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Abstract

This paper investigates the problem of matrix completion from corrupted data, when addi-
tional covariates are available. Despite being seldomly considered in the matrix completion liter-
ature, these covariates often provide valuable information for completing the unobserved entries
of the high-dimensional target matrix Ay. Given a covariate matrix X with its rows represent-
ing the row covariates of Ay, we consider a column-space-decomposition model Ag = X 3y + By
where (3 is a coefficient matrix and By is a low-rank matrix orthogonal to X in terms of col-
umn space. This model facilitates a clear separation between the interpretable covariate effects
(X Bo) and the flexible hidden factor effects (By). Besides, our work allows the probabilities
of observation to depend on the covariate matrix, and hence a missing-at-random mechanism
is permitted. We propose a novel penalized estimator for Ay by utilizing both Frobenius-norm
and nuclear-norm regularizations with an efficient and scalable algorithm. Asymptotic conver-
gence rates of the proposed estimators are studied. The empirical performance of the proposed

methodology is illustrated via both numerical experiments and a real data application.
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1 Introduction

In recent years the problem of recovering a low-rank data matrix from relatively few observed
entries has drawn significant amount of attention. This problem arises from a variety of applications
including collaborative filtering, computer visions and positioning. In these applications, the low-
rank assumption is often used to reflect the belief that rows (or columns) are generated from a
relatively few number of hidden factors. For instance, in the Netflix prize problem (Feuerverger
et al., 2012), viewers’ ratings are assumed to be adequately modeled by a few hidden profiles.

In the noiseless setting, earlier works (Candes and Recht, 2009; Recht, 2011) have established
strong theoretical guarantees on perfect matrix recovery. A typical form of this remarkable result
is stated as follows. An ni-by-ng matrix Ag of rank r4,, fulfilling certain incoherence conditions,
can be recovered exactly with high probability from ¢(nj + ng2)ra, log?(n1 + ng) observed entries
sampled uniformly at random via a convex and tractable constrained nuclear norm minimization
for a positive constant ¢. As for the noisy setting where observed entries are corrupted by noise,
extensive works on matrix completion (Candes and Plan, 2010; Koltchinskii et al., 2011; Rohde and
Tsybakov, 2011) can be found under various forms of noise assumptions.

Some applications come with covariate information in the form of additional row and/or column
information. For instance, the MovieLens 100K data set (Harper and Konstan, 2016) has both
viewer demographics (age, gender, occupation and zip code) and movie features (release date and
genre). These row and column covariates play similar roles as covariates in regression analysis
and therefore can potentially lead to significant improvements in matrix recovery. Recent works
(Abernethy et al., 2009; Natarajan and Dhillon, 2014) have shown such promises. In the noiseless
setting, theoretical guarantees of perfect matrix recovery with covariates are available (Xu et al.,
2013; Chiang et al., 2015). Yet, there have been limited attempts with theoretical results at the
more realistic setting where observed entries are corrupted by noise. One notable study is the
work by Zhu et al. (2016), which study a partial latent model for personalized prediction and its

likelihood estimation.



Moreover, the probabilities of observation may vary with respect to the row and/or column
attributes. As suggested by our real data analysis of the MovieLens data (Section 7), the sampling
mechanism of the ratings varies across different viewer groups. The earlier literature of matrix
completion (Candes and Recht, 2009; Abernethy et al., 2009; Keshavan et al., 2009; Recht, 2011;
Rohde and Tsybakov, 2011; Koltchinskii et al., 2011) focused on uniform sampling mechanism,
where each entry has the same marginal probability of being sampled. There are recent studies
(Srebro and Salakhutdinov, 2010; Negahban and Wainwright, 2012; Klopp, 2014; Cai and Zhou,
2016; Cai et al., 2016; Bi et al., 2016) devoted to relaxing such restrictive assumption to the
nonuniform case, where probabilities of observation are allowed to be different across rows and
columns to some extent. However, the covariates are not taken into account in the modeling of
the probabilities of observation. Driven by the aforementioned empirical observation, we model
probabilities of observation with a missing-at-random (MAR) mechanism, where the probability of
observation is independent of the matrix entry when conditional on the covariates.

In this paper we utilize the covariate information in both modelings of the observation proba-
bility and the completion of the target matrix. We focus on the use of only row (or equivalently
column) covariates and leave the joint usage of both row and column covariates as a future work.

More specifically, we consider a column-space-decomposition model of a target matrix Ay € R™1*"2;

Ao = X Bo + Bo,

where X € R™*™ jg a covariate matrix with its rows representing the row covariates of Ay,
Bo € R™*"2 ig a coefficient matrix, and By € R™*"2 is a low-rank matrix. To ensure identification,
the column spaces of X and By are orthogonal. The above model shares some similarities with a
recent work by Zhu, Shen, and Ye (2016), but differs in the aspect that they did not impose the
orthogonality condition.

The purpose of considering covariate information is to improve the accuracy of the completion
of Ap and By. It is achieved by estimating By and By via minimizing a regularized empirical

risk which allows separation with respect to B and B. This means that the proposed estimators



B and B can be computed separately by two separate minimizations, which is scalable and non-
iterative. Specifically, unlike many matrix completion algorithms that involve multiple singular
value decompositions (SVD), our computation requires only one single SVD. This SVD can be
re-used in computations of the proposed estimators with respect to different tuning parameters,
which leads to significant computation reduction in tuning parameter selection. In addition, our
algorithm can be coupled with the fast randomized singular value thresholding (FRSVT) procedure
(Oh et al., 2015) for efficient computation in large matrix completion problems.

As for theoretical properties, we first provide a general asymptotic upper bounds for the mean
squared error (MSE) achieved by the completed matrices under a general missing mechanism,
followed by specific results for uniform missing and MAR satisfying the logistic regression. To
demonstrate the benefits of including the covariate information, we show a faster convergence of
the covariate part X B than the low-rank part B. In addition, we provide a non-asymptotic upper
bound for the mean squared error (MSE) of the completed matrix B and show it is no larger
than the one by Koltchinskii et al. (2011) under the uniform missingness. Besides, the proposed
matrix completion is shown to attain the minimax optimal rate (up to a logarithmic factor) in the
estimation of both the entire matrix and its lower rank part B under the uniform missingness.
Additional results for non-uniform missingness are also provided.

The rest of the paper is organized as follows. The proposed model is constructed in Section
2. The associated estimation, computation and tuning parameter selection are all developed in
Section 3 while the asymptotic convergence rates are given in Section 4. In Section 5, we discuss
the benefit of the covariate information with a set of theoretical results. Numerical performances
of the proposed method are illustrated in a simulation study in Section 6 and an application to
a MovieLens dataset in Section 7. Concluding remarks are given in Section 8, while all technical

details are delegated to a supplementary material.



2 Proposed model

Let Ag = (Ap;j) € R™*™ be an unknown high dimensional matrix of interest, and Y = (Y};) be
a contaminated version of Ay where only a portion of {Y;} is observed. For the (,j)-th entry,
consider the sampling indicator w;; = 1 if Y;; is observed, and 0 otherwise. The contamination
follows the model:

Y;‘j:AQij—{—eij, fori=1,....,n1;j=1,...,n9, (2.1)

where {¢;;} are independently distributed random errors with zero mean and finite variance. We
assume that {¢;;} are independent of {w;;}.

In additional to the incomplete matrix Y, we have an accompanying covariate matrix X =
(x1,...,@py)T € R where x; € R™*! for i = 1,...,n1. Each row of X, namely ], records
m covariates associated with the corresponding row of Ay. We assume that Ay is nonrandom
given the covariates X. For notational simplicity, X is assumed to be nonrandom. Compared with
common settings of matrix completions, our setting has an additional covariate matrix X, which
is treated as an additional piece of information for the recovery of Ag.

Regarding the sampling (or missingness) mechanism, we adopt the Bernoulli model w;; ~
Bernoulli(6;;(x;)) where the observation probabilities may depend on the covariate. For notational
simplification, we denote 0;; = 0;;(x;) in the rest of the paper. The detailed assumptions of {e;;}
and {0;;} are specified in Conditions C1 and C4 in Section 4.

Prior to the discussion of our model, we briefly present two existing models of Ay. The first one
is a low-rank model of Ay which assumes each row (or column) of Ay is a linear combination of a
small number of hidden factors. This assumption stems from the classical factor model. The second
one assumes Ag is modeled as X 3y with a coefficient matrix By € R™*"2, where the problem of
recovering Ag can be treated as a classical multivariate regression (Mardia et al., 1980; Freedman,
2009) (with missingness). This linear modeling affords easy interpretation of the covariate effect.

Our model is a combination of these two models, aiming to incorporate the covariate effect as

well as to allow the hidden factor effect for accurate estimation of Ag. To allow separation of these



two effects, we project Ag to the column space of X and its orthogonal complement such that
Ay = Px Ay + P§Ag, where Px = X(XTX) !XT and P§ =1 — Px.
By assuming that By = P% Ay is of low rank, and Px A is linear in X such that Px Ay = X Gy,

we have a specification of Ag in (2.1):
Ao = X B + Bo, (2.2)

The low-rank assumption of By implies that By = UpV where Uy € R™*"Bo, V;; € R"2*"Bo and
rB, is the rank of By with rg, < min{ni,na}.

Let Uy = (X,Up) and V = (B, Vo), then Ay = f]gVOT. When compared with the typical
matrix completion, model (2.2) has part of the column space of Ay being known due to X. The
coefficient matrix By signifies the strengths of the m covariate effects with respect to the no columns
of Ay and permits more interpretability in addition to the completion of Ag. The goal of this paper
is to recover the matrix Ag = X By + By, together with the coefficient matrix By and the low-rank
matrix By, in the presence of observation noise.

Our model shares some similarities with a recent work by Zhu, Shen, and Ye (2016), which
allows the joint usage of row and column covariates. When only row covariates are used, the

authors studied a model similar to (2.2) under the restriction that By = (e, ..., ), where o € R™.

3 Estimation

3.1 Estimation of 3, and B,

We develop the estimators of By and By based on the framework of regularized empirical risk
minimization. Define C(X) be the column space of a matrix X, N(X) = {B € R"*"2 : C(B) L
C(X)}, W = (w;;) and ©* = (9;1) For any B € R™*"2 and B € N(X), we consider a population
risk function

1 *
R(B.B)= —E(|XB+B-Woe oY[}),



where o is the Hadamard product and || - || stands for the Frobenius norm. Our interest of this
risk function originates from the following result established in Section S1 of the supplementary

material.

Proposition 1. Suppose that XTX is invertible. Under Conditions C1(a) and Cj stated in Section

4, (Bo, Bo) uniquely minimizes the risk function R(3, B).

One nice feature of R is that 8 and B can be separated orthogonally. To appreciate this,
we observe that the inner product (X8 — Px(W o ®*0Y),B— P5x(Wo0®*0oY)) = 0 for any

B € N(X). Consequently,

R(8,B) = nllng [E{HX,B—PX (Wo@*oY)\|§}+E{HB—P§ (Wo@)*oY)H;H .

This decomposition will facilitate the fast computation of the proposed estimators and simplify
their theoretical analyses.

If {6;;} were known, a natural unbiased estimator of R would be

R(8,B) = —— {||XB _Px (Wo® oY)|%+ HB _ Pt (W o©* oY)Hi}. (3.1)

ning
As {0;;} are often unknown, we modify R by plugging in consistent estimators {67”} of {6;;}. We
note that our proposed matrix recovery method can accommodate a variety of models of {6;;}.
To achieve various theoretical guarantees, {;;} are only required to fulfill a mild condition (C5 in

Section 4) under the chosen model of {f;;}. In the following, instead of R, we consider

1

ninz

R*(8,B) = {HX[}—PX (Woé*oY)HiJrHB—P)% (Wo@*oY)Hi}, (3.2)

where ©* = (é;l) € R™*”2 contains reciprocals of the estimated observed rates {é,j}
Since B and B are high dimensional parameters, a direct minimization of R* would often result
in over-fitting. To avoid such an issue, we incorporate penalty terms as regularizations. Specifically,

the estimators (3, B) is defined as the minimizer of

F (8, B A, 2,0) = R (8, B) + A Bl + 2z (a | BIL. + (1 - o) | BII}) (33)
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with respect to 8 € R™*"2 and B € N(X), where | - ||« is the nuclear norm and, A\j, Ay > 0
along with 0 < a < 1 are regularization parameters. The two Frobenius norm terms, A;||3]|% and
A2(1 — )||BJ|%, are equivalent to the computationally efficient fo-shrinkage of vec(3) as well as
vec(B), while the nuclear norm term, A\a«r||B|«, corresponds to the sparsity-promoting ¢;-shrinkage
of the singular values of B. The combination of these regularizations allows efficient computation
and encourages the low-rank solution. Here the parameter « strikes a balance between the ¢; and
fo-shrinkage of B. In our theoretical analysis, either &« = 1 or & — 1 would lead to the convergence
of the proposed estimators. However, it is known that an appropriate amount of ¢>-regularization
often improves finite sample performance (Zou and Hastie, 2005; Sun and Zhang, 2012). Hence,
instead of fixing o = 1, we select «, together with A\; and A, by the 5-fold cross-validation (Friedman
et al., 2013).

Due to the orthogonal separation of 3 and B in (3.2), the minimization of (3.3) is equivalent

to the following two separate minimizations:

A~ 1 R 2
= argmi XB-P O oY)+ 8% ¢ and 4
B géifili{nmz H B X(WO o ) = 1||5||F} an (3.4)

A~ 1 R 2
B = argmin HB—PL Wo® oY H + X2 (| Bll, + (1 — o) || B } 3.5
Bfmm{nm 5 ( ), 42 (@Bl +a-a)BI) (3.5)

3.2 Closed-form expressions and fast computation

We discuss how to compute 3 and B given in (3.4) and (3.5). As (3.4) is essentially a ridge

regression problem, straightforward algebra gives
B=(XTX + NiIyxm) ' XT(Wo® oY), (3.6)

where A| = ninaA\1 and I,;,x,, denotes the m-by-m identity matrix. We observe that the matrix
inversion in (3.6) is performed to a m-by-m matrix, which does not scale with n; and ns. So it can
be computed quite efficiently despite the high dimensionality of A. As for the solution B in (3.5),
the minimization over B € N (X)) is not straightforward. The following proposition, whose proof is

given in Section S1 of the supplementary material, shows that the minimization problem (3.5) can



be carried out by extending the domain from A(X) to R™*"2, This domain enlargement reduces

the complexity of the minimization.

Proposition 2. Suppose that XTX is invertible, the minimization problem (3.5) is equivalent to

1 . 2
arg min { HB — Py (Wob oY) H + e (@B, + (1 - a) \\BH%)} .37
BcRn"1%Xn2 ning F

An advantage of (3.7), over (3.5), is the availability of a closed-form solution based on existing
results on singular value shrinkage (Mazumder et al., 2010) described as follows. To express the so-
lution, let UXV'T be the singular value decomposition (SVD) of a matrix D where 3 = diag({o;}).

Define the corresponding singular value soft-thresholding (SVT) operator 7. by
Te (D) = Udiag({(o; — ¢) . })VT for any ¢ > 0, (3.8)

where x4 = max(z,0). As suggested by its name, this operator soft-thresholds the singular values
of the input matrix D at a specified threshold c. It can be shown that the solution of (3.7) possesses

the following closed-form expression:

B:1+2(11—a))\’2 {Ta”z (P)% <WO(;)*°Y)>}’ (3:9)

where A\, = ninaAa/2. The proof of this result follows from the proof of Theorem 1 in Mazumder

et al. (2010), which utilizes simple sub-gradient arguments after re-parameterizing the variable B
of (3.7) in terms of its singular values and singular vectors. The explicit solution (3.9) indicates
that both the singular value soft-thresholding procedure (7y,) and a scaling procedure (1/{1 +
2(1 — @)M,}) are involved in B. Observe that these two procedures arise separately from the
nuclear norm regularization and the Frobenius norm regularization. When o = 1 (only nuclear
norm regularization), (3.9) involves no scaling. As for o = 0 (only Frobenius norm regularization),
no soft-thresholding is administrated.

Among existing matrix completion algorithms, a set of them (Troyanskaya et al., 2001; Mazumder
et al., 2010; Ma et al., 2011) require iterative applications of SVD to nj-by-ns matrices. In contrast,

the computation of B in (3.9) requires only a single SVD of the matrix Py (W o ©* oY) due to



the application of T, X, Specifically, to obtain B with respect to multiple choices of A, (or A2) and
«, the exact same SVD is needed. This is particularly favorable to tuning parameter selection, and
allows us to perform the k-fold cross-validation procedure (Mazumder et al., 2010; Xu et al., 2013;
Chiang et al., 2015) with much reduced computational burden. In all of our numerical evaluations,
we choose k = 5. As for most alternative matrix completion algorithms, iterative applications of
SVD need to be re-applied for every choice of tuning parameters, leading to a nested loop of SVDs
and hence significant computational burden.

To further improve the computational efficiency of our method, we provide an approximate com-
putational procedure for the low-rank solutions (3.7). This approximate procedure is particularly
useful, when n1 and no are large, as the computation of a full SVD requires significant computational
resources. The key component is the fast randomized singular value (soft-)thresholding (FRSVT)
procedure (Oh et al., 2015), which utilizes random projections (Halko et al., 2011) to approximate
the SVT operator. Recent work (Halko et al., 2011) has shown that random projections can ex-
plore the low-rank structure effectively, and are suitable for constructing efficient algorithms of
approximate low-rank matrix factorizations. In FRSVT, random projections are obtained through
the generation of Gaussian random matrix with independent entries. To approximate SVT with
output rank at most L, the number of random projections L + d is required to be higher than L.

In the numerical illustrations of this paper, we set L = 150 and d = 5.

4 Asymptotic Convergence Rates

Let [|A|| = omax(A) and ||Al|c = max; ;|A;j| be the spectral and the maximum norms of a matrix
A, respectively. We use the symbol < to represent the asymptotic equivalence in order, i.e, a,, < b,
is equivalent to a,, = O(b,) and b, = O(a, ), and n = ny +ny. The mean squared error of a generic
estimator A is defined as d*(A, Ag) = ||A — Ag||%/(n1n2).

In this section, we first establish a general convergence result on dQ(A, Ap) in Theorem 1, fol-

lowed by more specific results on the convergence rates under the uniform probability of observation
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model and the logistic regression model, respectively. Further, the convergence rate of || Bj — Bojllr
is established.

The technical conditions needed for our analysis are given as follows.

C1. (a) The random errors {¢;;} in Model (2.1) are independently distributed random variables
such that E(e;;) = 0 and E(e};) = 07; < oo for all 4, 5. (b) For some finite positive constants ¢, and
7, n}%x E]eij|l < %l!c?jnl_Q for any positive integer [ > 2.

C2. The design matrix X is of size ny x m such that ny > m. Moreover, there exists a
positive constant a, such that || X||e < a, and XT7X is invertible. Furthermore, there exists a
finite symmetric matrix S, with 0 < opin(Sz) < [|Sz|| < oo such that nl_lXTX — S, as n] — oo.

C3. There exist some positive constants a; and as such that

max {| X Aol [ Aol } < Viog (m)ar and  max { | Aollc.o. |1 4Tllp } < Vi1 Vizae.

ni,n2

C4. The indicators of observed entries {w;; }17 pas;

are mutually independent and w;; ~ Bern(6;;)

ni,n2
ij=1"

for 6;; € (0,1), and are independent of {e;;} Furthermore, for i =1,...,n1 and j = 1,...,na,
P(wij = 1|a;, Yij) = P(wij = 1|x;) =: 6;j(x;) = 0;; where a is the i-th row of the covariate matrix.
C5. (a) There exists a lower bound 6, € (0,1) such that nln]n{%} > 6, > 0, where 0y, is
allowed to depend on n; and ng. (b) The estimators {é”} are consistent to {6;;}, free of the tuning
parameters A}, A5 and «, and are independent of {e;;}. Moreover, there exists a positive constant
to such that for all ¢ > ¢, P{Zij(l/éij —1/0i5)? > cnymot} < g(t) + Py g, Where cpy ny and Ry py
are model specific nonrandom sequences depending on n; and ns and are independent of ¢ such
that nl,gfioo By ny = 0; and ¢(t) is a function independent of n; and ng such that tllglo g(t) — 0.

Condition C1(b) is the Bernstein condition which, together with Cl(a), covers a variety of

distributions for ¢;; including the Gaussian distribution €;; ~ N(0, 02-2]-) for positive constants 01-2]-.
In Condition C2, the requirement nq > m is easily met as the number of covariates per subject
is fixed. As the dimensions of nl_lX TX are fixed at m-by-m, the rest of Condition C2 are quite
standard. Condition C3 extends the conditions that || X B|lcc < 00 and ||Ap|lec < 00 as assumed,

for instance, by Keshavan et al. (2009), Koltchinskii et al. (2011), Sun and Zhang (2012) and Cai
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and Zhou (2016), by allowing both X 3y and Ay diverge at certain rates.

Condition C4 prescribes the independent Bernoulli model for the indicator of observing Y;;,
where the probability of observation 6;; can depend on the covariate. This is analogous to the
notion of the missing-at-random (MAR) commonly assumed in the missing value literature (Little

and Rubin, 2014). A specific MAR model is the logistic regression model

exp{(1,2])~,
=000 = T e Al T -y

where v; € R™*1 are the j-th column specific parameter vectors. Most of the existing studies in
matrix completion (Keshavan et al., 2009; Gross, 2011; Recht, 2011; Rohde and Tsybakov, 2011;
Koltchinskii et al., 2011; Sun and Zhang, 2012) focus on the so-called Uniform Sampling at Random
(USR) scheme. Let N = ZZ ; wij be the total number of observations. Conditioning on N, the USR
takes a random sample of N observed indices from the set {(i,7): i€ {1,...,n1},j € {1,...,n2}},
independently with the uniform sampling probability N/(nins2) with replacement. The “with re-
placement” means that a Ag;; can be observed more than once, which is not suitable for some
matrix completion problems, for instance the Netflix prize problem (Feuerverger et al., 2012) as a
viewer would not rate a movie more than once. There are studies (Srebro and Salakhutdinov, 2010;
Negahban and Wainwright, 2012; Klopp, 2014; Cai and Zhou, 2016) which adopt heterogeneous
sampling probability models without utilizing covariates, for instance heterogeneity with respect
to the rows and columns while assuming the sampling of the row and the column are independent.
Condition C4 introduces heterogeneity through covariates while including the aforementioned uni-
form and logistic regression models as special cases.

In Condition C5(a), imposing the lower bound 6y, in the probabilities of observation ensures each
entry of the matrix has a minimum positive probability of observation. However, our condition does
not impose the restriction that the number of observed entries is of the same order as nino, since 0y,
is allowed to go to 0 with n; and ny growing. For instance, one could take 07, < rg n log2 (n)/ning
to mimic scenarios with crpg,nlog?(n) observed entries as discussed in Section 1. The second part of

Condition C5(b) is used to quantify the sum of squared errors in estimating 1/6;; by the consistent
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estimator 1/ ézy The convergence rate ¢y, pn, and the error bound functions ¢(t) and hy, ,, are given
in a general setting, whose orders of magnitude are dependent of the model for 6;;. We establish
Condition C5(b) in Section S3 under the logistic regression model given in (4.1) via the uniform
asymptotic normality of the maximum likelihood estimators (MLE) by applying Sweeting (1980)’s
result. Condition C5(b) is also fulfilled under other sampling mechanisms including the uniform
probability of observation model (i.e. 6;; = ).

For any 6, > 0, and t € (0,tp), cp, n, specified in Condition C5(b), define

\/(nl V ng) log (n)
\/%711712

A (8,,t) = max { L (n1n2) " (Cnymyt)V/? logde /4 (n)} (4.2)

and 7, 1y (9,00, 1) = 4g(t) + 4hny 1y + Clog ™07 (n) for a positive constant C. Here, g(t) and hp, n,

are specified in C5(b), and C5(b) implies that lim lm {nn, n, (9,05,%)} = 0. The following
t—o00 n1,n2—00

Theorem 1 is proved in Section S5 of the supplementary material.

Theorem 1. Assume Conditions C1-C5, 0 < a < 1, \j = o(ny ) and Mg > (2 + 4m)CoA (s, 1),

for any t > tog and positive constants 6, and Cy. Then, for a positive constant C’,

d? <A, A0> <C’" max {min {/\204 | Boll, , ninars, ()\204)2} ,

Yo (1= a) | Bollf,mnadd2(0,, 1), m3AF | X ol } (4.3)
with probability at least 1 — My, ny (g, 00, ).

The diminishing 7, n, (g, 65, t) means that d>(A, Ag) is bounded by the right hand side of (4.3)
with probability approaching 1 for ni, ne and t large enough. We note that the order of the upper
bound for d?(A, Ap), as prescribed in (4.3), depends on the specific orders of A(d4,t), || Bolls, 7B,
| X Bollr and || By||z and the choices of parameters A, A2 and «a. In the following, from (4.3), we
derive specific convergence rates for d2(A, Ap) under two models of 6;;.

We first consider the uniform probability of observation model such that 6;; = 6. Under this
model, the MLE for 6 is éij = N/(ninz). It can be shown that we can choose ¢y, n, = (1 —89)/0o,

for any tg > 0, g(t) = P{x} > t} and hp, n, = SgplP{Ho(l/é —1/6)?/(1 — bp) > t} — g(t)| in

13



Condition C5(b) so that C5(b) holds for any positive ¢. With the above choice of ¢y, p,, 0 < J5 < 2

and choosing ¢ such that
to <t < (ning) Y2 (ny V ny)log—%/% (n), (4.4)
then supA(dy,t) < Ay =: 90_1/2(711 V n2)Y2(n1ng) "t log!/?(n).
t

Corollary 1. Assume Conditions C1-C5, under the uniform probability of observation model,
choose cnymy = (1 —600)/60, 0 < 0y < 2 and t as in (4.4), \; = nytlog™?(n)A;, 1 —a =

1

1/(ning), A2 < 60y /2(n1 A ng) "2 (ning) "2 1og"2(n) in (3.3). Then, for a positive constant C’,

with probability at least 1 — My, ny (g, 00, ),
2 ( 4 2 (£ / ~1 ~1
both d (A, A0> and d (B, Bg) < C'rByby  (n1 Ang)” log(n).

The corollary establishes that d?(A, Ag) and d?(B, By) are all O,{rg,0; " (n1 A ng)~'log(n)}.

We note that the choice of parameter Ay actually depend on the magnitude of the noise ¢ =

o
n}%x{afj} as shown in Lemmas S4.1-S4.3 of Section S4 of the supplementary material. This means
that dQ(A7 Ayp) depends implicitly on the level of the noise as well. Although the corollary assumes
the uniform observation probability, its conclusions are valid for other missing models that accom-
modate the rate of ¢y, n, = (1 — 60y)/6p. In our analysis, the effect of the sample size N enters our
results through the Binomial mean nins6y as it is of the same order of N. We note that Condition
C5(a) allows 6y = 0, to depend on n; and ng and to diminish to zero as n; and ng diverge to
infinity.

We note that the rate attained by Corollary 1 coincides with that of the other matrix completion
methods, for instance Sun and Zhang (2012)’s calibrated elastic regularization estimator ASZ Ne-
gahban and Wainwright (2012)’s row /column weighted regularization estimator ANW | Koltchinskii

et al. (2011)’s prior mask distribution estimator AXLT

and Mazumder et al. (2010)’s matrix lasso
estimator AMHT ynder either the USR or the row and column product weight model of Negahban

and Wainwright (2012). These methods also require the “incoherence conditions” (Candes and

Recht, 2009), and/or the spikiness measure a(Ag) = /n1nz||Aollo/||Aol|F of Ag to be bounded.
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We now consider the scenario where the observation probability 0;; follows the logistic regression
model given in (4.1). As will be shown in the next corollary, this induces a different rate for ¢, n,
and a slower convergence rates for the estimators. For any d, > 0, it is shown in Section S3 of
the supplementary material that for some constants 7, depending on 6 and C),, we can choose
Cning = 1, 'n2log(ng), to = m+3, g(t) = Cutexp{—t/2}, and Ay, n, = ngm?xsgpw{zi(l/éij —
1/6;5)? > t} — P(x2,.1 > ngt)| in Condition C5(b) so that C5(b) holds for any positive ¢ > to for
the logistic model.

By choosing ¢ such that

m+3<t<log?/®(n), (4.5)

we have supA(dy,t) = Ag(dy) < 779—1/2n1—3/4n2—1/4 log!/?(ng)log?/3(n). This implies that the con-
t

vergence rate of d?(A, Ag) given in (4.3) is 779_1711_1/211;/2 log(n2) log?/3(n), as summarized in the

following corollary.

Corollary 2. Assume Conditions C1-C5, nina0r, > (n1Vng)log(n) and the logistic model. Choose
Cnyng = 1y n2log(ng), t as (4.5), A = ny Hog ™ 2(n)Ag(64) for any 65 > 0, 1—a < 1/(n1ng), Ay =<
77;1/2711_3/4712_1/4 log'/?(ng) log®/3(n) in (3.3). Then, for a positive constant C', with probability at

least 1 — Npy no (9,60,1),
both (A, A[)) and  d2 (B,BO) < C/T,BO77;171171/27@;/2 log (n2) log?%/3 (n) .

Corollary 2 implies that d2(A, Ag) and d2(B, By) are both Op{rBOnglnfl/Qn;/Q log(ng) log?/3(n)}.
The assumption that ninefr, > (n1 V na)log(n) is usually considered in existing matrix completion

works. Using the proof of Corollary 2, it can be shown that the convergence rates for dQ(A, Ap)

2+25a(

and d?(B, By) can be simplified to rp, log=2%/3(ny) if n; = 773722 log nz). In our results,

we only specify the order of Ao although the choice of Ao depends on the magnitude of the noise

2

Co

= max{afj}, as shown in Lemmas S4.1-54.3 of Section S4 of the supplementary material.
/[/7]
Compared with the case of the uniform probability of observation considered in Corollary

1, the convergence rate of rgong_lnfl/zném log(ng) log?%e/3(n) is much slower than 8,07 (n1 A
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n2) ! log(n). This is because of a much larger ¢y, ,,, due to the heterogeneity in the probability of
observation as prescribed by the logistic model. This heterogeneity results in a larger amount of
errors being accumulated in the estimation of {6;;}, that slows down the convergence.

The coefficient matrix By helps to interpret the role of covariates in completing the target matrix
through the parametric component X 3. The following theorem provides the convergence rate of

Bj under a general setting.

Theorem 2. Let Bj and Bo; be the j-th column ofB and By respectively. Assume Conditions
C1, C2, C4 and C5(a), and the estimators éij of 05 satisfy that for ]él] — 0| = Op(nl_l/Q). If

lBollr > 0, [|Bollcc < 00 and Ay = o(nz_l), we have HBJ'—,BOJ'HF = Op(nl_l/Q) foreachj=1,... ,ns.

While the convergence of ,éj is of the standard rate, the theorem does not require any speci-
fication of ¢y, n, and any restriction on the regularization parameters Ay and « as in Theorem 1
and its two corollaries. Furthermore, Condition C5(b) is replaced by a mild convergence rate of
the estimators {OAZ]} which is more easily met. These are all due to the closed-form expression of 3
given in (3.6). However, despite the ,/nj-convergence rate of each Bj, we are unable to translate
this rate for B This is because the convergence rates for the whole matrix as stated in Theorem 1

as well as Corollaries 1 and 2 are slower than the ,/ni-rate.

5 Benefits of Covariate Information

In this section, we outline some theoretical benefits of considering covariate information. More
specifically, we compare the upper bounds of the mean squared errors of Ay achieved by our
estimator and the one from Koltchinskii et al. (2011) under uniform missingness.

If m < min(ny,n2) and By is of low rank, our target matrix Ag = X By + By is also a low-
rank matrix. Without using the covariate X, one can recover Ay by existing matrix completion
techniques. A natural question is whether the utilization of the covariates improves the estima-

tion. This question is addressed theoretically in this section by comparing non-asymptotic upper
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bounds of mean squared errors. In addition, empirical evidences are shown in Sections 6 and 7 to
demonstrate the benefits of using covariates.

To provide a simple and transparent comparison with existing results, we restrict our study to
the uniform missingness while the target matrix follows Ay = X Gy + By.

Write N = Zl ; Wij- Under the uniform missing mechanism, one can use N/nijng to estimate
the common observation probability 0;; = 0y where 6y > 0 is allowed to depend on ny and no
in our analysis; see Condition C5(a) in Section 4 for details. For clarity, we write the estimator

(,@UNI, BUNI) of the proposed methodology as

A 2
AU _ aremin { HXﬁ—PX (mmWoY)H Y ||m|§} and (5.1)
BeRMX 12 ning N F
N 1 2
BN = agmin {15 pg ("REw oy )|l (52)
BeRnr1xng (111712 N F

when « in (3.5) is set to 1. By writing AVN = X 3UNLL BUNL the mean squared error d2(AUVNL, Ag)
can be decomposed as d?(X BUNI x Bo) + dQ(BUNI, By). If the covariates are not utilized, (5.2)

(without the projection Ps) alone leads to the estimator AXMT of Koltchinskii et al. (2011):

) 1 ’
AKLT _ arg min { HA— nxrmWoYH —i—)\KLT”AH*}'
AER"lXTL? nan F

AUNI

In the following, we compare and AKLT to reveal a benefit of the covariate.

It is shown in Theorem 3 of Koltchinskii et al. (2011) that if Axrr > 2|| M|, then

1++2
2

9
d? (AKLT,A0> < Akrrmin g 2 || A, , ( ) AKLTNIN2T A ¢ = UKLT, (5.3)

say, where M = W oY /N — Ag/(ninz). Similarly, for the proposed estimator, it can be shown
that if Ao > 2| M|,

1++2
2

2
d2 <BUNI, Bo) § )\2 min 2 HB()H*, < ) )\277,177,27'30 = UUNI‘ (54)

Due to Lemmas S4.1-S4.3 of the supplementary material, there exist positive constants C' and §,

such that |[M|| < 0051/2(711 A n2) Y2 (nyngy) "2 log!/?(n) with probability at least 1 — 2/n —
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41og™% (n). We note that Koltchinskii et al. (2011) obtain the same rate for || M| in a similar fash-
ion. Due to this theoretical guarantee, we pick Ay = Ak = 0981/2 (n1 /\nQ)_l/2 (nlng)_l/Q 10gl/2 (n).

The benefit of the covariate lies in the fast convergence of X 3UN. As shown in Section $2.1 of
the supplementary material, if A\ = o{nl_ln2_3/2 log~t(n)}, then d? (XBUNI, XBy) = Op(nl_l) which
is dominated by the bound Uyny of d2(BUN!, By) in (5.4). As d2(AYNL Ag) = @(X 3N, X 3) +
d2(BUNI,BO), we only have to compare the bounds Ukyr and Uyny in (5.3) and (5.4) when n; is
large enough. Since these two bounds are of the same order, we have to analyze the corresponding
constant factors. Since rg, < 74, and ||Byll« < ||Aoll« (Proposition S2.1 of the supplementary
material), we can conclude that Uyny < Ukpr. In addition, if By # 0™*"2 and the rank of Ay is
small, i.e., of order 0{0(1)/2 (nq /\77,2)1/2}, we have Uynt < Ukpr, which implies a strictly better upper
bound for d2(AYN, Ay) than d?(AKET | Ag). This illustrates the benefit of utilizing the covariates.
The details are summarized in the following theorem whose proof is given in Section S2.1 of the

supplementary material.

Theorem 3. Assume Conditions C1-C3, and take Ao = AT = C@O_l/Q(m/\7”L2)*1/2(n1n2)*1/2 logl/z(n)
in both (5.3) and (5.4). Then Uyni < Uxpr. Furthermore, Uynt < Uxrr if Bo # 0™*"2 and
either one of the two following conditions holds: (i). (low-rank condition) ra, = rB, + m =

o{05/%(m A )12}, or (ii). (row space condition) R(Bo) & R(By).

In the following, we provide a lower bound for d2(AUNI, Ayp). To this end, define two matrix

classes
Bla) ={BeR™"™:|XB|<ar}, B(r,a))={BeR" " :rg<r|B|,<a}.

Theorem 4. Fiz a; > 0, for rg, such that 1 < rg, < min(ni,n2) —m, (n1 Vn2)rp, < ningby.
Assume that w;j ~ Bern(6y) for 6y € (0,1). Let {e;;} be IID Gaussian N'(0,0?) with 0> > 0. Then,

there exist absolute constants o € (0,1), ¢ >0 and 0 <1 < rp, such that

>

inf sup P <d2(AUNI, Ag) > clo Nay)? (

ny \/TLQ) (T’BO +l))
BUNI’BUNIﬁOGB(al),BOGB(TBO,al)

ni1nabp
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Theorem 4 establishes (o Aa1)?(n1 Vng) (7B, +1)/(n1n200) as a lower bound for d>(AUN, Ay).
This lower bound is of the same order as the one for d?(AX'T, Ag) provided in Theorem 6 of
Koltchinskii et al. (2011). Comparing Theorem 4 with Corollary 1 we see that, under the i.i.d
Gaussian noise €;;, the rate of convergence of estimator AUN g optimal in a minimax sense on the
class of matrices that By € 5(a1) and By € B(rp,,a1) up to a logarithmic factor log(n).

As for the non-uniform missingness, we can derive similar upper bound for d2(E , By) and lower
bound for dQ(A, Ap) under the knowledge of the true missing probabilities @. In this case, the
non-asymptotic upper bound for dz(B , By) enjoys different constant factors due to the condition
A2 > 2||[Wo®*oY — Ay, while the lower bound is different by replacing 6y by 0. The details can
be found in Section S2.3 of the supplementary material. If we plug in the general estimator @ of ©
in the upper bound, it is complicated to trace the constant factors. Instead, we have investigated

the corresponding rates of convergence in the asymptotic regime of ni, no in Section 4.

6 Simulation study

This section reports results from simulation experiments which were designed to evaluate the nu-
merical performance of the proposed estimator A = X3 + B where 3 is given by (3.4) and B is
given by (3.5). We also carried out comparative evaluation with four existing matrix completion
method.

In the simulation, the target matrix A9 = X By + By was randomly generated once and kept
as fixed for each setting of (n1,n2, m,r). We generate X € R™*™ 3, € R™*"2 U, € R™*" and
Vo € R™*" as random matrices with independent standard Gaussian entries independently and
obtain By = P)%UOVOT. This ensures By € N (X). Although we do not explicitly enforce that Ay,
X and By are of full rank, this happens with probability 1. The contaminated version of Ag was then
generated as Y = Ag + €, where € € R™*"2 has i.i.d. mean zero Gaussian entries €;; ~ N(0,02).
The o2 is chosen such that the signal-to-noise ratio (SNR) is 1, namely SNR = 1/Signal(Ag)/o2 = 1,

where Signal(Ao) = Z?:ll ?il(AOij - /_1())2/(711712 - 1) and f_lo = 2?211 2?21 Aoz‘j/(nlng).
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The simulation was conducted under two sampling mechanisms: MAR: missing-at-random and
UNI: uniform observation. For MAR, we adopted the logistic model (4.1) with v ; = (71, Y25, 73, V45>

0,... ,O)IX( The entries 71;,725,73; and v4; were drawn independently according to ~1; ~

m+1)°
N(—=1.5,0.1%) and vg; ~ N(0.3,0.12) for k = 2,3,4. Once generated, they were kept fixed through-
out all MAR settings. For UNI, we set 0;; = 0.2, which is close to the average 0;; under MAR, for
all 4, 7. Throughout the study, we set m = 20 and r = 10, and chose n; = ny with four sizes: 400,
600, 800 and 1000, and the number of simulation for each (n;,ng) combination was 500.

The binary likelihood is used to estimate {f;;} via estimating ; first under the MAR. See
Section S3 of the supplementary material for more details on the MLEs.

Under the MAR, we implemented four versions of the proposed matrix completion approach: (i)
the full SVT (full SVD followed by the singular value soft-thresholding and scaling procedures) with
the tuning parameter « chosen by the 5-fold cross-validation (SVT-4-LOG); (ii) the approximate
SVT (§/\T) as described in Section 3.2 with the tuning parameter « chosen by the 5-fold cross-
validation (S/\/\T—&—LOG); (iii) the full SVT with a = 1 (SVT-1-LOG); (iv) the approximate SVT with
a=1 (S/\/\T-l-LOG). We also experimented these four variates of the proposed matrix completion
estimators under the UNI and denote them as SVT-a-UNI, S/\/?I'-d—UNI, SVT-1-UNI and SVT-1-UNI.

For the purpose of benchmarking, we compared with four existing matrix completion techniques:
the methods proposed in Sun and Zhang (2012) (SZ), Negahban and Wainwright (2012) (NW),
Koltchinskii et al. (2011) (KLT) and Mazumder et al. (2010) (MHT). Note that these methods
were not designed to incorporate the covariate information X, and therefore they only provided
an estimate for Ag. For SZ, the tuning parameter o was given by a formula in Sun and Zhang
(2012) and X were chosen by the 5-fold cross-validation. For the other three methods as well as the
proposed method, the 5-fold cross-validation was used to select the tuning parameters.

To quantify the performance of the matrix completion, we used two empirical measures
()l

[W+o |2

HA B AOHF
and RMSE (A4g) = +———F
A/ T1MN2

where W™ is the matrix of missing indicator with the (¢, j)-th entry being (1 —w;;). The test error

Test Error =
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measures the relative estimation error of the unobserved entries to their signal strength. Moreover,
the RMSE measure can be similarly defined for the proposed estimators of By and By.

Tables 1 and 2 summarize the simulation results, with Table 1 for the MAR and Table 2 for
the UNI probability of observation. The most visible aspect of the simulation results was that the
four versions of the proposed methods had superior performance than the four existing methods by
having smaller RMSEs and Test Errors. The proposed estimators with e = 1, namely SVT-1-LOG
and SK/\T—I—LOG, had more accurate rank estimates than the four existing methods in all cases. The
two estimators SVT-6-LOG and SVT-a-LOG over-estimated the rank (the true rank was 30) when
the sample sizes were relatively small under the logistic model, which may be viewed as a price
paid for having better RMSEs and Test Errors than their counterparts with o« = 1. We note that
a = 1 meant that the penalty on the low-rank matrix B was entirely based on the nuclear norm.
By inspecting the empirical values of & from the simulations for the logistic model, we found &
appeared to converge to 1 as the sample sizes got larger. This explained why the aforementioned
over-estimation in the ranks by SVT-4-LOG and SVT-4-LOG were reduced for the sample sizes of
800 and 1000. Another feature exhibited from the tables was that as the size of the matrix n; and
ng increased, both the RMSEs and Test Errors of the proposed methods got smaller. This was also
the case for the four existing methods under the logistic model in Table 1. The latter was likely
due to the reduction of the variance owing to having more “data” despite employing a misspecified
model. In contrast, the reason for the proposed methods’ having smaller RMSEs and Test Errors
was due to their ability to reduce both the bias and the variance in the completed matrices as the
methods are consistent as shown in the theoretical analyses in Section 4.

Comparing the results in Table 1 with those in Table 2, it was clear that the presence of the
heterogeneity in the observation probability made the matrix completion more difficult as reflected
by Table 1 having larger RMSEs and Test Errors. This comparison was fair as the overall observed
rate under the logistic model was close to 0.2, the rate under the UNI. As the true rank in all

settings was 30, It appeared that the estimated ranks were the most affected by the heterogeneity.
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However, despite the heterogeneity, the proposed methods tended to produce more accurate (and
smaller) ranks than the four existing methods.

The simulation results reported in Tables 1 and 2 consistently showed that the full SVT and the
approximate SVT gave very close results, which confirmed that the approximate SVT can achieve
computational reduction without sacrificing much accuracy. Under the MAR setting (Table 1),
the proposed methods with the tuning parameter o chosen by the 5-fold cross validation produced
completed matrices with larger ranks but smaller RMSEs than their counterparts with a = 1,
which confirmed an early remark made in Section 3 regarding the role of « in balancing between
the nuclear and the Frobenius norms in the regularization of the low rank matrix B. With the
dimensions n; and no growing, the chosen « approached 1 which led to more compatible rank
estimates and the RMSEs between the two approaches of choosing «.

Furthermore, we conducted an additional simulation study where the covariates are not useful
(i.e. Ag = Byp). Table S1 in the supplementary material summarizes the corresponding simulation
results under uniform probability of observation. The simulation results indicated that the two
versions of the proposed methods had slightly inferior performance than the four existing methods
by having larger RMSEs and test errors. This is expected since the existing methods assume no
covariates, which matches with the underlying model. Although By = 0 is allowed in the model of

the proposed methods, the proposed methods lose efficiency by considering a more general model.

7 Empirical study

We demonstrate the proposed methodology by analyzing the MovieLens 100K data set as described
in Harper and Konstan (2016). This data set includes 100,000 movie ratings, ranging from 1 to 5,
appraised by 943 viewers on 1682 movies, where each viewer had rated at least 20 movies. The data
came with additional information on both viewers and movies. In this analysis, we adopted age
and gender as the covariates for our proposed method. For evaluation purpose, the data provider

split the 100,000 ratings into a training set with 90,570 ratings and a test set with 9,430 ratings,
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Table 1: Empirical root mean square errors (RMSEs), test errors, estimated ranks and their stan-
dard errors (in parentheses) under model Ay = X By+ By and the logistic missing-at-random model
(MAR), with (n1,n2)=(400,400), (600,600), (800,800), (1000,1000), m = 20, and r = 10, for four
versions of the proposed methods, and the four existing methods (SZ, NW, KLT and MHT).

ny =ng =400 RMSE(S) RMSE(By) RMSE(Ay) Test error Rank
SVT-6-LOG  0.6938 (0.0059) 3.1099 (0.0504) 4.4007 (0.0469) 0.6658 (0.0054) 117.27 (26.55)
SVT-1-LOG  0.6964 (0.0059) 3.1778 (0.1419) 4.4581 (0.1100) 0.6759 (0.0059) 24.55 (3.35)
SVT-4-LOG  0.6939 (0.0059) 3.1063 (0.0503) 4.3985 (0.0469) 0.6658 (0.0054) 111.96 (21.88)
SVT-1-LOG  0.6964 (0.0059) 3.1778 (0.1419) 4.4581 (0.1100) 0.6759 (0.0059) 24.55 (3.35)
Sz 4.8593 (0.0232)  0.8627 (0.0054) 49.76 (3.04)
NW 4.8340 (0.0221)  0.8565 (0.0056) 102.46 (5.34)
KLT 4.9789 (0.0214) 0.8869 (0.0055) 34.55 (2.12)
MHT 4.8507 (0.0234) 0.8595 (0.0056) 50.05 (2.72)
ny =ng =600 RMSE(S) RMSE(By) RMSE(Ay) Test error Rank
SVT-a-LOG  0.6227 (0.0043) 3.1239 (0.0416) 4.1704 (0.0379) 0.5749 (0.0039) 124.97 (17.11)
SVT-1-LOG  0.6237 (0.0041) 3.2491 (0.1484) 4.2686 (0.1203) 0.5834 (0.0055) 50.15 (3.93)
SVT-4-LOG  0.6230 (0.0043) 3.1162 (0.0412) 4.1653 (0.0375) 0.5752 (0.0040) 113.57 (12.63)
SVT-1-LOG  0.6237 (0.0041) 3.2476 (0.1475) 4.2675 (0.1195) 0.5835 (0.0055) 49.67 (4.03)
Sz 4.5510 (0.0195) 0.7438 (0.0050) 80.71 (3.77)
NW 4.4681 (0.0182) 0.7186 (0.0051) 170.32 (6.03)
KLT 4.7097 (0.0143) 0.7821 (0.0041) 60.00 (1.59)
MHT 4.5201 (0.0191)  0.7341 (0.0051)  83.26 (3.29)
ny =ng =800 RMSE(Sy) RMSE(By) RMSE(Ay) Test error Rank
SVT-4-LOG 0.5661 (0.0033) 3.0785 (0.0343) 3.9787 (0.0300) 0.5146 (0.0037) 101.03 (10.43)
SVT-1-LOG  0.5664 (0.0032) 3.1118 (0.0673) 4.0055 (0.0555) 0.5148 (0.0044) 69.41 (2.06)
SVT-4-LOG  0.5663 (0.0032) 3.0716 (0.0334) 3.9739 (0.0295) 0.5154 (0.0037) 93.00 (8.11)
SVT-1-LOG  0.5665 (0.0031) 3.1094 (0.0669) 4.0037 (0.0552) 0.5154 (0.0044) 66.94 (2.15)
SZ 4.3308 (0.0128) 0.6636 (0.0035) 103.45 (3.36)
NW 4.2144 (0.0142)  0.6284 (0.0039) 222.56 (7.28)
KLT 4.5276 (0.0111)  0.7132 (0.0031) 78.13 (1.55)
MHT 4.2855 (0.0147)  0.6498 (0.0038) 108.63 (4.71)
ny =mng = 1000 RMSE(By) RMSE(By) RMSE(Ay) Test error Rank
SVT-4-LOG 0.5109 (0.0027) 2.9337 (0.0461) 3.7107 (0.0388) 0.4601 (0.0037) 87.47 (2.03)
SVT-1-LOG  0.5109 (0.0027) 2.9336 (0.0459) 3.7106 (0.0387) 0.4601 (0.0037) 87.36 (1.88)
SVT-4-LOG  0.5112 (0.0026) 2.9272 (0.0458) 3.7062 (0.0385) 0.4613 (0.0037) 80.20 (1.65)
SVT-1-LOG  0.5111 (0.0026) 2.9281 (0.0460) 3.7068 (0.0387) 0.4611 (0.0037) 81.14 (2.30)
SZ 4.0069 (0.0151) 0.5897 (0.0036) 122.87 (7.36)
NW 3.8522 (0.0119)  0.5439 (0.0031)  270.96 (9.54)
KLT 4.2491 (0.0092) 0.6500 (0.0026) 91.56 (1.40)
MHT 3.9447 (0.0122) 0.5716 (0.0032) 136.57 (5.27)
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Table 2: Empirical root mean square errors (RMSEs), test errors, estimated ranks and their stan-
dard errors (in parentheses) under model Ay = X 3y + By and the uniform observation mechanism
(UNI), with (n1,n2)=(400,400), (600,600), (800,800), (1000,1000) m = 20, and r = 10, for four
versions of the proposed methods, and the four existing methods (SZ, NW, KLT and MHT).

ny =nz =400 RMSE(SB)) RMSE(By) RMSE(Ay) Test error Rank
SVT-a-UNI 0.6343 (0.0050) 2.8815 (0.0181) 4.0473 (0.0200) 0.5898 (0.0053) 42.86 (3.47)
SVT-1-UNI  0.6344 (0.0051) 2.8804 (0.0177) 4.0466 (0.0201) 0.5896 (0.0053) 42.22 (2.13)
SVT-a-UNI  0.6343 (0.0050) 2.8816 (0.0181) 4.0474 (0.0200) 0.5898 (0.0054) 42.78 (3.45)
SVT-1-UNI  0.6344 (0.0051) 2.8805 (0.0177) 4.0467 (0.0202) 0.5896 (0.0053) 42.18 (2.13)
sz 4.8318 (0.0251)  0.8528 (0.0060) 52.54 (3.12)
NW 4.8203 (0.0259)  0.8493 (0.0064) 97.47 (5.29)
KLT 4.8994 (0.0217)  0.8721 (0.0052) 45.42 (2.38)
MHT 4.8238 (0.0252)  0.8492 (0.0062) 51.27 (2.75)
ny =ng = 600 RMSE(8y) RMSE(By) RMSE(Ay) Test error Rank
SVT-a-UNI  0.5711 (0.0037) 2.7570 (0.0136) 3.7423 (0.0145) 0.4893 (0.0035) 58.17 (1.75)
SVT-1-UNI  0.5711 (0.0037) 2.7571 (0.0136) 3.7424 (0.0145) 0.4893 (0.0035) 58.12 (1.75)
SVT-a-UNI  0.5711 (0.0037) 2.7566 (0.0138) 3.7420 (0.0146) 0.4892 (0.0035) 57.04 (1.64)
SVT-1-UNI  0.5711 (0.0037) 2.7568 (0.0137) 3.7421 (0.0146) 0.4892 (0.0035) 57.51 (1.72)
VA 4.5228 (0.0176)  0.7322 (0.0047) 84.41 (3.07)
NW 4.4838 (0.0201)  0.7181 (0.0052) 160.25 (6.91)
KLT 4.6427 (0.0147)  0.7700 (0.0040) 74.71 (1.89)
MHT 4.4895 (0.0175)  0.7212 (0.0048)  84.30 (2.67)
ny =nz = 800 RMSE(S)) RMSE(By) RMSE(Ay) Test error Rank
SVT-a-UNI  0.5155 (0.0028) 2.6277 (0.0117) 3.4884 (0.0119) 0.4188 (0.0027) 71.39 (1.53)
SVT-1-UNI  0.5155 (0.0028) 2.6278 (0.0117) 3.4884 (0.0119) 0.4188 (0.0027) 71.34 (1.51)
SVT-a-UNI  0.5155 (0.0028) 2.6240 (0.0120) 3.4856 (0.0120) 0.4180 (0.0027) 68.25 (1.35)
SVT-1-UNI  0.5155 (0.0028) 2.6247 (0.0119) 3.4861 (0.0120) 0.4181 (0.0027) 69.01 (1.62)
sz 4.2348 (0.0128)  0.6329 (0.0036) 109.41 (2.41)
NW 4.1667 (0.0135) 0.6115 (0.0038)  214.47 (4.28)
KLT 4.4071 (0.0117)  0.6872 (0.0032)  98.45 (1.67)
MHT 41837 (0.0138)  0.6171 (0.0038) 111.15 (3.85)
ny =nz = 1000 RMSE(S)) RMSE(By) RMSE(Ay) Test error Rank
SVT-a-UNI  0.4646 (0.0022) 2.4614 (0.0106) 3.2128 (0.0097) 0.3683 (0.0021) 82.59 (1.49)
SVT-1-UNI  0.4646 (0.0022) 2.4614 (0.0106) 3.2128 (0.0097) 0.3683 (0.0021) 82.59 (1.47)
SVT-a-UNI  0.4646 (0.0022) 2.4517 (0.0110) 3.2054 (0.0099) 0.3664 (0.0022) 77.11 (1.28)
SVT-1-UNI  0.4646 (0.0022) 2.4528 (0.0109) 3.2063 (0.0099) 0.3666 (0.0022) 77.94 (1.78)
sz 3.8886 (0.0105) 0.5524 (0.0029) 129.51 (2.50)
NW 3.8064 (0.0109) 0.5278 (0.0029) 257.67 (5.05)
KLT 4.1026 (0.0099) 0.6189 (0.0027) 117.78 (1.63)
MHT 3.8277 (0.0111)  0.5342 (0.0030) 132.35 (3.62)
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such that there were exactly 10 ratings per viewer in the test set. Two versions of such splitting are
provided, which are referred to as Splitl=(Training Setl, Test Setl) and Split2=(Training Set2, Test
Set2), respectively. Further, we know that Test Setl and Test Set2 are disjoint. In our experiment,
we applied those methods as described in Section 6 to the training sets and evaluated the test
errors based on the corresponding test sets. As common pre-processing steps, we removed the
movies with no ratings in training sets, and applied the bi-scaling procedure (Mazumder et al.,
2010) which standardizes a matrix to have row and column means zero and variances one, before
applying any matrix completion methods.

To construct the covariate matrix X, gender was encoded as “0” for male and “1” for female.
Age was given as a numerical variable and used directly. Thus the covariate matrix X (viewers’
demographic) was of dimension 943x2. As a standard procedure, every column of X was normalized
to avoid any scaling issues in the penalties.

Next, we focus on the probabilities of observation {f;;}. Our preliminary analysis suggested
a non-monotone trend of observed rates with respect to age. To see this, we divide age into 7
categories: under 18, 18—24, 25—34, 35—44, 45—49, 50—55 and 56+, which are denoted by Al, A2,
..., A7, respectively. These age categories were suggested by the document accompanying with the
data set (http://files.grouplens.org/datasets/movielens/ml-1m-README.txt). The non-
monotonicity is demonstrated in Figure 1(a), which showed that the rate of observation peaked
at the age group of 18 — 24, continued to decline till the 45 — 49 age group and then had a slight
increase afterward. This indicated a strong age effect on the probability of observation. To gauge
the gender effect, we split each age group into two sub-groups of male and female. This gave rise
to 14 age and gender combinations which are denoted by MAL, FAL, ... FA7. As shown in Figure
1(b), the sample observed rates varied across different viewer groups as determined by age and
gender. Of interest was that female had higher rates of observation than their male counterparts
for all age groups, which suggested the existence of the gender effect.

To reduce the number of parameters in the probability of observation, we explored the possibility
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of merging some age-gender categories. However, it was computationally expensive to examine
all possible merging combinations. In our analysis, a simple data-driven screening method was
conducted. We took the uniform probability of observation model as the benchmark model, denoted
as Benchmark, and considered 14 models for the observational probability that had exactly one of
the 14 age-gender categories separated out to have its own individual rate of observation, once at a
time, while the rest of the 13 categories was estimated by a common rate of observation. Then we
applied our matrix completion procedure SVT-4-LOG and recorded the empirical validation error.
For all the 14 models and the benchmark model, by applying similar procedure, we obtained the
corresponding validation errors Qmaz, - - - , @Fa7, @Benchmark sShown in Table 3. If the validation error
of a model was smaller than QQgenchmark, the corresponding group was marked as required individual
modeling and should be separated out from the rest.

For Splitl, seven groups (FA1l, MA3, FA3, FA4, FA5, FA6, and FA7) were classified as that
individual modeling was needed. For these seven groups, the corresponding sample proportions of
observation were used as the estimates for their respective observation probabilities. The remaining
seven groups were assumed to share a same observation probability, which was estimated by the
pooled sample proportions of observation. Denote this final model for Splitl by Finall. As shown in
Table 3, we note that the corresponding validation error Qfjnair = 4.4297 was the smallest among
all the evaluated models for Splitl. This provided some validity of this final choice. For Split2,
we identified seven groups (FA1l, MA2, MA3, FA3, FA5, FA6 and MA7) and the corresponding final
model Final2 also attained the smallest validation error Qpjnai2 = 4.4230 among all the evaluated
models. Since the proposed methods require only one SVD for each sampling probability model, we
can perform this additional exploration of the sampling mechanism while keeping the computational
costs significantly lower than most of the competitors.

Table 4 reports the root mean square prediction errors (RMSPEs) and estimated ranks of differ-

ent estimators for both Splitl and Split2, where RMSPE = |[Westo (A — Y)||F/\/E?:11 2wt

where W€t is the indicator matrix of test set with the (i,j)-th entry being wf;f“)’t. Since Test Setl
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(b) Age and Gender Effect
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Figure 1: Empirical observation rates of the MovieLens 100K data. Panel (a): with respect to the

seven age groups; Panel (b): with respect to the 14 combination groups of age and gender.

Table 3: Empirical validation errors () under the 14 models,the Benchmark and the final selected
models (Final), where * and 1 denotes the age-gender combination that requires individual modeling

for Splitl and Split2 respectively.

Model  MA1 FA1 MA2 FA2 MA3 FA3 MA4 FA4
Splitl  4.4342  4.4310*  4.4319  4.4346  4.4317*  4.4307* 4.4322 4.4317*
Split2  4.4279  4.42351  4.4239%  4.4269  4.42407  4.4237F 4.4247 4.4240
Model MA5 FA5 MA6 FA6 MA7 FA7 Benchmark Final
Splitl  4.4338  4.4317*  4.4335  4.4313*  4.4318  4.4317* 4.4317 4.4297
Split2  4.4263  4.4239t  4.4260  4.42361  4.4239T  4.4240 4.4240 4.4230

and Test Set2, the corresponding test sets of Splitl and Split2, were disjoint and of the same size,
it is fair to calculate the overall RMSPEs for evaluation of different methods. Similarly as the
simulation results reported in the previous section, SVT-&-LOG and SVT-4-LOG produced highly
comparable results, which indicated the applicability of SVT-4-LOG to larger data sets whenever
computational resources are scarce. In both Splitl and Split2, the proposed methods outperformed
NW, KLT and MHT in terms of smaller RMSPEs and either smaller or more reasonable rank esti-
mation. Although the proposed methods were slightly inferior to SZ in Splitl, they outperformed

SZ significantly in Split2 by having smaller RMSPEs. Among the six matrix completion methods
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considered, the two proposed methods and the KLT method offered the most consistent results be-
tween Splitl and Split2, while the other three methods exhibited much larger variations, especially
in the estimated ranks. That KLT method gave rank 1 estimates was likely due to its ignoring the
heterogeneity in the probability of observation, which amplified the difference between the largest
and the rest of the eigenvalues. As a result, (njns/N )Ulul'vf explained most of the target matrix
Ay, leading to the rank-1 estimates in Table 4. Overall speaking, the two proposed methods were
among the top two performers of the analysis reported in Table 4.

As suggested by an anonymous referee, we experimented treating the age as categorical variables
with the number of categories ranging from three to seven. Corresponding details are given in
Section S8 of the supplementary material. As reported, the prediction errors of using the four and
five age categories were the best among the five categories. However, they were still inferior to the
method of treating the age as a continues variable as shown in Table S2 of Section S8. This was
likely due to an increase in the rank of X as a result of the age categorization. Nevertheless, we
note that using the categorical age with four or five groups produced better results than the typical
matrix completion without utilizing covariate information.

Table 4: Root mean square prediction errors (RMSPEs) and ranks of the completed matrix based
on Splitl and Split2 for the two versions of the proposed method (SVT-&4-LOG) and (S/\/\T—d—LOG)
and the four existing methods proposed respectively in Sun and Zhang (2012)(SZ), Negahban and
Wainwright (2012)(NW), Koltchinskii et al. (2011)(KLT) and Mazumder et al. (2010)(MHT).

Splitl Split2 Overall

RMSPE Rank RMSPE Rank RMSPE

SVT-4-LOG  0.9415 47 0.9541 46 0.9478
SVT-4-LOG  0.9418 45 0.9542 43 0.9480

SZ 0.9412 39 0.9563 31 0.9488
NW 0.9421 269 0.9589 289 0.9506
KLT 0.9584 1 0.9688 1 0.9636
MHT 0.9414 56 0.9568 46 0.9491

28



8 Concluding remarks

This paper investigates the problem of matrix completion with covariate information. We have
shown that utilizing such information can lead to more accurate completed matrix and more in-
terpretable results. When the matrix entries are heterogeneously observed due to selection bias of
covariates, this heterogeneity should be taken into account. Our real data analysis on the Movie-
Lens 100K data revealed the existence of the heterogeneity by the age and the gender of the movie
viewers. The heterogeneity, without proper treatment, can render the consistency of the existing
matrix completion methods. Under a column-space-decomposition model, we propose a matrix
completion procedure that adjusts for the heterogeneity in the observation mechanism by taking
into account the covariate effect. The proposed matrix completion estimator can be coupled with
the fast randomized singular value thresholding (FRSVT) procedure to achieve improved compu-
tational efficiency for high dimensional matrices. A general convergence of the matrix completion
procedure is provided (Theorem 1), and specific convergence rates under two popular models for
the probability of observation are also given. The column-space-decomposition model provides an
interpretive coefficient matrix that can quantify the effect of the covariates. Empirical studies show
the attractive performance of the proposed methods as compared with existing matrix completion

methods in terms of the root mean square prediction errors and the ranks of completed matrices.
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S1 Proof of Propositions
Proof of Proposition 1. We have
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due to Conditions Cl(a) and C4. For any minimizer (3s, B;) of R, we have X 8y+ By = X 3;+ Bs,
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and B; = By. As matrix XTX is invertible, we know that 35 = By. This also implies that (3, By)

is the unique minimizer. O

Proof of Proposition 2. By operator inequality and matrix X TX is invertible, we have || Px B, <

IPx[I|Bl. < | Bl For any B € R™*"2,

*

HPXB PX<Wo(~)*oY)H +A2<aHP§B +(1—a)HP§BH;>

ning

HPXB PX<W e*oY)H |PxB|% + Ao <aHP§B

ooy

n1n2 ninz

+ X2 (1-a)||PxB|%

B Pg (Woor oY)+ (allBlL +(1-a)|BIZ).

nan

where the first inequality is strict whenever Px B # 0. Therefore the solution of (3.7) belongs to

N (X)) and hence it is also a solution of (3.5). O

S2 Benefit of Covariate Information

Before discussing the benefit of using covariates, we need the following proposition which describes

the relationship between || Agl|« and ||Bg|«.

Proposition S2.1. Let Ay = X B + By, where By € N(X), we have ||Bol|l« < |[Aoll«. If
R(Bo) € R(By), once By # 0™*"2, we have || Bol|s« < ||Ao|«. Here R(Y') is the row space of a

matriz'Y .

Proof. For any Z € 0||Byll«, we have ||Ag|l« > ||Boll« + (Z,XB0). Write the SVD of By as

ZTB§ aZ(BO)uSB) vg)T Let B, be the linear span of ugg, .. ugBo) and B, be the linear span of
vgg, e ,'vgfo). We have the fact that the sub-differential of the convex function By + || Bgl|« is

the following set of matrices:

3| Bol|, = {ZuBO'vBO + Py Z Py, : HPBLZPBL

)



On the other hand, by Lemma 3.2 in Candeés and Recht (2009), there exist matrix Z with
1Z|| = 1 such that (Z, XBo) = || Z||| X Boll« = | X Boll«. Pick Z € 8| Bo||« such that PgiZPg, =

Pg ZPB%, then we have

(Z,X Bo) = <Zu3 o)+ P LZPBL,XﬁO>
—0+(ZPys,, XBy) = (Z,XBo) — (ZPs, X )
> (| X Boll, — || ZPs, || 11X Boll. > X Boll, — 1 XBoll, =

Thus we show that ||Bgll« < || Ao]|«-
If R(Bo) € R(By), it implies that 8y Pg, # Bo. Thus for the inequality above, we always have

(Z,XBy) > 0 which implies || Ao|[+ > || Bo|«. O
S2.1 Compare the Upper Bounds
As for d*(X BUNI x Bo), it follows from the closed form of BUNT that

XBUN = X By =X (07 XX + L) i XT (PRE2W oY - X6

— X(n{'XTX + n2Mi Lnxm)  Tneing X Bo.

Take A1 = o(ny '), naA; = o(1), we have X (n; ' XTX + nodiLnxm) 'ny ' XT = Px(1+0(1)). Tt

implies that,

o [x - xa], <

o (2

WoY — )| (140 (1) +ndN X Bl (1+0(1)).

ning ning ’

Let Px = (sij), E[|Px ("2 W oY — Ao)|IF = 302 302 EQCYL, sik(ninaw; Yij /N — Aokj))? <

2322002 00 s E(ninawr; Aok /N — Aok )2 + Y rky s5E(ninswyjer; /N)?). Due to Condition

C1 and C4, we have max Ee < ¢2 and || Aglleo < /log(n)as. Since wg; i Bern(6p), we have
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and similarly,

<wk‘> Wi muacl g 5

E(Fz) =E d :E{ }< .

e 2 1 2 = ning (nne +1)40
(ij+2(s,t)¢(k,j) wst> 5 (1+0) 112 (n1ng + 1)

Combine the above two results together, we have
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Take \; = 0{n1—1n2—3/2 log~!(n)}, we have d>(XBYN!, X By) = O,(n7h).

Proofs of Theorem 3. Under Condition C3, we have ||Ag|. = O{y/ninz2log(n)} and ||Bo|. =
O{y/ninzlog(n)}. Under the low rank condition that ra, = rg, + m = 0{9(1]/2(111 A ng)'/2},
we have Axrrninera, = o(||Aoll«) and Aaninerp, = o(||Bo||«) since Aoy = Axrr =< 951/2(711 A
ng)*1/2(n1n2)*1/2 log1/2(n). Namely, both the first terms in Ukpr and Uynr dominate and we
compare the second terms. As r4, = rB, + m, we can claim that Uynt < Ukrr.

For the high rank case, i.e the second term dominates or of the same order as the first term,
the first terms in Uxpr and Uyny are the smaller order. If R(By) € R(By), once there exists
the covariate effect, i.e By # 0™*"2, as given in Proposition S2.1, || Byl|« < [|Aol|« which implies

Uunt < Ukpr. For the remaining cases, we obtain the result Uynt < Ukrr by || Boll« < || Aol

S2.2 Proofs of Theorem 4

Proof. For some constant 0 <~ < 1, if ny > ng, define

) 1/2
Ci = {B: (Bz]) € R™M "B :Bij S {O,y(a/\al) <W}> },Vl <i1<n,1<g §TBO},

and consider the associated set of block matrices
A(C) = {A — X3+ (B|...;B|o) ER™ ™ ;B¢ B(a),Be cl},
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where 0 denotes the ny x (ny —rB,|n2/rB,|) zero matrix.

It is easy to see that any element of B(C;) and the difference of any two elements of B5(C;) has
rank at most rg,. The entries of any matrix in B(C;) are within [0,a;]. Due to Lemma 2.9 in
Tsybakov (2009), there exists a subset B° C B(Ca) containing the zero n; x no matrix 0 where

Card(BY) > 2"Bo™1/2 4 1 and for any two distinct elements By and Bs of B,

2
nrp 2 2 By no Y 2 ninarp,
B, — By|% > 150 A -_— —_— > — (o A — .
151 = Ballr > =3 <7 (ona) ((nlAm)@o) L‘BOJ) SRR ((nﬂm)@o)

For 0 <1 < rp,, take 8 C B(a;) such that

- 1/2
B = {BGRmxmi(Xﬁ)ijZV(U/\al)< l )90> V1 <i<n,l Sjénz}.

(n1 A Ny

For any A € A = 89UBY, the Kullback-Leibler divergence K (Pg,P4) between Pg and P4 satisfies

A2 240 Yn s A2 9 )
K(]P)(),PA) = E]PO Zw” 0ij 20_207’] 0ij — HOH ||F < Yy (TBO + )7711712‘

— 202 — niy A no
ij

It is easy to know that Card(A°) = Card(B°) > 2"B0™/2 4 1. From above we deduce the condition

1

Card(A%) — 1 Z K (Po,Pa) < alog (Card(.AO) - 1) (S2.1)

AecA0

is satisfied for any o > 0 if 0 < v < y/a/2 and | < rp,. The result now follows by application of
Theorem 2.5 in Tsybakov (2009).

For ny < no, similarly, define
. - 1/2
Cy = B:(Bij)GRTBoan:BijG 0,’7(0/\&1) <(n1/\7§2)90> ,V1§Z§T30,1§]§n2 )
and consider the associated set of block matrices

A(Cy) = {A:XB+ (B|...|B|0)T eR"*" ;¢ B(a1),B ecg},

where 0 denotes the (n1 —rp,|[n1/7rB,]) X n2 zero matrix here. Follow the same proof, we have the

same result. O



S2.3 Non-Uniform Missing

For the non-uniform missing, we assume that the missing probability ® = (6;;) is known. Namely,

we know @* = (1/6;;) in the risk function (3.1). Thus

. 1
PBNON-UNI _ arg min { |IB—W o®*o Y||2F + Ao HBH*} . (52.2)
BcR?1Xn2 ning

Follow the same proof of Theorem 3 of Koltchinskii et al. (2011), we have that

Theorem S2.1. Assume Conditions C1-C4, if Ao > 2||W 0o ®@* oY — Ay||, then

1++2
9

2
d2 (BNON_UNI, Bo) § )\2 min ¢ 2 ||Bo||* 5 ( ) )\2%1%27‘30

As for d*(X BNON-UNI x Bo), it follows from the closed form of B that

XANONTUNL_ X By =X (n' XTX + noMi Imxm) "0y ' XT(Wo0®" oY — Xf3)

— X (7' XTX + moX L) " nading X Bo.

Take A\ = o(nQ_I), naA1 = o(1), we have X(nl_lXTX + ng)\lImxm)*lnl_lXT = Px(1+0(1)). It

implies that,

1
ning

1
ning

A 2
|xBYONTIN X gy < —— |[Px (W0 @ 0 Y — Ao} (1+0 (1)+n3] | XBol[7 (140 (1)

It is not hard to show that E||Px (W o ®*oY — Ap)||% < {(1/60L — 1)log(n)a? + % /0L }nam. Then
take A\ = o(nl_InQ_S/2 log ! (n)), we have d2(X @NON-UNL_ x 3.} = O, (n}).

The lower bound can be given in the following theorem.

Theorem S2.2. Assume Condition C4, fix a; > 0, for rg, such that 1 < rg, < min(n,ng) —m,

2

(n1 Vno)re, < ninofr. Let the variables e;; be Gaussian N(0,0%), 02 > 0 fori = 1,...,n1,

j=1,...,n2. Then there exist absolute constants o € (0,1), ¢ >0 and 0 <1 <rp,, such that

inf sup P (dQ(A, Ag) > c(o Aap)? (

n1 \/TLQ) (TBO + l)> > a
ﬁA7B,@0€ﬁ(a1),B0€B(TBO,a1) B

nanHL



S3 Justification of Condition C5(b)

Sweeting (1980) presented a very general result concerning the uniform asymptotic normality of
the MLEs. In this section, we want to verify Condition C5(b) under the logistic sampling model
given in (4.1) by applying Sweeting’s results. A natural estimator of - ; is the conditional MLE

4.j» denoted as that maximizes the log-likelihood,

by 'Yj Z{WU log 6;; + (1 wij) log (1 *gij)}-

We know that the MLE 4 ; of v ; is a consistent estimator and the asymptotic normality of ~ ; for
each j = 1,...,n9 under some regularity conditions. Then we apply Sweeting’s result to show the
uniform asymptotic normality of these MLEs.

The conditional Fisher information matrix is

8 12 .
Inl (’Y.j) =E n1 '7] ZGW _ l] 5T (83.1)
02 5
1 &
Let . = lim nj o1 S ity x; and Sm = . To guarantee the sum of squared errors in
ny—oo
jc SZ'

Condition C5(b), we require the following conditions for the sampling model:

CA(a). (i) There exists a universal upper bound 6y € (0, 1), where 0 is allowed to depend on
ny and ng, such that Irzgejpx{t%j} < @y < 1 uniformly. (ii) 0 < ||S,|| < oo and S, > 0.

Condition CA(a) is a mild condition. The upper bound 6y and the lower bound 67, in C5(a)
are considered together to ensure the invertibility of I, (v;).

Denote the parameter space Z is a bounded subset of R™*! which covers the parameters -, ; for
j=1,...,n2. Let P, P, ¢, n1 > 1, be probability measures of random variables A(&), Ay, (§),
n1 > 1 defined on the Borel subset of a metric space depending on a & € E, and let C(R™*!) be

the space of real bounded uniformly continuous functions, A, (&) = A(§) in & € E if and only if

sup | P, ¢ (S) — Pe (S)| — 0,as ny — oo,
£cE

for any Borel set S with P¢ (0S) = 0.



In order to show the uniform weak convergence of MLEs, Sweeting proposed additional two
regularity conditions in Sweeting (1980), which we present in a form that would connect well to
the logistic regression model setting.
CA(b). There exist nonrandom square matrices D,,, (§£), continuous in &, satisfying 2up||D; 11 &)lr —
€=

0, as n1 — oo, such that

Wa, (€) = Dy (€) In, (§) { Dy, (€)}T = W (€),

and P(W (&) >0) = 1.

CA(c). Foralle >0, (i) sup sup || D, (€)Dy, (&) = Ini1|lp — 0, where A(€,¢) = {€' € E:

EeE¢cA(Le)

”D;rh (5)(5/ - f)HF < 6}7 and

Gsup  sup D L (€] L (€))L (OHDLEY I — 0,

EEELRC A(E,€),1<k< (m+1)

where I,,, (€%). is the k—th row of I, (¢¥) for 1 <k <m + 1.

Under growth and convergence Condition CA(b) and continuity Condition CA(c), Corollary
1 of Sweeting (1980) showed that the MLE of é is asymptotic normal uniformly with respect to
§€E,

Wi/2(€) Dy, () (€ - €) % Zas m — o,

where Z is the standard normal random vector in R™*! and independent of W (£).

In the case of the logistic regression model, the parameter space Z is an open subset of R™+!
such that for any & € 2 and 6;¢ = exp(x]€)/{1 + exp(x]€)}, 0 < 01, < Hilijn{eig} < H}E;X{Oig} <
O < 1. Let me = ny ' S0 Oie(1 — 0¢), Dy (€) = (nyme) /21,41 and W (€) = S, thus W, (§) =
D, L&) I, (&){D; ! (&)}T = (nimg) I, (&), where I, (€) is defined as the Fisher matrix in (S3.1).

The justifications of Conditions CA(b) and CA(c) on any £ € E are given in the following.

Justification of Condition CA(b). For any € € E, since E is a bounded subset of R™*! then

e = ity 0ig(1—b¢) /1 € {min{0y(1—6y),0(1—0L)},1}. Tt is easy to see that 222“Dg§(€)”p =

~1/2 5 0 under the case 67, > (n1n2) "' (n1 V ng)log(n) as ny — oo.

m + 1(71171’5)

Under Condition C2, there exist a positive constant a, such that [| X || < az, lim n'XTX =
ny—ro0



lim nj e Yot xix] = Sy, Also we have L. = lim n] e ", @i, thus
n1—ro0 nyp—roo
12915 (1 —bi¢) &; — Mo =0y 2015 (1 —0i¢)x; —ny 2915 (1—-6¢)x
=1

ny
ni ' i (1 0i¢) (@i — Tc)| — 0.
i=1
Similarly, we have nl_l Yot big(1 — 0;¢)x; — me&e and nl_l Yot 0ie(1 — Oi¢)xix] — meSy. These

imply, (n17¢) M, (€) = (name) P 300 Oie (1 — Oi) 225, T — S,

Since Dy, (€) = (nimg) /2 Liny1, W(€) = S,
Wy, (&) = (nlﬂﬁ)_l I, (&) = Se,
Here W (£) = S, and P(S, > 0) = 1. O

Justification of Condition CA(c). For Condition CA(c)(i), for € € E, the set A(€,€) = || Df, (€)(€'—

&)||r < € implies

tr{(& —&)" D, (£)D], (&) (¢ =€)} = (mme) tr { (&' —€)T (&' —¢)} <&

Let 0;¢r = exp(2;7¢") /{1 + exp(&;"¢')} and mgr = > 1 Oier(1 — Oier). Since we have 0, — 0;¢ =
bl — 6:)@T(E — €) + (€ — )il — Wiee ier (1 — i )T (€ — £) for & € B1(€,d(£,€)),
where B™TL(€,d(€,€')) is the ball belongs to R™*! with center at & and radius d(&,&'), d(§, &) is
euclidean distance between the vector £ and &'. Since £* € 2, we have |(1—260¢)0;¢« (1 — ¢ )| < 2.

Combining the fact that there exist a positive constant a, such that | X ||ecc < ag, ||€:i€;T|| < oo, we

can say that 0;er —0;c = 0;¢(1—0;¢)Z;T(€'—€)+0((€'—€)) and (0;¢r —0¢)? = 035(1—9i€)2tr(35i£ﬁ(£’—



E(E &) +o(( —&T (& —&)). It implies that

ni
(nime)'/? |mer — e = (mme)'/? <y Pm® Y3 lbier — b

=1

n1
nit Y {bie (1—0igr) — Oig (1 — i)}

i=1

ni
—-1/2 1/2 ny 2
<3n; rg/ JWE :{WT& (6ir — Bie) }
=1

<30y 2 S namete {&:8T (€~ €) (€ — €T +o((& — )T (¢ — €))}
=1

§3n1_1/2 2n1tr { <n11 ZliZjZT) nime (E, - E) (E’ - £)T} < 3\ /2 ’ S'm €,
i=1

which impliessup sup || D;; 1(§) Dy, (&) —Imt1llr = (m+1)|me /me—1| = (m+1)(nyme) Y2 (nyme) V2 |me —
EEBEL cA(Le)

gl = 0 as ny — oo.

For Condition CA(c)(ii), Let Ojer = exp(Z;T€")/{1 + exp(£;7¢*) and mer = D1 Oier(1 —
Oi¢r)/n1. For any € € B, since (nimgr) I, (€F) — S, and (ny7¢) 'y, (€) — S, showed as before,

we have over the sets | D}, (€)(&€F — €)||r <€ for 1 <k <m+1, as n; — oo,

fourer (i (€)= 0], = [omme - tvre) "} (€],
+ || (mamge) T 1y () = (mame) ™ 1 (0|
< (myme) ™2 (name) 2 |men — el H(”l”ek)_l In, (ﬁk)HF + H(”lﬂsk)_lfm (ﬁk) — (mme)™ I, (€) -

By the inequalities [|S.[|r < v/m+1||S,|| < oo and Vg |mer — me| < 31/2||Sz|le, we have
I(name) ™ {In, (€*) = L, (E)} P — 0.

Thus we have

g s D576 { (1 (€T (€ V)~ @O} D @],
m—+1

<sup Z sup
§CE T €RcA(ge)

(nyme) " {Im (.5’“) I, (5)}HF 0.
0

Applying Corollary 1 in Sweeting (1980) we have that II/Q(E)(E — €)= Z for all v € 2. Under

U

Condition CA(a), we have the parameters v ; € 2 for j = 1,...,n2. Namely, 11/2(7,j)(')7,j —v4) =

10



Z which implies I'/2(v;)(%; — ) 4 N(0,1) for all j = 1,...,ny. For j = 1,...,ny, define
mj = ity 0ij(1 = 0i5)/n1, and 75 € (1 - 0y)?/67, (1 — 01,)%/0F), then we have 7; € {min{fy (1 —
0u),00(1 — 0r)},1} and 77 = Y {(1 — 0;5)?/67;}/n1. As shown in Justification of Condition
CA(b), (nle)_l/zll/Q(7,3-)—)5961/2. Thus we have \/n17;(%.,; —v.;) = Z;, where Z; ~ N(0, S~m_1)
for all 1 < j <ng. For each j =1,...,n9, |7, — 7| = Op(1//m17;).

The estimator of 0;; is given by éij = exp(&;74,;)/{1+exp(€;79 )}, thus, for each j = 1,...,no,

sup; |0i — 0ij] = Op(1//A17;). Also, we have that for specific v € B (v, d(7,5,9.4))s

1 1 _ 1 [ 00; T ) i 52 (1/92-j) A
éij B % - _g <a7]> (7] - 7]) + (7] - 7]) TZJ FY.*j (7] _ ’74])7

which can simplify to be

T g (Y va) (g )T ST (g =)
ij

Since there exist a positive constant a, such that | X |l < az, we have ||€;Z;T||c < 00. Also
Y5 € B(v4,d(74,7)) and || X|leo < ay implies 0, — 6;5, as n1 — oo. Namely, (1 —0;;)/05; —
1—10;;)/6;;, as ny = 0o0. Once 0;; # 0 and &; # 0, by Taylor expansion and continuous mappin

J J J y lay g

theorem, we can see that:

By Slutsky theorem,

<

2
1 1 w (e N\t
(t-a) s76:)' s

which implies that ﬂjwj_l 2?211(1/92] —1/6;;)? = Uj, where U; ~ X241 forall j =1,... no.

ni
=3
s

*
J i=1

By using Polya’s theorem, we have for any ¢ > n;l(m + 1), let ny = min{m;/77}, kp, =

maxsup|P(32,(1/6i; — 1/6;5)? > t) — P(x2,11 = ngt)| < 1/n3 there exists a positive integer Ny /n2s
it

11



for ny > Ny 2,

LNV AT
supP —— ] >ty <supP 2 — — — | =gt
j 2 ( 9z‘j> i | O Y !

i=1 ]

D>

<sup (P (x2 . >tV +k < | Mt TR/ | B
= up{ (Xm+1 Z Mg )} + ny = m —+ exp + ni-
J

Take ¢p, ny = n2log(ng)/ng and tg = (m + 3), for t > ¢y, we have

2l (1 1\’ 2 RS 1\ e
ni,n2

P § § — > Cpy ot §§ P E —— - > 2
ew ] =1 HZJ ij ng

j=11i=1 =1

3 P 2 MgCnanat - 7gCny mat 1 MgCny nyt mTH k
Z {Xerl =, } pS Z [nz (m+ 1) exp{ 12 (m + 1) H + naky,

j=1 j=1
1 t 1
< (m + 1)—(m+1)/2 exp m+ _ TNgCni,na + log (t) + m+ log NgCn1,no + log (n2) + ngkn,
2 2ny 2 ng
1 tl 3
<(m+1)" M2 exp {m;— — ng(nQ) +log () + m;— log (ng)} + naknp,

t
<(m+1)" "2 exp {m +2-— 3T log (t)} + nokn, -
Let g(t) = (m 4+ 1)~ "D/ 2exp{m 4+ 2 — t/2 + log(t)} and hp, n, = n2ks, < 1/ng in Condition

C5(b), we have lim ¢g(t) =0 and lim Ay, », = 0. It satisfies the requirements.
t—o0 n1,n2—>00

S4 Lemmas and Proofs

In this section, we provide various results required in the proofs of Theorems 1 and 2, as well as
Corollaries 1 and 2. First, we review some basic facts about matrices which will be useful in the

following development. For any A, B € R™"*"2_ we have

e Trace Duality Property:

tr (ATB)| < | B| [|A]. - (54.1)
e Norm Inequalities:
[Allp < [|All, < VrallAllp and [[A] < [|A]lp < VralAll, (54.2)

where r 4 is the rank of matrix A.

12



Write J;; = e;(n1)ej(nz), where e;(n) € R" is the standard basis vector with the i-th element

being 1 and the rest being 0. Now we present several lemmas.

Lemma S4.1. Let ¥(1) = Zij wijeijJij/(nlngéij). Under Conditions C1, C4 and C5, for some

positive constants ¢y, 1, 0o and all t > tgy, there exists A(l)(ég,t) such that

1
H\I}(l)H < A(l)(ég,t) ~ max \/<n1 V ng)log (n) , (TL1TL2)_3/4 (cny n2t)1/2 log6”/4 (n)
\/0[,711712 ’

holds with probability at least 1 —1/n — g(t) — by ny — 126207 log =% (n).
More specifically, for the uniform missingness, we have 0;; = 6y and éij = N/(nin2) and for

some positive constants 6, and C1 such that

V/(n1V ny)log (n)
VOoning

holds with probability at least 1 —1/n —log™% (n) — 2/(n1 V ny).

o] <c

To prove Lemma S4.1, we apply Theorem 6.2 which is matrix Bernstein inequality for the

sub-exponential case provided by Tropp (2012).

Proof of Lemma S4.1. For any rectangular matrix M, let £(M) be the self-adjoint dilation of M

defined as

In our case, fori=1,...,n1, 5 =1,...,n9, let

eijwij

Co
Gyi-1)1j = £ ( b, Jij) and - Hp,(i1)4; = £ (\/@Jw) :

To apply Theorem 6.2 of Tropp (2012), we verify the conditions needed in the following.

Since ¢;; is independent of w;;, we have

(10) e -
1) )

which implies E (Gm(i_l)ﬂ-) = 0. Write ng = n/0r, where 7 is the constant in Condition C1. Now

we want to show that

l 2
i /! c
E £ Y ZJJ@") S* 172[1 (UJi') fOI‘l:2,3,4,.--- 843
{ <9z‘j ’ } 2 S\ VY >




In our case, under Condition C1 and C4, for a finite constant 7, we have

0, et T2 \VOL) \br ’ o

Thus it suffices to show that £!(J;;) < £2(J;5) for 1 =2,3,4,....

ez-jwij
Hij

E

Let K, ; = e;(n)e](n), where e;(n) € R" is the standard basis vector of R™ with the i-th
element being 1 and the rest being 0. By the properties of J;;, it is not hard to show that for [ = 2s

or 2s + 1, we have

Kuo: O 0 Jy
/:25 (JIJ) = . and £2s+1 (sz) = Y =L (JIJ) .
0 K, Jh 0
K, ;, —Ji
Hence (S4.3) is verified as > 0.
_Ji-g' K”Qaj

Set the constant 0% = | > i L(codij/VOL)?| = A > i L(J;5)?|/0r. Since

z..Kn i 0
S =) = = max | Ko |3 Ko
7 ij ij

0 Zij Ky, ;

= max {|[ng L, [|, [|n1Ln, [} = 71 V 02,

we have 0% = c2(n1 V n2)/0r. By the property of dilation (2.12) of Tropp (2012),

(—:l-jwij _ (—;Z-jwij B
P | Amax ZL( . Jij> >t =P ZTJJ” > ¢
)

ij

By the Matrix Bernstein Inequality in Theorem 6.2 of Tropp (2012), we show that, for all ¢; > 0,

s —+2/9
P Z €5 Wij Jij >t | <n- exp{ 1/ }

— 0;j 2 (n1Vng) /0L + nut1
ij

42
y n - exp {m} for t1 < c2 (n1 Vna) / (0rny)

n - exp {;7—2} for t1 > c2 (n1 Vng) / (Ornm)

In other words, for any s; > 0, with probability at least 1 — exp{—s1}, we have

iiWiq V |
g ¢ éw J Jij|| < max 200\/(711 n2) {;1 + 108 (n)},477H {s1 +1log(n)}
— i L
ij

14



where s} = s1 + log(n). Choose s1 = log(n), i.e, s§ = 2log(n). With probability at least 1 — 1/n,

we have

1 Z €iwWij 5 | 2¢54/2 (1 V na) log (n) — AL
nine Qij = \VOrning

We also know that

2
11 5 11 S (-]
2 e (é - %) i I D (9 - %) || T e (% ) 9%’]‘)

ij
2 2
< € ! — i < max €2 L — i

Due to Markov inequality, under Condition C1, we have for any a > 0,

S Eel 12ningcn?
P maxe? >qa)=P max€4. > CL2 < 1y Y < 1M2C, 1) ‘
K ij a2 )

Take a = (n1n2)/2log?/?(n) for a positive constant d,, we have max e?j < (n1n2)Y21og% /2 (n)
with probability at least 1 — 12¢2n? log =% (n).

Combining with Condition C5(b), we have for ¢ > ty, with probability at least 1 —g(t) —hp, n, —
12¢2n?log ™% (n), [| 3, €ijwij (1/6i5 — 1/0:5) Tyl < (nana)t/* (e, myt)/*log?/*(n).

Then for ¢ > t, with probability at least 1 — 1/n — g(t) — hny.ny — 126277 log ™% (n), we have

1 €jjWij 1 €ijWij 1 1 1
~ g S g + €l s S g
ning Z 0 " ning %: 0:;; 7| mane Z TIN5 )T

ij ij ij

SA(D/ + (nlng)_3/4 (cmmt)l/2 log‘s(’/4 (n)

1
=AW (05,t) < max{ \/(nl\/\%il)nzg (n)’ (nlng)_3/4 (cmmlt)l/2 logé"/4 (n)} .

As for the uniform missingness, for the first term without the estimators éij, we have the same

upper bound. We also know that for the second term,

2

2 2
"2 e (9 —ez-)"“ F| 2 (@- 9) =2 U a
ij K

ij ij
ning 1 2 2 1 1
2 2
=c,E<X N - — = E<—— .
N { ( N 90) } o ) {N n1n290}
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Also E(N) = ninaby and Taylor expansions for the moments of functions of random variables im-
plies that E(1/N) = 1/(6gninz2)+1/(6oninz)3Var(N)(1+0(1)) = 1/(6gnina)+(1—00)/(Boninz)?(1+
o(1)) due to the fact that E(N — (n1n2)8p)* = o(Var(N)). We have E||e;jw;j(nina/N —1/00)J;;|| <
2¢; (1 — 6o)/63.

Due to Markov inequality, we have for 0 < &, < 2, |€;jwij(nina/N — 1/60)Jy5| < c2(1 —
00) log (n) /62 < c2log® (n)/63 with probability at least 1 — 2log™%"(n). Since ninaby > (ng V
ng) log(n), we have log® (n)/02 < (n1Vng)log(n)/6. Then we have under the uniform missingness,

for a positive constant Cf,

|9 < \/(n%ﬁ :;g (n)

holds with probability at least 1 — 1/n — 2log™% (n).

O]

Lemma S4.2. Let U(?) = >ij Aoij(wig /i — 1)Jij/(nin2). Under Conditions C3-C5, there exists

A®) such that

H\I/(Z)H <A@ — \/‘1/‘9L — 1] (n1 V ng)log (n)
B ning

holds with probability at least 1 — 1/n.

To prove Lemma S4.2, we utilize Proposition 1 given by Koltchinskii et al. (2011) as an im-
mediate consequence of the Matrix Bernstein Inequality due to Ahlswede and Winter (2002) and

Tropp (2012). For matrix Ao, define that:

nz L 2 ni L 2
2, 2 0 Ay e S O A |
ning ’ ning ' '

|Ag|" := max

Proof of Lemma S4.2. Let M, ;_1)+; = Aoij(wij/0ij — 1)J;j. Under Conditions C4 and C5, it is
easy to show that mI?xHMkH <max{1/6;; — 1,1}||Ao|lec <max{1/6; —1,1}||Ag|loc and

1/2 1/2

1

ninz

1
)
nin

oM = max < |Ao|*.

> E(M;M])
k

> E(M] M)
k

16



Take Uy = max{1/6r — 1,1}||Ap||cc. By Proposition 1 of Koltchinskii et al. (2011), we have,

for all t > 0,

H\p@)H < 2max { |Ao|* Hk)g(TL)?maX{l _1, 1} HAoHooM
ninz 0r, nino

with probability at least 1 — exp{—t}.

According to (S4.4), under Conditions C3 and C5, we have

. 11/0r, — 1 1/6r —1|
At <y HLH—— { A Al } —_
’ 0‘ = n1ns max H 0”00,27“ 0”00,2 niy A na

Under additional Condition C3 and ¢t = log(n), with probability at least 1 — 1/n,

_ 3/2
H\I’@H <2(ay \/az)max{\/ﬂl/& 1/1og (n)72max{91 - 1,1} log()} = AP,
L

(n1 Ang)ning ning
for some positive constants a; and as defined in Condition C3.

Since (n1n2) " log®2(n) = o{(n1Vn2)/?(n1ng) " log'/?(n)} and \/|1/0L, — 1] = o(max{1/6, —
1,1}) when 67, = o(1), we have A®) = \/[1/6;, — 1[(n1 V n2)/?(n1ng) " log!/?(n). O
Lemma S4.3. Let UG ZU Agij (w”/ﬁw wij/0ij)di;/(ning). Under Conditions C3 and C5,
for all t > tg, there exists AB)(t) such that

Cny iyt log (n)
ning

o] < 910

holds with probability at least 1 — g(t) — hupy ny-
More specifically, for the uniform missingness, we have 0;; = 6y and éij = N/(nin2) and for

0 < 05 < 2, such that

v < V2 (m\/%%;izg (n)as

holds with probability at least 1 — 2log =% (n).

Proof of Lemma S4.3. By the inequality (S4.2), we have

v <

Hwo@*vo—Wo@*voH
ning

2
1 | Aol 1 1

- A2 S ) < Aol R
n1n2$z 0i5 ] (9 9z‘j> T oning %: 0;; i
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Under Condition C5, \/Zw(l/é,] —1/6;5)? < \/Cny.nyt with probability at least 1—g(t) —hp, p,-

It implies that under Condition C3, with probability at least 1 — g(t) — hp, no,

H\I’(g) H < \/ Cnl,ngtIOg (n)al < vV Cny ot log (TL) (al \ a2)

ninz nin2

Cnynyt 10g (1)
ning '

=A®) (1) <

Since (n1n2)~tlog'/?(n) = o((n1ng2)~3/*log’/*(n)), we have A® (¢) = o(AMD(6,,1)).
As for the uniform missingness, similarly as the proof in Lemma S4.1, we have that E{1/N —
1/(n1n2bo)} < 2(1 — 69)/(foning)?. Then for 0 < §, < 2, with probability at least 1 — 21log ™% (n),
llwij(ning /N —1/00)Jij]| < 2(1—00)10g5"(n)/08 < 2log6"(n)/93 < 2(n1Vng)log(n) /0y for ningby >

(n1 V ng)log(n). Thus it is not hard to conclude that, for 0 < J§, < 2, with probability at least

1 —2log™% (n),

o] < 20 o,

S5 Proofs of Theorem 1 and Corollary 1

Proof of Theorem 1. Under Conditions C1 and C3-C5, Lemmas S4.1-S4.3 show that there exist

constants AM(5,,t), A® and ABG)(¢) such that
H\p(l)H < AW (5,.1), Hq,@)” < A®). HW)H < A® (1),

with probability at least 1—1/n—g(t) —hn, n, —12¢27%log =7 (n), 1—1/n and 1—g(t) — hy, n, respec-
tively. As defined in (4.2), A(d,,t) = max{eglm(nl\/ng)lﬂ(nlng)*l log'/2(n), (nyng) %4 (Cnymyt) /2 log® /4 (n)}
We have for a positive constant Co, A (8,,t) + A®) + AB) (1) < CoA(6,,1).

It follows from the closed form of B that

XB— XBo =X (7' XTX + noh L) "y 1 XT (W e Xﬁ0>

— X(nl_lXTX + n2>\1Imxm)_1n2)\1n1_1X50.
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Take A\; = o(ny '), neA; = o(1), we have X (n]' XTX + noXi Lnxm) 'y ' XT = Px(1 +o(1)). Tt

implies that,

X8 xa|, <[ Px (W e oY — o) (14 0(1)) + 31X} (14 0(1)

< b (W oy — 40) | (14 0(1) + mN X0l (1 + 0 (1)

<2mniny (C§A* (04, t) + a1nj {log (n)} A7)
with the probability at least 1 —2/n — 2g(t) — 2hn, ny — 12¢20%log ™% (n).

It follows from the definition of ,3 and B that

A

B

- weerer]l ool e (o] - o

)

HXBJrBO—W G)*oYH +)\1HﬁH TP (a||Bo|| +(1—a)\|Bo||F) (85.1)

ning

nan

Since we can rewrite the first term in the left hand side of (S5.1) as

HA W o @*OYH HXBJrB Bo—i—Bo—Wo@*oYH

ning ninz
the inequality (S5.1) is equivalent to

1
ning

H S <<B—BO,W0@*OG>+<B—BO,WO(~)*OA0—A0>

+<B—BO,X50—XB>+<B—BO,W0®*0AO—WO®*OAO>)
R N
# 0 (1Bl - 8] ) + 30 - o) (18012 - 8] ).
We focus on the bound related to ||Bygl| in (4.3), namely,

2 (B, B0> <’ max {)\Qa I1Boll, , A2 (1 — @) | Boll% , ninaA2 (6, t)} , (95.2)

first. By the trace duality property given in (S4.1), with probability at least 1 — 2/n — 2¢(t) —
2hny e — 12¢2n? log % (n), we have

1
ninz

2 A~
| <2]5 -2
F

(e ]+ )

+220 (|| Bol. - || B

Jret-a (1Bl - |8

<200 (||B] +11Boll.) A G0, 1) + Ao (1Boll. ~ || B]| ) +22 (1~ a) (||Bo||% - HBHD -

19



For 0 < a <1 and Ao > 2C)A(ds,t), we can simplify the inequality to

B B[] <200 (G0 + 200) 1Bl 4 (1 - ) [Bol

with probability at least 1 — 2/n — 2g(t) — 2hn, ny — 12¢20%log =% (n).

Now we focus on the bound related to rp, in (4.3), namely,
2 (B, Bo) < ' max {nleO (M2a)?, e (1 — @) HBOH%} . (S5.3)

To prove the remaining bounds, note that for any Z € 9||By||«, we have || Bo||« +(Z, B— By) <

| B||«. The inequality (S5.1) implies, for any Z € 8||Bo||.

1 2
H (S5.4)
nin9 F
2 ~ ~ o ~
< <B—Bo,Wo®*oY—B0—X,6> —|—)\2a<Z,BO—B> + 22 (1—a)|Boll>.
ning

On the other hand, by definition of 9||By||«, Z = ZTBO éov(BflT + Pgi W Py, where W is an
arbitrary matrix with ||W|| < 1. It follows from the trace duality (S4.1) that there exists W with

|[W]| <1 such that

<PBiWPB%,BO - B> . <PB&WPB%,B> - <W,PB&BPB%> - HPB#BPB% *

For this particular choice of W, (S5.4) implies that

1 2 R
A HP BP S5.5
. H —+ Asx BL Bk ( )
<= (B-B,Wo® oY - B —X5> + Ao <ZUB By + Bo B> + 22 (1= ) | Bo
ninz =1
Using the facts that || ZTBO o )TH = 1 and <Z u%)ovg)oT, By—B) = (ZTBO SB)O'U%.) , Pg,,(Bop—

B)Pg,), we deduce from (S5.5) that

HB BOH 4 da HPBLBPBL

(95.6)

nin2

<2 <B — B, M> + hoar HPBu <B0 — B) Ps,

A (l-a) |Bol7,

where M = (W 0 ©* oY — By — X8)/(ninz).
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To provide an upper bound on Q(B — By, M) we use the following decomposition:
<B — By, M> _ <B — By, Pg, (M)> + <B ~ B, PB#MPBTQ
=(Ps, (B-Bo) P, (M)) + (B, Ps, MPg, ).
where Pp,(M) = M — Pgi M Pg.. Due to the trace duality (S4.1),

(5 300) < (5 51)] o rur |

)

<A HB - BOHF +T HPB{;BPBI{-

where A = 2P, (M)||r and T = 2||Pgs (M)Pg, || Note that T' < 2| M]| < 2CoA(5,,t) := T*.

Since Pp,(M) = Pg. M Py, + P, M, rank(Pg,) < rp, and rank(Pg,) < rp,, we have

A < 2y/rank (Pg,(M))||Pr,(M)|| < 21/2rB,CoA (0s,t) := A*.

Due to the facts that

s (5= 8) ] = v [ (30— ), = v [

we have

HB BOH + hoa HPBLBPBL

nina2

< (A + )\204«/7‘30)

BBy, +T|Ps; BPs,

A (l-a) |Boll%

which implies

H (Naa — 2C5A (65, 1)) HPBLBPBL

ninz

< (A + Xoay/TB,)

B= By, + % (1—a) |Boll;-

Take Aoax > 2CyA(dy,t), we have

1

ninz

2 2
| < ninars, (2V2C0A (85,0) + Aaa) + 22 (1= a) | Boll}-

Note that 2CyA(dy,t) < A2ar, this means (S5.3) holds.
Finally, in Theorem 1, under the choice of parameters 0 < o < 1 and Agcx > (2+4m)CoA(d, ),

we have n1naC2A%(8,,t) < ninarp,(Aea)?. Thus (4.3) follows from (S5.2) and (S5.3). O

21



Proof of Corollary 1 and Corollary 2. For Corollary 1, it is readily shown that \/nlngeo/(l — 00)(1/é—
1/60) % N(0,1). Since P{(1/0 —1/60)2 > (1—00)t/0p < P{x2 > t} +sup, |P{x? >t} — P{0(1/0 —
1/60)%/(1 — 6y) > t}| where x? is the chi-square random variable with one degree of freedom.
Choose ¢y ny = (1 —00)/00, to > 0, g(t) = P{x} > t} and hp, n, = sgp|P{90(1/0A —1/60)%/(1 —
6p) > t} — g(t)| in Condition C5(b). While that tliglo g(t) = 0 is obvious, by Polya’s theorem,
mgg - hpyms = 0. Thus Condition C5(b) holds for any positive ¢t under the uniform probabil-
ity of observation model. Under Condition C2 and C3, we have || Bz = O{y/nin2log(n)} and

| X Bollr = O{y/ninzlog(n)}. Thus the dominate term in the right hand side is ninarp, AZ.

For Corollary 2, it is shown in Section S1.4 that by taking ¢y, n, = 77;1712 log(ng) and tg =

(m + 3), we have

2
Cen (1 1 m t
P ZZ(QAM—%) > st g < (m+ 1) “’/Qexp{mw—2+log(t)}+n2km

j=1i=1
where 7, is a constant depend on 6y, X2, 11 is the chi-square random variable with m + 1 degrees
of freedom, and k,,, = max sgp|P{Zi(1/9Aij —1/0;5)* > t} = P(x241 = t)|.

Take g(t) = (m+1)"mtD/ 2 exp{m +2—t/2+1log(t)}, and hy, n, = n2kn,. Then, tlggo g(t)=0.
By Polya’s theorem, it is shown in Section S1.4 that there exists a positive integer N such that
for ny > N and k,, < 1/n3, which implies that m}ggoo hny ns = 0. Thus Condition C5(b) holds
for any positive t > ty for the logistic model. Choose ¢ as (4.5), we have sgpA(éa,t) = Ag(dy) =<
17;1/2n173/4n;1/4 log'/?(n2) log?/3(n). This implies that the convergence rate for d(A, Ag) given
in (4.3) is 179_1711_1/271;/2 log(ng) log?%/3(n). Under Condition C2 and C3, we have ||Bo|p =
O{y/ninzlog(n)} and | XBollr = O{\/ninalog(n)}. Thus the dominate term in the right hand
side is n1narp, A2(4,).

Assume that nq =< 773”2 log2+25" (n2), then right hand side becomes rg, log_%"/ 3(n2). O
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S6 Proof of Theorem 2
Proof of Theorem 2. Since that A\; = o(ny '), naA; = o(1), we have
(N7 XTX + 1o\ L) — S5 L

We have the estimators éij of 0;; satisfy that for ]é” —0;5] = Op(nl_l/z). Thus for the jth column
of matrix W o ©* o Y, we have
Wo®' oY) = (Wo (140, (n"?))@ 0Y) .
( ), =(We (140, (m'?)) 07ox),

Let Z; = nl_lXT(W 0@®*oY);. Then Zj; = nl_l Yot wipwijYii /0 for each k =1,...,m
Since E(ziwi;Yij/(n6ij)) = xax(XBo + Bo)ij/n1, Var(zipwi;Yij/(ni6i5)) = 23, (1 — 0){(XBo +

) + o, }/(n1 05), define s%l =y xfk(l —0;;){(XBo+ Bo) + o, }/(nl 0;;). Also we have
3
E |winwi; Yig/ (m16g) — i (X B+ Bo)yy /ma| = (w1 = 05){(X B0 + Bo)}, + (X5 + Bo)ijos /03
=3, (1 — 055) {(XBo + Bo); + (X Po + Bo)y; 073} /0ij + 23, (X Bo + BO)”> /ni,
implies the Lyapunovs condition satisfied, namely,

xlkwlji/l]/el_] Tik (Xﬁo + BO) =0.

(4]

n?inooiz §

ni i=1

By Lyapunov Central Limit Theorem, we have

— Z (xzkw,]Y”/ (n16i5) — zik (X Bo + Bo)ij /n1> LYY (0,1).

R
Combining with ' XTX — S, we have Z; = n]' XT(W 0 @®*0Y); = S,80; + Op(1/+/71).
For the estimator Bj = (NP XTX 41\ L) "' L X T(Wo@®*0Y); = (140(1))S; 'n ' XT(Wo
(14 0,(n; /%)@ 0 Y);, we have B; — Bo; 2 0 and ||B; — Boj||% = Op(m/n1) = Op(1/ny). This

completes the proof of Theorem 2. O
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Table S1: Empirical root mean square errors (RMSEs), test errors, estimated ranks and their
standard errors (in parentheses) under model Ag = By and uniform observation mechanism (UNI),
with (n1,n2)=(400,400), (600,600), (800,800), (1000,1000) m = 20, and r = 10, for two versions of
the proposed methods, and the four existing methods (SZ, NW, KLT and MHT).

ny =ng =400 RMSE(S)) RMSE(By) RMSE(Ay) Test error Rank
SVT-a-UNI  0.0121 (1e-04) 2.2346 (0.015)  2.2354 (0.015)  0.5723 (0.0071) 62.41 (1.59)
SVT-a-UNI  0.0121 (le-04) 2.2342 (0.015)  2.2350 (0.015)  0.5721 (0.0071) 62.23 (1.58)
SZ 2.1082 (0.0167)  0.5059 (0.0076) 46.76 (2.74)
NW 2.0417 (0.0172) 0.4722 (0.0076) 94.48 (5.73)
KLT 2.2565 (0.0148)  0.5827 (0.007)  42.07 (1.58)
MHT 2.0550 (0.0171)  0.4796 (0.0076) 51.42 (2.57)
ny =mng = 600 RMSE(G)) RMSE(By) RMSE(Ay) Test error Rank
SVT-a-UNI  0.0147 (1e-04) 2.0246 (0.0104) 2.0257 (0.0104) 0.4540 (0.0044) 75.82 (1.49)
SVT-a-UNI  0.0147 (1e-04) 2.0206 (0.0105) 2.0217 (0.0105) 0.4521 (0.0044) 74.51 (1.4)
Sz 1.8500 (0.0132) 0.3725 (0.0048) 58.17 (5.15)
NW 1.7794 (0.013)  0.3425 (0.0047) 120.92 (10.29)
KLT 2.0389 (0.0106) 0.4594 (0.0045) 55.49 (1.49)
MHT 1.7902 (0.011)  0.3476 (0.0042) 66.43 (2.46)
ny =nz = 800 RMSE(S)) RMSE(By) RMSE(Ay) Test error Rank
SVT-G-UNI  0.0170 (le-04) 1.8712 (0.0093) 1.8728 (0.0092) 0.3794 (0.0036) 85.54 (1.38)
SVT-6-UNI  0.0170 (le-04) 1.8617 (0.0093) 1.8633 (0.0093) 0.3753 (0.0036) 82.46 (1.19)
SZ 1.6731 (0.0105) 0.2956 (0.0034) 60.91 (5.64)
NW 1.6055 (0.0085) 0.2707 (0.0029) 130.13 (6.05)
KLT 1.8817 (0.0092) 0.3824 (0.0036) 64.86 (1.36)
MHT 1.6107 (0.0099)  0.2734 (0.0032) 80.98 (6.26)
ny =nz = 1000 RMSE(S) RMSE(By) RMSE(Ay) Test error Rank
SVT-a-UNI  0.0185 (le-04) 1.7238 (0.0073) 1.7258 (0.0073) 0.3275 (0.0027) 93.03 (1.36)
SVT-4-UNI  0.0185 (1e-04) 1.7090 (0.0073) 1.7111 (0.0073) 0.3216 (0.0026) 88.14 (1.12)
SZ 1.5076 (0.0069) 0.2435 (0.0023) 72.89 (2.72)
NW 1.4485 (0.0103)  0.2234 (0.0029) 157.62 (18.01)
KLT 1.7317 (0.0073) 0.3291 (0.0027) 72.37 (1.27)
MHT 1.4556 (0.0068)  0.2260 (0.0021)  85.43 (2.48)
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S7 (Cont’) Simulation study

S8 (Cont’) Empirical Study

As suggested at http://files.grouplens.org/datasets/movielens/ml-1m-README. txt, we di-
vide age into 7 categories: under 18, 18 — 24, 25 — 34, 35 — 44, 45 — 49, 50 — 55 and 56+ in the
modeling of probability estimator o*. However, it will cost much more ranks than keep it as nu-
merical in the covariate X for prediction. To achieve a balance, we merge some age categories to
form three to seven categories of the age variable. Specifically, the three categories layout is: under
24, 25 — 49 and 504+; the four categories: under 24, 25 — 34, 35 — 49 and 50+; the five categories:
under 24, 25 — 34, 35 — 44, 45 — 49 and 50+; the six categories: under 18, 18 — 24, 25 — 34, 35 — 44,
45 — 49 and 50+; and the seven categories:under 18, 18 — 24, 25 — 34, 35 — 44, 45 — 49, 50 — 55
and 56+. The predictions errors of using the four and five age categories are the best among the
choices of three to seven categorization of the age.

Table S2: Root mean square prediction errors (RMSPEs) and ranks of the completed matrix based
on Splitl and Split2 for the two versions of the proposed method (SVT-&4-LOG) and (S/\/\T—d—LOG)
and the four existing methods proposed respectively in Sun and Zhang (2012)(SZ), Negahban and
Wainwright (2012)(NW), Koltchinskii et al. (2011)(KLT) and Mazumder et al. (2010)(MHT).

Splitl Split2 Overall

rank(X) RMSPE Rank RMSPE Rank RMSPE
2 SVT-4-LOG  0.9415 47 09541 45  0.9478
SVT-a-LOG  0.9416 45 09543 42 0.9480

4 SVT-4-LOG  0.9420 48  0.9540 42 0.9480
SVT-4-LOG  0.9423 46  0.9540 42  0.9482

5 SVT-4-LOG  0.9420 49 09544 43 0.9483
SVT-4-LOG  0.9422 47 09544 43 0.9483

SZ 0.9412 39 0.9563 31 0.9488
NW 0.9421 269 0.9589 289 0.9506
KLT 0.9584 1 0.9688 1 0.9636
MHT 0.9414 56 0.9568 46 0.9491

Table S2 reports the root mean square prediction errors (RMSPEs), estimated ranks and overall
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RMSPEs of different estimators for both Splitl and Split2. The result with two categorical covariate
X are included. Similarly as the simulation results reported in the Section 6, SVT-4-LOG and
SVT-4-LOG produced highly comparable results, which indicated the applicability of SVT-4-LOG
to larger data sets whenever computational resources are scarce. In Split2, the proposed methods
outperformed SZ NW, KLT and MHT in terms of smaller RMSPEs and either smaller or more
reasonable rank estimation. Although the proposed methods were slightly inferior to SZ and MHT
in Splitl, they outperformed SZ and MHT significantly in Split2 by having smaller RMSPEs. Among
the ten matrix completion methods considered, the six proposed methods and the KLT method
offered the most consistent results between Splitl and Split2, while the other three methods exhibited
much larger variations, especially in the estimated ranks. Overall speaking, the two proposed

methods were among the top two performers of the analysis reported in Table S2.
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