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Abstract

This paper investigates the problem of matrix completion from corrupted data, when addi-

tional covariates are available. Despite being seldomly considered in the matrix completion liter-

ature, these covariates often provide valuable information for completing the unobserved entries

of the high-dimensional target matrix A0. Given a covariate matrix X with its rows represent-

ing the row covariates of A0, we consider a column-space-decomposition model A0 = X�0+B0

where �0 is a coefficient matrix and B0 is a low-rank matrix orthogonal to X in terms of col-

umn space. This model facilitates a clear separation between the interpretable covariate effects

(X�0) and the flexible hidden factor effects (B0). Besides, our work allows the probabilities

of observation to depend on the covariate matrix, and hence a missing-at-random mechanism

is permitted. We propose a novel penalized estimator for A0 by utilizing both Frobenius-norm

and nuclear-norm regularizations with an efficient and scalable algorithm. Asymptotic conver-

gence rates of the proposed estimators are studied. The empirical performance of the proposed

methodology is illustrated via both numerical experiments and a real data application.
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1 Introduction

In recent years the problem of recovering a low-rank data matrix from relatively few observed

entries has drawn significant amount of attention. This problem arises from a variety of applications

including collaborative filtering, computer visions and positioning. In these applications, the low-

rank assumption is often used to reflect the belief that rows (or columns) are generated from a

relatively few number of hidden factors. For instance, in the Netflix prize problem (Feuerverger

et al., 2012), viewers’ ratings are assumed to be adequately modeled by a few hidden profiles.

In the noiseless setting, earlier works (Candès and Recht, 2009; Recht, 2011) have established

strong theoretical guarantees on perfect matrix recovery. A typical form of this remarkable result

is stated as follows. An n1-by-n2 matrix A0 of rank rA0
, fulfilling certain incoherence conditions,

can be recovered exactly with high probability from c(n1 + n2)rA0
log2(n1 + n2) observed entries

sampled uniformly at random via a convex and tractable constrained nuclear norm minimization

for a positive constant c. As for the noisy setting where observed entries are corrupted by noise,

extensive works on matrix completion (Candès and Plan, 2010; Koltchinskii et al., 2011; Rohde and

Tsybakov, 2011) can be found under various forms of noise assumptions.

Some applications come with covariate information in the form of additional row and/or column

information. For instance, the MovieLens 100K data set (Harper and Konstan, 2016) has both

viewer demographics (age, gender, occupation and zip code) and movie features (release date and

genre). These row and column covariates play similar roles as covariates in regression analysis

and therefore can potentially lead to significant improvements in matrix recovery. Recent works

(Abernethy et al., 2009; Natarajan and Dhillon, 2014) have shown such promises. In the noiseless

setting, theoretical guarantees of perfect matrix recovery with covariates are available (Xu et al.,

2013; Chiang et al., 2015). Yet, there have been limited attempts with theoretical results at the

more realistic setting where observed entries are corrupted by noise. One notable study is the

work by Zhu et al. (2016), which study a partial latent model for personalized prediction and its

likelihood estimation.
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Moreover, the probabilities of observation may vary with respect to the row and/or column

attributes. As suggested by our real data analysis of the MovieLens data (Section 7), the sampling

mechanism of the ratings varies across different viewer groups. The earlier literature of matrix

completion (Candès and Recht, 2009; Abernethy et al., 2009; Keshavan et al., 2009; Recht, 2011;

Rohde and Tsybakov, 2011; Koltchinskii et al., 2011) focused on uniform sampling mechanism,

where each entry has the same marginal probability of being sampled. There are recent studies

(Srebro and Salakhutdinov, 2010; Negahban and Wainwright, 2012; Klopp, 2014; Cai and Zhou,

2016; Cai et al., 2016; Bi et al., 2016) devoted to relaxing such restrictive assumption to the

nonuniform case, where probabilities of observation are allowed to be different across rows and

columns to some extent. However, the covariates are not taken into account in the modeling of

the probabilities of observation. Driven by the aforementioned empirical observation, we model

probabilities of observation with a missing-at-random (MAR) mechanism, where the probability of

observation is independent of the matrix entry when conditional on the covariates.

In this paper we utilize the covariate information in both modelings of the observation proba-

bility and the completion of the target matrix. We focus on the use of only row (or equivalently

column) covariates and leave the joint usage of both row and column covariates as a future work.

More specifically, we consider a column-space-decomposition model of a target matrixA0 2 R
n1⇥n2 :

A0 = X�0 +B0,

where X 2 R
n1⇥m is a covariate matrix with its rows representing the row covariates of A0,

�0 2 R
m⇥n2 is a coefficient matrix, and B0 2 R

n1⇥n2 is a low-rank matrix. To ensure identification,

the column spaces of X and B0 are orthogonal. The above model shares some similarities with a

recent work by Zhu, Shen, and Ye (2016), but differs in the aspect that they did not impose the

orthogonality condition.

The purpose of considering covariate information is to improve the accuracy of the completion

of A0 and B0. It is achieved by estimating �0 and B0 via minimizing a regularized empirical

risk which allows separation with respect to � and B. This means that the proposed estimators
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�̂ and B̂ can be computed separately by two separate minimizations, which is scalable and non-

iterative. Specifically, unlike many matrix completion algorithms that involve multiple singular

value decompositions (SVD), our computation requires only one single SVD. This SVD can be

re-used in computations of the proposed estimators with respect to different tuning parameters,

which leads to significant computation reduction in tuning parameter selection. In addition, our

algorithm can be coupled with the fast randomized singular value thresholding (FRSVT) procedure

(Oh et al., 2015) for efficient computation in large matrix completion problems.

As for theoretical properties, we first provide a general asymptotic upper bounds for the mean

squared error (MSE) achieved by the completed matrices under a general missing mechanism,

followed by specific results for uniform missing and MAR satisfying the logistic regression. To

demonstrate the benefits of including the covariate information, we show a faster convergence of

the covariate part X�̂ than the low-rank part B̂. In addition, we provide a non-asymptotic upper

bound for the mean squared error (MSE) of the completed matrix B̂ and show it is no larger

than the one by Koltchinskii et al. (2011) under the uniform missingness. Besides, the proposed

matrix completion is shown to attain the minimax optimal rate (up to a logarithmic factor) in the

estimation of both the entire matrix and its lower rank part B under the uniform missingness.

Additional results for non-uniform missingness are also provided.

The rest of the paper is organized as follows. The proposed model is constructed in Section

2. The associated estimation, computation and tuning parameter selection are all developed in

Section 3 while the asymptotic convergence rates are given in Section 4. In Section 5, we discuss

the benefit of the covariate information with a set of theoretical results. Numerical performances

of the proposed method are illustrated in a simulation study in Section 6 and an application to

a MovieLens dataset in Section 7. Concluding remarks are given in Section 8, while all technical

details are delegated to a supplementary material.
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2 Proposed model

Let A0 = (A0,ij) 2 R
n1⇥n2 be an unknown high dimensional matrix of interest, and Y = (Yij) be

a contaminated version of A0 where only a portion of {Yij} is observed. For the (i, j)-th entry,

consider the sampling indicator !ij = 1 if Yij is observed, and 0 otherwise. The contamination

follows the model:

Yij = A0,ij + ✏ij , for i = 1, . . . , n1; j = 1, . . . , n2, (2.1)

where {✏ij} are independently distributed random errors with zero mean and finite variance. We

assume that {✏ij} are independent of {!ij}.

In additional to the incomplete matrix Y , we have an accompanying covariate matrix X =

(x1, . . . ,xn1
)| 2 R

n1⇥m, where xi 2 R
m⇥1 for i = 1, . . . , n1. Each row of X, namely x

|

i , records

m covariates associated with the corresponding row of A0. We assume that A0 is nonrandom

given the covariates X. For notational simplicity, X is assumed to be nonrandom. Compared with

common settings of matrix completions, our setting has an additional covariate matrix X, which

is treated as an additional piece of information for the recovery of A0.

Regarding the sampling (or missingness) mechanism, we adopt the Bernoulli model !ij ⇠

Bernoulli(✓ij(xi)) where the observation probabilities may depend on the covariate. For notational

simplification, we denote ✓ij = ✓ij(xi) in the rest of the paper. The detailed assumptions of {✏ij}

and {✓ij} are specified in Conditions C1 and C4 in Section 4.

Prior to the discussion of our model, we briefly present two existing models of A0. The first one

is a low-rank model of A0 which assumes each row (or column) of A0 is a linear combination of a

small number of hidden factors. This assumption stems from the classical factor model. The second

one assumes A0 is modeled as X�0 with a coefficient matrix �0 2 R
m⇥n2 , where the problem of

recovering A0 can be treated as a classical multivariate regression (Mardia et al., 1980; Freedman,

2009) (with missingness). This linear modeling affords easy interpretation of the covariate effect.

Our model is a combination of these two models, aiming to incorporate the covariate effect as

well as to allow the hidden factor effect for accurate estimation of A0. To allow separation of these
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two effects, we project A0 to the column space of X and its orthogonal complement such that

A0 = PXA0 + P?
X
A0, where PX = X(X|X)�1X| and P?

X
= I � PX .

By assuming thatB0 = P?
X
A0 is of low rank, and PXA0 is linear inX such that PXA0 = X�0,

we have a specification of A0 in (2.1):

A0 = X�0 +B0, (2.2)

The low-rank assumption of B0 implies that B0 = U0V
|

0 where U0 2 R
n1⇥rB0 , V0 2 R

n2⇥rB0 and

rB0
is the rank of B0 with rB0

⌧ min{n1, n2}.

Let Ũ0 = (X,U0) and Ṽ0 = (�|

0 ,V0), then A0 = Ũ0Ṽ
|

0 . When compared with the typical

matrix completion, model (2.2) has part of the column space of A0 being known due to X. The

coefficient matrix �0 signifies the strengths of the m covariate effects with respect to the n2 columns

of A0 and permits more interpretability in addition to the completion of A0. The goal of this paper

is to recover the matrix A0 = X�0 +B0, together with the coefficient matrix �0 and the low-rank

matrix B0, in the presence of observation noise.

Our model shares some similarities with a recent work by Zhu, Shen, and Ye (2016), which

allows the joint usage of row and column covariates. When only row covariates are used, the

authors studied a model similar to (2.2) under the restriction that �0 = (↵, . . . ,↵), where ↵ 2 R
m.

3 Estimation

3.1 Estimation of �0 and B0

We develop the estimators of �0 and B0 based on the framework of regularized empirical risk

minimization. Define C(X) be the column space of a matrix X, N (X) = {B 2 R
n1⇥n2 : C(B) ?

C(X)}, W = (!ij) and Θ
⇤ = (✓�1

ij ). For any � 2 R
m⇥n2 and B 2 N (X), we consider a population

risk function

R (�,B) =
1

n1n2
E
⇣
kX� +B �W �Θ⇤ � Y k2F

⌘
,
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where � is the Hadamard product and k · kF stands for the Frobenius norm. Our interest of this

risk function originates from the following result established in Section S1 of the supplementary

material.

Proposition 1. Suppose that X|X is invertible. Under Conditions C1(a) and C4 stated in Section

4, (�0,B0) uniquely minimizes the risk function R(�,B).

One nice feature of R is that � and B can be separated orthogonally. To appreciate this,

we observe that the inner product hX� � PX(W �Θ⇤ � Y ),B � P?
X
(W �Θ⇤ � Y )i = 0 for any

B 2 N (X). Consequently,

R (�,B) =
1

n1n2


E
n
kX� � PX (W �Θ⇤ � Y )k2F

o
+ E

⇢���B � P
?
X (W �Θ⇤ � Y )

���
2

F

��
.

This decomposition will facilitate the fast computation of the proposed estimators and simplify

their theoretical analyses.

If {✓ij} were known, a natural unbiased estimator of R would be

R̂ (�,B) =
1

n1n2

⇢
kX� � PX (W �Θ⇤ � Y )k2F +

���B � P
?
X (W �Θ⇤ � Y )

���
2

F

�
. (3.1)

As {✓ij} are often unknown, we modify R̂ by plugging in consistent estimators {✓̂ij} of {✓ij}. We

note that our proposed matrix recovery method can accommodate a variety of models of {✓ij}.

To achieve various theoretical guarantees, {✓̂ij} are only required to fulfill a mild condition (C5 in

Section 4) under the chosen model of {✓ij}. In the following, instead of R̂, we consider

R̂⇤ (�,B) =
1

n1n2

⇢���X� � PX

⇣
W � Θ̂⇤ � Y

⌘���
2

F
+
���B � P

?
X

⇣
W � Θ̂⇤ � Y

⌘���
2

F

�
, (3.2)

where Θ̂
⇤ = (✓̂�1

ij ) 2 R
n1⇥n2 contains reciprocals of the estimated observed rates {✓̂ij}.

Since � and B are high dimensional parameters, a direct minimization of R̂⇤ would often result

in over-fitting. To avoid such an issue, we incorporate penalty terms as regularizations. Specifically,

the estimators (�̂, B̂) is defined as the minimizer of

f (�,B;�1,�2,↵) = R̂⇤ (�,B) + �1 k�k2F + �2

⇣
↵ kBk

⇤
+ (1� ↵) kBk2F

⌘
(3.3)
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with respect to � 2 R
m⇥n2 and B 2 N (X), where k · k⇤ is the nuclear norm and, �1,�2 > 0

along with 0  ↵  1 are regularization parameters. The two Frobenius norm terms, �1k�k2F and

�2(1 � ↵)kBk2F , are equivalent to the computationally efficient `2-shrinkage of vec(�) as well as

vec(B), while the nuclear norm term, �2↵kBk⇤, corresponds to the sparsity-promoting `1-shrinkage

of the singular values of B. The combination of these regularizations allows efficient computation

and encourages the low-rank solution. Here the parameter ↵ strikes a balance between the `1 and

`2-shrinkage of B. In our theoretical analysis, either ↵ = 1 or ↵ ! 1 would lead to the convergence

of the proposed estimators. However, it is known that an appropriate amount of `2-regularization

often improves finite sample performance (Zou and Hastie, 2005; Sun and Zhang, 2012). Hence,

instead of fixing ↵ = 1, we select ↵, together with �1 and �2, by the 5-fold cross-validation (Friedman

et al., 2013).

Due to the orthogonal separation of � and B in (3.2), the minimization of (3.3) is equivalent

to the following two separate minimizations:

�̂ = argmin
β2Rm⇥n2

⇢
1

n1n2

���X� � PX

⇣
W � Θ̂⇤ � Y

⌘���
2

F
+ �1 k�k2F

�
and (3.4)

B̂ = argmin
B2N (X)

⇢
1

n1n2

���B � P
?
X

⇣
W � Θ̂⇤ � Y

⌘���
2

F
+ �2

⇣
↵ kBk

⇤
+ (1� ↵) kBk2F

⌘�
. (3.5)

3.2 Closed-form expressions and fast computation

We discuss how to compute �̂ and B̂ given in (3.4) and (3.5). As (3.4) is essentially a ridge

regression problem, straightforward algebra gives

�̂ =
�
X

|
X + �0

1Im⇥m

��1
X

|

⇣
W � Θ̂⇤ � Y

⌘
, (3.6)

where �0
1 = n1n2�1 and Im⇥m denotes the m-by-m identity matrix. We observe that the matrix

inversion in (3.6) is performed to a m-by-m matrix, which does not scale with n1 and n2. So it can

be computed quite efficiently despite the high dimensionality of A. As for the solution B̂ in (3.5),

the minimization over B 2 N (X) is not straightforward. The following proposition, whose proof is

given in Section S1 of the supplementary material, shows that the minimization problem (3.5) can
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be carried out by extending the domain from N (X) to R
n1⇥n2 . This domain enlargement reduces

the complexity of the minimization.

Proposition 2. Suppose that X|X is invertible, the minimization problem (3.5) is equivalent to

argmin
B2Rn1⇥n2

⇢
1

n1n2

���B � P
?
X

⇣
W � Θ̂⇤ � Y

⌘���
2

F
+ �2

⇣
↵ kBk

⇤
+ (1� ↵) kBk2F

⌘�
. (3.7)

An advantage of (3.7), over (3.5), is the availability of a closed-form solution based on existing

results on singular value shrinkage (Mazumder et al., 2010) described as follows. To express the so-

lution, let UΣV | be the singular value decomposition (SVD) of a matrix D where Σ = diag({�i}).

Define the corresponding singular value soft-thresholding (SVT) operator Tc by

Tc (D) = Udiag({(�i � c)+})V
| for any c � 0, (3.8)

where x+ = max(x, 0). As suggested by its name, this operator soft-thresholds the singular values

of the input matrix D at a specified threshold c. It can be shown that the solution of (3.7) possesses

the following closed-form expression:

B̂ =
1

1 + 2 (1� ↵)�0
2

n
T↵�0

2

⇣
P

?
X

⇣
W � Θ̂⇤ � Y

⌘⌘o
, (3.9)

where �0
2 = n1n2�2/2. The proof of this result follows from the proof of Theorem 1 in Mazumder

et al. (2010), which utilizes simple sub-gradient arguments after re-parameterizing the variable B

of (3.7) in terms of its singular values and singular vectors. The explicit solution (3.9) indicates

that both the singular value soft-thresholding procedure (T↵�0

2
) and a scaling procedure (1/{1 +

2(1 � ↵)�0
2}) are involved in B̂. Observe that these two procedures arise separately from the

nuclear norm regularization and the Frobenius norm regularization. When ↵ = 1 (only nuclear

norm regularization), (3.9) involves no scaling. As for ↵ = 0 (only Frobenius norm regularization),

no soft-thresholding is administrated.

Among existing matrix completion algorithms, a set of them (Troyanskaya et al., 2001; Mazumder

et al., 2010; Ma et al., 2011) require iterative applications of SVD to n1-by-n2 matrices. In contrast,

the computation of B̂ in (3.9) requires only a single SVD of the matrix P?
X
(W � Θ̂⇤ � Y ) due to
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the application of T↵�0

2
. Specifically, to obtain B̂ with respect to multiple choices of �0

2 (or �2) and

↵, the exact same SVD is needed. This is particularly favorable to tuning parameter selection, and

allows us to perform the k-fold cross-validation procedure (Mazumder et al., 2010; Xu et al., 2013;

Chiang et al., 2015) with much reduced computational burden. In all of our numerical evaluations,

we choose k = 5. As for most alternative matrix completion algorithms, iterative applications of

SVD need to be re-applied for every choice of tuning parameters, leading to a nested loop of SVDs

and hence significant computational burden.

To further improve the computational efficiency of our method, we provide an approximate com-

putational procedure for the low-rank solutions (3.7). This approximate procedure is particularly

useful, when n1 and n2 are large, as the computation of a full SVD requires significant computational

resources. The key component is the fast randomized singular value (soft-)thresholding (FRSVT)

procedure (Oh et al., 2015), which utilizes random projections (Halko et al., 2011) to approximate

the SVT operator. Recent work (Halko et al., 2011) has shown that random projections can ex-

plore the low-rank structure effectively, and are suitable for constructing efficient algorithms of

approximate low-rank matrix factorizations. In FRSVT, random projections are obtained through

the generation of Gaussian random matrix with independent entries. To approximate SVT with

output rank at most L, the number of random projections L + d is required to be higher than L.

In the numerical illustrations of this paper, we set L = 150 and d = 5.

4 Asymptotic Convergence Rates

Let kAk = �max(A) and kAk1 = maxi,j |Aij | be the spectral and the maximum norms of a matrix

A, respectively. We use the symbol ⇣ to represent the asymptotic equivalence in order, i.e, an ⇣ bn

is equivalent to an = O(bn) and bn = O(an), and n = n1+n2. The mean squared error of a generic

estimator Ã is defined as d2(Ã,A0) = kÃ�A0k2F /(n1n2).

In this section, we first establish a general convergence result on d2(Â,A0) in Theorem 1, fol-

lowed by more specific results on the convergence rates under the uniform probability of observation
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model and the logistic regression model, respectively. Further, the convergence rate of k�̂j ��0jkF

is established.

The technical conditions needed for our analysis are given as follows.

C1. (a) The random errors {✏ij} in Model (2.1) are independently distributed random variables

such that E(✏ij) = 0 and E(✏2ij) = �2
ij < 1 for all i, j. (b) For some finite positive constants c� and

⌘, max
i,j

E|✏ij |
l  1

2 l!c
2
�⌘

l�2 for any positive integer l � 2.

C2. The design matrix X is of size n1 ⇥ m such that n1 > m. Moreover, there exists a

positive constant ax such that kXk1 < ax and X|X is invertible. Furthermore, there exists a

finite symmetric matrix Sx with 0 < �min(Sx)  kSxk < 1 such that n�1
1 X|X ! Sx as n1 ! 1.

C3. There exist some positive constants a1 and a2 such that

max {kX�0k1 , kA0k1} 
p

log (n)a1 and max
n
kA0k1,2 , kA

|

0k1,2

o


p
n1 _ n2a2.

C4. The indicators of observed entries {!ij}
n1,n2

i,j=1 are mutually independent and !ij ⇠ Bern(✓ij)

for ✓ij 2 (0, 1), and are independent of {✏ij}
n1,n2

i,j=1 . Furthermore, for i = 1, . . . , n1 and j = 1, . . . , n2,

P(!ij = 1|xi, Yij) = P(!ij = 1|xi) =: ✓ij(xi) = ✓ij where x
|

i is the i-th row of the covariate matrix.

C5. (a) There exists a lower bound ✓L 2 (0, 1) such that min
i,j

{✓ij} � ✓L > 0, where ✓L is

allowed to depend on n1 and n2. (b) The estimators {✓̂ij} are consistent to {✓ij}, free of the tuning

parameters �0
1, �

0
2 and ↵, and are independent of {✏ij}. Moreover, there exists a positive constant

t0 such that for all t > t0, P{
P

ij(1/✓̂ij � 1/✓ij)
2 � cn1,n2

t}  g(t) + hn1,n2
, where cn1,n2

and hn1,n2

are model specific nonrandom sequences depending on n1 and n2 and are independent of t such

that lim
n1,n2!1

hn1,n2
= 0; and g(t) is a function independent of n1 and n2 such that lim

t!1
g(t) ! 0.

Condition C1(b) is the Bernstein condition which, together with C1(a), covers a variety of

distributions for ✏ij including the Gaussian distribution ✏ij ⇠ N (0,�2
ij) for positive constants �2

ij .

In Condition C2, the requirement n1 > m is easily met as the number of covariates per subject

is fixed. As the dimensions of n�1
1 X|X are fixed at m-by-m, the rest of Condition C2 are quite

standard. Condition C3 extends the conditions that kX�0k1 < 1 and kA0k1 < 1 as assumed,

for instance, by Keshavan et al. (2009), Koltchinskii et al. (2011), Sun and Zhang (2012) and Cai
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and Zhou (2016), by allowing both X�0 and A0 diverge at certain rates.

Condition C4 prescribes the independent Bernoulli model for the indicator of observing Yij ,

where the probability of observation ✓ij can depend on the covariate. This is analogous to the

notion of the missing-at-random (MAR) commonly assumed in the missing value literature (Little

and Rubin, 2014). A specific MAR model is the logistic regression model

✓ij = ✓ij (xi) =
exp {(1,x|

i )�.j}

1 + exp {(1,x|

i )�.j}
, (4.1)

where �.j 2 R
m+1 are the j-th column specific parameter vectors. Most of the existing studies in

matrix completion (Keshavan et al., 2009; Gross, 2011; Recht, 2011; Rohde and Tsybakov, 2011;

Koltchinskii et al., 2011; Sun and Zhang, 2012) focus on the so-called Uniform Sampling at Random

(USR) scheme. Let N =
P

i,j wij be the total number of observations. Conditioning on N , the USR

takes a random sample of N observed indices from the set {(i, j) : i 2 {1, . . . , n1}, j 2 {1, . . . , n2}},

independently with the uniform sampling probability N/(n1n2) with replacement. The “with re-

placement” means that a A0,ij can be observed more than once, which is not suitable for some

matrix completion problems, for instance the Netflix prize problem (Feuerverger et al., 2012) as a

viewer would not rate a movie more than once. There are studies (Srebro and Salakhutdinov, 2010;

Negahban and Wainwright, 2012; Klopp, 2014; Cai and Zhou, 2016) which adopt heterogeneous

sampling probability models without utilizing covariates, for instance heterogeneity with respect

to the rows and columns while assuming the sampling of the row and the column are independent.

Condition C4 introduces heterogeneity through covariates while including the aforementioned uni-

form and logistic regression models as special cases.

In Condition C5(a), imposing the lower bound ✓L in the probabilities of observation ensures each

entry of the matrix has a minimum positive probability of observation. However, our condition does

not impose the restriction that the number of observed entries is of the same order as n1n2, since ✓L

is allowed to go to 0 with n1 and n2 growing. For instance, one could take ✓L ⇣ rB0
n log2(n)/n1n2

to mimic scenarios with crB0
n log2(n) observed entries as discussed in Section 1. The second part of

Condition C5(b) is used to quantify the sum of squared errors in estimating 1/✓ij by the consistent
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estimator 1/✓̂ij . The convergence rate cn1,n2
and the error bound functions g(t) and hn1,n2

are given

in a general setting, whose orders of magnitude are dependent of the model for ✓ij . We establish

Condition C5(b) in Section S3 under the logistic regression model given in (4.1) via the uniform

asymptotic normality of the maximum likelihood estimators (MLE) by applying Sweeting (1980)’s

result. Condition C5(b) is also fulfilled under other sampling mechanisms including the uniform

probability of observation model (i.e. ✓ij ⌘ ✓0).

For any �� > 0, and t 2 (0, t0), cn1,n2
specified in Condition C5(b), define

∆ (��, t) = max

(p
(n1 _ n2) log (n)p

✓Ln1n2
, (n1n2)

�3/4 (cn1,n2
t)1/2 log�σ/4 (n)

)
(4.2)

and ⌘n1,n2
(g, ��, t) = 4g(t) + 4hn1,n2

+C log��σ(n) for a positive constant C. Here, g(t) and hn1,n2

are specified in C5(b), and C5(b) implies that lim
t!1

lim
n1,n2!1

{⌘n1,n2
(g, ��, t)} = 0. The following

Theorem 1 is proved in Section S5 of the supplementary material.

Theorem 1. Assume Conditions C1-C5, 0 < ↵  1, �1 = o(n�1
2 ) and �2↵ � (2 + 4m)C0∆(��, t),

for any t > t0 and positive constants �� and C0. Then, for a positive constant C 0,

d2
⇣
Â,A0

⌘
C 0max

n
min

n
�2↵ kB0k⇤ , n1n2rB0

(�2↵)
2
o
,

�2 (1� ↵) kB0k2F , n1n2∆
2(��, t), n

2
2�

2
1 kX�0k2F

o
(4.3)

with probability at least 1� ⌘n1,n2
(g, ��, t).

The diminishing ⌘n1,n2
(g, ��, t) means that d2(Â,A0) is bounded by the right hand side of (4.3)

with probability approaching 1 for n1, n2 and t large enough. We note that the order of the upper

bound for d2(Â,A0), as prescribed in (4.3), depends on the specific orders of ∆(��, t), kB0k⇤, rB0
,

kX�0kF and kB0kF and the choices of parameters �1, �2 and ↵. In the following, from (4.3), we

derive specific convergence rates for d2(Â,A0) under two models of ✓ij .

We first consider the uniform probability of observation model such that ✓ij ⌘ ✓0. Under this

model, the MLE for ✓0 is ✓̂ij ⌘ N/(n1n2). It can be shown that we can choose cn1,n2
= (1� ✓0)/✓0,

for any t0 > 0, g(t) = P{�2
1 > t} and hn1,n2

= sup
t
|P{✓0(1/✓̂ � 1/✓0)

2/(1 � ✓0) � t} � g(t)| in

13



Condition C5(b) so that C5(b) holds for any positive t. With the above choice of cn1,n2
, 0 < �� < 2

and choosing t such that

t0 < t < (n1n2)
�1/2 (n1 _ n2) log

1��σ/2 (n) , (4.4)

then sup
t
∆(��, t) ⇣ ∆1 =: ✓

�1/2
0 (n1 _ n2)

1/2(n1n2)
�1 log1/2(n).

Corollary 1. Assume Conditions C1-C5, under the uniform probability of observation model,

choose cn1,n2
= (1 � ✓0)/✓0, 0 < �� < 2 and t as in (4.4), �1 = n�1

2 log�1/2(n)∆1, 1 � ↵ ⇣

1/(n1n2), �2 ⇣ ✓
�1/2
0 (n1 ^ n2)

�1/2(n1n2)
�1/2 log1/2(n) in (3.3). Then, for a positive constant C 0,

with probability at least 1� ⌘n1,n2
(g, ��, t),

both d2
⇣
Â,A0

⌘
and d2

⇣
B̂,B0

⌘
 C 0rB0

✓�1
0 (n1 ^ n2)

�1 log (n) .

The corollary establishes that d2(Â,A0) and d2(B̂,B0) are all Op{rB0
✓�1
0 (n1 ^ n2)

�1 log(n)}.

We note that the choice of parameter �2 actually depend on the magnitude of the noise c2� =

max
i,j

{�2
ij} as shown in Lemmas S4.1-S4.3 of Section S4 of the supplementary material. This means

that d2(Â,A0) depends implicitly on the level of the noise as well. Although the corollary assumes

the uniform observation probability, its conclusions are valid for other missing models that accom-

modate the rate of cn1,n2
= (1� ✓0)/✓0. In our analysis, the effect of the sample size N enters our

results through the Binomial mean n1n2✓0 as it is of the same order of N . We note that Condition

C5(a) allows ✓0 = ✓L to depend on n1 and n2 and to diminish to zero as n1 and n2 diverge to

infinity.

We note that the rate attained by Corollary 1 coincides with that of the other matrix completion

methods, for instance Sun and Zhang (2012)’s calibrated elastic regularization estimator ÂSZ, Ne-

gahban and Wainwright (2012)’s row/column weighted regularization estimator ÂNW, Koltchinskii

et al. (2011)’s prior mask distribution estimator ÂKLT and Mazumder et al. (2010)’s matrix lasso

estimator ÂMHT, under either the USR or the row and column product weight model of Negahban

and Wainwright (2012). These methods also require the “incoherence conditions” (Candès and

Recht, 2009), and/or the spikiness measure ↵(A0) =
p
n1n2kA0k1/kA0kF of A0 to be bounded.

14



We now consider the scenario where the observation probability ✓ij follows the logistic regression

model given in (4.1). As will be shown in the next corollary, this induces a different rate for cn1,n2

and a slower convergence rates for the estimators. For any �� > 0, it is shown in Section S3 of

the supplementary material that for some constants ⌘g depending on ✓L and Cm, we can choose

cn1,n2
= ⌘�1

g n2 log(n2), t0 = m + 3, g(t) = Cmt exp{�t/2}, and hn1,n2
= n2max

j
sup
t
|P{

P
i(1/✓̂ij �

1/✓ij)
2 � t} � P(�2

m+1 � ⌘gt)| in Condition C5(b) so that C5(b) holds for any positive t > t0 for

the logistic model.

By choosing t such that

m+ 3 < t < log�σ/6 (n) , (4.5)

we have sup
t
∆(��, t) = ∆2(��) ⇣ ⌘

�1/2
g n

�3/4
1 n

�1/4
2 log1/2(n2) log

�σ/3(n). This implies that the con-

vergence rate of d2(Â,A0) given in (4.3) is ⌘�1
g n

�1/2
1 n

1/2
2 log(n2) log

2�σ/3(n), as summarized in the

following corollary.

Corollary 2. Assume Conditions C1-C5, n1n2✓L > (n1_n2) log(n) and the logistic model. Choose

cn1,n2
= ⌘�1

g n2 log(n2), t as (4.5), �1 = n�1
2 log�1/2(n)∆2(��) for any �� > 0, 1�↵ ⇣ 1/(n1n2), �2 ⇣

⌘
�1/2
g n

�3/4
1 n

�1/4
2 log1/2(n2) log

�σ/3(n) in (3.3). Then, for a positive constant C 0, with probability at

least 1� ⌘n1,n2
(g, ��, t),

both d2
⇣
Â,A0

⌘
and d2

⇣
B̂,B0

⌘
 C 0rB0

⌘�1
g n

�1/2
1 n

1/2
2 log (n2) log

2�σ/3 (n) .

Corollary 2 implies that d2(Â,A0) and d2(B̂,B0) are bothOp{rB0
⌘�1
g n

�1/2
1 n

1/2
2 log(n2) log

2�σ/3(n)}.

The assumption that n1n2✓L > (n1 _n2) log(n) is usually considered in existing matrix completion

works. Using the proof of Corollary 2, it can be shown that the convergence rates for d2(Â,A0)

and d2(B̂,B0) can be simplified to rB0
log�2�σ/3(n2) if n1 ⇣ ⌘2gn2 log

2+2�σ(n2). In our results,

we only specify the order of �2 although the choice of �2 depends on the magnitude of the noise

c2� = max
i,j

{�2
ij}, as shown in Lemmas S4.1-S4.3 of Section S4 of the supplementary material.

Compared with the case of the uniform probability of observation considered in Corollary

1, the convergence rate of rB0
⌘�1
g n

�1/2
1 n

1/2
2 log(n2) log

2�σ/3(n) is much slower than rB0
✓�1
L (n1 ^
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n2)
�1 log(n). This is because of a much larger cn1,n2

due to the heterogeneity in the probability of

observation as prescribed by the logistic model. This heterogeneity results in a larger amount of

errors being accumulated in the estimation of {✓ij}, that slows down the convergence.

The coefficient matrix �0 helps to interpret the role of covariates in completing the target matrix

through the parametric component X�0. The following theorem provides the convergence rate of

�̂j under a general setting.

Theorem 2. Let �̂j and �0j be the j-th column of �̂ and �0 respectively. Assume Conditions

C1, C2, C4 and C5(a), and the estimators ✓̂ij of ✓ij satisfy that for |✓̂ij � ✓ij | = Op(n
�1/2
1 ). If

k�0kF > 0, k�0k1 < 1 and �1 = o(n�1
2 ), we have k�̂j��0jkF = Op(n

�1/2
1 ) for each j = 1, . . . , n2.

While the convergence of �̂j is of the standard rate, the theorem does not require any speci-

fication of cn1,n2
and any restriction on the regularization parameters �2 and ↵ as in Theorem 1

and its two corollaries. Furthermore, Condition C5(b) is replaced by a mild convergence rate of

the estimators {✓̂ij} which is more easily met. These are all due to the closed-form expression of �̂

given in (3.6). However, despite the
p
n1-convergence rate of each �̂j , we are unable to translate

this rate for �̂. This is because the convergence rates for the whole matrix as stated in Theorem 1

as well as Corollaries 1 and 2 are slower than the
p
n1-rate.

5 Benefits of Covariate Information

In this section, we outline some theoretical benefits of considering covariate information. More

specifically, we compare the upper bounds of the mean squared errors of A0 achieved by our

estimator and the one from Koltchinskii et al. (2011) under uniform missingness.

If m ⌧ min(n1, n2) and B0 is of low rank, our target matrix A0 = X�0 + B0 is also a low-

rank matrix. Without using the covariate X, one can recover A0 by existing matrix completion

techniques. A natural question is whether the utilization of the covariates improves the estima-

tion. This question is addressed theoretically in this section by comparing non-asymptotic upper
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bounds of mean squared errors. In addition, empirical evidences are shown in Sections 6 and 7 to

demonstrate the benefits of using covariates.

To provide a simple and transparent comparison with existing results, we restrict our study to

the uniform missingness while the target matrix follows A0 = X�0 +B0.

Write N =
P

i,j !ij . Under the uniform missing mechanism, one can use N/n1n2 to estimate

the common observation probability ✓ij ⌘ ✓0 where ✓0 > 0 is allowed to depend on n1 and n2

in our analysis; see Condition C5(a) in Section 4 for details. For clarity, we write the estimator

(�̂UNI, B̂UNI) of the proposed methodology as

�̂UNI = argmin
β2Rm⇥n2

⇢
1

n1n2

���X� � PX

⇣n1n2

N
W � Y

⌘���
2

F
+ �1 k�k2F

�
and (5.1)

B̂
UNI = argmin

B2Rn1⇥n2

⇢
1

n1n2

���B � P
?
X

⇣n1n2

N
W � Y

⌘���
2

F
+ �2 kBk

⇤

�
, (5.2)

when ↵ in (3.5) is set to 1. By writing ÂUNI = X�̂UNI+B̂UNI, the mean squared error d2(ÂUNI,A0)

can be decomposed as d2(X�̂UNI,X�0) + d2(B̂UNI,B0). If the covariates are not utilized, (5.2)

(without the projection P?
X
) alone leads to the estimator ÂKLT of Koltchinskii et al. (2011):

Â
KLT = argmin

A2Rn1⇥n2

⇢
1

n1n2

���A� n1n2

N
W � Y

���
2

F
+ �KLT kAk

⇤

�
.

In the following, we compare ÂUNI and ÂKLT to reveal a benefit of the covariate.

It is shown in Theorem 3 of Koltchinskii et al. (2011) that if �KLT � 2kMk, then

d2
⇣
Â

KLT,A0

⌘
 �KLTmin

8
<
:2 kA0k⇤ ,

 
1 +

p
2

2

!2

�KLTn1n2rA0

9
=
; =: UKLT, (5.3)

say, where M = W � Y /N � A0/(n1n2). Similarly, for the proposed estimator, it can be shown

that if �2 � 2kMk,

d2
⇣
B̂

UNI,B0

⌘
 �2min

8
<
:2 kB0k⇤ ,

 
1 +

p
2

2

!2

�2n1n2rB0

9
=
; =: UUNI. (5.4)

Due to Lemmas S4.1-S4.3 of the supplementary material, there exist positive constants C and ��

such that kMk  C✓
�1/2
0 (n1 ^ n2)

�1/2(n1n2)
�1/2 log1/2(n) with probability at least 1 � 2/n �
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4 log��σ(n). We note that Koltchinskii et al. (2011) obtain the same rate for kMk in a similar fash-

ion. Due to this theoretical guarantee, we pick �2 = �KLT = C✓
�1/2
0 (n1^n2)

�1/2(n1n2)
�1/2 log1/2(n).

The benefit of the covariate lies in the fast convergence of X�̂UNI. As shown in Section S2.1 of

the supplementary material, if �1 = o{n�1
1 n

�3/2
2 log�1(n)}, then d2(X�̂UNI,X�0) = Op(n

�1
1 ) which

is dominated by the bound UUNI of d
2(B̂UNI,B0) in (5.4). As d2(ÂUNI,A0) = d2(X�̂UNI,X�0) +

d2(B̂UNI,B0), we only have to compare the bounds UKLT and UUNI in (5.3) and (5.4) when n1 is

large enough. Since these two bounds are of the same order, we have to analyze the corresponding

constant factors. Since rB0
 rA0

and kB0k⇤  kA0k⇤ (Proposition S2.1 of the supplementary

material), we can conclude that UUNI  UKLT. In addition, if �0 6= 0m⇥n2 and the rank of A0 is

small, i.e., of order o{✓
1/2
0 (n1^n2)

1/2}, we have UUNI < UKLT, which implies a strictly better upper

bound for d2(ÂUNI,A0) than d2(ÂKLT,A0). This illustrates the benefit of utilizing the covariates.

The details are summarized in the following theorem whose proof is given in Section S2.1 of the

supplementary material.

Theorem 3. Assume Conditions C1-C3, and take �2 = �KLT = C✓
�1/2
0 (n1^n2)

�1/2(n1n2)
�1/2 log1/2(n)

in both (5.3) and (5.4). Then UUNI  UKLT. Furthermore, UUNI < UKLT if �0 6= 0m⇥n2 and

either one of the two following conditions holds: (i). (low-rank condition) rA0
= rB0

+ m =

o{✓
1/2
0 (n1 ^ n2)

1/2}, or (ii). (row space condition) R(�0) * R(B0).

In the following, we provide a lower bound for d2(ÂUNI,A0). To this end, define two matrix

classes

� (a1) =
�
� 2 R

m⇥n2 : kX�k
1

 a1
 
, B (r, a1) =

�
B 2 R

n1⇥n2 : rB  r, kBk
1

 a1
 
.

Theorem 4. Fix a1 > 0, for rB0
such that 1  rB0

 min(n1, n2) � m, (n1 _ n2)rB0
 n1n2✓0.

Assume that !ij ⇠ Bern(✓0) for ✓0 2 (0, 1). Let {✏ij} be IID Gaussian N (0,�2) with �2 > 0. Then,

there exist absolute constants ↵ 2 (0, 1), c > 0 and 0  l  rB0
such that

inf
β̂UNI,B̂UNI

sup
β02�(a1),B02B(rB0

,a1)
P

✓
d2(ÂUNI,A0) > c(� ^ a1)

2 (n1 _ n2) (rB0
+ l)

n1n2✓0

◆
� ↵.
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Theorem 4 establishes c(�^a1)
2(n1_n2)(rB0

+ l)/(n1n2✓0) as a lower bound for d2(ÂUNI,A0).

This lower bound is of the same order as the one for d2(ÂKLT,A0) provided in Theorem 6 of

Koltchinskii et al. (2011). Comparing Theorem 4 with Corollary 1 we see that, under the i.i.d

Gaussian noise ✏ij , the rate of convergence of estimator ÂUNI is optimal in a minimax sense on the

class of matrices that �0 2 �(a1) and B0 2 B(rB0
, a1) up to a logarithmic factor log(n).

As for the non-uniform missingness, we can derive similar upper bound for d2(B̂,B0) and lower

bound for d2(Â,A0) under the knowledge of the true missing probabilities Θ. In this case, the

non-asymptotic upper bound for d2(B̂,B0) enjoys different constant factors due to the condition

�2 � 2kW �Θ⇤ �Y �A0k, while the lower bound is different by replacing ✓0 by ✓L. The details can

be found in Section S2.3 of the supplementary material. If we plug in the general estimator Θ̂ of Θ

in the upper bound, it is complicated to trace the constant factors. Instead, we have investigated

the corresponding rates of convergence in the asymptotic regime of n1, n2 in Section 4.

6 Simulation study

This section reports results from simulation experiments which were designed to evaluate the nu-

merical performance of the proposed estimator Â = X�̂ + B̂ where �̂ is given by (3.4) and B̂ is

given by (3.5). We also carried out comparative evaluation with four existing matrix completion

method.

In the simulation, the target matrix A0 = X�0 +B0 was randomly generated once and kept

as fixed for each setting of (n1, n2,m, r). We generate X 2 R
n1⇥m, �0 2 R

m⇥n2 , U0 2 R
n1⇥r and

V0 2 R
n2⇥r as random matrices with independent standard Gaussian entries independently and

obtain B0 = P?
X
U0V

|

0 . This ensures B0 2 N (X). Although we do not explicitly enforce that A0,

X and �0 are of full rank, this happens with probability 1. The contaminated version ofA0 was then

generated as Y = A0 + ✏, where ✏ 2 R
n1⇥n2 has i.i.d. mean zero Gaussian entries ✏ij ⇠ N (0,�2

✏ ).

The �2
✏ is chosen such that the signal-to-noise ratio (SNR) is 1, namely SNR =

p
Signal(A0)/�2

✏ = 1,

where Signal(A0) =
Pn1

i=1

Pn2

j=1(A0ij � Ā0)
2/(n1n2 � 1) and Ā0 =

Pn1

i=1

Pn2

j=1A0ij/(n1n2).
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The simulation was conducted under two sampling mechanisms: MAR: missing-at-random and

UNI: uniform observation. For MAR, we adopted the logistic model (4.1) with �.j = (�1j , �2j , �3j , �4j ,

0, . . . , 0)|1⇥(m+1). The entries �1j , �2j , �3j and �4j were drawn independently according to �1j ⇠

N (�1.5, 0.12) and �kj ⇠ N (0.3, 0.12) for k = 2, 3, 4. Once generated, they were kept fixed through-

out all MAR settings. For UNI, we set ✓ij = 0.2, which is close to the average ✓ij under MAR, for

all i, j. Throughout the study, we set m = 20 and r = 10, and chose n1 = n2 with four sizes: 400,

600, 800 and 1000, and the number of simulation for each (n1, n2) combination was 500.

The binary likelihood is used to estimate {✓ij} via estimating �j̇ first under the MAR. See

Section S3 of the supplementary material for more details on the MLEs.

Under the MAR, we implemented four versions of the proposed matrix completion approach: (i)

the full SVT (full SVD followed by the singular value soft-thresholding and scaling procedures) with

the tuning parameter ↵ chosen by the 5-fold cross-validation (SVT-↵̂-LOG); (ii) the approximate

SVT ([SVT) as described in Section 3.2 with the tuning parameter ↵ chosen by the 5-fold cross-

validation (dSVT-↵̂-LOG); (iii) the full SVT with ↵ = 1 (SVT-1-LOG); (iv) the approximate SVT with

↵ = 1 (dSVT-1-LOG). We also experimented these four variates of the proposed matrix completion

estimators under the UNI and denote them as SVT-↵̂-UNI, dSVT-↵̂-UNI, SVT-1-UNI and dSVT-1-UNI.

For the purpose of benchmarking, we compared with four existing matrix completion techniques:

the methods proposed in Sun and Zhang (2012) (SZ), Negahban and Wainwright (2012) (NW),

Koltchinskii et al. (2011) (KLT) and Mazumder et al. (2010) (MHT). Note that these methods

were not designed to incorporate the covariate information X, and therefore they only provided

an estimate for A0. For SZ, the tuning parameter ↵ was given by a formula in Sun and Zhang

(2012) and � were chosen by the 5-fold cross-validation. For the other three methods as well as the

proposed method, the 5-fold cross-validation was used to select the tuning parameters.

To quantify the performance of the matrix completion, we used two empirical measures

Test Error =

���W ? �
⇣
Â�A0

⌘���
2

F

kW ? �A0k2F
and RMSE (A0) =

���Â�A0

���
Fp

n1n2
,

where W ? is the matrix of missing indicator with the (i, j)-th entry being (1�!ij). The test error
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measures the relative estimation error of the unobserved entries to their signal strength. Moreover,

the RMSE measure can be similarly defined for the proposed estimators of �0 and B0.

Tables 1 and 2 summarize the simulation results, with Table 1 for the MAR and Table 2 for

the UNI probability of observation. The most visible aspect of the simulation results was that the

four versions of the proposed methods had superior performance than the four existing methods by

having smaller RMSEs and Test Errors. The proposed estimators with ↵ = 1, namely SVT-1-LOG

and dSVT-1-LOG, had more accurate rank estimates than the four existing methods in all cases. The

two estimators SVT-↵̂-LOG and dSVT-↵̂-LOG over-estimated the rank (the true rank was 30) when

the sample sizes were relatively small under the logistic model, which may be viewed as a price

paid for having better RMSEs and Test Errors than their counterparts with ↵ = 1. We note that

↵ = 1 meant that the penalty on the low-rank matrix B was entirely based on the nuclear norm.

By inspecting the empirical values of ↵̂ from the simulations for the logistic model, we found ↵̂

appeared to converge to 1 as the sample sizes got larger. This explained why the aforementioned

over-estimation in the ranks by SVT-↵̂-LOG and dSVT-↵̂-LOG were reduced for the sample sizes of

800 and 1000. Another feature exhibited from the tables was that as the size of the matrix n1 and

n2 increased, both the RMSEs and Test Errors of the proposed methods got smaller. This was also

the case for the four existing methods under the logistic model in Table 1. The latter was likely

due to the reduction of the variance owing to having more “data” despite employing a misspecified

model. In contrast, the reason for the proposed methods’ having smaller RMSEs and Test Errors

was due to their ability to reduce both the bias and the variance in the completed matrices as the

methods are consistent as shown in the theoretical analyses in Section 4.

Comparing the results in Table 1 with those in Table 2, it was clear that the presence of the

heterogeneity in the observation probability made the matrix completion more difficult as reflected

by Table 1 having larger RMSEs and Test Errors. This comparison was fair as the overall observed

rate under the logistic model was close to 0.2, the rate under the UNI. As the true rank in all

settings was 30, It appeared that the estimated ranks were the most affected by the heterogeneity.
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However, despite the heterogeneity, the proposed methods tended to produce more accurate (and

smaller) ranks than the four existing methods.

The simulation results reported in Tables 1 and 2 consistently showed that the full SVT and the

approximate SVT gave very close results, which confirmed that the approximate SVT can achieve

computational reduction without sacrificing much accuracy. Under the MAR setting (Table 1),

the proposed methods with the tuning parameter ↵ chosen by the 5-fold cross validation produced

completed matrices with larger ranks but smaller RMSEs than their counterparts with ↵ = 1,

which confirmed an early remark made in Section 3 regarding the role of ↵ in balancing between

the nuclear and the Frobenius norms in the regularization of the low rank matrix B. With the

dimensions n1 and n2 growing, the chosen ↵ approached 1 which led to more compatible rank

estimates and the RMSEs between the two approaches of choosing ↵.

Furthermore, we conducted an additional simulation study where the covariates are not useful

(i.e. A0 = B0). Table S1 in the supplementary material summarizes the corresponding simulation

results under uniform probability of observation. The simulation results indicated that the two

versions of the proposed methods had slightly inferior performance than the four existing methods

by having larger RMSEs and test errors. This is expected since the existing methods assume no

covariates, which matches with the underlying model. Although �0 = 0 is allowed in the model of

the proposed methods, the proposed methods lose efficiency by considering a more general model.

7 Empirical study

We demonstrate the proposed methodology by analyzing the MovieLens 100K data set as described

in Harper and Konstan (2016). This data set includes 100,000 movie ratings, ranging from 1 to 5,

appraised by 943 viewers on 1682 movies, where each viewer had rated at least 20 movies. The data

came with additional information on both viewers and movies. In this analysis, we adopted age

and gender as the covariates for our proposed method. For evaluation purpose, the data provider

split the 100,000 ratings into a training set with 90,570 ratings and a test set with 9,430 ratings,
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Table 1: Empirical root mean square errors (RMSEs), test errors, estimated ranks and their stan-

dard errors (in parentheses) under model A0 = X�0+B0 and the logistic missing-at-random model

(MAR), with (n1, n2)=(400,400), (600,600), (800,800), (1000,1000), m = 20, and r = 10, for four

versions of the proposed methods, and the four existing methods (SZ, NW, KLT and MHT).

n1 = n2 = 400 RMSE(�0) RMSE(B0) RMSE(A0) Test error Rank

SVT-↵̂-LOG 0.6938 (0.0059) 3.1099 (0.0504) 4.4007 (0.0469) 0.6658 (0.0054) 117.27 (26.55)

SVT-1-LOG 0.6964 (0.0059) 3.1778 (0.1419) 4.4581 (0.1100) 0.6759 (0.0059) 24.55 (3.35)
dSVT-↵̂-LOG 0.6939 (0.0059) 3.1063 (0.0503) 4.3985 (0.0469) 0.6658 (0.0054) 111.96 (21.88)
dSVT-1-LOG 0.6964 (0.0059) 3.1778 (0.1419) 4.4581 (0.1100) 0.6759 (0.0059) 24.55 (3.35)

SZ 4.8593 (0.0232) 0.8627 (0.0054) 49.76 (3.04)

NW 4.8340 (0.0221) 0.8565 (0.0056) 102.46 (5.34)

KLT 4.9789 (0.0214) 0.8869 (0.0055) 34.55 (2.12)

MHT 4.8507 (0.0234) 0.8595 (0.0056) 50.05 (2.72)

n1 = n2 = 600 RMSE(�0) RMSE(B0) RMSE(A0) Test error Rank

SVT-↵̂-LOG 0.6227 (0.0043) 3.1239 (0.0416) 4.1704 (0.0379) 0.5749 (0.0039) 124.97 (17.11)

SVT-1-LOG 0.6237 (0.0041) 3.2491 (0.1484) 4.2686 (0.1203) 0.5834 (0.0055) 50.15 (3.93)
dSVT-↵̂-LOG 0.6230 (0.0043) 3.1162 (0.0412) 4.1653 (0.0375) 0.5752 (0.0040) 113.57 (12.63)
dSVT-1-LOG 0.6237 (0.0041) 3.2476 (0.1475) 4.2675 (0.1195) 0.5835 (0.0055) 49.67 (4.03)

SZ 4.5510 (0.0195) 0.7438 (0.0050) 80.71 (3.77)

NW 4.4681 (0.0182) 0.7186 (0.0051) 170.32 (6.03)

KLT 4.7097 (0.0143) 0.7821 (0.0041) 60.00 (1.59)

MHT 4.5201 (0.0191) 0.7341 (0.0051) 83.26 (3.29)

n1 = n2 = 800 RMSE(�0) RMSE(B0) RMSE(A0) Test error Rank

SVT-↵̂-LOG 0.5661 (0.0033) 3.0785 (0.0343) 3.9787 (0.0300) 0.5146 (0.0037) 101.03 (10.43)

SVT-1-LOG 0.5664 (0.0032) 3.1118 (0.0673) 4.0055 (0.0555) 0.5148 (0.0044) 69.41 (2.06)
dSVT-↵̂-LOG 0.5663 (0.0032) 3.0716 (0.0334) 3.9739 (0.0295) 0.5154 (0.0037) 93.00 (8.11)
dSVT-1-LOG 0.5665 (0.0031) 3.1094 (0.0669) 4.0037 (0.0552) 0.5154 (0.0044) 66.94 (2.15)

SZ 4.3308 (0.0128) 0.6636 (0.0035) 103.45 (3.36)

NW 4.2144 (0.0142) 0.6284 (0.0039) 222.56 (7.28)

KLT 4.5276 (0.0111) 0.7132 (0.0031) 78.13 (1.55)

MHT 4.2855 (0.0147) 0.6498 (0.0038) 108.63 (4.71)

n1 = n2 = 1000 RMSE(�0) RMSE(B0) RMSE(A0) Test error Rank

SVT-↵̂-LOG 0.5109 (0.0027) 2.9337 (0.0461) 3.7107 (0.0388) 0.4601 (0.0037) 87.47 (2.03)

SVT-1-LOG 0.5109 (0.0027) 2.9336 (0.0459) 3.7106 (0.0387) 0.4601 (0.0037) 87.36 (1.88)
dSVT-↵̂-LOG 0.5112 (0.0026) 2.9272 (0.0458) 3.7062 (0.0385) 0.4613 (0.0037) 80.20 (1.65)
dSVT-1-LOG 0.5111 (0.0026) 2.9281 (0.0460) 3.7068 (0.0387) 0.4611 (0.0037) 81.14 (2.30)

SZ 4.0069 (0.0151) 0.5897 (0.0036) 122.87 (7.36)

NW 3.8522 (0.0119) 0.5439 (0.0031) 270.96 (9.54)

KLT 4.2491 (0.0092) 0.6500 (0.0026) 91.56 (1.40)

MHT 3.9447 (0.0122) 0.5716 (0.0032) 136.57 (5.27)
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Table 2: Empirical root mean square errors (RMSEs), test errors, estimated ranks and their stan-

dard errors (in parentheses) under model A0 = X�0+B0 and the uniform observation mechanism

(UNI), with (n1, n2)=(400,400), (600,600), (800,800), (1000,1000) m = 20, and r = 10, for four

versions of the proposed methods, and the four existing methods (SZ, NW, KLT and MHT).

n1 = n2 = 400 RMSE(�0) RMSE(B0) RMSE(A0) Test error Rank

SVT-↵̂-UNI 0.6343 (0.0050) 2.8815 (0.0181) 4.0473 (0.0200) 0.5898 (0.0053) 42.86 (3.47)

SVT-1-UNI 0.6344 (0.0051) 2.8804 (0.0177) 4.0466 (0.0201) 0.5896 (0.0053) 42.22 (2.13)
dSVT-↵̂-UNI 0.6343 (0.0050) 2.8816 (0.0181) 4.0474 (0.0200) 0.5898 (0.0054) 42.78 (3.45)
dSVT-1-UNI 0.6344 (0.0051) 2.8805 (0.0177) 4.0467 (0.0202) 0.5896 (0.0053) 42.18 (2.13)

SZ 4.8318 (0.0251) 0.8528 (0.0060) 52.54 (3.12)

NW 4.8293 (0.0259) 0.8493 (0.0064) 97.47 (5.29)

KLT 4.8994 (0.0217) 0.8721 (0.0052) 45.42 (2.38)

MHT 4.8238 (0.0252) 0.8492 (0.0062) 51.27 (2.75)

n1 = n2 = 600 RMSE(�0) RMSE(B0) RMSE(A0) Test error Rank

SVT-↵̂-UNI 0.5711 (0.0037) 2.7570 (0.0136) 3.7423 (0.0145) 0.4893 (0.0035) 58.17 (1.75)

SVT-1-UNI 0.5711 (0.0037) 2.7571 (0.0136) 3.7424 (0.0145) 0.4893 (0.0035) 58.12 (1.75)
dSVT-↵̂-UNI 0.5711 (0.0037) 2.7566 (0.0138) 3.7420 (0.0146) 0.4892 (0.0035) 57.04 (1.64)
dSVT-1-UNI 0.5711 (0.0037) 2.7568 (0.0137) 3.7421 (0.0146) 0.4892 (0.0035) 57.51 (1.72)

SZ 4.5228 (0.0176) 0.7322 (0.0047) 84.41 (3.07)

NW 4.4838 (0.0201) 0.7181 (0.0052) 160.25 (6.91)

KLT 4.6427 (0.0147) 0.7700 (0.0040) 74.71 (1.89)

MHT 4.4895 (0.0175) 0.7212 (0.0048) 84.30 (2.67)

n1 = n2 = 800 RMSE(�0) RMSE(B0) RMSE(A0) Test error Rank

SVT-↵̂-UNI 0.5155 (0.0028) 2.6277 (0.0117) 3.4884 (0.0119) 0.4188 (0.0027) 71.39 (1.53)

SVT-1-UNI 0.5155 (0.0028) 2.6278 (0.0117) 3.4884 (0.0119) 0.4188 (0.0027) 71.34 (1.51)
dSVT-↵̂-UNI 0.5155 (0.0028) 2.6240 (0.0120) 3.4856 (0.0120) 0.4180 (0.0027) 68.25 (1.35)
dSVT-1-UNI 0.5155 (0.0028) 2.6247 (0.0119) 3.4861 (0.0120) 0.4181 (0.0027) 69.01 (1.62)

SZ 4.2348 (0.0128) 0.6329 (0.0036) 109.41 (2.41)

NW 4.1667 (0.0135) 0.6115 (0.0038) 214.47 (4.28)

KLT 4.4071 (0.0117) 0.6872 (0.0032) 98.45 (1.67)

MHT 4.1837 (0.0138) 0.6171 (0.0038) 111.15 (3.85)

n1 = n2 = 1000 RMSE(�0) RMSE(B0) RMSE(A0) Test error Rank

SVT-↵̂-UNI 0.4646 (0.0022) 2.4614 (0.0106) 3.2128 (0.0097) 0.3683 (0.0021) 82.59 (1.49)

SVT-1-UNI 0.4646 (0.0022) 2.4614 (0.0106) 3.2128 (0.0097) 0.3683 (0.0021) 82.59 (1.47)
dSVT-↵̂-UNI 0.4646 (0.0022) 2.4517 (0.0110) 3.2054 (0.0099) 0.3664 (0.0022) 77.11 (1.28)
dSVT-1-UNI 0.4646 (0.0022) 2.4528 (0.0109) 3.2063 (0.0099) 0.3666 (0.0022) 77.94 (1.78)

SZ 3.8886 (0.0105) 0.5524 (0.0029) 129.51 (2.50)

NW 3.8064 (0.0109) 0.5278 (0.0029) 257.67 (5.05)

KLT 4.1026 (0.0099) 0.6189 (0.0027) 117.78 (1.63)

MHT 3.8277 (0.0111) 0.5342 (0.0030) 132.35 (3.62)
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such that there were exactly 10 ratings per viewer in the test set. Two versions of such splitting are

provided, which are referred to as Split1=(Training Set1, Test Set1) and Split2=(Training Set2, Test

Set2), respectively. Further, we know that Test Set1 and Test Set2 are disjoint. In our experiment,

we applied those methods as described in Section 6 to the training sets and evaluated the test

errors based on the corresponding test sets. As common pre-processing steps, we removed the

movies with no ratings in training sets, and applied the bi-scaling procedure (Mazumder et al.,

2010) which standardizes a matrix to have row and column means zero and variances one, before

applying any matrix completion methods.

To construct the covariate matrix X, gender was encoded as “0” for male and “1” for female.

Age was given as a numerical variable and used directly. Thus the covariate matrix X (viewers’

demographic) was of dimension 943⇥2. As a standard procedure, every column ofX was normalized

to avoid any scaling issues in the penalties.

Next, we focus on the probabilities of observation {✓ij}. Our preliminary analysis suggested

a non-monotone trend of observed rates with respect to age. To see this, we divide age into 7

categories: under 18, 18�24, 25�34, 35�44, 45�49, 50�55 and 56+, which are denoted by A1, A2,

. . . , A7, respectively. These age categories were suggested by the document accompanying with the

data set (http://files.grouplens.org/datasets/movielens/ml-1m-README.txt). The non-

monotonicity is demonstrated in Figure 1(a), which showed that the rate of observation peaked

at the age group of 18 � 24, continued to decline till the 45 � 49 age group and then had a slight

increase afterward. This indicated a strong age effect on the probability of observation. To gauge

the gender effect, we split each age group into two sub-groups of male and female. This gave rise

to 14 age and gender combinations which are denoted by MA1, FA1, . . . ,FA7. As shown in Figure

1(b), the sample observed rates varied across different viewer groups as determined by age and

gender. Of interest was that female had higher rates of observation than their male counterparts

for all age groups, which suggested the existence of the gender effect.

To reduce the number of parameters in the probability of observation, we explored the possibility
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of merging some age-gender categories. However, it was computationally expensive to examine

all possible merging combinations. In our analysis, a simple data-driven screening method was

conducted. We took the uniform probability of observation model as the benchmark model, denoted

as Benchmark, and considered 14 models for the observational probability that had exactly one of

the 14 age-gender categories separated out to have its own individual rate of observation, once at a

time, while the rest of the 13 categories was estimated by a common rate of observation. Then we

applied our matrix completion procedure SVT-↵̂-LOG and recorded the empirical validation error.

For all the 14 models and the benchmark model, by applying similar procedure, we obtained the

corresponding validation errors QMA1, . . . , QFA7, QBenchmark shown in Table 3. If the validation error

of a model was smaller than QBenchmark, the corresponding group was marked as required individual

modeling and should be separated out from the rest.

For Split1, seven groups (FA1, MA3, FA3, FA4, FA5, FA6, and FA7) were classified as that

individual modeling was needed. For these seven groups, the corresponding sample proportions of

observation were used as the estimates for their respective observation probabilities. The remaining

seven groups were assumed to share a same observation probability, which was estimated by the

pooled sample proportions of observation. Denote this final model for Split1 by Final1. As shown in

Table 3, we note that the corresponding validation error QFinal1 = 4.4297 was the smallest among

all the evaluated models for Split1. This provided some validity of this final choice. For Split2,

we identified seven groups (FA1, MA2, MA3, FA3, FA5, FA6 and MA7) and the corresponding final

model Final2 also attained the smallest validation error QFinal2 = 4.4230 among all the evaluated

models. Since the proposed methods require only one SVD for each sampling probability model, we

can perform this additional exploration of the sampling mechanism while keeping the computational

costs significantly lower than most of the competitors.

Table 4 reports the root mean square prediction errors (RMSPEs) and estimated ranks of differ-

ent estimators for both Split1 and Split2, where RMSPE = kW test �(Â�Y )kF /
qPn1

i=1

Pn2

j=1 !
test
ij ,

where W test is the indicator matrix of test set with the (i, j)-th entry being !test
ij . Since Test Set1
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Figure 1: Empirical observation rates of the MovieLens 100K data. Panel (a): with respect to the

seven age groups; Panel (b): with respect to the 14 combination groups of age and gender.

Table 3: Empirical validation errors Q under the 14 models,the Benchmark and the final selected

models (Final), where ⇤ and † denotes the age-gender combination that requires individual modeling

for Split1 and Split2 respectively.

Model MA1 FA1 MA2 FA2 MA3 FA3 MA4 FA4

Split1 4.4342 4.4310⇤ 4.4319 4.4346 4.4317⇤ 4.4307⇤ 4.4322 4.4317⇤

Split2 4.4279 4.4235† 4.4239† 4.4269 4.4240† 4.4237† 4.4247 4.4240

Model MA5 FA5 MA6 FA6 MA7 FA7 Benchmark Final

Split1 4.4338 4.4317⇤ 4.4335 4.4313⇤ 4.4318 4.4317⇤ 4.4317 4.4297

Split2 4.4263 4.4239† 4.4260 4.4236† 4.4239† 4.4240 4.4240 4.4230

and Test Set2, the corresponding test sets of Split1 and Split2, were disjoint and of the same size,

it is fair to calculate the overall RMSPEs for evaluation of different methods. Similarly as the

simulation results reported in the previous section, SVT-↵̂-LOG and dSVT-↵̂-LOG produced highly

comparable results, which indicated the applicability of dSVT-↵̂-LOG to larger data sets whenever

computational resources are scarce. In both Split1 and Split2, the proposed methods outperformed

NW, KLT and MHT in terms of smaller RMSPEs and either smaller or more reasonable rank esti-

mation. Although the proposed methods were slightly inferior to SZ in Split1, they outperformed

SZ significantly in Split2 by having smaller RMSPEs. Among the six matrix completion methods
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considered, the two proposed methods and the KLT method offered the most consistent results be-

tween Split1 and Split2, while the other three methods exhibited much larger variations, especially

in the estimated ranks. That KLT method gave rank 1 estimates was likely due to its ignoring the

heterogeneity in the probability of observation, which amplified the difference between the largest

and the rest of the eigenvalues. As a result, (n1n2/N)�1u1v
|

1 explained most of the target matrix

A0, leading to the rank-1 estimates in Table 4. Overall speaking, the two proposed methods were

among the top two performers of the analysis reported in Table 4.

As suggested by an anonymous referee, we experimented treating the age as categorical variables

with the number of categories ranging from three to seven. Corresponding details are given in

Section S8 of the supplementary material. As reported, the prediction errors of using the four and

five age categories were the best among the five categories. However, they were still inferior to the

method of treating the age as a continues variable as shown in Table S2 of Section S8. This was

likely due to an increase in the rank of X as a result of the age categorization. Nevertheless, we

note that using the categorical age with four or five groups produced better results than the typical

matrix completion without utilizing covariate information.

Table 4: Root mean square prediction errors (RMSPEs) and ranks of the completed matrix based

on Split1 and Split2 for the two versions of the proposed method (SVT-↵̂-LOG) and (dSVT-↵̂-LOG)
and the four existing methods proposed respectively in Sun and Zhang (2012)(SZ), Negahban and

Wainwright (2012)(NW), Koltchinskii et al. (2011)(KLT) and Mazumder et al. (2010)(MHT).

Split1 Split2 Overall

RMSPE Rank RMSPE Rank RMSPE

SVT-↵̂-LOG 0.9415 47 0.9541 46 0.9478
dSVT-↵̂-LOG 0.9418 45 0.9542 43 0.9480

SZ 0.9412 39 0.9563 31 0.9488

NW 0.9421 269 0.9589 289 0.9506

KLT 0.9584 1 0.9688 1 0.9636

MHT 0.9414 56 0.9568 46 0.9491
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8 Concluding remarks

This paper investigates the problem of matrix completion with covariate information. We have

shown that utilizing such information can lead to more accurate completed matrix and more in-

terpretable results. When the matrix entries are heterogeneously observed due to selection bias of

covariates, this heterogeneity should be taken into account. Our real data analysis on the Movie-

Lens 100K data revealed the existence of the heterogeneity by the age and the gender of the movie

viewers. The heterogeneity, without proper treatment, can render the consistency of the existing

matrix completion methods. Under a column-space-decomposition model, we propose a matrix

completion procedure that adjusts for the heterogeneity in the observation mechanism by taking

into account the covariate effect. The proposed matrix completion estimator can be coupled with

the fast randomized singular value thresholding (FRSVT) procedure to achieve improved compu-

tational efficiency for high dimensional matrices. A general convergence of the matrix completion

procedure is provided (Theorem 1), and specific convergence rates under two popular models for

the probability of observation are also given. The column-space-decomposition model provides an

interpretive coefficient matrix that can quantify the effect of the covariates. Empirical studies show

the attractive performance of the proposed methods as compared with existing matrix completion

methods in terms of the root mean square prediction errors and the ranks of completed matrices.
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S1 Proof of Propositions

Proof of Proposition 1. We have

E kX� +B �W �Θ⇤ � Y k2F

= kX� +Bk2F � 2 hX� +B,E (W �Θ⇤ � Y )i+ E kW �Θ⇤ � Y k2F

= k(X� +B)� (X�0 +B0)k2F � kX�0 +B0k2F +
X

ij

⇣
(X�0)ij +B0ij

⌘2
+ �2

ij

✓ij
,

due to Conditions C1(a) and C4. For any minimizer (�s,Bs) of R, we have X�0+B0 = X�s+Bs,

which implies X(�0��s) = Bs�B0. Since Bs�B0 2 N (X), we can conclude both X�s = X�0
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and Bs = B0. As matrix X|X is invertible, we know that �s = �0. This also implies that (�0,B0)

is the unique minimizer.

Proof of Proposition 2. By operator inequality and matrix X|X is invertible, we have kP?
XBk⇤ 

kP?
XkkBk⇤  kBk⇤. For any B 2 R

n1⇥n2 ,

1

n1n2

���P?
XB � P?

X

⇣
W � Θ̂⇤ � Y

⌘���
2

F
+ �2

✓
↵
���P?

XB
���
⇤
+ (1� ↵)

���P?
XB

���
2

F

◆

 1

n1n2

���P?
XB � P?

X

⇣
W � Θ̂⇤ � Y

⌘���
2

F
+

1

n1n2
kPXBk2F + �2

✓
↵
���P?

XB
���
⇤
+ (1� ↵)

���P?
XB

���
2

F

◆

+ �2 (1� ↵) kPXBk2F

 1

n1n2

���B � P?
X

⇣
W � Θ̂⇤ � Y

⌘���
2

F
+ �2

⇣
↵ kBk⇤ + (1� ↵) kBk2F

⌘
,

where the first inequality is strict whenever PXB 6= 0. Therefore the solution of (3.7) belongs to

N (X) and hence it is also a solution of (3.5).

S2 Benefit of Covariate Information

Before discussing the benefit of using covariates, we need the following proposition which describes

the relationship between kA0k⇤ and kB0k⇤.

Proposition S2.1. Let A0 = X�0 + B0, where B0 2 N (X), we have kB0k⇤  kA0k⇤. If

R(�0) * R(B0), once �0 6= 0m⇥n2, we have kB0k⇤ < kA0k⇤. Here R(Y ) is the row space of a

matrix Y .

Proof. For any Z 2 @kB0k⇤, we have kA0k⇤ � kB0k⇤ + hZ,X�0i. Write the SVD of B0 as

PrB0

i=1 �i(B0)u
(i)
B0

v
(i)T
B0

. Let Bu be the linear span of u
(1)
B0

, . . . ,u
(rB0

)

B0
and Bv be the linear span of

v
(1)
B0

, . . . ,v
(rB0

)

B0
. We have the fact that the sub-differential of the convex function B0 7! kB0k⇤ is

the following set of matrices:

@ kB0k⇤ =
(rB0X

i=1

u
(i)
B0

v
(i)T
B0

+ PB?
u
ZPB?

v
:
���PB?

u
ZPB?

v

���  1

)
.
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On the other hand, by Lemma 3.2 in Candès and Recht (2009), there exist matrix Z̄ with

kZ̄k = 1 such that hZ̄,X�0i = kZ̄kkX�0k⇤ = kX�0k⇤. Pick Z 2 @kB0k⇤ such that PB?
u
ZPB?

v
=

PB?
u
Z̄PB?

v
, then we have

hZ,X�0i =
*rB0X

i=1

u
(i)
B0

v
(i)T
B0

+ PB?
u
Z̄PB?

v
,X�0

+

= 0 +
D
Z̄PB?

v
,X�0

E
=
⌦
Z̄,X�0

↵
�
⌦
Z̄PBv

,X�0

↵

� kX�0k⇤ �
��Z̄PBv

�� kX�0k⇤ � kX�0k⇤ � kX�0k⇤ = 0.

Thus we show that kB0k⇤  kA0k⇤.

If R(�0) * R(B0), it implies that �0PBv
6= �0. Thus for the inequality above, we always have

hZ,X�0i > 0 which implies kA0k⇤ > kB0k⇤.

S2.1 Compare the Upper Bounds

As for d2(X�̂UNI,X�0), it follows from the closed form of �̂UNI that

X�̂UNI �X�0 =X(n�1
1 X|X + n2�1Im⇥m)�1n�1

1 X|

⇣n1n2

N
W � Y �X�0

⌘

�X(n�1
1 X|X + n2�1Im⇥m)�1n2�1n

�1
1 X�0.

Take �1 = o(n�1
2 ), n2�1 = o(1), we have X(n�1

1 X|X + n2�1Im⇥m)�1n�1
1 X| = PX(1 + o(1)). It

implies that,

1

n1n2

���X�̂UNI �X�0

���
2

F
 1

n1n2

���PX

⇣n1n2

N
W � Y �A0

⌘���
2

F
(1 + o (1))+n2

2�
2
1 kX�0k2F (1 + o (1)) .

Let PX = (sij), EkPX(n1n2

N W � Y �A0)k2F =
Pn1

i=1

Pn2

j=1 E(
Pn1

k=1 sik(n1n2!kjYkj/N � A0kj))
2 

2
Pn1

i=1

Pn2

j=1(
Pn1

k=1 s
2
ikE(n1n2!kjA0kj/N�A0kj)

2+
Pn1

k=1 s
2
ikE(n1n2!kj✏kj/N)2). Due to Condition

C1 and C4, we have maxE✏2ij  c2� and kA0k1 
p

log(n)a1. Since !kj
i.i.d⇠ Bern(✓0), we have

E
⇣!kj

N

⌘
=E

 
!kj

!kj +
P

(s,t) 6=(k,j) !st

!
= E

8
<
:E

0
@ !kj

!kj + c

������
X

(s,t) 6=(k,j)

!st = c

1
A
9
=
;

=E

(
n1n2�1X

c=0

✓0

1 + c

)
=

1

n1n2
(1� (1� ✓0)

n1n2)  1

n1n2
,
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and similarly,

E
⇣!kj

N2

⌘
=E

8
><
>:

!kj⇣
!kj +

P
(s,t) 6=(k,j) !st

⌘2

9
>=
>;

= E

(
n1n2�1X

c=0

✓0

(1 + c)2

)
 2

n1n2 (n1n2 + 1) ✓0
.

Combine the above two results together, we have

E

���PX

⇣n1n2

N
W � Y �A0

⌘���
2

F
2

n1X

i=1

n2X

j=1

(✓
2n1n2

(n1n2 + 1) ✓0
+ 2 + 1

◆
{log (n)} a21

n1X

k=1

s2ik+

2n1n2c
2
�

(n1n2 + 1) ✓0

n1X

k=1

s2ik

)

2

⇢✓
2n1n2

(n1n2 + 1) ✓0
+ 3

◆
{log (n)} a21 +

2n1n2c
2
�

(n1n2 + 1) ✓0

�
n2m.

Take �1 = o{n�1
1 n

�3/2
2 log�1(n)}, we have d2(X�̂UNI,X�0) = Op(n

�1
1 ).

Proofs of Theorem 3. Under Condition C3, we have kA0k⇤ = O{
p
n1n2 log(n)} and kB0k⇤ =

O{
p
n1n2 log(n)}. Under the low rank condition that rA0

= rB0
+ m = o{✓

1/2
0 (n1 ^ n2)

1/2},

we have �KLTn1n2rA0
= o(kA0k⇤) and �2n1n2rB0

= o(kB0k⇤) since �2 = �KLT ⇣ ✓
�1/2
0 (n1 ^

n2)
�1/2(n1n2)

�1/2 log1/2(n). Namely, both the first terms in UKLT and UUNI dominate and we

compare the second terms. As rA0
= rB0

+m, we can claim that UUNI < UKLT.

For the high rank case, i.e the second term dominates or of the same order as the first term,

the first terms in UKLT and UUNI are the smaller order. If R(�0) * R(B0), once there exists

the covariate effect, i.e �0 6= 0m⇥n2 , as given in Proposition S2.1, kB0k⇤ < kA0k⇤ which implies

UUNI < UKLT. For the remaining cases, we obtain the result UUNI  UKLT by kB0k⇤  kA0k⇤.

S2.2 Proofs of Theorem 4

Proof. For some constant 0  �  1, if n1 � n2, define

C1 =

(
B̃ = (Bij) 2 R

n1⇥rB0 : Bij 2
(
0, � (� ^ a1)

✓
rB0

(n1 ^ n2) ✓0

◆1/2
)
, 81  i  n1, 1  j  rB0

)
,

and consider the associated set of block matrices

A (C1) =
n
A = X�̃ +

⇣
B̃| . . . |B̃|0

⌘
2 R

n1⇥n2 : �̃ 2 � (a1) , B̃ 2 C1
o
,
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where 0 denotes the n1 ⇥ (n2 � rB0
bn2/rB0

c) zero matrix.

It is easy to see that any element of B(C1) and the difference of any two elements of B(C1) has

rank at most rB0
. The entries of any matrix in B(C1) are within [0, a1]. Due to Lemma 2.9 in

Tsybakov (2009), there exists a subset B0 ⇢ B(C2) containing the zero n1 ⇥ n2 matrix 0 where

Card(B0) � 2rB0
n1/2 + 1 and for any two distinct elements B1 and B2 of B0,

kB1 �B2k2F � n1rB0

8

✓
�2 (� ^ a1)

2

✓
rB0

(n1 ^ n2) ✓0

◆�
n2

rB0

⌫◆
� �2

16
(� ^ a1)

2

✓
n1n2rB0

(n1 ^ n2) ✓0

◆
.

For 0  l  rB0
, take �0 ⇢ �(a1) such that

�0 =

(
�̃ 2 R

m⇥n2 : (X�)ij = � (� ^ a1)

✓
l

(n1 ^ n2) ✓0

◆1/2

, 81  i  n1, 1  j  n2

)
.

For any A 2 A0 = �0[B0, the Kullback-Leibler divergence K(P0,PA) between P0 and PA satisfies

K (P0,PA) = EP0

0
@X

ij

!ij

A2
0ij � 2A0ijY0ij

2�2

1
A = ✓0

kAk2F
2�2

 �2 (rB0
+ l)n1n2

n1 ^ n2
.

It is easy to know that Card(A0) = Card(B0) � 2rB0
n1/2 +1. From above we deduce the condition

1

Card(A0)� 1

X

A2A0

K (P0,PA)  ↵ log
�
Card(A0)� 1

�
(S2.1)

is satisfied for any ↵ > 0 if 0 < � <
p
↵/2 and l  rB0

. The result now follows by application of

Theorem 2.5 in Tsybakov (2009).

For n1  n2, similarly, define

C2 =

(
B̃ = (Bij) 2 R

rB0
⇥n2 : Bij 2

(
0, � (� ^ a1)

✓
rB0

(n1 ^ n2) ✓0

◆1/2
)
, 81  i  rB0

, 1  j  n2

)
,

and consider the associated set of block matrices

A (C2) =

⇢
A = X�̃ +

⇣
B̃| . . . |B̃|0

⌘T
2 R

n1⇥n2 : �̃ 2 � (a1) , B̃ 2 C2

�
,

where 0 denotes the (n1� rB0
bn1/rB0

c)⇥n2 zero matrix here. Follow the same proof, we have the

same result.
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S2.3 Non-Uniform Missing

For the non-uniform missing, we assume that the missing probability Θ = (✓ij) is known. Namely,

we know Θ
⇤ = (1/✓ij) in the risk function (3.1). Thus

B̂NON�UNI = argmin
B2Rn1⇥n2

⇢
1

n1n2
kB �W �Θ⇤ � Y k2F + �2 kBk⇤

�
. (S2.2)

Follow the same proof of Theorem 3 of Koltchinskii et al. (2011), we have that

Theorem S2.1. Assume Conditions C1-C4, if �2 � 2kW �Θ⇤ � Y �A0k, then

d2
⇣
B̂NON�UNI,B0

⌘
 �2min

8
<
:2 kB0k⇤ ,

 
1 +

p
2

2

!2

�2n1n2rB0

9
=
; .

As for d2(X�̂NON�UNI,X�0), it follows from the closed form of �̂ that

X�̂NON�UNI �X�0 =X(n�1
1 X|X + n2�1Im⇥m)�1n�1

1 X| (W �Θ⇤ � Y �X�0)

�X(n�1
1 X|X + n2�1Im⇥m)�1n2�1n

�1
1 X�0.

Take �1 = o(n�1
2 ), n2�1 = o(1), we have X(n�1

1 X|X + n2�1Im⇥m)�1n�1
1 X| = PX(1 + o(1)). It

implies that,

1

n1n2

���X�̂NON�UNI �X�0

���
2

F
 1

n1n2
kPX (W �Θ⇤ � Y �A0)k2F (1 + o (1))+n2

2�
2
1 kX�0k2F (1 + o (1)) .

It is not hard to show that EkPX(W �Θ⇤ �Y �A0)k2F  {(1/✓L� 1)log(n)a21+ c2�/✓L}n2m. Then

take �1 = o(n�1
1 n

�3/2
2 log�1(n)), we have d2(X�̂NON�UNI,X�0) = Op(n

�1
1 ).

The lower bound can be given in the following theorem.

Theorem S2.2. Assume Condition C4, fix a1 > 0, for rB0
such that 1  rB0

 min(n1, n2)�m,

(n1 _ n2)rB0
 n1n2✓L. Let the variables ✏ij be Gaussian N (0,�2), �2 > 0 for i = 1, . . . , n1,

j = 1, . . . , n2. Then there exist absolute constants ↵ 2 (0, 1), c > 0 and 0  l  rB0
, such that

inf
β̂,B̂

sup
β02�(a1),B02B(rB0

,a1)
P

✓
d2(Â,A0) > c(� ^ a1)

2 (n1 _ n2) (rB0
+ l)

n1n2✓L

◆
� ↵.
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S3 Justification of Condition C5(b)

Sweeting (1980) presented a very general result concerning the uniform asymptotic normality of

the MLEs. In this section, we want to verify Condition C5(b) under the logistic sampling model

given in (4.1) by applying Sweeting’s results. A natural estimator of �.j is the conditional MLE

�̂.j , denoted as that maximizes the log-likelihood,

`n1
(�.j) =

n1X

i=1

{!ij log ✓ij + (1� !ij) log (1� ✓ij)} .

We know that the MLE �̂.j of �.j is a consistent estimator and the asymptotic normality of �.j for

each j = 1, . . . , n2 under some regularity conditions. Then we apply Sweeting’s result to show the

uniform asymptotic normality of these MLEs.

The conditional Fisher information matrix is

In1
(�.j) = E

 
�@2`n1

(�.j)

@�2
.j

!
=

n1X

i=1

✓ij (1� ✓ij) x̃ix̃i
|. (S3.1)

Let x̄c = lim
n1!1

n�1
1

Pn1

i=1 xi and S̃x =

2
64
1 x̄|

c

x̄c Sx

3
75. To guarantee the sum of squared errors in

Condition C5(b), we require the following conditions for the sampling model:

CA(a). (i) There exists a universal upper bound ✓U 2 (0, 1), where ✓U is allowed to depend on

n1 and n2, such that max
i,j

{✓ij}  ✓U < 1 uniformly. (ii) 0 < kS̃xk < 1 and S̃x > 0.

Condition CA(a) is a mild condition. The upper bound ✓U and the lower bound ✓L in C5(a)

are considered together to ensure the invertibility of In1
(�.j).

Denote the parameter space Ξ is a bounded subset of Rm+1 which covers the parameters �.j for

j = 1, . . . , n2. Let Pξ, Pn1,ξ, n1 � 1, be probability measures of random variables A(⇠), An1
(⇠),

n1 � 1 defined on the Borel subset of a metric space depending on a ⇠ 2 Ξ, and let C(Rm+1) be

the space of real bounded uniformly continuous functions, An1
(⇠)

u) A(⇠) in ⇠ 2 Ξ if and only if

sup
ξ2Ξ

|Pn1,ξ (S)� Pξ (S)| ! 0, as n1 ! 1,

for any Borel set S with Pξ (@S) = 0.
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In order to show the uniform weak convergence of MLEs, Sweeting proposed additional two

regularity conditions in Sweeting (1980), which we present in a form that would connect well to

the logistic regression model setting.

CA(b). There exist nonrandom square matricesDn1
(⇠), continuous in ⇠, satisfying sup

ξ2Ξ

kD�1
n1

(⇠)kF !

0, as n1 ! 1, such that

Wn1
(⇠) ⌘ D�1

n1
(⇠) In1

(⇠)
�
D�1

n1
(⇠)

 | u) W (⇠) ,

and P(W (⇠) > 0) = 1.

CA(c). For all ✏ > 0, (i) sup
ξ2Ξ

sup
ξ02A(ξ,✏)

kD�1
n1

(⇠)Dn1
(⇠0)� Im+1kF ! 0, where A(⇠, ✏) = {⇠0 2 Ξ :

kD|

n1
(⇠)(⇠0 � ⇠)kF  ✏}, and

(ii)sup
ξ2Ξ

sup
ξk2A(ξ,✏),1k(m+1)

kD�1
n1

(⇠){(In1
(⇠1)|1., . . . , In1

(⇠m+1)|(m+1).)� In1
(⇠)}{D�1

n1
(⇠)}|kF ! 0,

where In1
(⇠k)k. is the k�th row of In1

(⇠k) for 1  k  m+ 1.

Under growth and convergence Condition CA(b) and continuity Condition CA(c), Corollary

1 of Sweeting (1980) showed that the MLE of ⇠̂ is asymptotic normal uniformly with respect to

⇠ 2 Ξ,

W 1/2
n1

(⇠)Dn1
(⇠)

⇣
⇠̂ � ⇠

⌘
u) Z, as n1 ! 1,

where Z is the standard normal random vector in R
m+1 and independent of W (⇠).

In the case of the logistic regression model, the parameter space Ξ is an open subset of Rm+1

such that for any ⇠ 2 Ξ and ✓iξ = exp(x|

i ⇠)/{1 + exp(x|

i ⇠)}, 0 < ✓L  min
i,j

{✓iξ}  max
i,j

{✓iξ} 

✓U < 1. Let ⇡ξ = n�1
1

Pn1

i=1 ✓iξ(1� ✓iξ), Dn1
(⇠) = (n1⇡ξ)

1/2Im+1 and W (⇠) = S̃x, thus Wn1
(⇠) ⌘

D�1
n1

(⇠)In1
(⇠){D�1

n1
(⇠)}| = (n1⇡ξ)

�1In1
(⇠), where In1

(⇠) is defined as the Fisher matrix in (S3.1).

The justifications of Conditions CA(b) and CA(c) on any ⇠ 2 Ξ are given in the following.

Justification of Condition CA(b). For any ⇠ 2 Ξ, since Ξ is a bounded subset of R
m+1, then

⇡ξ =
Pn1

i=1 ✓iξ(1�✓iξ)/n1 2 {min{✓U (1�✓U ), ✓L(1�✓L)}, 1}. It is easy to see that sup
ξ2Ξ

kD�1
n1

(⇠)kF =

p
m+ 1(n1⇡ξ)

�1/2 ! 0 under the case ✓L > (n1n2)
�1(n1 _ n2) log(n) as n1 ! 1.

Under Condition C2, there exist a positive constant ax such that kXk1 < ax, lim
n1!1

n�1
1 X|X =

8



lim
n1!1

n�1
1

Pn1

i=1 xix
|

i = Sx. Also we have x̄c = lim
n1!1

n�1
1

Pn1

i=1 xi, thus

n�1
1

n1X

i=1

✓iξ (1� ✓iξ)xi � ⇡ξx̄c =n�1
1

n1X

i=1

✓iξ (1� ✓iξ)xi � n�1
1

n1X

i=1

✓iξ (1� ✓iξ) x̄c


�����n

�1
1

n1X

i=1

✓iξ (1� ✓iξ) (xi � x̄c)

����� ! 0.

Similarly, we have n�1
1

Pn1

i=1 ✓iξ(1� ✓iξ)xi ! ⇡ξx̄c and n�1
1

Pn1

i=1 ✓iξ(1� ✓iξ)xix
|

i ! ⇡ξSx. These

imply, (n1⇡ξ)
�1In1

(⇠) = (n1⇡ξ)
�1

Pn1

i=1 ✓iξ(1� ✓iξ)x̃ix̃i
| ! S̃x.

Since Dn1
(⇠) = (n1⇡ξ)

1/2Im+1, W (⇠) = S̃x,

Wn1
(⇠) ⌘ (n1⇡ξ)

�1 In1
(⇠)

u) S̃x,

Here W (⇠) = S̃x and P(S̃x > 0) = 1.

Justification of Condition CA(c). For Condition CA(c)(i), for ⇠ 2 Ξ, the setA(⇠, ✏) = kD|

n1
(⇠)(⇠0�

⇠)kF  ✏ implies

tr
��

⇠0 � ⇠
�
|
Dn1

(⇠)D|

n1
(⇠)

�
⇠0 � ⇠

� 
= (n1⇡ξ) tr

��
⇠0 � ⇠

�
|
�
⇠0 � ⇠

� 
 ✏2.

Let ✓iξ0 = exp(x̃i
|⇠0)/{1 + exp(x̃i

|⇠0)} and ⇡ξ0 =
Pn1

i=1 ✓iξ0(1 � ✓iξ0). Since we have ✓iξ0 � ✓iξ =

✓iξ(1 � ✓iξ)x̃i
|(⇠0 � ⇠) + (⇠0 � ⇠)|x̃i(1 � 2✓iξ⇤)✓iξ⇤(1 � ✓iξ⇤)x̃i

|(⇠0 � ⇠) for ⇠⇤ 2 Bm+1(⇠, d(⇠, ⇠0)),

where Bm+1(⇠, d(⇠, ⇠0)) is the ball belongs to R
m+1 with center at ⇠ and radius d(⇠, ⇠0), d(⇠, ⇠0) is

euclidean distance between the vector ⇠ and ⇠0. Since ⇠⇤ 2 Ξ, we have |(1�2✓iξ⇤)✓iξ⇤(1�✓iξ⇤)| < 2.

Combining the fact that there exist a positive constant ax such that kXk1 < ax, kx̃ix̃i
|k < 1, we

can say that ✓iξ0�✓iξ = ✓iξ(1�✓iξ)x̃i
|(⇠0�⇠)+o((⇠0�⇠)) and (✓iξ0�✓iξ)

2 = ✓2iξ(1�✓iξ)
2tr(x̃ix̃i

|(⇠0�

9



⇠)(⇠0 � ⇠)|) + o((⇠0 � ⇠)|(⇠0 � ⇠)). It implies that

(n1⇡ξ)
1/2

��⇡ξ0 � ⇡ξ
�� =(n1⇡ξ)

1/2

�����n
�1
1

n1X

i=1

�
✓iξ0

�
1� ✓iξ0

�
� ✓iξ (1� ✓iξ)

 
�����  n

�1/2
1 ⇡

1/2
ξ

n1X

i=1

3
��✓iξ0 � ✓iξ

��

3n
�1/2
1 ⇡

1/2
ξ

vuut n1

n1⇡ξ

n1X

i=1

n
n1⇡ξ

�
✓iξ0 � ✓iξ

�2o

3n
�1/2
1

vuut
n1X

i=1

n1⇡ξtr {x̃ix̃i
| (⇠0 � ⇠) (⇠0 � ⇠)| + o ((⇠0 � ⇠)| (⇠0 � ⇠))}

3n
�1/2
1

vuut2n1tr

( 
1

n1

n1X

i=1

x̃ix̃i
|

!
n1⇡ξ (⇠0 � ⇠) (⇠0 � ⇠)|

)
 3

r
2
���S̃x

���✏,

which implies sup
ξ2Ξ

sup
ξ02A(ξ,✏)

kD�1
n1

(⇠)Dn1
(⇠0)�Im+1kF = (m+1)|⇡ξ0/⇡ξ�1| = (m+1)(n1⇡ξ)

�1/2(n1⇡ξ)
1/2|⇡ξ0�

⇡ξ| ! 0 as n1 ! 1.

For Condition CA(c)(ii), Let ✓iξk = exp(x̃i
|⇠k)/{1 + exp(x̃i

|⇠k) and ⇡ξk =
Pn1

i=1 ✓iξk(1 �

✓iξk)/n1. For any ⇠ 2 Ξ, since (n1⇡ξk)
�1In1

(⇠k) ! S̃x and (n1⇡ξ)
�1In1

(⇠) ! S̃x showed as before,

we have over the sets kD|

n1
(⇠)(⇠k � ⇠)kF  ✏, for 1  k  m+ 1, as n1 ! 1,

���(n1⇡ξ)
�1

n
In1

⇣
⇠k
⌘
� In1

(⇠)
o���

F

���
n
(n1⇡ξ)

�1 �
�
n1⇡ξk

��1
o
In1

⇣
⇠k
⌘���

F

+
���
�
n1⇡ξk

��1
In1

⇣
⇠k
⌘
� (n1⇡ξ)

�1 In1
(⇠)

���
F

 (n1⇡ξ)
�3/2(n1⇡ξ)

1/2|⇡ξk � ⇡ξ|
���
�
n1⇡ξk

��1
In1

⇣
⇠k
⌘���

F
+
���
�
n1⇡ξk

��1
In1

⇣
⇠k
⌘
� (n1⇡ξ)

�1 In1
(⇠)

���
F

By the inequalities kS̃xkF 
p
m+ 1kS̃xk < 1 and

p
n1⇡ξ|⇡ξk � ⇡ξ|  3

q
2kS̃xk✏, we have

k(n1⇡ξ)
�1{In1

(⇠k)� In1
(⇠)}kF ! 0.

Thus we have

sup
ξ2Ξ

sup
ξk2A(ξ,✏)

���D�1
n1

(⇠)
n⇣

In1

�
⇠1
�|
1.
, . . . , In1

�
⇠m+1

�|
(m+1).

⌘
� In1

(⇠)
o�

D�1
n1

(⇠)
 |���

F

sup
ξ2Ξ

m+1X

k=1

sup
ξk2A(ξ,✏)

���(n1⇡ξ)
�1

n
In1

⇣
⇠k
⌘
� In1

(⇠)
o���

F
! 0.

Applying Corollary 1 in Sweeting (1980) we have that I1/2(⇠)(⇠̂� ⇠)
u) Z for all � 2 Ξ. Under

Condition CA(a), we have the parameters �.j 2 Ξ for j = 1, . . . , n2. Namely, I1/2(�.j)(�̂.j ��.j)
u)
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Z which implies I1/2(�.j)(�̂.j � �.j)
d! N (0, 1) for all j = 1, . . . , n2. For j = 1, . . . , n2, define

⇡j =
Pn1

i=1 ✓ij(1� ✓ij)/n1, and ⇡⇤
j 2 ((1� ✓U )

2/✓2L, (1� ✓L)
2/✓2U ), then we have ⇡j 2 {min{✓U (1�

✓U ), ✓L(1 � ✓L)}, 1} and ⇡⇤
j =

Pn1

i=1{(1 � ✓ij)
2/✓2ij}/n1. As shown in Justification of Condition

CA(b), (n1⇡j)
�1/2I1/2(�.j)!S̃x

1/2
. Thus we have

p
n1⇡j(�̂.j � �.j)

u) Zj , where Zj ⇠ N (0, S̃x
�1

)

for all 1  j  n2. For each j = 1, . . . , n2, |�̂.j � �.j | = Op(1/
√

n1⇡j).

The estimator of ✓ij is given by ✓̂ij = exp(x̃i
|�̂.j)/{1+exp(x̃i

|�̂.j)}, thus, for each j = 1, . . . , n2,

supi |✓̂ij � ✓ij | = Op(1/
p
n1⇡j). Also, we have that for specific �⇤

.j 2 Bm+1(�.j , d(�.j , �̂.j)),

1

✓̂ij
� 1

✓ij
= � 1

✓2ij

✓
@✓ij

@�.j

◆
|

(�̂.j � �.j) + (�̂.j � �.j)
| @2 (1/✓ij)

@�2
.j

���γ⇤
.j
(�̂.j � �.j) ,

which can simplify to be

1

✓̂ij
� 1

✓ij
= �(1� ✓ij)

✓ij
x̃i

| (�̂.j � �.j) + (�̂.j � �.j)
|

⇣
1� ✓⇤ij

⌘

✓⇤ij
x̃ix̃i

| (�̂.j � �.j) .

Since there exist a positive constant ax such that kXk1 < ax, we have kx̃ix̃i
|k1 < 1. Also

�⇤
.j 2 B(�.j , d(�.j , �̂.j)) and kXk1 < ax implies ✓⇤ij ! ✓ij , as n1 ! 1. Namely, (1 � ✓⇤ij)/✓

⇤
ij !

(1� ✓ij)/✓ij , as n1 ! 1. Once ✓ij 6= 0 and x̃i 6= 0, by Taylor expansion and continuous mapping

theorem, we can see that:

 
1

✓̂ij
� 1

✓ij

!2

=
(1� ✓ij)

2

✓2ij
(�̂.j � �.j)

| x̃ix̃i
| (�̂.j � �.j) + o ((�̂.j � �.j)

| (�̂.j � �.j)) ,

for i = 1, . . . , n1, j = 1, . . . , n2. As n1 ! 1, we have

n1X

i=1

(1� ✓ij)
2

✓2ij
x̃ix̃i

|/
�
n1⇡

⇤
j

�
! S̃x.

By Slutsky theorem,

⇡j

⇡⇤
j

n1X

i=1

 
1

✓̂ij
� 1

✓ij

!2
u) Z|

j

⇣
S̃x

�1
⌘�1

Z|

j ,

which implies that ⇡j⇡
⇤�1
j

Pn1

i=1(1/✓̂ij � 1/✓ij)
2 u) Uj , where Uj ⇠ �2

m+1 for all j = 1, . . . , n2.

By using Polya’s theorem, we have for any t > ⌘�1
g (m + 1), let ⌘g = min{⇡j/⇡

⇤
j }, kn1

=

max
j

sup
t
|P(

P
i(1/✓̂ij � 1/✓ij)

2 � t) � P(�2
m+1 � ⌘gt)|  1/n2

2 there exists a positive integer N1/n2
2
,
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for n1 � N1/n2
2
,

sup
j
P

8
<
:

n1X

i=1

 
1

✓̂ij
� 1

✓ij

!2

� t

9
=
;  sup

j
P

8
<
:

⇡j

⇡⇤
j

n1X

i=1

 
1

✓̂ij
� 1

✓ij

!2

� ⌘gt

9
=
;

sup
j

�
P
�
�2
m+1 � ⌘gt

� 
+ kn1




⌘gt

m+ 1
exp

⇢
1� ⌘gt

m+ 1

��m+1

2

+ kn1
.

Take cn1,n2
= n2 log(n2)/⌘g and t0 = (m+ 3), for t > t0, we have

P

8
<
:

n2X

j=1

n1X

i=1

 
1

✓̂ij
� 1

✓ij

!2

� cn1,n2
t

9
=
; 

n2X

j=1

P

8
<
:

n1X

i=1

 
1

✓̂ij
� 1

✓ij

!2

� cn1,n2
t

n2

9
=
;

=

n2X

j=1

P

⇢
�2
m+1 �

⌘gcn1,n2
t

n2

�


n2X

j=1


⌘gcn1,n2

t

n2 (m+ 1)
exp

⇢
1� ⌘gcn1,n2

t

n2 (m+ 1)

��m+1

2

+ n2kn1

 (m+ 1)�(m+1)/2 exp

⇢
m+ 1

2
� ⌘gcn1,n2

t

2n2
+ log (t) +

m+ 1

2
log

✓
⌘gcn1,n2

n2

◆
+ log (n2)

�
+ n2kn1

 (m+ 1)�(m+1)/2 exp

⇢
m+ 1

2
� t log (n2)

2
+ log (t) +

m+ 3

2
log (n2)

�
+ n2kn1

 (m+ 1)�(m+1)/2 exp

⇢
m+ 2� t

2
+ log (t)

�
+ n2kn1

.

Let g(t) = (m + 1)�(m+1)/2 exp{m + 2 � t/2 + log(t)} and hn1,n2
= n2kn1

 1/n2 in Condition

C5(b), we have lim
t!1

g(t) = 0 and lim
n1,n2!1

hn1,n2
= 0. It satisfies the requirements.

S4 Lemmas and Proofs

In this section, we provide various results required in the proofs of Theorems 1 and 2, as well as

Corollaries 1 and 2. First, we review some basic facts about matrices which will be useful in the

following development. For any A,B 2 R
n1⇥n2 , we have

• Trace Duality Property:

|tr (A|B)|  kBk kAk⇤ . (S4.1)

• Norm Inequalities:

kAkF  kAk⇤ 
p
rA kAkF and kAk  kAkF  p

rA kAk , (S4.2)

where rA is the rank of matrix A.
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Write Jij = ei(n1)e
|

j (n2), where ei(n) 2 R
n is the standard basis vector with the i-th element

being 1 and the rest being 0. Now we present several lemmas.

Lemma S4.1. Let Ψ
(1) =

P
ij !ij✏ijJij/(n1n2✓̂ij). Under Conditions C1, C4 and C5, for some

positive constants c�, ⌘, �� and all t > t0, there exists ∆
(1)(��, t) such that

���Ψ(1)
���  ∆

(1)(��, t) ⇣ max

(p
(n1 _ n2) log (n)p

✓Ln1n2
, (n1n2)

�3/4 (cn1,n2
t)1/2 log�σ/4 (n)

)

holds with probability at least 1� 1/n� g(t)� hn1,n2
� 12c2�⌘

2 log��σ(n).

More specifically, for the uniform missingness, we have ✓ij ⌘ ✓0 and ✓̂ij ⌘ N/(n1n2) and for

some positive constants �� and C1 such that

���Ψ(1)
���  C1

p
(n1 _ n2) log (n)p

✓0n1n2

holds with probability at least 1� 1/n� log��σ(n)� 2/(n1 _ n2).

To prove Lemma S4.1, we apply Theorem 6.2 which is matrix Bernstein inequality for the

sub-exponential case provided by Tropp (2012).

Proof of Lemma S4.1. For any rectangular matrix M , let L(M) be the self-adjoint dilation of M

defined as

L (M) :=

2
64

0 M

M| 0

3
75 .

In our case, for i = 1, . . . , n1, j = 1, . . . , n2, let

Gn2(i�1)+j = L

✓
✏ij!ij

✓ij
Jij

◆
and Hn2(i�1)+j = L

✓
c�p
✓L

Jij

◆
.

To apply Theorem 6.2 of Tropp (2012), we verify the conditions needed in the following.

Since ✏ij is independent of !ij , we have

E

✓
✏ij!ij

✓ij
Jij

◆
= E (✏ij)E

✓
!ijJij

✓ij

◆
= 0,

which implies E
�
Gn2(i�1)+j

�
= 0. Write ⌘H = ⌘/✓L, where ⌘ is the constant in Condition C1. Now

we want to show that

E

(
L

✓
✏ij!ij

✓ij
Jij

◆l
)

 l!

2
· ⌘l�2

H L

✓
c�p
✓L

Jij

◆2

for l = 2, 3, 4, . . . . (S4.3)
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In our case, under Condition C1 and C4, for a finite constant ⌘, we have

E

����
✏ij!ij

✓ij

����
l

=
E |✏ij |

l
E!ij

✓lij
 maxE |✏ij |

l

✓l�1
L

 1

2
l!

✓
c�p
✓L

◆2✓
⌘

✓L

◆l�2

, l = 2, 3, . . . .

Thus it suffices to show that Ll(Jij)  L2(Jij) for l = 2, 3, 4, . . . .

Let Kn,i = ei(n)e
|

i (n), where ei(n) 2 R
n is the standard basis vector of R

n with the i-th

element being 1 and the rest being 0. By the properties of Jij , it is not hard to show that for l = 2s

or 2s+ 1, we have

L2s (Jij) =

2
64
Kn1,i 0

0 Kn2,j

3
75 and L2s+1 (Jij) =

2
64

0 Jij

J|

ij 0

3
75 = L (Jij) .

Hence (S4.3) is verified as

2
64
Kn1,i �Jij

�J|

ij Kn2,j

3
75 � 0.

Set the constant �2
H = kPij L(c�Jij/

p
✓L)

2k = c2�k
P

ij L(Jij)
2k/✓L. Since

������
X

ij

L (Jij)
2

������
=

�������

2
64
P

ij Kn1,i 0

0
P

ij Kn2,j

3
75

�������
= max

8
<
:

������
X

ij

Kn1,i

������
,

������
X

ij

Kn2,j

������

9
=
;

= max {kn2In1
k , kn1In2

k} = n1 _ n2,

we have �2
H = c2�(n1 _ n2)/✓L. By the property of dilation (2.12) of Tropp (2012),

P

2
4�max

8
<
:
X

ij

L

✓
✏ij!ij

✓ij
Jij

◆9=
; � t

3
5 = P

0
@
������
X

ij

✏ij!ij

✓ij
Jij

������
� t

1
A .

By the Matrix Bernstein Inequality in Theorem 6.2 of Tropp (2012), we show that, for all t1 > 0,

P

0
@
������
X

ij

✏ij!ij

✓ij
Jij

������
� t1

1
A n · exp

⇢ �t21/2

c2� (n1 _ n2) /✓L + ⌘Ht1

�



8
>>><
>>>:

n · exp
n

�t2
1

4c2
σ
(n1_n2)/✓L

o
for t1  c2� (n1 _ n2) / (✓L⌘H)

n · exp
n

�t1
4⌘H

o
for t1 � c2� (n1 _ n2) / (✓L⌘H)

In other words, for any s1 > 0, with probability at least 1� exp{�s1}, we have
������
X

ij

✏ij!ij

✓ij
Jij

������
 max

8
<
:2c�

s
(n1 _ n2) {s1 + log (n)}

✓L
, 4⌘H {s1 + log (n)}

9
=
;
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where s01 = s1 + log(n). Choose s1 = log(n), i.e, s01 = 2 log(n). With probability at least 1 � 1/n,

we have

1

n1n2

������
X

ij

✏ij!ij

✓ij
Jij

������
 2c�

p
2 (n1 _ n2) log (n)p

✓Ln1n2
:= ∆

(1)0 .

We also know that
������
X

ij

✏ij!ij

 
1

✓̂ij
� 1

✓ij

!
Jij

������

2



������
X

ij

✏ij!ij

 
1

✓̂ij
� 1

✓ij

!
Jij

������

2

F

=
X

ij

✏2ij!
2
ij

 
1

✓̂ij
� 1

✓ij

!2


X

ij

✏2ij

 
1

✓̂ij
� 1

✓ij

!2

 max ✏2ij
X

ij

 
1

✓̂ij
� 1

✓ij

!2

.

Due to Markov inequality, under Condition C1, we have for any a > 0,

P
�
max ✏2ij � a

�
= P

�
max ✏4ij � a2

�

P

ij E✏
4
ij

a2
 12n1n2c

2
�⌘

2

a2
.

Take a = (n1n2)
1/2 log�σ/2(n) for a positive constant ��, we have max ✏2ij  (n1n2)

1/2 log�σ/2(n)

with probability at least 1� 12c2�⌘
2 log��σ(n).

Combining with Condition C5(b), we have for t > t0, with probability at least 1�g(t)�hn1,n2
�

12c2�⌘
2 log��σ(n), k

P
ij ✏ij!ij(1/✓̂ij � 1/✓ij)Jijk  (n1n2)

1/4(cn1,n2
t)1/2 log�σ/4(n).

Then for t > t0, with probability at least 1� 1/n� g(t)� hn1,n2
� 12c2�⌘

2 log��σ(n), we have

1

n1n2

������
X

ij

✏ij!ij

✓̂ij
Jij

������
 1

n1n2

������
X

ij

✏ij!ij

✓ij
Jij

������
+

1

n1n2

������
X

ij

✏ij!ij

 
1

✓̂ij
� 1

✓ij

!
Jij

������

∆
(1)0 + (n1n2)

�3/4 (cn1,n2
t)1/2 log�σ/4 (n)

:=∆
(1) (��, t) ⇣ max

(p
(n1 _ n2) log (n)p

✓Ln1n2
, (n1n2)

�3/4 (cn1,n2
t)1/2 log�σ/4 (n)

)
.

As for the uniform missingness, for the first term without the estimators ✓̂ij , we have the same

upper bound. We also know that for the second term,

E

������
X

ij

✏ij!ij

 
1

✓̂ij
� 1

✓ij

!
Jij

������

2

E

8
<
:
X

ij

✏2ij!
2
ij

 
1

✓̂ij
� 1

✓ij

!2
9
=
;  c2�E

8
<
:
X

ij

!ij

✓
n1n2

N
� 1

✓0

◆2
9
=
;

=c2�E

(
N

✓
n1n2

N
� 1

✓0

◆2
)

= c2� (n1n2)
2
E

⇢
1

N
� 1

n1n2✓0

�
.
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Also E(N) = n1n2✓0 and Taylor expansions for the moments of functions of random variables im-

plies that E(1/N) = 1/(✓0n1n2)+1/(✓0n1n2)
3Var(N)(1+o(1)) = 1/(✓0n1n2)+(1�✓0)/(✓0n1n2)

2(1+

o(1)) due to the fact that E(N � (n1n2)✓0)
4 = o(Var(N)). We have Ek✏ij!ij(n1n2/N � 1/✓0)Jijk 

2c2�(1� ✓0)/✓
2
0.

Due to Markov inequality, we have for 0 < �� < 2, k✏ij!ij(n1n2/N � 1/✓0)Jijk  c2�(1 �

✓0) log
�σ(n)/✓20  c2� log

�σ(n)/✓20 with probability at least 1 � 2 log��σ(n). Since n1n2✓0 > (n1 _

n2) log(n), we have log
�σ(n)/✓20 < (n1_n2) log(n)/✓0. Then we have under the uniform missingness,

for a positive constant C1,
���Ψ(1)

���  C1

p
(n1 _ n2) log (n)p

✓0n1n2

holds with probability at least 1� 1/n� 2 log��σ(n).

Lemma S4.2. Let Ψ(2) =
P

ij A0ij(!ij/✓ij � 1)Jij/(n1n2). Under Conditions C3-C5, there exists

∆
(2) such that

���Ψ(2)
���  ∆

(2) ⇣
p
|1/✓L � 1| (n1 _ n2) log (n)

n1n2

holds with probability at least 1� 1/n.

To prove Lemma S4.2, we utilize Proposition 1 given by Koltchinskii et al. (2011) as an im-

mediate consequence of the Matrix Bernstein Inequality due to Ahlswede and Winter (2002) and

Tropp (2012). For matrix A0, define that:

|A0|
⇤ := max

8
><
>:

vuut max
1in1

Pn2

j=1 |1/✓ij � 1|A2
0,ij

n1n2
,

vuut max
1jn2

Pn1

i=1 |1/✓ij � 1|A2
0,ij

n1n2

9
>=
>;

. (S4.4)

Proof of Lemma S4.2. Let Mn2(i�1)+j = A0ij(!ij/✓ij � 1)Jij . Under Conditions C4 and C5, it is

easy to show that max
k

kMkk  max{1/✓ij � 1, 1}kA0k1  max{1/✓L � 1, 1}kA0k1 and

�M = max

8
<
:

1

n1n2

�����
X

k

E(MkM
|

k )

�����

1/2

,
1

n1n2

�����
X

k

E(M|

kMk)

�����

1/2
9
=
;  |A0|

⇤ .
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Take UM = max{1/✓L � 1, 1}kA0k1. By Proposition 1 of Koltchinskii et al. (2011), we have,

for all t > 0,

���Ψ(2)
���  2max

8
<
:|A0|

⇤

s
t+ log (n)

n1n2
,max

⇢
1

✓L
� 1, 1

�
kA0k1

t+ log (n)

n1n2

9
=
;

with probability at least 1� exp{�t}.

According to (S4.4), under Conditions C3 and C5, we have

|A0|
⇤ 

s
|1/✓L � 1|

n1n2
max

n
kA0k1,2 , kA

|

0k1,2

o
 a2

s
|1/✓L � 1|

n1 ^ n2
.

Under additional Condition C3 and t = log(n), with probability at least 1� 1/n,

���Ψ(2)
���  2 (a1 _ a2)max

(s
2 |1/✓L � 1| log (n)

(n1 ^ n2)n1n2
, 2max

⇢
1

✓L
� 1, 1

�
log3/2 (n)

n1n2

)
:= ∆

(2),

for some positive constants a1 and a2 defined in Condition C3.

Since (n1n2)
�1 log3/2(n) = o{(n1_n2)

1/2(n1n2)
�1 log1/2(n)} and

p
|1/✓L � 1| = o(max{1/✓L�

1, 1}) when ✓L = o(1), we have ∆
(2) ⇣

p
|1/✓L � 1|(n1 _ n2)

1/2(n1n2)
�1 log1/2(n).

Lemma S4.3. Let Ψ
(3) =

P
ij A0ij(!ij/✓̂ij � !ij/✓ij)Jij/(n1n2). Under Conditions C3 and C5,

for all t > t0, there exists ∆
(3)(t) such that

���Ψ(3)
���  ∆

(3) (t) ⇣
p

cn1,n2
t log (n)

n1n2

holds with probability at least 1� g(t)� hn1,n2
.

More specifically, for the uniform missingness, we have ✓ij ⌘ ✓0 and ✓̂ij ⌘ N/(n1n2) and for

0 < �� < 2, such that
���Ψ(3)

��� 
p

2 (n1 _ n2) log (n)a1p
✓0n1n2

holds with probability at least 1� 2 log��σ(n).

Proof of Lemma S4.3. By the inequality (S4.2), we have

���Ψ(3)
���  1

n1n2

���W � Θ̂⇤ �A0 �W �Θ⇤ �A0

���
F

=
1

n1n2

vuutX

ij

A2
0ij!

2
ij

 
1

✓̂ij
� 1

✓ij

!2

 kA0k1
n1n2

vuutX

ij

 
1

✓̂ij
� 1

✓ij

!2

.

17



Under Condition C5,
qP

ij(1/✓̂ij � 1/✓ij)2 
p
cn1,n2

t with probability at least 1�g(t)�hn1,n2
.

It implies that under Condition C3, with probability at least 1� g(t)� hn1,n2
,

���Ψ(3)
��� 

p
cn1,n2

t log (n)a1

n1n2

p
cn1,n2

t log (n) (a1 _ a2)

n1n2

:=∆
(3) (t) ⇣

p
cn1,n2

t log (n)

n1n2
.

Since (n1n2)
�1 log1/2(n) = o((n1n2)

�3/4 log�σ/4(n)), we have ∆
(3)(t) = o(∆(1)(��, t)).

As for the uniform missingness, similarly as the proof in Lemma S4.1, we have that E{1/N �

1/(n1n2✓0)}  2(1� ✓0)/(✓0n1n2)
2. Then for 0 < �� < 2, with probability at least 1� 2 log��σ(n),

k!ij(n1n2/N�1/✓0)Jijk  2(1�✓0) log
�σ(n)/✓20  2 log�σ(n)/✓20  2(n1_n2) log(n)/✓0 for n1n2✓0 >

(n1 _ n2) log(n). Thus it is not hard to conclude that, for 0 < �� < 2, with probability at least

1� 2 log��σ(n),
���Ψ(3)

��� 
p
2 (n1 _ n2) log (n)a1p

✓0n1n2
.

S5 Proofs of Theorem 1 and Corollary 1

Proof of Theorem 1. Under Conditions C1 and C3-C5, Lemmas S4.1-S4.3 show that there exist

constants ∆(1)(��, t), ∆
(2) and ∆

(3)(t) such that

���Ψ(1)
���  ∆

(1) (��, t) ,
���Ψ(2)

���  ∆
(2),

���Ψ(3)
���  ∆

(3) (t) ,

with probability at least 1�1/n�g(t)�hn1,n2
�12c2�⌘

2 log��σ(n), 1�1/n and 1�g(t)�hn1,n2
respec-

tively. As defined in (4.2),∆(��, t) = max{✓
�1/2
L (n1_n2)

1/2(n1n2)
�1 log1/2(n), (n1n2)

�3/4 (cn1,n2
t)1/2 log�σ/4(n)}.

We have for a positive constant C0, ∆
(1)(��, t) +∆

(2) +∆
(3)(t)  C0∆(��, t).

It follows from the closed form of �̂ that

X�̂ �X�0 =X(n�1
1 X|X + n2�1Im⇥m)�1n�1

1 X|

⇣
W � Θ̂⇤ � Y �X�0

⌘

�X(n�1
1 X|X + n2�1Im⇥m)�1n2�1n

�1
1 X�0.
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Take �1 = o(n�1
2 ), n2�1 = o(1), we have X(n�1

1 X|X + n2�1Im⇥m)�1n�1
1 X| = PX(1 + o(1)). It

implies that,

1

n1n2

���X�̂ �X�0

���
2

F
 1

n1n2

���PX

⇣
W � Θ̂⇤ � Y �A0

⌘���
2

F
(1 + o (1)) + n2

2�
2
1 kX�0k2F (1 + o (1))

 m

n1n2

���PX

⇣
W � Θ̂⇤ � Y �A0

⌘���
2
(1 + o (1)) + n2

2�
2
1 kX�0k2F (1 + o (1))

2mn1n2

�
C2
0∆

2(��, t) + a1n
2
2 {log (n)}�

2
1

�

with the probability at least 1� 2/n� 2g(t)� 2hn1,n2
� 12c2�⌘

2 log��σ(n).

It follows from the definition of �̂ and B̂ that

1

n1n2

���Â�W � Θ̂⇤ � Y
���
2

F
+ �1

����̂
���
2

F
+ �2

✓
↵
���B̂

���
⇤
+ (1� ↵)

���B̂
���
2

F

◆

 1

n1n2

���X�̂ +B0 �W � Θ̂⇤ � Y
���
2

F
+ �1

����̂
���
2

F
+ �2

⇣
↵ kB0k⇤ + (1� ↵) kB0k2F

⌘
. (S5.1)

Since we can rewrite the first term in the left hand side of (S5.1) as

1

n1n2

���Â�W � Θ̂⇤ � Y
���
2

F
=

1

n1n2

���X�̂ + B̂ �B0 +B0 �W � Θ̂⇤ � Y
���
2

F
,

the inequality (S5.1) is equivalent to

1

n1n2

���B̂ �B0

���
2

F
 2

n1n2

⇣D
B̂ �B0,W � Θ̂⇤ � ✏

E
+
D
B̂ �B0,W �Θ⇤ �A0 �A0

E

+
D
B̂ �B0,X�0 �X�̂

E
+
D
B̂ �B0,W � Θ̂⇤ �A0 �W �Θ⇤ �A0

E⌘

+ �2↵
⇣
kB0k⇤ �

���B̂
���
⇤

⌘
+ �2 (1� ↵)

✓
kB0k2F �

���B̂
���
2

F

◆
.

We focus on the bound related to kB0k⇤ in (4.3), namely,

d2
⇣
B̂,B0

⌘
C 0max

n
�2↵ kB0k⇤ ,�2 (1� ↵) kB0k2F , n1n2∆

2 (��, t)
o
, (S5.2)

first. By the trace duality property given in (S4.1), with probability at least 1 � 2/n � 2g(t) �

2hn1,n2
� 12c2�⌘

2 log��σ(n), we have

1

n1n2

���B̂ �B0

���
2

F
 2

���B̂ �B0

���
⇤

⇣���Ψ(1)
���+

���Ψ(2)
���+

���Ψ(3)
���
⌘

+�2↵
⇣
kB0k⇤ �

���B̂
���
⇤

⌘
+ �2 (1� ↵)

✓
kB0k2F �

���B̂
���
2

F

◆

 2C0

⇣���B̂
���
⇤
+ kB0k⇤

⌘
∆ (��, t) + �2↵

⇣
kB0k⇤ �

���B̂
���
⇤

⌘
+ �2 (1� ↵)

✓
kB0k2F �

���B̂
���
2

F

◆
.
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For 0 < ↵  1 and �2↵ � 2C0∆(��, t), we can simplify the inequality to

1

n1n2

���B̂ �B0

���
2

F
 (2C0∆ (��, t) + �2↵) kB0k⇤ + �2 (1� ↵) kB0k2F ,

with probability at least 1� 2/n� 2g(t)� 2hn1,n2
� 12c2�⌘

2 log��σ(n).

Now we focus on the bound related to rB0
in (4.3), namely,

d2
⇣
B̂,B0

⌘
 C 0max

n
n1n2rB0

(�2↵)
2 ,�2 (1� ↵) kB0k2F

o
. (S5.3)

To prove the remaining bounds, note that for any Z 2 @kB0k⇤, we have kB0k⇤+hZ, B̂�B0i 

kB̂k⇤. The inequality (S5.1) implies, for any Z 2 @kB0k⇤

1

n1n2

���B̂ �B0

���
2

F
(S5.4)

 2

n1n2

D
B̂ �B0,W � Θ̂⇤ � Y �B0 �X�̂

E
+ �2↵

D
Z,B0 � B̂

E
+ �2 (1� ↵) kB0k2F .

On the other hand, by definition of @kB0k⇤, Z =
PrB0

i=1 u
(i)
B0

v
(i)T
B0

+PB?
u
WPB?

v
, where W is an

arbitrary matrix with kW k  1. It follows from the trace duality (S4.1) that there exists W with

kW k  1 such that

D
PB?

u
WPB?

v
,B0 � B̂

E
= �

D
PB?

u
WPB?

v
, B̂

E
=
D
W ,PB?

u
B̂PB?

v

E
=
���PB?

u
B̂PB?

v

���
⇤
.

For this particular choice of W , (S5.4) implies that

1

n1n2

���B̂ �B0

���
2

F
+ �2↵

���PB?
u
B̂PB?

v

���
⇤

(S5.5)

 2

n1n2

D
B̂ �B0,W � Θ̂⇤ � Y �B0 �X�̂

E
+ �2↵

*rB0X

i=1

u
(i)
B0

v
(i)T
B0

,B0 � B̂

+
+ �2 (1� ↵) kB0k2F .

Using the facts that k
PrB0

i=1 u
(i)
B0

v
(i)T
B0

k = 1 and h
PrB0

i=1 u
(i)
B0

v
(i)T
B0

,B0�B̂i = h
PrB0

i=1 u
(i)
B0

v
(i)T
B0

,PBu
(B0�

B̂)PBv
i, we deduce from (S5.5) that

1

n1n2

���B̂ �B0

���
2

F
+ �2↵

���PB?
u
B̂PB?

v

���
⇤

(S5.6)

2
D
B̂ �B0,M

E
+ �2↵

���PBu

⇣
B0 � B̂

⌘
PBv

���
⇤
+ �2 (1� ↵) kB0k2F ,

where M = (W � Θ̂⇤ � Y �B0 �X�̂)/(n1n2).
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To provide an upper bound on 2hB̂ �B0,Mi we use the following decomposition:

D
B̂ �B0,M

E
=
D
B̂ �B0,PB0

(M)
E
+
D
B̂ �B0,PB?

u
MPB?

v

E

=
D
PB0

⇣
B̂ �B0

⌘
,PB0

(M)
E
+
D
B̂,PB?

u
MPB?

v

E
,

where PB0
(M) = M � PB?

u
MPB?

v
. Due to the trace duality (S4.1),

2
���
D
B̂ �B0,M

E��� Λ

���PB0

⇣
B̂ �B0

⌘���
F
+ Γ

���PB?
u
B̂PB?

v

���
⇤

Λ

���B̂ �B0

���
F
+ Γ

���PB?
u
B̂PB?

v

���
⇤
,

where Λ = 2kPB0
(M)kF and Γ = 2kPB?

u
(M)PB?

v
k. Note that Γ  2kMk  2C0∆(��, t) := Γ

?.

Since PB0
(M) = PB?

u
MPBv

+ PBu
M , rank(PBu

)  rB0
and rank(PBv

)  rB0
, we have

Λ  2
p
rank (PB0

(M))kPB0
(M)k  2

p
2rB0

C0∆ (��, t) := Λ
?.

Due to the facts that

���PBu

⇣
B0 � B̂

⌘
PBv

���
⇤
 p

rB0

���PBu

⇣
B0 � B̂

⌘
PBv

���
F
 p

rB0

���B0 � B̂
���
F
,

we have

1

n1n2

���B̂ �B0

���
2

F
+ �2↵

���PB?
u
B̂PB?

v

���
⇤


�
Λ+ �2↵

p
rB0

� ���B̂ �B0

���
F
+ Γ

���PB?
u
B̂PB?

v

���
⇤
+ �2 (1� ↵) kB0k2F ,

which implies

1

n1n2

���B̂ �B0

���
2

F
+ (�2↵� 2C0∆(��, t))

���PB?
u
B̂PB?

v

���
⇤


�
Λ+ �2↵

p
rB0

� ���B̂ �B0

���
F
+ �2 (1� ↵) kB0k2F .

Take �2↵ � 2C0∆(��, t), we have

1

n1n2

���B̂ �B0

���
2

F
 n1n2rB0

⇣
2
p
2C0∆ (��, t) + �2↵

⌘2
+ 2�2 (1� ↵) kB0k2F .

Note that 2C0∆(��, t)  �2↵, this means (S5.3) holds.

Finally, in Theorem 1, under the choice of parameters 0 < ↵  1 and �2↵ � (2+4m)C0∆(��, t),

we have n1n2C
2
0∆

2(��, t)  n1n2rB0
(�2↵)

2. Thus (4.3) follows from (S5.2) and (S5.3).
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Proof of Corollary 1 and Corollary 2. For Corollary 1, it is readily shown that
p

n1n2✓0/(1� ✓0)(1/✓̂�

1/✓0)
d! N (0, 1). Since P{(1/✓̂�1/✓0)

2 � (1� ✓0)t/✓0  P{�2
1 > t}+supt |P{�

2
1 > t}�P{✓0(1/✓̂�

1/✓0)
2/(1 � ✓0) � t}| where �2

1 is the chi-square random variable with one degree of freedom.

Choose cn1,n2
= (1 � ✓0)/✓0, t0 > 0, g(t) = P{�2

1 > t} and hn1,n2
= sup

t
|P{✓0(1/✓̂ � 1/✓0)

2/(1 �

✓0) � t} � g(t)| in Condition C5(b). While that lim
t!1

g(t) = 0 is obvious, by Polya’s theorem,

lim
n1,n2!1

hn1,n2
= 0. Thus Condition C5(b) holds for any positive t under the uniform probabil-

ity of observation model. Under Condition C2 and C3, we have kB0kF = O{
p
n1n2 log(n)} and

kX�0kF = O{
p
n1n2 log(n)}. Thus the dominate term in the right hand side is n1n2rB0

∆
2
1.

For Corollary 2, it is shown in Section S1.4 that by taking cn1,n2
= ⌘�1

g n2 log(n2) and t0 =

(m+ 3), we have

P

8
<
:

n2X

j=1

n1X

i=1

 
1

✓̂ij
� 1

✓ij

!2

� cn1,n2
t

9
=
;  (m+ 1)�(m+1)/2 exp

⇢
m+ 2� t

2
+ log (t)

�
+ n2kn1

where ⌘g is a constant depend on ✓L, �
2
m+1 is the chi-square random variable with m + 1 degrees

of freedom, and kn1
= max

j
sup
t
|P{

P
i(1/✓̂ij � 1/✓ij)

2 � t}� P(�2
m+1 � t)|.

Take g(t) = (m+1)�(m+1)/2 exp{m+2� t/2+log(t)}, and hn1,n2
= n2kn1

. Then, lim
t!1

g(t) = 0.

By Polya’s theorem, it is shown in Section S1.4 that there exists a positive integer N such that

for n1 > N and kn1
< 1/n2

2, which implies that lim
n1,n2!1

hn1,n2
= 0. Thus Condition C5(b) holds

for any positive t > t0 for the logistic model. Choose t as (4.5), we have sup
t
∆(��, t) = ∆2(��) ⇣

⌘
�1/2
g n

�3/4
1 n

�1/4
2 log1/2(n2) log

�σ/3(n). This implies that the convergence rate for d2(Â,A0) given

in (4.3) is ⌘�1
g n

�1/2
1 n

1/2
2 log(n2) log

2�σ/3(n). Under Condition C2 and C3, we have kB0kF =

O{
p
n1n2 log(n)} and kX�0kF = O{

p
n1n2 log(n)}. Thus the dominate term in the right hand

side is n1n2rB0
∆

2
2(��).

Assume that n1 ⇣ ⌘2gn2 log
2+2�σ(n2), then right hand side becomes rB0

log�2�σ/3(n2).
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S6 Proof of Theorem 2

Proof of Theorem 2. Since that �1 = o(n�1
2 ), n2�1 = o(1), we have

�
n�1
1 X|X + n2�1Im⇥m

��1 ! S�1
x .

We have the estimators ✓̂ij of ✓ij satisfy that for |✓̂ij � ✓ij | = Op(n
�1/2
1 ). Thus for the jth column

of matrix W � Θ̂⇤ � Y , we have

⇣
W � Θ̂⇤ � Y

⌘
j
=
⇣
W �

⇣
1 +Op

⇣
n
�1/2
1

⌘⌘
Θ

⇤ � Y
⌘
j
.

Let Zj = n�1
1 X|(W � Θ

⇤ � Y )j . Then Zkj = n�1
1

Pn1

i=1 xik!ijYij/✓ij for each k = 1, . . . ,m.

Since E(xik!ijYij/(n1✓ij)) = xik(X�0 + B0)ij/n1, Var(xik!ijYij/(n1✓ij)) = x2ik(1 � ✓ij){(X�0 +

B0)
2
ij + �2

ij}/(n
2
1✓ij), define s2n1

=
Pn1

i=1 x
2
ik(1� ✓ij){(X�0 +B0)

2
ij + �2

ij}/(n
2
1✓ij). Also we have

E

���xik!ijYij/ (n1✓ij)� xik (X�0 +B0)ij /n1

���
3
=
⇣
x3ik(1� ✓ij){(X�0 +B0)

3
ij + (X�0 +B0)ij�

2
ij}/✓

2
ij

�3x3ik (1� ✓ij) {(X�0 +B0)
3
ij + (X�0 +B0)ij �

2
ij}/✓ij + 2x3ik (X�0 +B0)

3
ij

⌘
/n3

1,

implies the Lyapunovs condition satisfied, namely,

lim
n1!1

1

s3n1

n1X

i=1

E

���xik!ijYij/✓ij � xik (X�0 +B0)ij

���
3
= 0.

By Lyapunov Central Limit Theorem, we have

1

sn1

n1X

i=1

⇣
xik!ijYij/ (n1✓ij)� xik (X�0 +B0)ij /n1

⌘
d! N (0, 1) .

Combining with n�1
1 X|X ! Sx, we have Zj = n�1

1 X|(W �Θ⇤ �Y )j = Sx�0j +Op(1/
√

n1).

For the estimator �̂j = (n�1
1 X|X+n2�1Im⇥m)�1n�1

1 X|(W �Θ̂⇤�Y )j = (1+o(1))S�1
x n�1

1 X|(W �

(1 + Op(n
�1/2
1 ))Θ⇤ � Y )j , we have �̂j � �0j

p! 0 and k�̂j � �0jk2F = Op(m/n1) = Op(1/n1). This

completes the proof of Theorem 2.
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Table S1: Empirical root mean square errors (RMSEs), test errors, estimated ranks and their

standard errors (in parentheses) under model A0 = B0 and uniform observation mechanism (UNI),

with (n1, n2)=(400,400), (600,600), (800,800), (1000,1000) m = 20, and r = 10, for two versions of

the proposed methods, and the four existing methods (SZ, NW, KLT and MHT).

n1 = n2 = 400 RMSE(�0) RMSE(B0) RMSE(A0) Test error Rank

SVT-↵̂-UNI 0.0121 (1e-04) 2.2346 (0.015) 2.2354 (0.015) 0.5723 (0.0071) 62.41 (1.59)
dSVT-↵̂-UNI 0.0121 (1e-04) 2.2342 (0.015) 2.2350 (0.015) 0.5721 (0.0071) 62.23 (1.58)

SZ 2.1082 (0.0167) 0.5059 (0.0076) 46.76 (2.74)

NW 2.0417 (0.0172) 0.4722 (0.0076) 94.48 (5.73)

KLT 2.2565 (0.0148) 0.5827 (0.007) 42.07 (1.58)

MHT 2.0550 (0.0171) 0.4796 (0.0076) 51.42 (2.57)

n1 = n2 = 600 RMSE(�0) RMSE(B0) RMSE(A0) Test error Rank

SVT-↵̂-UNI 0.0147 (1e-04) 2.0246 (0.0104) 2.0257 (0.0104) 0.4540 (0.0044) 75.82 (1.49)
dSVT-↵̂-UNI 0.0147 (1e-04) 2.0206 (0.0105) 2.0217 (0.0105) 0.4521 (0.0044) 74.51 (1.4)

SZ 1.8500 (0.0132) 0.3725 (0.0048) 58.17 (5.15)

NW 1.7794 (0.013) 0.3425 (0.0047) 120.92 (10.29)

KLT 2.0389 (0.0106) 0.4594 (0.0045) 55.49 (1.49)

MHT 1.7902 (0.011) 0.3476 (0.0042) 66.43 (2.46)

n1 = n2 = 800 RMSE(�0) RMSE(B0) RMSE(A0) Test error Rank

SVT-↵̂-UNI 0.0170 (1e-04) 1.8712 (0.0093) 1.8728 (0.0092) 0.3794 (0.0036) 85.54 (1.38)
dSVT-↵̂-UNI 0.0170 (1e-04) 1.8617 (0.0093) 1.8633 (0.0093) 0.3753 (0.0036) 82.46 (1.19)

SZ 1.6731 (0.0105) 0.2956 (0.0034) 60.91 (5.64)

NW 1.6055 (0.0085) 0.2707 (0.0029) 130.13 (6.05)

KLT 1.8817 (0.0092) 0.3824 (0.0036) 64.86 (1.36)

MHT 1.6107 (0.0099) 0.2734 (0.0032) 80.98 (6.26)

n1 = n2 = 1000 RMSE(�0) RMSE(B0) RMSE(A0) Test error Rank

SVT-↵̂-UNI 0.0185 (1e-04) 1.7238 (0.0073) 1.7258 (0.0073) 0.3275 (0.0027) 93.03 (1.36)
dSVT-↵̂-UNI 0.0185 (1e-04) 1.7090 (0.0073) 1.7111 (0.0073) 0.3216 (0.0026) 88.14 (1.12)

SZ 1.5076 (0.0069) 0.2435 (0.0023) 72.89 (2.72)

NW 1.4485 (0.0103) 0.2234 (0.0029) 157.62 (18.01)

KLT 1.7317 (0.0073) 0.3291 (0.0027) 72.37 (1.27)

MHT 1.4556 (0.0068) 0.2260 (0.0021) 85.43 (2.48)
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S7 (Cont’) Simulation study

S8 (Cont’) Empirical Study

As suggested at http://files.grouplens.org/datasets/movielens/ml-1m-README.txt, we di-

vide age into 7 categories: under 18, 18 � 24, 25 � 34, 35 � 44, 45 � 49, 50 � 55 and 56+ in the

modeling of probability estimator Θ̂⇤. However, it will cost much more ranks than keep it as nu-

merical in the covariate X for prediction. To achieve a balance, we merge some age categories to

form three to seven categories of the age variable. Specifically, the three categories layout is: under

24, 25� 49 and 50+; the four categories: under 24, 25� 34, 35� 49 and 50+; the five categories:

under 24, 25� 34, 35� 44, 45� 49 and 50+; the six categories: under 18, 18� 24, 25� 34, 35� 44,

45 � 49 and 50+; and the seven categories:under 18, 18 � 24, 25 � 34, 35 � 44, 45 � 49, 50 � 55

and 56+. The predictions errors of using the four and five age categories are the best among the

choices of three to seven categorization of the age.

Table S2: Root mean square prediction errors (RMSPEs) and ranks of the completed matrix based

on Split1 and Split2 for the two versions of the proposed method (SVT-↵̂-LOG) and (dSVT-↵̂-LOG)
and the four existing methods proposed respectively in Sun and Zhang (2012)(SZ), Negahban and

Wainwright (2012)(NW), Koltchinskii et al. (2011)(KLT) and Mazumder et al. (2010)(MHT).

Split1 Split2 Overall

rank(X) RMSPE Rank RMSPE Rank RMSPE

2 SVT-↵̂-LOG 0.9415 47 0.9541 45 0.9478
dSVT-↵̂-LOG 0.9416 45 0.9543 42 0.9480

4 SVT-↵̂-LOG 0.9420 48 0.9540 42 0.9480
dSVT-↵̂-LOG 0.9423 46 0.9540 42 0.9482

5 SVT-↵̂-LOG 0.9420 49 0.9544 43 0.9483
dSVT-↵̂-LOG 0.9422 47 0.9544 43 0.9483

SZ 0.9412 39 0.9563 31 0.9488

NW 0.9421 269 0.9589 289 0.9506

KLT 0.9584 1 0.9688 1 0.9636

MHT 0.9414 56 0.9568 46 0.9491

Table S2 reports the root mean square prediction errors (RMSPEs), estimated ranks and overall
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RMSPEs of different estimators for both Split1 and Split2. The result with two categorical covariate

X are included. Similarly as the simulation results reported in the Section 6, SVT-↵̂-LOG and

dSVT-↵̂-LOG produced highly comparable results, which indicated the applicability of dSVT-↵̂-LOG

to larger data sets whenever computational resources are scarce. In Split2, the proposed methods

outperformed SZ NW, KLT and MHT in terms of smaller RMSPEs and either smaller or more

reasonable rank estimation. Although the proposed methods were slightly inferior to SZ and MHT

in Split1, they outperformed SZ andMHT significantly in Split2 by having smaller RMSPEs. Among

the ten matrix completion methods considered, the six proposed methods and the KLT method

offered the most consistent results between Split1 and Split2, while the other three methods exhibited

much larger variations, especially in the estimated ranks. Overall speaking, the two proposed

methods were among the top two performers of the analysis reported in Table S2.
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