAM (including proofs of Theorems [1] and [2)) in Section [B]
additional simulation and data analysis results in Sections [C| and D] and the bootstrap

procedure for standard error estimation in Section [E]

A Theory for mFPCA

Proof of Proposition |1 We use C' as a generic notation for positive constant. For two
sequences {a,} and {b,}, we use a, < b, to denote that a, is bounded by b, omitting
some negligible terms. Recall that A = n'/2(C — C), and under Assumption [2] we have
BJAJZ, < oo,

Asymptotic expansions for the empirical eigenfunctions and eigenvalues similar to (2.8)
and (2.9) in Hall and Hosseini-Nasab (2006) also hold for multivariate FPCA. For any k

such that 6k > n_l/QHA”opa

e =X = 0 VAP PR + Ak x {1+ 0,(1)},

Pu(t) — i(t) = {n“QZw—w1¢j<A¢k,¢k>X} x {1+ 0,(n25;1)}, (S.1)
J#k
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where App =171 30 (O = A) T (A, i) )* = 07t 20 (O = A) T (YT ).
It is easy to see that E|A,.| < (ndx) ™' 30, \jA < C(ndy) A, for all k.

Since @k = (x;, Yi)x, by the expansion 1)
& — &k = Ap x {1+ o,(1)} for all k < J,,

where Ay =n"2 30 (A — X)) (A%, P = 20k — A) 7165 (5 200 2y Ganning)-
Next, we calculate the order of A;,. Denote [z] as the integer part of z. By Assumption

7 Aj— Aj1 > C e

k—1 k
1
o > -1 —a—1 > -1 —a—1 > —a ]« . .
Aj— A > C) lgzj l > C| /J T dx > _C,\Oé(j k™) for j < k;
) > -1 —a—1 > -1 —a—1 > -—a _ -« f : ] ]
Ak — A > C) ZE:k l > C| /k T dx > _CAa(k i Y or j > k. (S.2)
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By Assumption 2] E(L 37" & 1&.)2 < CAA,/n for all k and 5, and by (S.2)
n i1=1 51 17 J

E(A3) S 030w -4
Jsﬁk
= Z—}—Z )\k_ 2>\k/\2
i<k 7>k
[(1—a)k] 2 [(1+b)] -
C)\k C/%Oé] o Ci] 2«
R ORI WE: ==
j=1 J=[-a)kl+1  j=k+1
0 Ciajfoz 2
. | Z <m> (for some a,b € (0,1) )
J=[(1+b)k]+1
[(1—a)k] 2
5 () 5 ()
s 2% ()« 2 (Gm) +s o
n =1 1_(J/k) J=[(1+b)k]+1 (j/k)
l1—a o
5 Ck)\k{/ (1—xa)_2d$+/ ZL‘ —1 2dlL’}+O a—l—b kg a/n
n 0 (1+d)
Okl (1-a)
¢ O I i [ e st
n 0 (1+b)
kl—a
< ¢ {a ' =1+b7"+ (a+b)k*}.

We select a ~ k™! and b ~ k™', we get EA% < Ck* “/n for all k. This implies ak — & =
Op(n_l/zkl_a/Q) uniformly for k < J,.

On the other hand, by (S.1)) we can show

E ‘/):k — e — 072 Ay, ¢k>‘ SE[Ag| < Cn Aot

2
E(n (A, 4h0))? = E{% S - m} < ONn™

i=1

This also means A, — A, = Op(n~/2\;,) uniformly for all k < J,. Since ®(-) is differentiable
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transformation function, using the delta method

e ~ D&+ AN = (/222 = M)}
S G 6N = 36N = ) (53)

= (i + O, (n" V).

By the assumption that |®'(z)| < C for all z and the mean-value theorem, one can verify

that ]E(ak — Cir)? < Cn~1k? uniformly for all k < J,,.

B Theory for PLFAM

Throughout the theoretical development, we utilize the following representation of a generic

function m € M:
m(u7 C) =u'v + h(’l,l,, C) =u'v + 22:1 hk(u7 Ck:)a

where hy € Hy = {h, € ID Ty, : Z?:lhk(ui,ak)uij =0,5=1...,p+1}fork=1,...,s.
Note that the set Hj depends on {u;} and {¢;} and thus is a random set with randomness

.....

where f, € Fi, one can transform it into the aforementioned representation by setting

v=0->,_ w;and h(u, () = uTwy, + fi(¢), where wy, fulfills
1 1 ~ ~
HUTka = _EUT(fk(Ckl)a s Ji(Cen))T

Similarly, mo(u,) = uTvy + ho(uw,$) = uTvg + Y 1 how(u, () and m(u, ) = u'v +
h(u,¢) =u™v + . hye(w, ). Moreover, write H = > oo H.

~

Similar to P,, we write P, . as the empirical distributions of (Z,¢). That is, P, . =

5.4



Yor,o 5 /n. Moreover, we define the corresponding version of (squared) empirical norm

and inner product as
\mlﬂn* /m dP,. and (my,ma),, /mlmgdPn*, for any mq, my € M.

First, we prove the following proposition about the convergence with respect to the

empirical norm || - ||, rather than the intended || - ||,,.

Proposition 2 Suppose s = O,(n/{20+9)}) and E(ak — (r)? < Cn~ k28 uniformly for all

k < s. Further, assume J(mg) < oo and X is non-singular. If 7,7t = O,(min{n?/°s=6/5, n'/2s= (ALY,

we have | — mollus = Op(r) and J(@) = Op(1). If Jmo) = 0 and 7y = nVis,
| — mg||ns = Op(n2) and J() = O,(n~1/2576).

The proof of Proposition [2] is given in Section [B.1] By Taylor expansion arguments and
convergence of ¢, the convergence results based on Il (Theorem|1]) is implied by those based
on || - ||« (Proposition [2). See Section for the proof of Theorem [I] With convergence
of m, we study the parametric part in details and obtain the optimal /n-consistency for 4.
The details is shown in Section [B.3l

For ease of reading, we collect all other lemmas that are used throughout the subsequent

proofs here. Their proofs are deferred to Section

Lemma 2 For any f({) =D 1, [(Ck) € >y Fi, there exists Cy (independent of s) such

that
af k(€

max Sup
1<k<s Ck 6[0 1]

/ 1l < Co. (5.4)

Lemma 3 (Entropy result) Assume X is non-singular. Then there exists constants C4
and C7 such that the events
lim inf {sup 6Y2H oo (8, {hy € Hy : J(hy) < 1}) < Cl} ,
n >0
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lim inf {sup 6Y2H (6, {h e H : J(h) < 1}) < 0183/2}

n >0

and

liminf{ sup  |hle < C{s}
)

n heH:J(h)<1

are of probability 1.

Lemma 4 Assume X is non-singular. We have

g, h—ho)ns _
sup |(3/4 0) , | o _ Op(n 1/283/2)
het [ — hollw« {J(h) + J(ho)}

9

where mo(u, ) = uTvy + ho(u, §) with vy € RPT and hy € H.

B.1 Proof of Proposition

Proof of Proposition

Expanding the objective function, we have

t(m) = —Z{yz m(u;, &)} + 720 (m)
= E;{UIVO + ho(us, &) + &1 — ulv — hu;, &)Y + 72J(R)

- %Z{ul(l/o —v)}’ + %Z{UI(VO = v)Hho(ui, ;) + i}

S ol € + &1 — B, 8)Y? + 720 ()

5.6



Minimizing ¢ is equivalent to the following two minimizations:

vV = argmingege { Z{U vy — )} + Z{U vo — v) Hho(ui, §;) + 51}} ’
71\ = arg minheH {E Z{ho(ui, Cz) +é&; — h(’u,i; EZ)}2 =+ Tg](h)} .

The first one leads to

1 ~ 1
—U'U (v —vy) = -UT(hy + ¢),
n n

..... p+1s hO (hO(ub Cl)a ey h()(una Cn))T and € = (617 s 7€n)T' By

Taylor expansion of hy with respect to ¢ at CA'Z and the fact that Dehg = D¢ fo,

where U = [u;ji=1,.. nj=

. Zuwho u;, G) = ZUUDCJCO ZZ) = J(fo) Op<n71/23%+ﬂ> (S.5)

where ¢ lies on the line segment joining ¢; and QA}-; and the last equality follows from the

assumption E(ak — (in)? < Cn~'k?#, Lemma |2 and the following calculation

D¢ fo(€) (& — &)

9 GGt — )
k=1 ok

S e} )

k=1 O k=1

s 1/2 S 1/2
 (Er) " o)
k=1 k=1

= [Ifoll x Op(n~V2s7+3).

Jor(Gir.)

Moreover,
1 n
= uiei = Op(n~?).
[t
Since UTU /n — % almost surely (element-wisely) and X is non-singular, we have || —

vl = Op(nfl/zséﬂi). Note that if J(fy) = 0, we have UThy = 0 and ||V — v|lp =
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Op(nfl/Q).

In sequel, we focus on the second optimization. Since h is the minimizer,

%Z{ho(ul,g) +é&; — (umCz)}z +7_2J Z{ho uzaCz) +é&i — ho(ulvcz)}g +7—2‘](h0)
i=1

which leads to

|ho — ﬁ“i* + 2570 {ho(wi, Gi) — ho(uws, C)Hho(ui, &) — h(us, G)} + 727 (h)

< (e,h—ho)n«+ 72T (ho). (S.6)
Now, we utilize the previous Taylor expansions: For ¢t =1,...,n,
ho(ws, Gi) = houi, Gi) + Defo(¢) (G = Go):
Thus becomes

il 4> S (s &) —ho(us, EVH DA GG 72 (B) < 2(e, 472 o).
=1
(S.7)

Now we derive asymptotic order of the following two terms:

%Z{E(uz, @) — ho(us, @)}{Dcfo(CZ‘)(@ - Cz)}‘

o\ 1/2
2”% - hOHn,* (% Z {Z afoakg(flk) (C’Lk - Czk)} )

IN

=1 k=1

< J(ho)|[h = ollne Op(n~ 125319,
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and by Lemma [4]

~

2(e b= ho)a = Op(n™25* )| [h— ho |31 (h) + . (o)},
Collecting the above results, (S.7) leads to

1B — hol2, + 72J(h) < Op(n=253)[h — ho|aH{ T (h) + J (ho)}M* + 72J (ho)

+J(ho) || = holln. Op(n~1/253+5),

Next, we investigate the following three scenarios where one particular term on the right

hand side dominates the other two.

(A) The term Op(n_l/zs‘g/?)”ﬁ — h0||2{f{<](/hj) + J(ho) }'/* is the largest: Thus

1B — hol2, + 72T (h) < Op(n™25¥)|[h — ho||2/4{ T (h) + T (ho) }/*.

If J(h) > J(hg), one can deduce that [|[h — holle. = Op(n 2352, and J(h) =
O, (n~ 347,13 As for J(h) < J(hg), we have ||h — Ro|ln. = Op(n~25s5/5).J(h)/> and
J(h) = 0,(1)J (ho).

(B) The term 72J(ho) is the largest: Thus

1B — hol2, + 721 (h) < 727 (ho) O(1),

which leads to || — holn. = Op(10)J2(ho) and J(h) = O, (1)J(hy).
(C) The term J(ho)||h — hol| . Op(n_l/QS%J“B) is the largest: Thus

1B = holl%. + 72T (h) < J(ho) [l = holln. Op(n™"?s7+7),
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which leads to
1 = holln < J(ho) Op(n~1/2s3%P),

72J(h) < |h = holln. Op(n~1/253+5).

Thus ||k — hollns = Op(n~Y25578).J (o) and J(h) = O,(n~s+28))7-2 J2(hy).

By carefully comparing the stochastic orders of terms arising from the above three cases,
if 7! = Op(min{n2/5s*6/5,nl/Qs_(%+5)}), we have ||/fz — hollps = Op(7,) and J(/f;) = 0,(1).
If J(ho) = 0 and 7, < n= /483, |[h — hollns = Op(n~Y/?) and J(h) = O,(n~1/2576).

B.2 Proof of Theorem (1]

Proof of Theorem [1} Let ¢ = m — my. By Taylor expansion,

a2 = %Z{qmma)wgq(ui,@)(g—@)}2
=1

1 & ~ ~
i=1
where QN’@ lies in the line segment joining ¢; and a By calculation similar to |) we have

LS {Deq(ui, 6 (& — €)Y = JT(q) Op(n~s29),
LS 2q(E){Da(ui, &) (G — G} = allnnd (@) Op(n~H253+7).
By Proposition 2} if 7,1 = O, (min{n2/5s76/5 p/2s= A1) J(m) = O,(1) and

— 1
lallz = llal7 « + Op(n~ts*29)) + Ylgllne Op(n=25377) = Oy (7).

If J(mo) = 0 and 7, < n~"/4s® J(M) = O,(n~"/2s7%) from Proposition [2 Similarly as
the proof of Proposition |2, write m(u,{) = u™v + E(u,C). In its proof, we show that

17 — vol|lg = Op(n/2) and || hgl|, = 0 (due to UThy = 0). By Lemma we have [h|s =

S.10



J(h) O,(1) = O, (n~257) since J(h) = J(i) O,(n"2578). Since u € [0, 1™, |lg|l, <

17— vl + [l = 0,072,

B.3 Proof of Theorem [2

We first introduce a few Lemmas, the proof of which is relegated to Section [B.4]

Lemma 5 Under the conditions of Theorem@ |[m—mg|la = 0,(n~1/1), where ||-||o represents

the Lo(P)-norm..

Lemma 6 For anyk=1,...,s and g, € Fi, we have
1 1
g2 — g 13 ’
sup =0
ng]Fk Hgk”2 g

Lemma 7 Under the conditions of Theorem@ ||J?,’c — foell2 = 0,(1) forallk=1,...,s.

Proof of Theorem [2l  Write m(u, ) = 2™ + g(¢) and mo(u, ) = 2Ty + go(¢) where
7,90 € >3 Fr and w = (1,27)T. We also write gy = Prg € Fi and gor = Prgo € Fy
for k = 1,...,s. Note that g and ) ;_, g, may differ by a constant. Similarly for g, and

2 k=1 9ok-
By expanding [ — mol2 = @75 — 7o) + w75 — 70) + 7 — gll5 we show that
|wT (37 — 70|12 = 0,(n~'/*) using Lemma [5| By the condition that M is non-singular, we

have
7 =lle =0,(n")  and g gollz = 0p(n~). (5.8)
Recall that w(z,¢{) = z — w(¢). We then define

mp(z,¢) = m(w, ¢) + p'w(z,¢) = 2T(¥ + p) + {9(¢) — pTw({)},
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for p = (p1,...,pp)T € RP. Note that we assume that w; € > ;_,Fj, and hence w; €
I+ Fy. Since m, € I+ ;_, Fy, there exists a subgradient ¢ = (c1,...,¢,)7 of J(m,)

with respect to p at p = 0 such that

J |1 R ~
5y |5 o= (s CP2| |+ rie=0 (5.9)
=1

p=0
We first analyze the order of the subgradient ¢. Note that J(m,) = > ,_, gk —
> 01 pjwsk|l where wjr = Prw;. Now we study two cases, ||gil| > 0 and [|gk| = 0, sep-
arately.
Suppose [|gk|| > 0. Then [[gx — >_7_, pjwj|| is differentiable at p = 0 and its partial

derivative with respect to p; at p = 0 is

S G f wu()d - f) Gut)dt fy wh(0)de + [ GO w0

G ’
for i =1,...,p. The numerator is less than or equal to ||gx||||wi||. Hence the absolute value

of this partial derivative is smaller than or equal to |Jwy| < oo by the assumption that
J(wy) < o0.
Suppose ||gx|| = 0, which implies that g, = 0. Then

2
2 2 2
= (o oo pywn(dt) + (fy S0y pgule(t)dt) -+ Jy (Sl pwlp())

= pTNkpv

p
9k — E PjWjk
J=1

where Ny is a p x p matrix with (i,7)-entry being [wir [wie + [wj, [w), + [wjw).

Note that Ny is positive semi-definite. Using subgradient chain rule and the subgradient
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formulation of Euclidean norm, the subgradient of \/pT7Nyp with respect to p is

N, . 1/2
il INSp o

€ {Nkl/Qa lallg < 1}, otherwise.

Recall that we are interested in the case of p = 0. For any a = (ay,...,a,)T such that
1/2 1/2

lalz <1, 1N Pallo <IN all = | 25y ajwill < S5y laglllwll < 2 gl < oo,

where || - || is the max norm of a vector. Combining results from both cases, ||gx|| > 0 and

|G|l = 0, we conclude that all entries of ¢ are O(1).

Now, we go back to (S.9)) and study the first term on the right hand side. Forl =1, ..., p,

1 0 |1 R —~ 1 R - R
i=1 =0 P
— —% Z {{yz —m(u;, )} + {m(u;, ;) — m(u,, @)} + {m(u;, a) — m(u;, EZ)} wy(zs, EZ%
i=1
- _(67 wl)n T ((ﬁ N VO)Tw’ wl)" + ((% - ’70)1-@7 wl)n + (/g\_ 9o, wl)n,*
+% Z Z wi(z, Ci)fék(@k)(@k —Cir) + Op(n7h)
=1 k=1

= T+ I+ IT+IV+V+0O,(n?).

By the asymptotic expansions ([S.1]) and (S.3]),

n s l)\1/2
Vo= 1ZZ@(zi,g)fak@m)cb'(@k){n‘”?ZC’—”mmwk,w
n i=1 k=1 j#k (>‘k - /\j))‘k

_%n—lﬂgk)\];l (A, i) }

= n 2 Z (Atpy, Toi) x {1+ O,(n~%)},

k=1
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where

S E{@1(z1, ) S (G ® (GG A A2 O = )
7k

S E{@(21, ) i (Gu® (GO (510

Since A converge weakly to a Gaussian random field, it is easy to see that V = O,(n~'/?)

and is asymptotically normal.

By 7 E{w](C)ﬂ;l(Za C)} =

p p
Z ’VO] w]7 wl Z Op 1/2 /70])
Similarly, by law of large numbers,
P p
11T = Z<:Y\] — /70] U)J,U)l Z Ml] -+ Op ’Y — ’}/Oj).
j=1 j=1

Similarly as before, we can show that the event lim inf,, {|g—go|oo/(1+J(9)+J(g0)) < C1+1}
is of probability 1.

It is easy to see that

IV = @0, @t D0 D AFln — FialGaHTGt) G — ) + 0yl
i=1 k=1
= (9— g0, W)n + Op(n_l/Z) ( by Lemma @

Next, we study the behavior of \/n(g — go, w;), as a function of ||(g — go)w;||2. We are going

to apply Theorem 2.4 of Mammen and van de Geer| (1997)). To prepare this, we first derive
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some entropy results. Let

k=1

K= {(g—go)@z Jg—g9) <lg¢€ ZFk}

Since w; € M, write K¢ = |W;|s < 00. Therefore

) = >
Hoo(6,K) < Hy (E,K) with IC = {g—go s J(g—g0) < 1,9 € ZFk}

k=1

For any m € M, we can write it in two ways:

m(u, ) —mo(u, () = 2T(y = %0) +9(¢) = 90(¢) = uT (¥ — ) + h(w, ¢) — ho(u, €).(S.11)

Note that J(m —mg) = J(g — go) = J(h — ho). If J(m —my) < 1, we can represent g — go

and h — hg uniquely as follows:

9(¢) = 9(¢) = n+) (G, (5.12)

h(u,C) — ho(w,€) = > hp(u, &) with  hy(u, G) = wT@y + 75(G) € H,
k=1

where 7}, € F), such that Y1  7.(¢x) = 0 and J(7) < 1. Plugging them into (S.11)), we
show that g is the first element of v — vy + >, _; @;. Write 1 as p in (S.12)) for g — go.

Recall that the event liminf{|| — v||g < K3} is of probability 1. Moreover, from the proof

-----

liminf{|z| < K7} for some constant K. Thus we focus on the set

K= {g(C) —g0(¢) = p+ > Tal(G) : |ul < Kz, J(g—go) < 1,9 € ZFk}

k=1 k=1

where, with probability 1, g — go will eventually falls into. We use similar trick in (|S.16]
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to derive the entropy result for K by the decomposition (S.12)). It suffices to obtain bound
for Hao(-{9(C) = i Jul < Kr}) and Hoo(-, {35, 72 : Wl + 7(Gy) € H, Y0, 7(Ga) =
0,J(T%) < 1}). The bound for the first entropy is from Lemma 2.5 of van de Geer| (2000)),
while that for the second entropy is derived similarly in the proof of Lemmal3] For simplicity,
we skip those details. In the end, we get the event liminf, {sups.,6"/2H..(d,K) < Kg} is of

probability 1. Combining with the above results, we obtain an entropy bound for the set

> (9 — go)wy —~ -
K= g —go=p+ E T, | < Kqyg € E Fr o .
{1+J(g>+ej(go) g 9o :u p k ‘Iu‘ 7,9 e k

That is, the event lim inf, {sups., 0/2Hoo (6, K) < Ky} is of probability 1.
Note that E(g — go, w;), = 0 since E(g(¢)wi(z,¢)) = 0 for any g € >";_, Fr. Applying

Theorem 2.4 of Mammen and van de Geer| (1997) to Ie, we have
IV = 0,(n~/?),

since J(g) = Oy(1) (Theorem [1) and ||g — gol|2 = 0,(1).
Also, it is simple to show that X7 (g — (w;, G)) Op(n %) /n = O, (n~/2) since || —
molln = Op(1,) = Op(n~Y4). Collecting all the above results, we have, for [ = 1,...,p,
P s
—(e, @)n + Y (Myy + 0p(1)(; = 705) 1072 (Ady, ) + 275 + 0,(n71/?) = 0,

j=1 k=1

with ¢, = O(1). Since M is non-singular, we have

n'?(F = v) = M (q1 + g2) + 0,(1), (S.13)
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where q; = (qj1,---,q;)7, j = 1,2, with gy = n'/2(e, W), gu = — > 1, (AP, wx,). Put
Vi =cov(q:) and V, = cov(qa), (S.14)

by the central limit theorem q; — Normal(0,V;) in distribution, and since A converge
weakly to a Gaussian random field (Dauxois et al., [1982), g2 — Normal(0, V5) in distribu-
tion. It is easy to see that g; and gy are asymptotically independent because € and A are

independent. The results of the theorem follows from ([S.13]).

B.4 Proofs of Lemmas

Proof of Lemma |2\ For f; € F; which is a RKHS with the reproducing kernel Ry(-,-)

= [, Pl g | 2l

‘ A fr(Cr)
G,

The reproducing kernel of 2nd order Sobolev Hilbert spaces are Ry(s,t) = hi(s)hi(t) +
ho(8)ha(t) — hya(|s —t|) where hy(t) =t —1/2, ho(t) = {h3(t) — 1/12}/2 and hy(t) = {h{(t) —

h3(t)/2 + 7/240} /24. Note that

O*Ri(s,t) 13 1 1\ 1 1 ,

Now, for any k < s,

sup aRk(Ca )
¢€[0,1] 5C

s <8Rk<<,-> ORi(C, ) > _ p PB(,)
8{ 7 0{ ¢elo,1] 0sot

4
<.
cefo,1] 3

s=t=(

Proof of Lemma . We will study the entropy result for Hy, := {hy, € Hy, : J(hy,) < 1} first.
For h;, € ﬁk, we can represent it uniquely as hg(u, () = wTwi+7(C), where > 7" 7, (Gr) =0

and 7, € F;, with J(r;) < 1. Note that if S; and S, are two sets of functions, we can bound
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the uniform entropy of &1 + Ss:

Hoo(5,81 + 8) < Hao(5)2,81) + Hao(5/2,85). (S.16)
Take
SkJ = {’I‘k : hk(u,C) =u'w, + rk(C), Zrk(czk) =0, h € ﬁk}
=1
and

Sko = {g(’u,) =u'w: hg(u, ) = uTwg + r(0), Zrk(gk) =0,h; € ﬁk} )
=1
Note that Hy C Sk + Ske and thus Hu (6, Hy) < Hao(0/2,8k1) + Hoo(6/2,Sk2). By the

proof of Lemma A.1 in |Lin and Zhang] (2006), |7k~ < 1 and there exists a constant A such
that Hoo (8, Sk1) < AS™Y2 for all § > 0.
Now, it remains to obtain results about Hu(d, Sk2). The constraints of Hy can be written

as

1 1 ~ —~
EUTka = _EUT(TIC(CM)a . ,T‘k(gkn))T
where U = [u;;]iz1,. nj=1,. p+1. Note that UTU/n — X almost surely (element-wisely)

-----

and X is non-singular. Write the smallest eigenvalue of ¥ as 0;. Let &, be the event that

slwkllp < L =2y/p+1/0o;. Combining with |ry| < 1 and |u;;| < 1, we have

.....

1

Ez_lUT<Tk(§kl)7 ey Tr(Crn))T

1
< =

E 71

9
< VP
E 01

%UTO”k(gkl)v s T (Gen))T

for all k. Therefore P(liminf, , &,) = 1. We note that this result hinges on the convergence
of UTU /n, which does not depend on s, and thus still holds even s grows with n. Next, for
any u € [0,1P"! and w,w* € R [uTw — uTw*| < /p + I||w — w*||g. Therefore, on &,,
Hy(0,8k2) < HO/Vp+1,{w: ||wlrg < L}, | |g). From Lemma 2.5 of van de Geer (2000),

there exists a constant B such that H(6/v/p+ 1, {w : ||w|lg < L}, || - |lg) < (p+1)log(1l +
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4L\/p+1/6) < B6~'2. Thus Hoo (8, {hy, € Hy, : J(hy) < 1}) < (A4 B)V2571/2 = 016712
where O = sqrt2(A + B). As a result, on &,, Hyo (0, {6,{h € H: J(h) < 1}}) < C;s%/2571/2
since J(h) < 1 implies J(hg) < 1 for all k. Moreover, on &, SUpep. <1y |l < sC7 due
to |hy| < Cf:=+/p+ 1L +1 for all k.

Proof of Lemma 4] Suppose
Ho(0,{h € H: J(h) <1}) < Cy5*/267Y2, (S.17)

for all 6 > 0, n > 1 and some constant C; > 0 not depending on n and s. Then,

# (0t e m )

has the same entropy bound . The rest follows from the proof of Lemma 8.4 in van de
Geer| (2000) and Lemma |3 that holds eventually with probability 1.
Proof of Lemma [5} By Theorem [} we have || — mol|, = 0,(n~"/*). We will show that
|m — mygl|,, and ||m — my||2 have the same order.

Recall that, in the proof of Proposition , we write f(u, ¢) = uTo+h(u, ¢) and m(u, ¢) =
u'v + h(u, ). In its proof, using strong laws of large number, we show that || — vy||g
converges to zero almost surely and hence the event lim inf,, {||[—vy|| g < K} is of probability

1 for some constant K. Consider the set
j: {m—mo . ||I/— VO”E S Kl,J(h— ho) S 1,m(u,C) = UTV‘I'h(U,C) < M}

We can use the similar trick in (S.16) to derive the entropy result for 7 by decomposing a

function in J: m —my = uT(v — vy) + h — hy. Next, it suffices to derive uniform entropies

Ho(,{u™(v — ) 1 |lv—wollp < K1,v € RP})  and  Hoo(, {h—ho : J(h—ho) < 1,h € H}).
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The first one can be handled by Lemma 2.5 of van de Geer| (2000) similary as in the proof
of Lemma [3] while the second one can be handled by Lemma 3] For simplicity, we skip those
details. In the end, we have lim inf, {sups., /2 Hy (0, J) < Ka} is of probability 1 for some

constant K. And this implies the entropy results for the set

= m — My ) B o
7 {1 ) 1 TGy 1Y T volle = Kumiu, ) = ulv + u,¢) € M}.

Namely, lim inf,, {sup;., 0/2Ha (3, ) < K3} is of probability 1 for some constant K.
Using Lemma we can show that the event lim infn{m —holoo/(1+ J(ﬁ) +J(ho)) < K4}

is of probability 1 for some constant K,. (Note that s is assumed to be fixed and thus is

assimilated into the constant.) Combining with P(liminf,{|| — vy||r < K;}) = 1, we can

simply focus on the set

— m — My |/}Z_h0|oo
J = Ny — < K, — <KymeMy,, S.18
{1 Fam) + Jmg) 1l = e e = (S

where, with probability 1, (m — myg)/(1 + J(m) + J(my)) will eventually fall into. Clearly,
we also have that lim inf, {sup,.,0/2H (6, J) < K3} is of probability 1. It is also easy to
show that J is uniformly bounded.

From Theorem [1} we have || — m|, = O,(n~"/*). Hence, by applying Lemma 5.16
of van de Geer (2000) on J, with 6, = Ksn~%/> for some constant K5, we can show that
|m — mpl|, and ||m — my||2 have the same order and thus ||m — my||2 = 0,(1).

Proof of Lemma [6]

Consider F}, = {f®/||f|| : f € F}. By Lemma 2| we have the uniform boundedness of
@93 SUD ey SUDco,1] |f(t)] < Cy. Using Lemma 2.4 of van de Geer| (2000)), it is easy to show
that there exists a constant C3 such that sups.0Heo (6, @C) < (5. Owing to the uniform

boundedness of Ef, SUpsoo 0Hoo (0, {f*: f € @c}) < 2C5C3. The desired result then follows
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from Lemma 3.6 of van de Geer| (2000)).

Proof of Lemma . Put gx = fr.— for, then f— fo = > 51 4j- Since g; € F;, fol q;(t)dt =0,
and therefore (1 = folBape = Sy 151220 By B3 17 - gollz = 0,(1). By the
assumption that ¢ has non-degenerate, bounded joint density on [0,1]%, || - [|l2 and || - || 20,1+
are equivalent norms, and therefore ||g;||z2j01) = 0p(1) for j = 1,...,s. By Gagliardo-
Nirenberg interpolation inequality (Nirenberg| (1959) and Brezis (2010}, pp. 313-314)), there

exists a constant C4 such that

1/2

1/2||Qk||L2[071]'

1
sl 20,1 < Cullgll

By Theorem , J(m) = O,(1) and therefore ||gx|| = O,(1). Therefore HQ;E})HL?[OJ] = 0,(1).

Again, because || - || 20,1 and || - ||2 are equivalent norms, Hq,(cl) |2 = 0,(1). Finally, by Lemma
1 1 1 1 1

Bland flgs]| = O (1), we have [lg,” 2 = a3+ ai”112 ~ gk 13 = i 14+ laul P, (1) =

Op(1).

C Additional results for Section [5l

Following the suggestion of a referee, we also provide results when s is set to recover 90%
of the total variation in {;}, instead of 99.9%. The results are presented in Tables [S.1HS.4]
which should be compared with Tables in the main text. When such a smaller percentage
is used, the 4th component, which is related to Y, is near the cut-off point and often not
included in the model. As a result, f; is often falsely excluded from the model (see Table
S.2), and there is a much lower chance for COSSO to select the correct model. We also see
much bigger prediction errors in Table than those in Table 4] Our conclusion is it is
best to include as many components as possible and let the model selection mechanism of

COSSO determine the size of the model.
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D Additional Results for Section

Since the two functional predictors in our real data are strongly correlated, we also compare
the prediction performance for models using only one functional predictor. Recall that X ()
and X(t) are the daily maximum and daily minimum temperature trajectories respectively.
We denote by X (t) = {X;(t) + X»(t)}/2 the mean trajectory. In addition to the models
presented in Section [0, we also compare the yield prediction performance of the following
12 models, which use only one of X;(t), X5(¢) and X (¢) as the functional predictor. In the
prediction experiment described in Section [6.1] the prediction errors of these 12 models are
presented in Table As we can see, the models using only one functional predictor or the
average yield higher prediction errors than PLFAM(joint) which jointly model both functional

predictors.
1. PLFAM(max): PLFAM based on univariate FPCA scores from Xj;
2. FAM(max): FAM based on univariate FPCA scores from X7;
3. FLM-Cov(max): FLM based on univariate FPCA scores from X, with covariate effects;
4. FLM(max): FLM based on univariate FPCA scores from X; (without Z);
5. PLFAM(min): PLFAM based on univariate FPCA scores from Xo;
6. FAM(min): FAM based on univariate FPCA scores from Xs;
7. FLM-Cov(min): FLM based on univariate FPCA scores from X, with covariate effects;
8. FLM(min): FLM based on univariate FPCA scores from X, (without Z);
9. PLFAM(mean): PLFAM based on univariate FPCA scores from X

10. FAM(mean): FAM based on univariate FPCA scores from X;
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11. FLM-Cov(mean): FLM based on univariate FPCA scores from X, with covariate effects;

12. FLM(mean): FLM based on univariate FPCA scores from X (without Z).

We also made the assumption that crop yields in different counties and years are con-
ditional independent given the local meteorology information. To check for possible spatial
dependency, we calculate the spatial variograms for each year based on the residuals from
the fitted yield prediction model; to check for possible temporal dependency, we also calcu-
late the autocorrelation function (ACF) for each county. Because of limited space, we show
the spatial variograms for the first 4 years in Figure and ACF for the first 4 counties in
Figure [S.2] These plots are based on the residuals of the corn yield prediction model. Plots
for other years and counties and those based on the soybean prediction model are similar.
All variograms and ACF’s are contained in the confidence band based on the assumption of

no dependency, which supports the conditional independence assumption that we make.

E Standard Error Estimation by Bootstrap

To quantify the uncertainties in the estimated model, we estimate the standard errors of
both 8 and f(C ) using bootstrap. In addition to the uncertainties in the regression step,
our bootstrap procedure also takes into account the variation in mFPCA. The bootstrap
samples are obtained by resampling residuals from both the observations on the functional

covariates and the response variables. The procedure is as follows.

1. (Resampling the functional covariates) Recall that the discrete noisy observations on

x; are

wijk:xij(tijk)+eijk, 7::1,...,71, jzl,...,d, kzl,...,Nij,
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and the recovered functions from the discrete observations are Z;;(t). Let €, = w;ji —
Z;j(ti;,) and resample with replacement e, from {€jr : k=1,...,N;;} to obtain a
bootstrap sample wy;, = ¥;; (tije) + er;i- Repeat for all 4, j, k, to obtain the bootstrap
sample W* = {wj;, :i=1,...,n, j =1,...,d, k =1,..., Ny} for the functional

data.

. (Resampling the response) Denote y; as the fitted value of y; from the original data
and define the residuals g; = 7TZ-1 / 2(yi — ;). Sample with replacement €} uniformly from
{& :i=1,...,n} to obtain a bootstrap sample y: = 7; + 7ri_1/26§‘ of y;. Denote the

bootstrap sample as Y* = {y :i=1,...,n}.

. Apply the mFPCA procedure on W* to obtained mFPC scores ¢*, and then fit the
propose PLFAM to YV* using ¢* and the original Z. Denote the estimates from the

bootstrap sample as 8* and f*(C)
. Repeat Steps 1- 3 a large number of times and use the sample standard deviations of

6* and f*(( ) as estimates of the standard errors for 6 and ]?(C ).

Table S.1: Percentages of fitted model sizes.
Setting  Model % for the following model sizes

1 2 3 45 6 7 8
{(), )} FAM 1 40 585 05 0 0 0 O
PLFAM 1 40 585 05 0 0 0 0
{), MY FAM 25 95 2 0 0 0 0 0
PLFAM 25 955 2 0 0 0 0 0
{(), )} FAM 55 50 42 25 0 0 0 0
PLFAM 0 375 625 0 0 0 0 0
{G), @)y FAM 15 8 1 0 0 0 0 0
PLFAM 2 97 1 0 0 0 0 0
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Table S.2: Percentages of selected components and, correct and super selection.

Setting  Model % for the following component functions | % correct % super

o o s fa fs fo f1 s set set

{(1), (D} FAM 100 99 2.5 570 0 0 O 56.5 57
PLFAM 100 99 25 57 0 0 0 O 56.5 57

{Gi), (1)} FAM 100 97.5 2 0o 0 0 0 O 0 0
PLFAM 100 97.5 2 0o 0 0 0 O 0 0

{(1), (II)} FAM 100 81 3 575 0 0 0 O 41.5 44
PLFAM 100 100 25 60 0 O 0 O 60 60

{(i1), (I)} FAM 100 85 1 0o 0 0 0 O 0 0
PLFAM 100 98 1 o 0 0 0 O 0 0

Table S.3: Averaged integrated squared errors.

Setting  Model

h

f

ATSEs for the following component functions

fs

Ja

f5

6

fr

fs

~

f

(), DY FAM 0.0257
PLFAM  0.0258

0.0903
0.0907

0.0020
0.0018

0.4682
0.4682

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.5861
0.5865

{G), M}  FAM 0.0321
PLFAM 0.0324

0.1364
0.1352

0.0026
0.0027

0.9508
0.9508

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

1.1219
1.1210

{(), I}  FAM 0.0439
PLFAM  0.0252

0.2211
0.0855

0.0056
0.0015

0.4902
0.4348

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.7609
0.5470

{G), M}  FAM 0.0423
PLFAM 0.0278

0.2158
0.1341

0.0014
0.0009

0.9508
0.9508

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

1.2102
1.1136

Table S.4: Prediction errors and mean squared errors for FAM and PLFAM, using separate
univariate FPCA scores (columns labelled “separate”) or mFPCA scores (columns labelled
“joint” ). For prediction errors, means are presented with corresponding standard deviations

in parentheses.

Setting Model Prediction error Mean squared errors

separate joint separate joint
0, 0 03 0 0> 03
{@1), (D} FAM 1.68 (0.11) 1.68 (0.40) - - - - - -
PLFAM  1.69 (0.11) 1.70 (0.41) | 0.0763 0.0975 0.1097 0.0756 0.1047 0.1095
{G), M} FAM  1.68 (0.10) 2.13 (0.12) - - - - - -
PLFAM  1.69 (0.10) 2.15 (0.13) | 0.0667 0.1108 0.0858 0.0767 0.1388 0.1100
{(1), (I)} FAM  3.94 (0.24) 3.94 (0.36) - - - - - -
PLFAM  1.71 (0.11) 1.69 (0.39) | 0.0688 0.1091 0.0973 0.0686 0.1181 0.0818
{G), any FAM  3.91 (0.25) 4.29 (0.27) N - - - - -
PLFAM  1.71 (0.11) 2.13 (0.13) | 0.0675 0.0897 0.1156 0.079 0.1332 0.1284
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Table S.5: Average of 5-year overall prediction errors.

corn soybean

(a) functional additive models PLFAM(joint) 298.43 35.64
PLFAM(separate) 306.50 38.85

PLFAM(max) 324.27 38.22

PLFAM(min) 338.51 44.09

PLFAM(mean) 330.17 40.93

FAM(joint) 830.17 48.54

FAM(separate) 839.00 51.06

FAM(max) 898.12 51.92
FAM(min) 997.27  65.48

(b) functional linear models FLM-Cov(joint) 303.81 35.29
FLM-Cov(separate) 308.57 35.69
FLM-Cov(max) 317.83 37.52

FLM-Cov(min) 338.88 42.43
FLM-Cov(mean) 310.02 37.27
FLM(joint) 704.19 47.31
FLM(separate) 767.42 50.42

FLM(max
FLM(min
FLM(mean

779.56 51.49
842.12 61.42

)
)
)
)
)
)
)
g
FAM(mean) 916.80 57.79
)
)
)
)
)
)
)
g
) 790.96 52.38
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Figure S.1: Spatial variograms for each year from 2008 to 2011, based on the residuals from
the corn yield prediction model. The unit g%he horizontal axis is degree (in longitude or
latitude). The dotted curves are confidence bands based on the assumption of no spatial
dependency.
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